WorldWideScience

Sample records for composite in2o3 ba2in2o5

  1. Phase relationships in the BaO-Ga2O3-Ta2O5 system and the structure of Ba6Ga21TaO40.

    Science.gov (United States)

    Cao, Jiang; Yu, Xiaodi; Kuang, Xiaojun; Su, Qiang

    2012-07-16

    Phase relationships in the BaO-Ga(2)O(3)-Ta(2)O(5) ternary system at 1200 °C were determined. The A(6)B(10)O(30) tetragonal tungsten bronze (TTB) related solution in the BaO-Ta(2)O(5) subsystem dissolved up to ~11 mol % Ga(2)O(3), forming a ternary trapezoid-shaped TTB-related solid solution region defined by the BaTa(2)O(6), Ba(1.1)Ta(5)O(13.6), Ba(1.58)Ga(0.92)Ta(4.08)O(13.16), and Ba(6)GaTa(9)O(30) compositions in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Two ternary phases Ba(6)Ga(21)TaO(40) and eight-layer twinned hexagonal perovskite solid solution Ba(8)Ga(4-x)Ta(4+0.6x)O(24) were confirmed in the BaO-Ga(2)O(3)-Ta(2)O(5) system. Ba(6)Ga(21)TaO(40) crystallized in a monoclinic cell of a = 15.9130(2) Å, b = 11.7309(1) Å, c = 5.13593(6) Å, β = 107.7893(9)°, and Z = 1 in space group C2/m. The structure of Ba(6)Ga(21)TaO(40) was solved by the charge flipping method, and it represents a three-dimensional (3D) mixed GaO(4) tetrahedral and GaO(6)/TaO(6) octahedral framework, forming mixed 1D 5/6-fold tunnels that accommodate the Ba cations along the c axis. The electrical property of Ba(6)Ga(21)TaO(40) was characterized by using ac impedance spectroscopy.

  2. Mass spectrometric determination of stability of gaseous BaMoO2, Ba2MoO4, Ba2MoO5, Ba2Mo2O8 molecules

    International Nuclear Information System (INIS)

    Kudin, L.S.; Balduchchi, Dzh.; Dzhil'i, G.; Gvido, M.

    1982-01-01

    During the mass spectrometric investigation of BaCrO 4 evaporation Cr + , Ba + , BaO + main ions are recorded as well as BaMoO 4 + , BaMoO 3 + , BaMoO 2 + , BaMoO + , BaMoO 4 + , Ba 2 MoO 5 + , BaMo 2 O 8 + ions - the products of ionization of three-component (Ba, Mo, M) molecules, forming as a result of substance chemical interaction with the material of an effusion cell (Mo). Heats of formation of BaMoO 2 , Ba 2 MoO 4 , Ba 2 MoO 5 and Ba 2 Mo 2 O 8 molecules which constituted - 577+-70, -1343+-115, -1464+-70, -2393+-90 k J/mol respectively are determined on the base of the analysis of curves of ionisation efficiency and of reaction heats Ba 2 MoO 5 =BaO+BaMoO 4 , ΔH 0 0 =322+-60 kJ/mol Ba 2 Mo 2 O 8 =2BaMoO 4 , ΔH 0 0 =351+-80 kJ/mol calculated with the use of third low of thermodynamics [ru

  3. Phase formations in the KOH-BaO2-KI(I2)-Bi2O3 system

    International Nuclear Information System (INIS)

    Klinkova, L.A.; Barkovskij, N.V.; Nikolajchik, V.I.

    2004-01-01

    Phase composition of electrochemical synthesis products in the system KOH-BaO 2 -KI(I 2 )-Bi 2 O 3 and its influence on superconducting properties of bismuth-containing oxides are studied by the methods of X-ray phase and elementary analyses, electron diffraction in transmission electron microscope and by measuring temperature dependence of magnetic susceptibility. It was been ascertained that in the presence of iodine introduced as KI or I 2 oxoiodides KBi 6 O 9 I and Bi 5 O 7 I are formed in the system above, giving rise to a change in the composition of synthesis products in KOH-BaO 2 -Bi 2 O 3 matrix system towards formation of superconducting oxides K n Ba m Bi m+n O y rich in bismuth, which are characterized by low values of superconducting transition point [ru

  4. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  5. Dielectric and magnetic properties of xCoFe{sub 2}O{sub 4}–(1 − x)[0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}] composites

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Jyoti [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Yadav, K.L., E-mail: klyadav35@yahoo.com [Smart Materials Research Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Prakash, Satya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2014-12-15

    Highlights: • Spinel–perovskite xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites have been synthesized by solid state reaction method. • Two anomalies in dielectric constant have been identified, and the composites show relaxor behaviour. • The magnetic properties of the composites improve with increasing concentration of CoFe{sub 2}O{sub 4}. • Enhanced magnetodielectric effect is found, and magnetoelectric coupling has been confirmed by Δϵ ∼ γM{sup 2} relation. • Optical band gap energy of these composites has been reported for the first time. - Abstract: xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites with x = 0.1, 0.2, 0.3 and 0.4 have been synthesized by solid state reaction method. X-ray diffraction analysis and field emission secondary electron microscopy have been used for structural and morphological analysis, respectively. The spinel CoFe{sub 2}O{sub 4} and perovskite 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} phase could be identified in the composites. Two anomalies in dielectric constant have been identified: first one is close to ferroelectric to paraelectric phase transition of 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic and the other lies near the magnetic transition temperature of CoFe{sub 2}O{sub 4}. There is an increase in magnetocapacitance and saturation magnetization of the composites at room temperature with increase in CoFe{sub 2}O{sub 4} content. The magnetoelectric coupling coefficient (γ) was approximated by Δϵ ∼ γM{sup 2} relation. The optical band gap energy of the composites decreases with increase in CoFe{sub 2}O{sub 4} content.

  6. High-pressure BaCrO_3 polytypes and the 5H–BaCrO_2_._8 phase

    International Nuclear Information System (INIS)

    Arévalo-López, Angel M.; Paul Attfield, J.

    2015-01-01

    Polytypism of BaCrO_3 perovskites has been investigated at 900–1100 °C and pressures up to 22 GPa. Hexagonal 5H, 4H, and 6H perovskites are observed with increasing pressure, and the cubic 3C perovskite (a=3.99503(1) Å) is observed in bulk form for the first time at 19–22 GPa. An oxygen-deficient material with limiting composition 5H–BaCrO_2_._8 is synthesised at 1200 °C under ambient pressure. This contains double tetrahedral Cr"4"+ layers and orders antiferromagnetically below 260 K with a (0 0 1/2) magnetic structure. - Graphical abstract: Hexagonal 5H, 4H, and 6H perovskites polytypes of BaCrO_3 are observed with increasing pressure and the cubic 3C perovskite is stabilised in bulk form for the first time at 19–22 GPa. Oxygen-deficient 5H–BaCrO_2_._8 synthesised at ambient pressure contains double tetrahedral Cr"4"+ layers and orders antiferromagnetically below 260 K with a (0 0 1/2) magnetic structure.

  7. Ca doping of TSMTG-YBa2Cu3O7-δ/Y2BaCuO5 composites

    International Nuclear Information System (INIS)

    Delorme, F.; Harnois, C.; Monot-Laffez, I.; Marinel, S.

    2002-01-01

    Calcium doped YBa 2 Cu 3 O 7-δ /Y 2 BaCuO 5 bulk samples have been synthesised by the top-seeding-melt-texture growth (TSMTG) process up to 1 wt.% of CaCO 3 . Calcium additions up to 0.25 wt.% of CaCO 3 do not change the decomposition temperature whereas additions of 1 wt.% of CaCO 3 lead to an increase of the decomposition temperature of about 10 deg. C. This difference is not important enough to change the thermal cycle used to process YBa 2 Cu 3 O 7-δ undoped bulk samples. Microstructure studies show that no precursor or secondary phases containing calcium are present in the samples. Energy dispersive spectroscopy analyses have shown that Ca is present both in the YBa 2 Cu 3 O 7-δ matrix and the Y 2 BaCuO 5 particles. The position of the calcium atoms in the superconducting matrix is discussed. The calcium doped samples present slightly depressed critical temperatures but drastically depressed critical current densities

  8. Phase equilibria and crystal chemistry in the ternary system BaO-TiO 2-Nb 2O 5. II. New barium polytitanates with <5 mole% Nb 2O 5

    Science.gov (United States)

    Roth, R. S.; Ettlinger, L. D.; Parker, H. S.

    1987-06-01

    Four new compounds were found in the BaO-TiO 2-Nb 2O 5 system, each containing orth ≈ 9.9A˚, b mon ≈ a orth ≈ 17A˚). Ba 14Ti 40Nb 2O 99 is a 20-layer orthorhombic phase, Cmc*, withc ≈ 46.86A˚. Ba 10Ti 28Nb 2O 72 is a 7-layer monoclinic phase, C2m, c ≈ 16.72A˚, β ≈ 101.2°. Ba 18Ti 54Nb 2O 132 is a 13-layer monoclinic phase, C2m, c ≈ 30.65A˚, β ≈ 96°. The compositions were derived by analogy to the layers in Ba 4Ti 13 O 30 and Ba 6Ti 17O 40 and are consistent with limited phase equilibria data.

  9. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    Science.gov (United States)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  10. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    Science.gov (United States)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  11. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    Science.gov (United States)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  12. A high performance BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2composite cathode

    NARCIS (Netherlands)

    Sun, Wenping; Shi, Zhen; Fang, S.; Yan, Litao; Zhu, Zhiwen; Liu, Wei

    2010-01-01

    A cobalt-free Ba0.5Sr0.5FeO3-δ–Ce0.8Sm0.2O2-δ (BSF–SDC) composite is employed as a cathode for an anode-supported proton-conducting solid oxide fuel cells (H-SOFCs) using BaZr0.1Ce0.7Y0.2O3-δ (BZCY) as the electrolyte. The chemical compatibility between BSF and SDC is evaluated. The XRD results show

  13. From Ba3Ta5O14N to LaBa2Ta5O13N2: Decreasing the optical band gap of a photocatalyst

    International Nuclear Information System (INIS)

    Anke, B.; Bredow, T.; Pilarski, M.; Wark, M.; Lerch, M.

    2017-01-01

    Yellow LaBa 2 Ta 5 O 13 N 2 was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba 3 Ta 5 O 14 N and mixed-valence Ba 3 Ta V 4 Ta IV O 15 . The electronic structure of LaBa 2 Ta 5 O 13 N 2 was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba 3 Ta 5 O 14 N to 2.63 eV for the new oxide nitride, giving rise to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba 3 Ta 5 O 14 N revealing significantly higher activity for LaBa 2 Ta 5 O 13 N 2 under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa 2 Ta 5 O 13 N 2 with the results of the Rietveld refinements. Inset: Unit cell of LaBa 2 Ta 5 O 13 N 2 and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa 2 Ta 5 O 13 N 2 . • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H 2 evolution rate compared to prior tested Ba 3 Ta 5 O 14 N.

  14. Dielectric properties of (CuO,CaO2, and BaO)y/CuTl-1223 composites

    International Nuclear Information System (INIS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Hussain, S.Tajammul; Kamran, M.

    2013-01-01

    We synthesized (CuO, CaO 2 , and BaO) y /Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties such as real and imaginary part of dielectric constant, dielectric loss, and ac-conductivity of these composites are studied by capacitance and conductance measurement as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). The x-ray diffraction analysis reveals that the characteristic behavior of Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor phase and its structure is nearly undisturbed by doping of nanoparticles. The scanning electron microscopy images show the improvement in the intergranular links among the superconducting grains with increasing nanoparticles concentration. Microcracks are healed up with the inclusion of these nanoparticles and superconducting volume fraction is also increased. The dielectric properties of these composites strongly depend upon the frequency and temperature. The zero resistivity critical temperature and dielectric properties show opposite trend with the addition of nanoparticles in Cu 0.5 Tl 0.5 Ba 2 Ca 2 Cu 3 O 10-δ superconductor matrix.

  15. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    Science.gov (United States)

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Syntheses, crystal structures and characterizations of BaZn(SeO3)2 and BaZn(TeO3)Cl2

    International Nuclear Information System (INIS)

    Jiang Hailong; Feng Meiling; Mao Jianggao

    2006-01-01

    Two new barium zinc selenite and tellurite, namely, BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 , have been synthesized by the solid state reaction. The structure of BaZn(SeO 3 ) 2 features double chains of [Zn(SeO 3 ) 2 ] 2- anions composed of four- and eight-member rings which are alternatively along a-axis. The double chains of [Zn 2 (TeO 3 ) 2 Cl 3 ] 3- anions in BaZn(TeO 3 )Cl 2 are formed by Zn 3 Te 3 rings in which each tellurite group connects with three ZnO 3 Cl tetrahedra. BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements. -- Graphical abstract: Two new barium zinc selenite and tellurite, namely, BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 , have been synthesized by solid state reaction. The structure of BaZn(SeO 3 ) 2 features 1D double chains of [Zn(SeO 3 ) 2 ] 2- anions composed of four- and eight-member rings which are alternatively along a-axis. The 1D double chains of [Zn 2 (TeO 3 ) 2 Cl 3 ] 3- anions in BaZn(TeO 3 )Cl 2 are formed by Zn 3 Te 3 rings in which each tellurite group connects with one ZnO 3 Cl and two ZnO 2 Cl 2 tetrahedra. BaZn(SeO 3 ) 2 and BaZn(TeO 3 )Cl 2 are wide bandgap semiconductors based on optical diffuse reflectance spectrum measurements

  17. Critical current density in (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x melt-textured composites  

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto

    2018-01-01

    Melt textured (YBa2Cu3O7−δ)1−x–(PrBa2Cu3O7−δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7−δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses...... indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed...... in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7−δ and (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 samples, respectively. The YBa2Cu3O7−δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7−δ)0.95–(PrBa2Cu3O7−δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4...

  18. Vitrification and some physical and chemical properties of glass in the BaO-B2O3-GeO2 system

    International Nuclear Information System (INIS)

    Dzhavadyan, V.G.; Kostanyan, K.A.

    1977-01-01

    The results are presented of the determination of the areas of glass-transition in RO-B 2 O-GeO 2 systems (where R=Mg, Ca, Sr, Ba) and of the study of the density, the refraction index and the coefficient of linear thermal expansion of glasses of the BaO-B 2 O 3 -GeO 2 system as a function of the composition. It is shown that the substitution of the glass forming agent in the borogermanate component by BaO leads to a non-linear growth of the density. A negative deviation is observed of the experimental variation of the molar volume from the ideal and the positive deviation of the refraction indices from the ideal values. A content of 30 % and over of BaO brings about a sharp increase in the value of the coefficient of linear thermal expansion. Changes of the m lar volume, refraction index and coefficient of linear thermal expansion of glasses as a function of their compositions is due to the variation of the coordination number of boron on charge of the BaO/B 2 O 3 ratio

  19. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    Science.gov (United States)

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm.

  20. BaO-Nd2O3-CuOx subsolidus equilibria under carbonate-free conditions at pO2=100 Pa and at pO2=21 kPa

    International Nuclear Information System (INIS)

    Wong-Ng, W.; Cook, L.P.; Suh, J.; Coutts, R.; Stalick, J.K.; Levin, I.; Huang, Q.

    2003-01-01

    Subsolidus phase equilibria of the BaO-Nd 2 O 3 -CuO x system at pO 2 =100 Pa (0.1% O 2 volume fraction, 810 deg. C) and at pO 2 =21 kPa (21% O 2 volume fraction, 930 deg. C) have been investigated by applying controlled-atmosphere methods to minimize the presence of carbonate and CO 2 and H 2 O contamination. Under carbonate-free conditions, the BaO-Nd 2 O 3 -CuO x phase diagrams at pO 2 =100 Pa and at pO 2 =21 kPa are similar to one another except for differences in the extent of the solid solutions. Apart from the limiting binary phases, the ternary system consists of three solid solutions and one stoichiometric ternary compound. The first solid solution is the high T c series, Ba 2-x Nd 1+x Cu 3 O 6+z (0.3≥x≥0 at pO 2 =100 Pa; 0.95≥x≥ 0 at pO 2 =21 kPa). At pO 2 =21 kPa, a compositionally dependent phase change was detected, from tetragonal (0.7>x≥0) to orthorhombic (0.95≥x≥0.7). The second solid solution series, the 'brown-phase' Ba 1+x Nd 2-x CuO z , has a narrow homogeneity region (0.10>x≥0 at pO 2 =100 Pa; 0.15>x≥0 at pO 2 =21 kPa). In the high BaO part of the phase diagram, a third solid solution (Ba 2-x Nd x )CuO 3+z (x=0 to ∼ 0.3 at pO 2 =100 Pa; x=0-0.45 at pO 2 =21 kPa) was confirmed, as well as a nominally stoichiometric phase, Ba 4 Nd 2 Cu 2 O z . The latter phase is an insulator, with a structure comprised of unusual CuO 5 linear chains. A significant difference in tie line distribution involving the Ba 2-x Nd 1+x Cu 3 O 6+z superconductor was found under carbonate-free conditions relative to literature studies completed in air. Instead of the BaCuO 2+x -Ba 2+x Nd 4-x Cu 2 O z tie line normally encountered in air, a Ba 2-x Nd 1+x Cu 3 O 6+z -(Ba,Nd) 2 CuO 3+x tie line was established. This tie line substantially expands the field of stability of the Ba 2-x Nd 1+x Cu 3 O 6+z superconductor phase into the BaO-rich region of the phase diagram. Implications for the processing of materials based on the Ba 2-x Nd 1+x Cu 3 O 6+z

  1. Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass.

    Science.gov (United States)

    Yu, Shenglei; Yang, Zhongmin; Xu, Shanhui

    2010-05-01

    This paper reports on the spectroscopic properties and energy transfer analysis of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)-La(2)O(3) glasses with different Tm(2)O(3) doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm-2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm(3+), cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm(2)O(3) doping concentrations. The maximum fluorescence intensity at around 1.8 mum has been obtained in Tm(2)O(3)-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm(3+) in this sample is about 0.48 x 10(-20) cm(2) at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm(3+)-doped BaF(2)-Ga(2)O(3)-GeO(2)- La(2)O(3) glass for 2.0-microm optical fiber laser.

  2. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    Science.gov (United States)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  3. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  4. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  5. Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.

    Science.gov (United States)

    Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan

    2015-05-01

    Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7)  F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7)  F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Glass forming in La2O3-TiO2-ZrO2 ternary system by containerless processing

    Science.gov (United States)

    Kaneko, Masashi; Kentei Yu, Yu; Kumar, Vijaya; Masuno, Atsunobu; Inoue, Hiroyuki; Odawara, Osamu; Yoda, Shinichi

    The containerless processing is an appropriate method to create new glasses, because it sup-presses nucleation at the boundary between liquid and crucible during solidification and it enables molten samples to be solidified without crystallization. Recently, we have succeeded in forming BaTi2 O5 glass in the bulk state by using an aerodynamic levitation furnace. BaTi2 O5 glass includes no traditional glass network former and it possesses high electric permittivity [1, 2]. From the point of view of optical application, BaTi2 O5 glass has high refractive indices over 2.1. BaTi2 O5 glass, however, vitrify only in a small sphere, and it crystallize when its diameter exceed 1.5 mm. In order to synthesize new titanate oxide glasses which possess higher refractive indices and larger diameter than BaTi2 O5 , La and Zr can be used as substitutive components. When Ba is replaced with La, refractive indices are expected to increase because of the heavier element. The addition of a third element is thought to be effective for enhance-ment of glass formation ability and Zr can be a candidate because Ti and Zr are homologous. In this research, we have succeeded in forming new bulk glass in La2 O3 -TiO2 -ZrO2 ternary system by means of the aerodynamic levitation furnace. We investigated the glass forming region, thermal properties and optical properties of La2 O3 -TiO2 -ZrO2 glass. Glass transition temperature, crystallization temperature, density, refractive indices and transmittance spectra were varied depending on the chemical composition. Reference [1] J. Yu et al, "Fabrication of BaTi2O5 Glass-Ceramics with Unusual Dielectric Properties during Crystallization", Chem-istry of Materials, 18 (2006) 2169-2173. [2] J. Yu et al., "Comprehensive Structural Study of Glassy and Metastable Crystalline BaTi2O5", Chemistry of Materials, 21 (2009) 259-263.

  7. Study of chromites YbMIICr2O5,5 (MII - Mg, Ca, Sr, Ba by X-ray diffraction

    Directory of Open Access Journals (Sweden)

    B. Kasenov

    2012-03-01

    Full Text Available Compounds of composition YbMeMnFeO5,5 (Me – Mg, Ca, Sr, Ba are synthesized from Yb2O3, , Cr2O3 and MgCO3, CaCO3, SrCO3, BaCO3 by solid phase method. X-ray powder diffraction showed that the compound YbMgCr2O5,5, YbCaCr2O5,5, YbSrCr2O5,5, YbBaCr2O5,5 crystallizes in the tetragonal crystal system.

  8. Evidence of oxygen content heterogeneity in TSMTG YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} composites by micro-Raman spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, F. [Laboratoire CRISMAT, UMR CNRS 6508, ISMRA, Boulevard du Marechal Juin, 14050 Caen Cedex (France)], E-mail: f.delorme@brgm.fr; Bardeau, J.-F. [Laboratoire de Physique de l' Etat Condense, Faculte des Sciences, Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09 (France); Harnois, C. [Laboratoire CRISMAT, UMR CNRS 6508, ISMRA, Boulevard du Marechal Juin, 14050 Caen Cedex (France); Monot-Laffez, I. [Laboratoire LEMA, CNRS FRE-2077- CEA-LRC M01 - IUT de Blois, 3 Place Jean Jaures, CS2903, 41029 Blois (France)

    2008-03-01

    The homogeneity of the oxygen content of TSMTG-YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} composites has been investigated by micro-Raman spectrometry. The Y123 compound has been found to be very sensitive to the laser power, but a laser power of 0.04 mW has been shown to not to be harmful for the samples, even after 2 h of irradiation. Raman spectra have shown that the oxygen content of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/Y{sub 2}BaCuO{sub 5} ceramics is not homogeneous at the micrometer scale. In addition, no monotonic decrease of the oxygen content is observed from the periphery to the core of the sample, confirming that the oxygen uptake is not strictly controlled by a diffusion process.

  9. Chemical interaction between Ba{sub 2}YCu{sub 3}O{sub 6+x} and CeO{sub 2} at pO{sub 2}=100 Pa

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Ng, W.; Yang, Z.; Cook, L.P.; Huang, Q.; Frank, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Kaduk, J.A. [BP-Amoco Research, Naperville, IL (United States)

    2005-07-01

    Chemical interaction between the Ba{sub 2}YCu{sub 3}O{sub 6+x} superconductor and the CeO{sub 2} buffer layers employed in coated conductor architectures has been modeled experimentally by investigating phase equilibria on the Ba{sub 2}YCu{sub 3}O{sub 6+x}-CeO{sub 2} join at pO{sub 2}=100 Pa. This join is actually a non-binary join within the BaOY{sub 2}O{sub 3}CeO{sub 2}CuO{sub x} quaternary system. At an approximate mole ratio of Ba{sub 2}YCu{sub 3}O{sub 6+x}:CeO{sub 2} = 40:60, a phase boundary was found to separate two four-phase regions. At the Ba{sub 2}YCu{sub 3}O{sub 6+x}-rich side of the join, the four-phase region consists of Ba{sub 2}YCu{sub 3}O{sub 6+x}, Ba(Ce{sub 1-z}Y{sub z})O{sub 3-x}, BaY{sub 2}CuO{sub 5}, and Cu{sub 2}O; at the CeO{sub 2} rich side, the four phases were determined to be Ba(Ce{sub 1-z}Y{sub z})O{sub 3-x}, BaY{sub 2}CuO{sub 5}, Cu{sub 2}O and CeO{sub 2}. At 810 C and pO{sub 2}=100 Pa, there appears to be negligible solid solution formation of the types Y{sub 1-z}Ce{sub z}O{sub 3-x} and Ce{sub 1-z}Y{sub z}O{sub 2-x}. The minimum melting temperature along the Ba{sub 2}YCu{sub 3}O{sub 6+x}-CeO{sub 2} join was determined to be {approx} 860 C. As part of this study, phase diagrams of the subsystems CeO{sub 2}-Y{sub 2}O{sub 3}-CuO{sub x}, BaO-CeO{sub 2}-CuO{sub x}, and BaO-Y{sub 2}O{sub 3}-CeO{sub 2} were also determined at 810 C under 100 Pa pO{sub 2}. The Y{sub 2}O{sub 3}-CeO{sub 2}-CuO{sub x} diagram does not contain ternary phases and shows a tie-line from Y{sub 2}O{sub 3} to the binary phase Y{sub 2}Cu{sub 2}O{sub 5-x}. Similarly, the BaO-CeO{sub 2}-CuO{sub x} diagram contains no ternary phases, but has four tie-lines originating from BaCeO{sub 3} to Ba{sub 2}CuO{sub 3+x}, BaCuO{sub 2+x}, BaCu{sub 2}O{sub 2+x} and CuO{sub x}. The BaO-Y{sub 2}O{sub 3}-CeO{sub 2} system contains one ternary phase, the solid solution Ba(Ce{sub 1-z}Y{sub z})O{sub 3-x} (0{<=}z{<=}0.13), which crystallizes with the orthorhombic space group Pmcn (No. 62

  10. Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method

    International Nuclear Information System (INIS)

    Nie Junwu; Xu Guoyue; Yang Ying; Cheng Chuanwei

    2009-01-01

    Magnetoelectric nano-composites (1 - x)CoFe 2 O 4 + (x)BaTiO 3 with x varies as 0, 0.5, 0.65 and 1.0 in molar ratio were prepared by molten-salt synthesis method. The structural analysis carried out by X-ray diffraction (XRD) technique has confirmed that both phases are present in all the nano-composites powders and ceramic composites. The TEM images show that the nano-particle crystallite size is about 50-80 nm, which is consistent to the result calculated by XRD. The dielectric constant was studied as a function of frequency for ceramic composites sintered by using those nano-composite powders. The saturation magnetization (Ms) and remnant polarization (Pr) were calculated from the magnetic hysteresis loop and electric hysteresis loop, respectively. And a large ME coefficient of about 17.04 mV cm -1 Oe -1 was observed for 0.5CoFe 2 O 4 + 0.5BaTiO 3 ME composite under the ac superimposed magnetic signal with 20 kHz frequency by using the lock-in technique

  11. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3

    Science.gov (United States)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  12. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer

    International Nuclear Information System (INIS)

    Ma, W. J.; Zhang, X. Y.; Wang, Ying; Zheng, Yue; Lin, S. P.; Luo, J. M.; Wang, B.; Li, Z. X.

    2013-01-01

    Nanoscale multilayer structure TiO 2 /BaTiO 3 /TiO 2 has been fabricated on Pt/Ti/SiO 2 /Si substrate by chemical solution deposition method. Highly uniform bipolar resistive switching (BRS) characteristics have been observed in Pt/TiO 2 /BaTiO 3 /TiO 2 /Pt cells. Analysis of the current-voltage relationship demonstrates that the space-charge-limited current conduction controlled by the localized oxygen vacancies should be important to the resistive switching behavior. X-ray photoelectron spectroscopy results indicated that oxygen vacancies in TiO 2 play a crucial role in the resistive switching phenomenon and the introduced TiO 2 /BaTiO 3 interfaces result in the high uniformity of bipolar resistive switching characteristics

  13. Measurements of the electric field gradient at cadmium in YBa2Cu3Ox, Y2BaCuO5 and Y2Cu2O5

    International Nuclear Information System (INIS)

    Saitovitch, H.; Silva, P.R.J.

    1990-01-01

    The electric Field Gradient (EFG) at diluted Cd sup(111) in YBa sub(2)Cu sub(3)O sub(x) was measured by Angular Correlation (AC). In order to determine the atom-probe localization, AC measurements were also, performed on Y sub(2)BaCuO sub(5). A nuclear electric quadrupole interaction frequency (NQIF) was associated with Cd sup(111) in YBa sub(2)Cu sub(3) O sub(x) Cu(1) site. (author)

  14. Pushing and trapping phenomena in YBa2Cu3O7 melt-textured composites with BaZrO3 and Ag additions

    International Nuclear Information System (INIS)

    Carrillo, A E; Puig, T; Obradors, X

    2005-01-01

    A new Ag trapped particle morphology has been discovered in melt-textured YBa 2 Cu 3 O 7 /Ag composites where the interface energy between particle inclusions and a solid matrix has been enhanced with BaZrO 3 additives. The enhanced pushing effect generates square-like macrosegregation bands where the secondary additives Y 2 BaCuO 5 , BaZrO 3 , and Ag are accumulated. It is shown that elongated Ag particles with a long axis ∼ 60-120 μm and aspect ratios as high as a ∼ 12 can be trapped in the YBa 2 Cu 3 O 7 matrix free of any other additive with a very anisotropic orientation. It is demonstrated that the elongated Ag particles lie with the long axis parallel to the growth direction in all the growth sectors generated by the top seeding growth. The pushing-trapping theory is used to explain qualitatively the unusual phenomenon of a growth-induced morphological shaping of inclusion particles

  15. Enhanced 77 K vortex-pinning in Y Ba2Cu3O7−x films with Ba2Y TaO6 and mixed Ba2Y TaO6 + Ba2Y NbO6 nano-columnar inclusions with irreversibility field to 11 T

    Directory of Open Access Journals (Sweden)

    F. Rizzo

    2016-06-01

    Full Text Available Pulsed laser deposited thin Y Ba2Cu3O7−x (YBCO films with pinning additions of 5 at. % Ba2Y TaO6 (BYTO were compared to films with 2.5 at. % Ba2Y TaO6 + 2.5 at. % Ba2Y NbO6 (BYNTO additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10 T (YBCO-BYTO and 11 T (YBCO-BYNTO, representing the highest ever achieved values in YBCO films.

  16. Dielectric and magnetoelectric properties of Li{sub 0.5}Ni{sub 0.75-x/2}Zn{sub x/2}Fe{sub 2}O{sub 4} + Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} ME composites

    Energy Technology Data Exchange (ETDEWEB)

    Durgadsimi, S.U. [Department of Physics, Basaveshwara Engineering College, Bagalkot 587 102 (India); Chougule, S.S.; Chougule, B.K.; Bhosale, C.H. [Department of Physics, Shivaji University, Kolhapur 416 004 (India); Bellad, S.S., E-mail: ssbellad@rediffmail.com [Department of Physics, Maharani' s Science College for Women, Bangalore 560 001 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The magnetoelectric composites Y[Li{sub 0.5}Ni{sub 0.75-x/2}Zn{sub x/2}Fe{sub 2}O{sub 4}] + (1 - Y)[Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3}] are prepared by standard ceramic technique. Black-Right-Pointing-Pointer The XRD patterns confirmed the coexistence of piezomagnetic and piezoelectric phases. Black-Right-Pointing-Pointer Both dielectric constant ({epsilon} Prime ) and loss tangent (tan {delta}) decrease with increase in frequency. Black-Right-Pointing-Pointer The linearity in the log {sigma}{sub ac} vs. log {omega}{sup 2} plots confirmed small polaron hopping type of conduction mechanism. Black-Right-Pointing-Pointer ME output showed direct relation with the resistivity of the composites. - Abstract: The magnetoelectric composites with the composition Y[Li{sub 0.5}Ni{sub 0.75-x/2}Zn{sub x/2}Fe{sub 2}O{sub 4}] + (1 - Y)[Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3}] where x = 0.1, 0.2. 0.3 and Y = 0.1, 0.2, 0.3 were prepared by standard double sintering ceramic technique. The XRD patterns confirmed the coexistence of piezomagnetic and piezoelectric phases. Both dielectric constant ({epsilon} Prime ) and loss tangent (tan {delta}) decrease with increase in frequency exhibiting normal dielectric behaviour. The linearity in the log {sigma}{sub ac} vs. log {omega}{sup 2} plots confirmed the small polaron hopping type of conduction mechanism in the composites studied. Flat curves in the ME output vs. dc magnetic field are obtained which may be due to the presence of strontium in the composites. ME output showed direct relation with the resistivity of the composites.

  17. Hot spot in GdBa2Cu3O7-δ-based composite ceramics rods and their applications for oxygen sensors

    International Nuclear Information System (INIS)

    Okamoto, T; Takata, M

    2011-01-01

    A hot spot, which is a local area glowing orange, appears in a LnBa 2 Cu 3 O 7-δ (Ln: rare earth element) ceramic rod when a voltage exceeding a certain value is applied to the rod at room temperature. After the appearance of the hot spot, the current changes according to the oxygen partial pressure in ambient atmosphere, which acts as an oxygen sensor without the need for any heating system. The GdBa 2 Cu 3 O 7-δ rod tended to be melted and broken by a sustained presence of the hot spot in a high oxygen partial pressure Po 2 (∼100 kPa). The composite rod containing high melting point materials, such as BaAl 2 O 4 , BaZrO 3 and Gd 2 BaCuO 5 , showed a remarkable high durability in O 2 atmosphere. In a low Po 2 ( 2 Cu3O 7-δ rod decreases to almost zero and the hot spot disappeared, resulting in an insensitive rod to oxygen. The composite rod containing CuO detected oxygen even in Po 2 < 0.002 kPa.

  18. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    Science.gov (United States)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  19. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  20. Optical characterization of Tm(3+) doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2.

    Science.gov (United States)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-10

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  1. Ruthenium perovskites of type Ba/sub 2/BRuO/sub 6/ and Ba/sub 3/BRu/sub 2/O/sub 9/ with B = indium, rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, H U; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-02-01

    The black perovskites Ba/sub 2/InRu/sup 5 +/O/sub 6/ and Ba/sub 3/InRu/sub 2/O/sub 9/ (mean oxydation state of ruthenium: +4.5) adopt the hexagonal BaTiO/sub 3/ structure and form a continuous series of mixed crystals. According to the intensity calculations and analysis of the vibrational spectroscopic data an ordered distribution between indium and ruthenium is present: 1:1 order in Ba/sub 2/RuO/sub 6/ (space group P-3m1 respective Dsub(3d)/sup 3/; R' = 5.3%); 1:2 order in Ba/sub 3/InRu/sub 2/O/sub 9/ (space group P6/sub 3//mmc respective Dsub(6h)/sup 4/; R' = 4.6%). The corresponding black Rh compounds, Ba/sub 2/RhRuO/sub 6/ and Ba/sub 3/RhRu/sub 2/O/sub 9/, crystallize in the rhombohedral 9 L type of BaRuO/sub 3/ (author).

  2. Single-Crystal X-Ray Diffraction Studies of Homologues in the Series nBa(Nb,Zr)O 3+3 mNbO with n=2, 3, 4, 5 and m=1

    Science.gov (United States)

    Nilsson, G.; Svensson, G.

    2001-01-01

    Single crystals of four homologues in the series nBa(Nb,Zr)O3+3mNbO, with n:m=2:1, 3:1, 4:1, and 5:1, were found in the reduced Ba-Nb-Zr-O system. Single-crystal X-ray diffraction data were collected for all the crystals. For all homologues the space group was found to be P4/mmm. The structures can be described as intergrowths of Ba(Nb,Zr)O3 perovskite and NbO slabs. The refined cell parameters and compositions of the 2:1, 3:1, and 4:1 homologues are a=4.1768(5) Å and c=12.269(2) Å for Ba2Nb4.5(1)Zr0.5(1)O9, a=4.1769(5) Å and c=16.493(3) Å for Ba3+δNb4.8(2)-δ Zr1.2(2)O12-δ (δ=0.098(4)), and a=4.1747(6) Å and c= 20.619(4) Å for Ba4+δNb5.1(4)-δZr1.9(4)O15-δ (δ=0.270(9)). The refined cell parameters of the 5:1 homologue are a=4.1727(3) Å and c=24.804(3) Å. Zr replaces Nb only in the NbO6 octahedra found in the perovskite slabs.

  3. Electrical and magnetic properties of 0-3 Ba(Fe1/2Nb1/2)O3/PVDF composites

    Science.gov (United States)

    Ranjan, Hars; Mahto, Uttam K.; Chandra, K. P.; Kulkarni, A. R.; Prasad, A.; Prasad, K.

    Lead-free Ba(Fe1/2Nb1/2)O3/PVDF 0-3 composites were fabricated using melt-mixing technique. X-ray diffraction, scanning electron microscopy, dielectric, impedance, ac conductivity, magnetic force microscopy (MFM) and vibrating sample magnetometer studies were undertaken to characterize the samples. Average crystallite size of the Ba(Fe1/2Nb1/2)O3 powder, estimated using Williamson-Hall approach, was found to be ˜42nm. The filler particles of ˜0.5-1μm were found to disperse in the polymer matrix of all the composites. Filler concentration-dependent values of real and imaginary parts of complex permittivity showed increasing trend and were seen to follow Bruggeman and Furukawa equations. The data for ac conductivity exhibited negative temperature coefficient of resistance character of the test materials and were found to obey Jonscher’s power law. The correlated barrier hopping model was found to explain satisfactorily the mechanism of charge transport occurring in the system. MFM confirmed the presence of magnetic phases in the composites. Typical magnetization versus applied field curves indicated the possibility of magnetoelectric coupling in the system. Hence, the present composites have shown themselves as potential multi-functional candidate materials for use in high density data storage applications.

  4. From Ba{sub 3}Ta{sub 5}O{sub 14}N to LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}: Decreasing the optical band gap of a photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Anke, B. [Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Bredow, T. [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, 53115 Bonn (Germany); Pilarski, M.; Wark, M. [Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); Lerch, M., E-mail: martin.lerch@tu-berlin.de [Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)

    2017-02-15

    Yellow LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba{sub 3}Ta{sub 5}O{sub 14}N and mixed-valence Ba{sub 3}Ta{sup V}{sub 4}Ta{sup IV}O{sub 15}. The electronic structure of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba{sub 3}Ta{sub 5}O{sub 14}N to 2.63 eV for the new oxide nitride, giving rise to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba{sub 3}Ta{sub 5}O{sub 14}N revealing significantly higher activity for LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} with the results of the Rietveld refinements. Inset: Unit cell of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}. • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H{sub 2} evolution rate compared to prior tested Ba{sub 3}Ta{sub 5}O{sub 14}N.

  5. Luminescent properties of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of)

    2012-04-15

    Effective orange Sm{sup 3+}-doped Sr{sub 2.5}Ba{sub 0.5}AlO{sub 4}F phosphors excited at 254 and 408 nm excitation were prepared by the solid-state method. The excitation and emission spectra of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001{approx}0.1) based on photoluminescence spectroscopy are investigated. The defects in anion-deficient Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} (x=0.001, 0.01) are monitored by broad-band photoluminescence emission centered near 480 nm along with the orange emission transitions of Sm{sup 3+}. CIE values and relative luminescent intensities of Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F and Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4-{alpha}}F{sub 1-{delta}} by changing the Sm{sup 3+} content (x=0.001{approx}0.1) are discussed. - Highlights: Black-Right-Pointing-Pointer Under the excitation of 408 nm competent orange emitting Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}AlO{sub 4}F phosphor is initiated. Black-Right-Pointing-Pointer Sm{sup 3+}-activated oxyfluoride phosphor is quite effective to prepare white-emitting light for near-UV LED applications. Black-Right-Pointing-Pointer Defects could be visibly created in the Sr{sub 2.5-3x/2}Ba{sub 0.5}Sm{sub x}Al O{sub 4}F host lattices when Sm{sup 3+} ions are doped less than 5 mol %. Black-Right-Pointing-Pointer The gradual substitution of Sm{sup 3+} contents in oxyfluoride hosts is amenable to change CIE values and desired emitting intensity.

  6. Interfacial reactions of Ba 2YCu 3O 6+z with coated conductor buffer layer, LaMnO 3

    Science.gov (United States)

    Liu, G.; Wong-Ng, W.; Kaduk, J. A.; Cook, L. P.

    2010-03-01

    Chemical interactions between the Ba 2YCu 3O 6+x superconductor and the LaMnO 3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba 2YCu 3O 6+x-LaMnO 3 system. The Ba 2YCu 3O 6+x-LaMnO 3 join within the BaO-(Y 2O 3-La 2O 3)-MnO 2-CuO x multi-component system is non-binary. At 810 °C ( pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba 2-x(La 1+x-yY y)Cu 3O 6+z, Ba(Y 2-xLa x)CuO 5, (La 1-xY x)MnO 3, (La,Y)Mn 2O 5. The crystal chemistry and crystallography of Ba(Y 2-xLa x)CuO 5 and (La 1-xY x)Mn 2O 5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y 2-xLa x)CuO 5 are Ba(Y 1.8La 0.2)CuO 5 and Ba(Y 0.1La 1.9)CuO 5, respectively. The structure of Ba(Y 1.8La 0.2)CuO 5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å 3, and D x = 6.29 g cm -3. YMn 2O 5 and LaMn 2O 5 do not form solid solution at 810 °C ( pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn 2O 5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å 3. A reference X-ray pattern was prepared for YMn 2O 5.

  7. The microstructure and composition analysis of (Ba,Sr)O.6Fe_2_1_-_X)(Mn,Ti)_xO_3 (X = 0, 0,25; and 0,5)

    International Nuclear Information System (INIS)

    Wisnu Ari Adi; Azwar Manaf

    2010-01-01

    The raw materials were BaCO_3_' srCO_3_' Fe_2O_3_' MnCO_3 and TiO_2. The compound was synthesized by a solid state reaction method. The finely mixed powder was compacted at 5000 psi into pellets. These pellets were sintered in the electric chamber furnace THERMOLYNE at 1050 °C for 15 h with a heating cycle of 5°C/min ramp rate and cooled in the furnace to room temperature. The result showed that the X-ray diffraction pattern obtained can be identified as the SrO.6Fe_2O3 single phase (ICDD PDF 33-1340) for all samples according to the Hanawalt table. The microstructure analyses showed that the particle shapes are polygonal with the varied particle sizes of 2-5 μm distributed homogeneously on the surface of the samples. The element analysis showed that the compound compositions have already suitable to expectation. It is concluded that a single phase Mn-Ti substituted (Ba,Sr)O.6Fe_2O_3 have been made successfully suitable of compound composition was expected. (author)

  8. Recurrent intergrowths in the topotactic reduction process of LaBaCuCoO5.2.

    Science.gov (United States)

    Ruiz-González, Luisa; Boulahya, Khalid; Parras, Marina; Alonso, José; González-Calbet, José M

    2002-12-16

    A new perovskite-related oxide with the LaBaCuCoO5.2 composition has been stabilised. Its structure can be described as formed by the recurrent intergrowth of two alternating blocks of YBaCuFeO5 (2ac, i.e., two-fold perovskite superlattice) and YBa2Fe3O8 (3ac) structural types. From the starting material LaBaCuCoO5.2-delta (delta = 0), the rigorous control of the oxygen content has allowed the stabilisation of three new five fold perovskite-related superstructures with the compositions delta = 0.4, 0.8 and 1.1, which can also be described as recurrent intergrowths of two blocks showing 2ac and 3ac periodicity. The reduction process takes place through the 3ac periodic blocks, when 0 topotactic reaction, since their basic structure is kept through the reduction process.

  9. Orientation dependence of magnetoelectric coefficient in 1-3-type BaTiO3/CoFe2O4

    Science.gov (United States)

    Jian, Gang; Shao, Hui; Zhang, Cheng; Yan, Chao; Zhao, Ning; Song, Bo; Wong, C. P.

    2018-03-01

    Orientation dependence of magnetoelectric coefficient αE33 in 1-3-type BaTiO3/CoFe2O4 composites was calculated in arbitrary directions by three-dimensional coordinate transformation method. The space distributions of pc11‧, pc12‧, e31‧ for piezoelectric phase and mc11‧, mc12‧, q31‧ for magnetic phase were obtained independently using relative experimental data and original matrices for 4mm BaTiO3 and m3m CoFe2O4. Elastic stiffness coefficients show little orientation differences, while e31‧ and q31‧ exhibit high dependence on crystal orientation, with the MAX absolute e31‧ = 2.96 C/m2 and the MAX q31‧ = 556 × 10-12 m/A are found at θ = 0° and θ = 0°, ϕ = 45°, respectively. For space distribution of αE33‧, BaTiO3||[0 0 1]/CoFe2O4||[0 0 1] combination has the maximum value which applies to both 1-3 p/m (1.485 V/A) and 1-3 m/p composites (1.529 V/A). Volume fraction is quite independent of orientations of both piezoelectric and magnetic phases and the volume fraction for magnetic phase f around 0.5 obtains the largest αE33. The results suggest an approach to significantly enhancing magnetoelectric coefficient of composite multiferroic materials through crystal orientation controls of single crystals and textured ceramics.

  10. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    Science.gov (United States)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-SiO2, has a density of 3.39 g/cu cm, a thermal expansion coefficient of 6.6 x 10 to the -6th/C, a glass-transition temperature of 910 C, and a dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot-pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass have been studied. CIP'd samples, after appropriate heat treatments, always crystallized out as celsian, whereas presence of 5-10 wt pct of an additive was necessary for formation of celsian in sintered as well as hot-pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot-pressing resulted in fully dense samples.

  11. Effect of mixing RE elements (Nd, Sm, Gd, Eu, Y, Yb) on the RE2BaCuO5/Nd4-2xBa2+2xCu2-xO10-2x phases in RE cuprate high-Tc superconductors

    International Nuclear Information System (INIS)

    Langhorn, J.B.; Black, M.A.; McGinn, P.J.

    1999-01-01

    The phases RE 2 BaCuO 5 /RE 4 Ba 2 Cu 2 O 10 phases (where RE is a mixture of Nd, Sm, Gd, Eu, Y and Yb) have been synthesized in an oxygen atmosphere and subsequently characterized. The mixing of RE elements which inherently form the RE 2 BaCuO 5 phase through the peritectic decomposition of REBa 2 Cu 3 O 7-x (RE123) (i.e. Sm, Gd, Eu, Y, Yb), was observed to give homogeneous mixing of the elements in the 211 phase. In contrast it was found that on mixing Nd with other RE elements a mixture of the Nd 4-2x Ba 2+2x Cu 2-x O 10-2x (Nd422) and RE 2 BaCuO 5 (RE211) phases resulted. It was also observed that on mixing Nd with other REs a finite amount of the RE is substituted into the Nd422 phase and Nd into the RE211. (author)

  12. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses

    Science.gov (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.

    2018-04-01

    In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.

  13. Characterization and dielectric properties of BaTiO3 prepared from Ba(NO3)2-TiO2 mixture

    International Nuclear Information System (INIS)

    Othman, K.I.; Hassan, A.A.; Ali, M.E.; Abdelal, O.A.; Salah El Dien, F.E.; El-Raghy, S.M.; Abdel-Karim, R.

    2012-01-01

    BaTiO 3 powder was prepared through a solid-state reaction between the Ba(NO 3 ) 2 and TiO 2 . The thermal analysis and XRD techniques were used to study its formation. A single phase BaTiO 3 was formed after calcination at 600 degree C for 6 hrs. The dielectric properties of the sintered BaTiO 3 were determined in the temperature range from room temperature to 20 degree C at a frequency ranging from 500 Hz to 100 khz. The relative permittivity and the dielectric loss of the sintered pellets at 1 khz, measured at room temperature,were 1805 and 0.419 respectively.

  14. Solid state reaction synthesis of Ba0.75Sr0.25AlSi2O8 - Al2O3 ceramic composites from mechanically activated precursor mixtures

    Directory of Open Access Journals (Sweden)

    Ramos-Ramírez, M. V.

    2014-06-01

    Full Text Available Ceramic composites with Ba0.75Sr0.25AlSi2O8 (SBAS/Al2O3 mass ratios of: 1 90/10, 2 70/30, and 3 50/50, were in situ synthesized at 900-1500 °C/5 h from mixtures of fly ash, BaCO3, SrCO3 and Al2O3. The green mixtures were mechanically activated for 0, 4 and 8 h in an attrition mill. As a result, the solid state reactions were faster and occurred at lower temperatures. Only the SBAS and Al2O3 phases were obtained at 1300-1500°C, with the SBAS present in composition 1 achieving full conversion from its hexagonal (Hexacelsian into its monoclinic (Celsian form, with or without milling. The higher nominal SBAS content of composition 1 facilitated in it the mentioned conversion, in comparison with the other two studied compositions, which required to be mechanically activated for times that increased with increasing Al2O3 content, in order to attain in them similarly high Hexacelsian to Celsian conversions. The mechanical properties of the synthesized materials increased with increasing milling time, sintering temperature and Al2O3 content. Thus, the best mechanical properties were obtained for composition 3 milled for 8 h and sintered at 1500 °C.Compósitos cerámicos con relaciones Ba0.75Sr0.25AlSi2O8 (SBAS/Al2O3 en masa de: 1 90/10, 2 70/30, y 3 50/50, fueron sintetizados in situ a 900-1500 °C/5 h usando mezclas de cenizas volantes, BaCO3, SrCO3 y Al2O3 . Las mezclas en verde fueron activadas mecánicamente por 0, 4 y 8 h en un molino de atrición. Como resultado, las reacciones en el estado sólido fueron más rápidas y ocurrieron a menores temperaturas. A 1300-1500°C sólo se obtuvo las fases SBAS y Al2O3 , con el SBAS presente en la composición 1 transformado completamente de su forma hexagonal (Hexacelsiana a la monoclínica (Celsiana, con o sin molienda. El mayor contenido nominal de SBAS en esa composición facilitó dicha conversión, en comparación con las otras dos composiciones estudiadas, las cuales requirieron ser activadas mec

  15. Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} composite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Ding, Hanping; Dong, Yingchao; Wang, Songlin; Zhang, Xiaozhen; Fang, Daru; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)

    2009-01-01

    The perovskite-type Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BSCF-BZCY) composite oxides were synthesized by a modified Pechini method and examined as a novel composite cathode for intermediate-to-low temperature protonic ceramic membrane fuel cells (ILT-PCMFCs). Thin proton-conducting BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte and NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY) anode functional layer were prepared over porous anode substrates composed of NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} by a one-step dry-pressing/co-firing process. A laboratory-sized quad-layer cell of NiO-BZCY/NiO-BZCY({proportional_to}50 {mu}m)/BZCY({proportional_to}20 {mu}m)/BSCF-BZCY({proportional_to}50 {mu}m) was operated from 550 to 700 C with humidified hydrogen ({proportional_to}3% H{sub 2}O) as fuel and the static air as oxidant. A high open-circuit potential of 1.009 V, a maximum power density of 418 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.10 {omega} cm{sup 2} was achieved at 700 C. These investigations have indicated that proton-conducting BZCY electrolyte with BSCF perovskite cathode is a promising material system for the next generation solid oxide fuel cells (SOFCs). (author)

  16. Structural and magnetic properties of SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} containing BaO-Fe{sub 2}O{sub 3} glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Rujijanagul, G.; Eitssayeam, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pengpat, K., E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-01-15

    The incorporation method was employed to produce bioactive glass-ceramics from the BaFe{sub 12}O{sub 19}-SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} glass system. The ferrimagnetic BaFe{sub 12}O{sub 19} was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} and Fe{sub 3}O{sub 4} was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe{sub 12}O{sub 19} phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass-ceramics. The bioactivity of the BF glass-ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass-ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass-ceramics for hyperthermia treatment within the human body. - Highlights: Black-Right-Pointing-Pointer BF addition improves the magnetic property and bioactivity of 45S5 bioglasses. Black-Right-Pointing-Pointer Bioglass-ceramics exhibited soft magnetic properties with Mr=14.850 emu/g. Black-Right-Pointing-Pointer Magnetic property can be enhanced by crystallization of BF in 45S5 bioglasses.

  17. Glass formation in AgI:Ag2O:V2O5 and AgI:Ag2O:(V2O5+B2O3) systems

    International Nuclear Information System (INIS)

    Kaushik, R.; Hariharan, K.

    1988-01-01

    Transport properties of glasses in the system AgI:Ag 2 O: V 2 O 5 and AgI:Ag 2 O: (V 2 O 5 +B 2 O 3 ) have ben investigated. It was found that, at high AgI concentrations, the addition of another glass former (B 2 O 3 ) did not improve the conduction characteristics of the pure vanadate glasses, the best conducting composition of which had ambient temperature, ionic conductivity comparable to that of conventional liquid electrolytes. The highest conducting composition was used as an electrolyte in the study of silver solid state cells. The discharge characteristics of different cells fabricated with the glassy electrolyte, have been compared with those having the best conducting polycrystalline ompositions as electrolytes. 11 refs.; 4 figs.; 1 table

  18. Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6

    International Nuclear Information System (INIS)

    Świerczek, Konrad; Klimkowicz, Alicja; Zheng, Kun; Dabrowski, Bogdan

    2013-01-01

    In this paper, we report on a synthesis procedure, structural and electrical properties of BaErMn 2 O 5 and BaErMn 2 O 6 , A-site double perovskites having layered arrangement of Ba and Er cations. These materials belong to a family of BaLnMn 2 O 5+δ oxides, which up to now were successfully synthesized for Ln=Y and La–Ho lanthanides. Up to our knowledge, this is the first report on the successful synthesis of BaErMn 2 O 5 and BaErMn 2 O 6 , yielding>95 wt% of the considered compounds. Structural characterization of the materials is given at room temperature, together with in situ XRD studies, performed during oxidation of BaErMn 2 O 5 in air, at elevated temperatures up to 500 °C. A complex structural behavior was observed, with oxidation process of BaErMn 2 O 5 occurring at around 300 °C. The oxidized BaErMn 2 O 6 shows a structural phase transition at about 225 °C. Results of structural studies are supported by thermogravimetric measurements of the oxidation process, performed in air, as well as reduction process, preformed in 5 vol% of H 2 in Ar. Additionally, isothermal oxidation/reduction cycles were measured at 500 °C, showing interesting properties of BaErMn 2 O 5+δ , from a point of view of oxygen storage technology. Electrical conductivity of BaErMn 2 O 5 is of the order of 10 −4 S cm −1 at room temperature and shows activated character on temperature with activation energy E a =0.30(1) eV. Positive sign of Seebeck coefficient for this material indicates holes as dominant charge carriers. Oxidized BaErMn 2 O 6 possesses much higher electrical conductivity, almost 0.2 S cm −1 at room temperature. Additional, about 10-fold increase of electrical conductivity, occurring in the vicinity of 225 °C for this material, can be associated with phase transition from charge/orbital-ordered insulator COI(CE) to paramagnetic metal PM phase. The highest conductivity for BaErMn 2 O 6 was measured near 500 °C and is almost equal to 40 S cm −1 , while

  19. Determination of the UO2-ZrO2-BaO equilibrium diagram

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.; Kleykanp, H.; Thuemmler, F.

    1984-01-01

    It is determined the equilibrium diagram of UO 2 - ZrO 2 - BaO to interpret and predict changes in the chemical properties of ceramic (oxide) nuclear fuels during irradiation. The isothermal section of the system at 1700 0 C was determined experimentally, utilizing the techniques of ceramography, X-ray diffraction analysis, microprobe analysis and differential thermal analysis. The solid solubility limits at 1700 0 C between UO 2 and ZrO 2 , UO 2 and BaO, ZrO 2 and BaO, ZrO 2 and BaO and BaUO 3 and BaZrO 3 is presented. The influence of oxygen potential in relation to the different phases is discussed and the phase diagram of the system presented. (M.C.K.) [pt

  20. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    Science.gov (United States)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  1. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system

    Directory of Open Access Journals (Sweden)

    Yixiang Chen

    2011-09-01

    Full Text Available The dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 (YAS system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1, or 1/3, crystallization occurs with the formation of Y3Al5O12, Y2Si2O7, Al6Si2O13, or SiO2. The densities of the YAS glasses increase with decreasing SiO2 contents and increasing Y/Al ratios, and for the samples with Y/Al = 3/5 there is a good linear relationship between the density and SiO2 content.

  2. EPR spectroscopic investigations in 15BaO-25Li2O-(60-x) B2O3-xFe2O3 glass system

    Science.gov (United States)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2018-05-01

    Glasses with composition 15BaO-25Li2O-(60-x) B2O3 -xFe2O3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mol %) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD). Electron paramagnetic resonance (EPR) investigations have been carried out as a function of iron ion concentration. The observed EPR spectra of Fe3+ ion exhibits resonance signals at g= 2.0, 4.3 and 8.0. The resonance signal at g= 4.3 is due to isolated Fe3+ ions in site with rhombic symmetry where as the g= 2.0 resonance signal is attributed to the Fe3+ ions coupled by exchange interaction in a distorted octahedral environment and the signal at g= 8.0 arises from axially distorted sites. The number of spins participating in resonance (N) and its paramagnetic susceptibilities (χ) have also been evaluated. The peak-to-peak line width ΔB for the resonance lines at g ≈ 4.3 and at g ≈ 2.0 is increasing as function of the iron ion content. The line intensity of the resonance centered at g ≈ 4.3 and at g ≈ 2.0 increases up to 0.8 mol% of Fe2O3 and for 1 mol% of Fe2O3 its value is found to decrease. The analysis of these results indicated that the conversion some of Fe3+ cations to Fe2+ ions beyond 0.8 mol%.

  3. Topotactic reduction of YBaCo2O5 and LaBaCo2O5: square-planar Co(I) in an extended oxide.

    Science.gov (United States)

    Seddon, James; Suard, Emmanuelle; Hayward, Michael A

    2010-03-03

    The low-temperature reduction of YBaCo(2)O(5) and LaBaCo(2)O(5) with NaH to form YBaCo(2)O(4.5) and YBaCo(2)O(4.25), respectively, demonstrates that the structures of anion-deficient materials formed by such topotactic reductions can be directed by the ordering and identity of the A-site cations. YBaCo(2)O(4.5) adopts a structure consisting of a corner-shared network of square-based pyramidal CoO(5) and distorted tetrahedral CoO(4) units. The structure of LaBaCoO(4.25) is more complex, consisting of an array of square-based pyramidal CoO(5), distorted tetrahedral CoO(4), and square planar CoO(4) units. Magnetic susceptibility and variable-temperature neutron diffraction data reveal that YBaCo(2)O(4.5) adopts a G-type antiferromagnetically ordered structure below T(N) approximately 280 K. LaBaCo(2)O(4.25) also adopts antiferromagnetic order (T(N) approximately 325 K) with ordered moments consistent with the presence of square-planar, low-spin, s = 0, Co(I) centers. A detailed analysis reveals that the different anion vacancy ordered structures adopted by the two REBaCo(2)O(5-x) phases are directed by the relative sizes and ordering of the La(3+) and Y(3+) cations. This suggests that ordered arrangements of A-cations can be used to direct the anion vacancy order in topotactically reduced phases, allowing the preparation of novel metal-oxygen networks containing unusual transition metal coordination environments.

  4. O vacancy formation in (Pr/Gd)BaCo2O5.5 and the role of antisite defects

    KAUST Repository

    Omotayo Akande, Salawu

    2017-04-20

    In search for materials for intermediate temperature solid oxide fuel cells, (Pr/Gd)BaCo2O5.5 is investigated by first principles calculations. Antisite defects are considered as they may modify the electronic and O diffusion properties but are rarely studied in double perovskite oxides. Octahedrally coordinated Co atoms are shown to realize intermediate and high spin states for PrBaCo2O5.5 and GdBaCo2O5.5, respectively, while pyramidally coordinated Co atoms always have high spin. It turns out that O vacancy formation is significantly easier in PrBaCo2O5.5 than in GdBaCo2O5.5, the difference in formation energy being hardly modified by antisite defects. While pyramidally coordinated Co atoms are not affected, we show that the presence of antisite defects causes parts of the octahedrally coordinated Co atoms to switch from intermediate to high spin.

  5. Ba2NdZrO5.5 as a potential substrate material for YBa2Cu3O7-δ superconducting films

    International Nuclear Information System (INIS)

    Tovar, H.; Ortiz Diaz, O.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    The new oxide Ba 2 NdZrO 5.5 (BNZO) has been produced by the standard solid state reaction method. X-ray diffraction analysis (XRD) revealed that this synthesized material has an ordered complex cubic perovskite structure characteristic of A 2 BB'O 6 crystalline structure with a lattice parameter of a = 8.40 Aa. It was established through EDX analysis that there is no trace of impurities. Chemical stability of BNZO with YBa 2 Cu 3 O 7-δ (YBCO) has been studied by means of Rietveld analysis of experimental XRD data on several samples of BNZO-YBCO composites. Quantitative analysis of phases on XRD patterns show that all peaks have been indexed for both BNZO and YBCO, and no extra peak is detectable. YBCO and BNZO remain as two different separate phases in the composites with no chemical reaction. Electrical measurements also revealed that superconducting transition temperature of pure YBCO and BNZO-YBCO composites is 90 K. These favorable characteristics of BNZO show that it can be used as a potential substrate material for deposition of YBCO superconducting films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Heat Treatment Effect on Eu3+ Doped TeO2-BaO-Bi2O3 Glass Systems with Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tomasz Lewandowski

    2017-01-01

    Full Text Available Glass systems of 73TeO2-4BaO-3Bi2O3-2Eu2O3-xAg (in molar ratio where x = 0, 1, 2, and 3 compositions have been successfully synthesized. Silver nanoparticles were obtained with the employment of heat treatment (HT procedure executed at 350°C. Glass transition temperatures of different compositions have been determined through DSC measurements. XRD results presented characteristic amorphous halo indicating lack of long range order in the samples. FTIR structural studies revealed that glass matrix is mainly composed of TeO3 and TeO4 species and is stable after different applied heat treatment times. X-ray photoelectron spectroscopy (XPS measurements confirmed that in selected samples part of Ag ions changed oxidation state to form Ag0 species. TEM measurements revealed nanoparticles of size in the range of 20–40 nm. UV-vis absorption results demonstrated characteristic transitions of Eu3+ ions. Additionally, UV-vis spectra of samples heat-treated for 6, 12, 24, and 48 hours presented bands related to silver nanoparticles. Photoluminescence (PL studies have been performed with excitation wavelength of λexc=395 nm. Obtained spectra exhibited peaks due to 5D0-7FJ (where J=2,3,4 and 5D1-7FJ (where J=1,2,3 transitions of Eu3+. Moreover, luminescence measurement indicated enhancement of rare earth ions emissions in several of the annealed samples. Increase of emission intensity of about 35% has been observed.

  7. PROPERTIES OF Eu3+ LUMINESCENCE IN THE MONOCLINIC Ba2MgSi2O7

    Directory of Open Access Journals (Sweden)

    Shansh an Yao

    2011-09-01

    Full Text Available Red-emitting phosphors Ba2-xMgSi2O7: Eux3+ was prepared by combustion-assisted synthesis method and an efficient red emission under near-ultraviolet (UV was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometer. The emission spectrum shows that the most intense peak is located at 614 nm, which corresponds to the 5D0 → 7F2 transitions of Eu3+. The phosphor has two main excitation peaks located at 394 and 465 nm, which match the emission of UV and blue light-emitting diodes, respectively. The effect of Eu3+ concentration on the emission spectrum of Ba2MgSi2O7:Eu3+ phosphor was studied. The results showed that the emission intensity increased with increasing Eu3+ concentration, and then decreased because of concentration quenching. The critical quenching concentration of Eu3+ in Ba2MgSi2O7: Eu3+ phosphor is about 0.05 mol. The mechanism of concentration quenching of Ba2MgSi2O7: Eu3+ luminescence is energy transfer between Eu3+ ions casued by the dipole-dipole interaction.

  8. Structural and magnetic properties of SiO2–CaO–Na2O–P2O5 containing BaO–Fe2O3 glass–ceramics

    International Nuclear Information System (INIS)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N.; Rujijanagul, G.; Eitssayeam, S.; Pengpat, K.

    2013-01-01

    The incorporation method was employed to produce bioactive glass–ceramics from the BaFe 12 O 19 –SiO 2 –CaO–Na 2 O–P 2 O 5 glass system. The ferrimagnetic BaFe 12 O 19 was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na 3 Ca 6 (PO 4 ) 5 and Fe 3 O 4 was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe 12 O 19 phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass–ceramics. The bioactivity of the BF glass–ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass–ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass–ceramics for hyperthermia treatment within the human body. - Highlights: ►BF addition improves the magnetic property and bioactivity of 45S5 bioglasses.►Bioglass-ceramics exhibited soft magnetic properties with Mr=14.850 emu/g.►Magnetic property can be enhanced by crystallization of BF in 45S5 bioglasses.

  9. Sequential Ar-O2 sputtering of Y2O3, BaF2, and CuO targets for preparation of Y-Ba-Cu-O superconducting films without wet-O2 annealing

    International Nuclear Information System (INIS)

    Bhushan, M.; Strauss, A.J.; Finn, M.C.

    1989-01-01

    Superconducting Y-Ba-Cu-O (YBCO) films have been prepared by ex situ O 2 annealing of multilayer films deposited on yttria-stabilized zirconia substrates by sequential rf diode sputtering of Y 2 O 3 , BaF 2 , and CuO targets, all of which are chemically stable. If sputtering is performed in an Ar ambient, the as-deposited films contain sufficient F to require its removal by annealing in wet O 2 at about 800 degree C or above before the superconducting YBCO phase can be formed by annealing in dry O 2 . However, sputtering in an Ar-O 2 ambient greatly reduces the F content, making it possible to obtain the superconducting phase by annealing in dry O 2 only. If the ambient contains about 20% O 2 , films with T c (R=0)>85 K can be prepared without wet-O 2 annealing. The Ar-O 2 process therefore has the potential for in situ preparation of superconducting YBCO films

  10. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system

    OpenAIRE

    Yixiang Chen; Zengchao Yang; Bin He; Guanghua Liu; Jiangtao Li; Liang Wu

    2011-01-01

    The dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 (YAS) system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1,...

  11. Impedance spectroscopy of Li2CO3 doped (Ba,Sr)TiO3 ceramic

    Science.gov (United States)

    Ham, Yong-Su; Koh, Jung-Hyuk

    2013-02-01

    (BaxSr1-x)TiO3-based ceramic has been considered as one of the most important electronic materials widely employed in microwave passive device applications. Many researches have been performed to lower the high sintering temperature, by adding various dopants such as B2O3, La2O3, etc. In our previous study, by adding Li2CO3 to (Ba0.5,Sr0.5)TiO3 ceramics, the sintering temperature of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics decreased from 1350 to 900 °C. This study observed the crystalline structure and electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics. In scanning the crystalline structure of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, no pyro phase was observed by X-ray diffraction analysis. To investigate the electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, real and imaginary parts of the impedances were analyzed. Complex impedance data were measured from 100 Hz to 1 MHz at various temperature ranges.

  12. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties

    International Nuclear Information System (INIS)

    Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P.

    2011-01-01

    Research highlights: → We change Bi 2 O 3 , PbO and BaO concentration in silicate glasses. → The densities of Bi 2 O 3 glasses more than PbO glasses and BaO glasses. → The Um of Bi 2 O 3 glasses and PbO glasses are comparable and more than BaO glasses. → This suggests that Bi 2 O 3 can replace PbO in radiation shielding glasses. - Abstract: The radiation shielding and optical properties of xBi 2 O 3 :(100-x)SiO 2 , xPbO:(100-x)SiO 2 and xBaO:(100-x)SiO 2 glass systems (where 30 ≤ x ≤ 70 is the composition by weight%) have been investigated. Total mass attenuation coefficients (μ m ) of glasses at 662 keV were improved by increasing their Bi 2 O 3 and PbO content, which raised the photoelectric absorption in glass matrices. Raising the BaO content to the same fraction range, however, brought no significant change to μ m . These results indicate that photon is strongly attenuated in Bi 2 O 3 and PbO containing glasses, and but not in BaO containing glass. The results from the optical absorption spectra show an edge that was not sharply defined; clearly indicating the amorphous nature of glass samples. It is observed that the cutoff wavelength for Bi 2 O 3 containing glass was longer than PbO and BaO containing glasses.

  13. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2017-05-15

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.

  14. Investigation of multiphase equilibria in the subsolidus of BaO–CoO–Fe2O3–Al2O3 system

    Directory of Open Access Journals (Sweden)

    Kostyrkin Oleg

    2017-01-01

    Full Text Available One of the most important problems related to the development of new nonmetal materials and their performance characteristics is to predict the phase composition. The most comprehensive information on phase interactions and the thermodynamic stability of phase combinations is given by the state diagrams. The materials synthesized in the system subsolidus domain can be predicted the most accurately, because their sintering occurs without participation of the melt. Due to the above fact, the studies of the subsolidus structure of BaO – CoO – Fe2O3 – Al2O3 system are of great interest, because on the basis of this system we can obtain a huge amount of nonmetal materials with prescribed properties, for example ferrimagnetic materials to protect from electromagnetic radiation, because the system compounds have cementing, refractory and ferrimagnetic properties. To study the structure of BaO – CoO – Fe2O3 – Al2O3 system in detail the authors summed up already known data on the thermodynamic constants of system compounds. This allowed us to do the thermodynamic analysis of multiphase equilibrium processes that occur in the subsolidus of BaO – CoO – Fe2O3 – Al2O3 system that was used as a basis for the plotting of the state diagram for the subsolidus domain of the system. A promising field for the application of obtained data is the cement production technology. The produced cement can be used independently and as a binding material to produce special cements and materials that retain their properties when exposed to the action of high-frequency electromagnetic radiation.

  15. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    Science.gov (United States)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  16. Electrical and mechanical properties of 0.5Ba (Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 (BZT-BCT) lead free ferroelectric ceramics reinforced with Al2O3 nano-oxide

    International Nuclear Information System (INIS)

    Adhikari, Prativa; Mazumder, R.

    2014-01-01

    Piezoelectric ceramics are widely used as actuator, resonator, and spark igniter. Recently, much attention has been paid to prepare 0.5Ba (Zr 0.2 Ti 0.8 )O 3 -0.5 (Ba 0.7 Ca 0.3 )TiO 3 (BZT-BCT) piezoelectric ceramics because of its good dielectric, piezoelectric properties and environment friendly nature. However, piezoelectric ceramics based on BaTiO 3 suffer from low reliability and poor mechanical properties such as strength and toughness. For practical application improvement of the mechanical properties of BaTiO 3 -based ceramics is strongly required. A novel method has been used to improve the mechanical properties of structural ceramics by reinforcement of oxide (Al 2 O 3 , MgO, ZrO 2 and Stabilized-ZrO 2 ) or non-oxide (SiC) particles. It is well known that electrical properties of ferroelectric ceramics generally degrade with non-ferroelectric additives and decrease in sinterability usually encountered with refractory oxide additives. Use of nano-oxide additives may drastically reduce the amount of additive and electrical property may not degrade much. In this report we would show the electrical and mechanical properties of BZT-BCT with Al 2 O 3 nano oxide additive. Modified BZT-BCT nanocomposites were prepared by mixing and sintering of solid state synthesized Zr, Ca modified barium titanate powder and small amount (0.1-2.0 vol %) of nano-oxides, i.e. Al 2 O 3 . Effect of sintering temperature, time, particle size of the nano-oxide additives on electrical (dielectric constant, loss factor, Curie temperature, d 33 ) and mechanical (flexural strength, fracture toughness, hardness) properties were studied. We obtained ∼ 94% dense BZT-BCT reinforced with Al 2 O 3 nano-oxide at 1300℃ without degrading electrical properties (dielectric constant (4850), low dissipation factor (0.0242)) and superior mechanical properties (flexural strength - 60.3 MPa, Vickers hardness-750-800 MPa). (author)

  17. Variable dimensionality and new uranium oxide topologies in the alkaline-earth metal uranyl selenites AE[UO2)(SeO3)2] (AE=Ca, Ba) and Sr[UO2)(SeO3)2] · 2H2O

    International Nuclear Information System (INIS)

    Almond, Philip M.; Peper, Shane M.; Bakker, Eric; Albrecht-Schmitt, Thomas E.

    2002-01-01

    Three new alkaline-earth metal uranyl selenites, Ca[UO 2 )(SeO 3 ) 2 ] (1), Sr[UO 2 )(SeO 3 ) 2 ] · 2H 2 O (2), and Ba[UO 2 )(SeO 3 ) 2 ] (3), have been prepared from the reactions of CaCO 3 and Ca(OH) 2 , SrCl 2 and Sr(OH) 2 , or BaCl 2 and Ba(OH) 2 with UO 3 and SeO 2 under mild hydrothermal conditions. Single-crystal X-ray diffraction experiments reveal that the structures of 1-3 differ in both connectivity and dimensionality even though all contain the same fundamental building unit, namely [UO 2 (SeO 3 ) 4 ]. This polyhedron consists of a linear uranyl unit that is bound by one chelating and three bridging selenite anions creating a pentagonal bipyramidal environment around the U(VI) center. The crystal structure of 1 contains one-dimensional ribbons where the edges are terminated by monodentate selenite anions. The interior of the ribbons are constructed from edge-sharing pentagonal bipyramidal UO 7 units. The structure of 2 is also one-dimensional; however, here there are chains of edge-sharing pentagonal bipyramidal UO 7 dimers that are connected by bridging selenite anions. Ba[(UO 2 )(SeO 3 ) 2 ] (3) is two-dimensional, and the highly ruffled anionic sheets present in this structure are formed from both bridging and chelating/bridging selenite anions bound to uranyl moieties. The anionic substructures in 1-3 are separated by Ca 2+ , Sr 2+ , or Ba 2+ cations. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, space group P1-bar, a=5.5502(6) A, b=6.6415(7) A, c=11.013(1) A, α=104.055(2) deg., β=93.342(2) deg., γ=110.589(2) deg. , Z=2, R(F)=4.56% for 100 parameters with 1530 reflections with I>2σ(I); 2, triclinic, space group P1-bar, a=7.0545(5) A, b=7.4656(5) A, c=10.0484(6) A, α=106.995(1) deg., β=108.028(1) deg., γ=98.875(1) deg., Z=2, R(F)= 2.43% for 128 parameters with 2187 reflections with I>2σ(I); 3, monoclinic, space group P2 1 /c, a=7.3067(6) A, b=8.1239(7) A, c=13.651(1) A, β=100.375(2) deg., Z=4, R(F)=4.31% for 105 parameters

  18. Relaxor behavior in lead-free Ba(Ti1−xScx/2Nbx/2O3 ceramics

    Directory of Open Access Journals (Sweden)

    N. Bensemma

    2014-06-01

    Full Text Available Solid solutions of (1−xBaTiO3-xBaSc1/2Nb1/2O3 (BT-BSN with x = 0.025, 0.05, 0.075, 0.1 and 0.125 were prepared by a high temperature solid-state reaction technique. The effects of the Ba(Sc1/2Nb1/2O3 addition on the phase composition, dielectric properties, as well as polarization-electric field (P-E loops of the BT-BSN solid solution were investigated. The room-temperature X-ray diffraction analyses of all the ceramics revealed a perovskite phase after sintering at 1350 °C with a composition-dependent symmetry. Temperature and frequency dependence of the dielectric permittivity and losses have been explored: ceramics of compositions x ≤ 0.075 showed normal ferroelectric behavior, while ceramics with x ≥ 0.1 were of relaxor type. The degree of diffuseness and the relaxor effect increase while the transition temperature (TC or Tm decreases when both scandium and niobium are introduced in the BaTiO3 lattice. Ceramics of composition x = 0.125 exhibited interesting relaxor characteristics at 10 kHz: ΔTm = 20 K, ɛr = 12,000, and Tm = 140 K. In addition, modeled using Vogel–Fülcher relation, this same composition showed the fitting parameters: Ea = 0.0503 eV, f0 = 1.129 × 1014 Hz and TVF = 166.85 K.

  19. Magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 composite nanofibers via electrospinning

    Science.gov (United States)

    Fu, Bi; Lu, Ruie; Gao, Kun; Yang, Yaodong; Wang, Yaping

    2015-07-01

    Magnetoelectric (ME) coupling in Pb-based multiferroic composites has been widely investigated due to the excellent piezoelectric property of lead zirconate titanate (PZT). In this letter, we report a strategy to create a hybrid Pb-free ferroelectric and ferromagnetic material and detect its ME coupling at the nanoscale. Hybrid Pb-free multiferroic BaTiO3-CoFe2O4 (BTO-CFO) composite nanofibers (NFs) were generated by sol-gel electrospinning. The perovskite structure of BTO and the spinel structure of CFO nanograins were homogenously distributed in the composite NFs and verified by bright-field transmission electron microscopy observations along the perovskite [111] zone axis. Multiferroicity was confirmed by amplitude-voltage butterfly curves and magnetic hysteresis loops. ME coupling was observed in terms of a singularity on a dM/dT curve at the ferroelectric Curie temperature (TC) of BaTiO3. The lateral ME coefficient was investigated by the evolution of the piezoresponse under an external magnetic field of 1000 Oe and was estimated to be α31 =0.78× 104 \\text{mV cm}-1 \\text{Oe}-1 . These findings could enable the creation of nanoscale Pb-free multiferroic composite devices.

  20. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    Science.gov (United States)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  1. Synthesis and characterization of BaTi1−xSnxO3–0.5 mol%GeO2

    International Nuclear Information System (INIS)

    Bucur, Raul Alin; Bucur, Alexandra Ioana; Novaconi, Stefan; Nicoara, Irina

    2012-01-01

    Highlights: ► BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 (x = 0, 0.1, 0.3, 0.5) ceramics were prepared at 1190 °C. ► GeO 2 improves crystallization and densification. ► Anomalies are noted for the rhombohedral–orthorhombic transition of BT–0.5Ge. ► For x = 0.3 and 0.5, ε′ r exhibit nearly constant variation between 200 and 400 K. - Abstract: Microcrystalline BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 x = 0, 0.1, 0.3, 0.5 (BTSx–0.5Ge) and BaTiO 3 (BT) ceramics (1–0.5 μm) were prepared by a conventional solid-state reaction method. The crystalline structure of the samples was examined using XRD, the microstructure was analyzed by means of electron microscope and the density was measured by the Archimede’s method. The sintered ceramic disks have a tetragonal symmetry for BT, pseudo cubic for BTS1–0.5Ge and cubic symmetry for the other studied materials, with a gradual increase of unit cell dimensions. Small addition of GeO 2 can improve the density of BT ceramics: 97.9% for BT–0.5Ge, and 96.21% for pure BT. The highest degree of densification in the case of tin doping is achieved for BTS1–0.5Ge (96.93%). The formation of a liquid phase can lead to an anomalous grain growth, and in the case of BT–0.5Ge the grains are completely surrounded by a frozen eutectic melt. For the dielectric constant, while increasing the Sn concentration, the T C gradually shifts towards lower temperatures, and the peak of this transition becomes broader. The lowering of T C is mostly due to the concentration of tin ions and in a much delicate way to Ge ions. Anomalies are noticed for the orthorhombic transition, where the permittivity is higher than the same transition of the matrix (BT), with a shift towards higher temperatures. The BTS3–0.5Ge and BTS5–0.5Ge are the most stable compositions in terms of dielectric behavior, since in the temperature range 200–400 K, ε′ r is almost constant. Therefore, these compositions can be used for devices that operate over a

  2. A new oxytelluride: Perovskite and CsCl intergrowth in Ba{sub 3}Yb{sub 2}O{sub 5}Te

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, J.B., E-mail: icatchsnook@yahoo.com [The National High Magnetic Field Laboratory, Condensed Matter Science Department, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); Specialized Crystal Processing, Inc., 400 Capital Circle SE, Suite 18227, Tallahassee, FL 32301-3839 (United States); Besara, T. [The National High Magnetic Field Laboratory, Condensed Matter Science Department, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); The Florida Agricultural and Mechanical University-The Florida State University (FAMU-FSU) College of Engineering, Department of Chemical and Biomedical Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Vasquez, R.; Herrera, F. [The Florida Agricultural and Mechanical University-The Florida State University (FAMU-FSU) College of Engineering, Department of Chemical and Biomedical Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Sun, J. [The National High Magnetic Field Laboratory, Condensed Matter Science Department, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); The Florida Agricultural and Mechanical University-The Florida State University (FAMU-FSU) College of Engineering, Department of Chemical and Biomedical Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Ramirez, D. [The National High Magnetic Field Laboratory, Condensed Matter Science Department, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); The Florida Agricultural and Mechanical University-The Florida State University (FAMU-FSU) College of Engineering, Department of Chemical and Biomedical Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046 (United States); Specialized Crystal Processing, Inc., 400 Capital Circle SE, Suite 18227, Tallahassee, FL 32301-3839 (United States); Stillwell, R.L. [The National High Magnetic Field Laboratory, Condensed Matter Science Department, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310 (United States); and others

    2013-07-15

    The new oxytelluride Ba{sub 3}Yb{sub 2}O{sub 5}Te was obtained from an alkaline earth flux. Ba{sub 3}Yb{sub 2}O{sub 5}Te crystallizes in the tetragonal space group P4/mmm (#123), with a=4.3615(3) Å and c=11.7596(11) Å, Z=1. The structure combines two distinct building blocks, a Ba{sub 2}Yb{sub 2}O{sub 5} perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden–Popper phases, where the NaCl-type layer has been replaced by the CsCl-type layer. The two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure. - Graphical abstract: Optical images of Ba{sub 3}Yb{sub 2}O{sub 5}Te in transmission (left) and reflected (right) light, with atomic unit cell overlay. - Highlights: • Single crystal synthesis and characterization of a new phase, Ba{sub 3}Yb{sub 2}O{sub 5}Te. • The structure features the BaTe high pressure polymorph intergrowth. • Magnetic susceptibility measurements show short range 2 dimensional ordering. • Heat capacity measurements show a feature at the magnetic ordering temperature. • Optical reflectivity measurements show a {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} absorption at 976 nm.

  3. O vacancy formation in (Pr/Gd)BaCo2O5.5 and the role of antisite defects

    KAUST Repository

    Omotayo Akande, Salawu; Chroneos, Alexander; Schwingenschlö gl, Udo

    2017-01-01

    that O vacancy formation is significantly easier in PrBaCo2O5.5 than in GdBaCo2O5.5, the difference in formation energy being hardly modified by antisite defects. While pyramidally coordinated Co atoms are not affected, we show that the presence

  4. Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3-BaO-B2O3-Na2O glass system

    Science.gov (United States)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.

    2018-03-01

    In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.

  5. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    Science.gov (United States)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  6. Características microestructurales de varistores del sistema ZnO-BaO-P2O5

    Directory of Open Access Journals (Sweden)

    Fernández, J. F.

    1999-10-01

    Full Text Available Ceramic materials based on the system ZnO-BaO show a great potential for varistor applications. However, the BaO rich phase located at the grain boundaries shows high solubility in water which causes severe damage of the materials. In order to overcome this problem, doping with P2O5 to form BaZn2(PO42 and Zn3(PO42 has been studied. The resistance of these materials to degradation by moisture has been evaluated by lixiviation experiments. Sintering has been followed by means of dilatometric technique and microstructure was analysed by Scanning Electron Microscopy, SEM. The electrical properties of these materials evidence a varistor behaviour similar to that observed for materials in the system ZnO-BaO.Los materiales basados en el sistema ZnO-BaO presentan unas propiedades de gran interés para su aplicación como varistores. Sin embargo, la fase rica en BaO localizada en el borde de grano exhibe una solubilidad elevada en agua que origina una rápida degradación del material. Para soslayar este problema se ha estudiado la incorporación adicional de P2O5 con el objeto de formar las fases BaZn2(PO42 y Zn3(PO42. La estabilidad de estos nuevos materiales frente a la humedad se ha evaluado mediante ensayos de lixiviación. La sinterización se ha seguido mediante dilatometría y la microestructura de los materiales sinterizados se ha analizado por Microscopía Electrónica de Barrido, MEB. La respuesta eléctrica de los materiales muestra un comportamiento varistor comparable al que se observa en los del sistema binario ZnO-BaO.

  7. Optimization in the preparation of the YBa2Cu3O7-δ compound using BaCO3 and BaO2 reagents

    International Nuclear Information System (INIS)

    Bustamante D, A.; Flores S, J.

    2004-01-01

    The traditional superconductor YBa 2 Cu 3 O 7-δ (Y123) has an orthorhombic crystalline structure with spatial group Pmmm and its critical temperature is 90K. The literature reports the use of reagent BaCO 3 for the preparation by the solid state reaction which requires one calcination and two thermal treatments in oxygen flow at 950 o C. In this work we report the comparison in the preparation of Y123 using the BaO 2 reagent as another possibility for preparation; in this case we have used only two thermal treatments in oxygen flow at 950 o C; therefore reducing the costs in preparation. The powder XRD pattern of samples prepared with BaO 2 confirm a well crystallized phase an the diffraction lines of the main phase can be indexed with an orthorhombic unit cell. The ac susceptibility measurement in the range 5-100 K using a Quantum Design (SQUID) magnetometer for two samples confirms the superconductor behavior with critical temperature Tc ≅ 91 K. The critical temperatures for these systems were found taken account the derivatives of the susceptibility curves. Scanning Electron Microscopy (SEM) confirms the good behavior of the grains corresponding to both methods. (orig.)

  8. Er3+ infrared fluorescence affected by spatial distribution synchronicity of Ba2+ and Er3+ in Er3+-doped BaO–SiO2 glasses

    Directory of Open Access Journals (Sweden)

    Atsunobu Masuno

    2016-02-01

    Full Text Available Glasses with the composition xBaO–(99.9 − xSiO2–0.1ErO3/2 (0 ≤x ≤ 34.9 were fabricated by a levitation technique. The glasses in the immiscibility region were opaque due to chemical inhomogeneity, while the other glasses were colorless and transparent. The scanning electron microscope observations and electron probe microanalysis scan profiles revealed that more Er3+ ions were preferentially distributed in the regions where more Ba2+ ions existed in the chemically inhomogeneous glasses. The synchronicity of the spatial distributions of the two ions initially increased with increasing x and then decreased when the Ba2+ concentration exceeded a certain value. The peak shape and lifetime of the fluorescence at 1.55 μm depended on x as well as the spatial distribution of both ions. These results indicate that although ErOn polyhedra are preferentially coordinated with Ba2+ ions and their local structure is affected by the coordination of Ba2+, there is a maximum in the amount of Ba2+ ions that can coordinate ErOn polyhedra since the available space for Ba2+ ions is limited. These findings provide us with efficient ways to design the chemical composition of glasses with superior Er3+ fluorescence properties for optical communication network systems.

  9. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba3Zr2O7 from a BaZrO3 target by pulsed laser deposition

    International Nuclear Information System (INIS)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina; Awan, M.S.; Bashir, Shazia; Iqbal, Nida

    2016-01-01

    Ruddlesden-Popper Ba 3 Zr 2 O 7 thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba 3 Zr 2 O 7 phase from BaZrO 3 target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba 3 Zr 2 O 7 thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba 3 Zr 2 O 7 phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba 3 Zr 2 O 7 Ruddlesden-Popper-type perovskite structure. (orig.)

  10. EXAFS and EPR study of La0.6Sr0.2Ca0.2MnO3 and La0.6Sr0.2Ba0.2MnO3

    International Nuclear Information System (INIS)

    Yang, D.-K.Dong-Seok; Ulyanov, A.N.; Phan, Manh-Huong; Kim, Ikgyun; Ahn, Byong-Keun; Rhee, Jang Roh; Kim, Jung Sun; Nguyen, Chau; Yu, Seong-Cho

    2003-01-01

    Extended X-ray absorption fine structure (EXAFS) analysis and electron-paramagnetic resonance (EPR) have been used to examine the local structure and the internal dynamics of La 0.6 Sr 0.2 Ca 0.2 MnO 3 and La 0.6 Sr 0.2 Ba 0.2 MnO 3 lanthanum manganites. The Mn-O bond distance (∼1.94 Angst for both samples) and the Debye-Waller factors (0.36x10 -2 and 0.41x10 -2 Angst 2 for La 0.6 Sr 0.2 Ca 0.2 MnO 3 and for La 0.6 Sr 0.2 Ba 0.2 MnO 3 , respectively) were obtained from the EXAFS analysis. The dependence of the EPR line width on dopant kind (Ca or Ba) showed a decrease of the spin-lattice interaction with an increase of the Curie temperature. For both compositions, the EPR line intensity followed the exponential law I(T)=I 0 exp(E a /k B T), deduced on the basis of the adiabatic polaron hopping model

  11. IR spectra and structure of glasses in the BaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Miroshnichenko, O.Ya.; Mombelli, V.V.

    1979-01-01

    Studied are IR absorption spectra and determined are the main structural characteristics of tungstophosphate glasses of the BaO-WO 3 -P 2 O 5 system in all the area of glass formation. It is shown that the main structural components of their anion network are phosphate chains consisting of PO 4 tetrahedrons and tungstate chains consisting of WO 4 tetrahedrons and of WO 6 octahedrons. These chains are connected by P-O-W bridges into three-dimentional tungstophosphate network, where the ratio of phosphate and tungstate structural units and their polymerization degree change without limits depending on the glass composition. Analysis of concentration frequency dependence and spectral band intensity permit to clarify the effect of each component on the glass structure in all the area of glass formation of the triple system

  12. Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors

    Directory of Open Access Journals (Sweden)

    J. L. MacManus-Driscoll

    2014-08-01

    Full Text Available We report on compositional tuning to create excellent field-performance of Jc in “self-doped,” GdBa2Cu3O7−y (GdBCO coated conductors grown by ultrafast reactive co-evaporation. In order to give excess liquid and Gd2O3, the overall compositions were all Ba-poor and Cu-rich compared to GdBCO. The precise composition was found to be critical to the current carrying performance. The most copper-rich composition had an optimum self-field Jc of 3.2 MA cm−2. A more Gd-rich composition had the best in-field performance because of the formation of low coherence, splayed Gd2O3 nanoparticles, giving Jc (77 K, 1 T of over 1 MA cm−2 and Jc (77 K, 5 T of over 0.1 MA cm−2.

  13. Effects of B2O3-Li2O additions on the dielectric properties of screen printing Ba0.6Sr0.4TiO3 thick films

    International Nuclear Information System (INIS)

    Zeng, Yike; Gao, Can; Zhang, Guangzu; Jiang, Shenglin

    2012-01-01

    Ba 0.6 Sr 0.4 TiO 3 (BST) thick films were fabricated on Al 2 O 3 substrate via the screen printing technology by using B 2 O 3 -Li 2 O additions as liquid-phase sintering aids. The effects of doping of B 2 O 3 and Li 2 CO 3 on the phase compositions, microstructures, and dielectric tunable properties of the thick films were investigated systematically. The X-ray diffraction patterns showed that BST diffraction peaks shifted toward higher angle with the B 2 O 3 -Li 2 O doping content, which indicated the substitution of B 3+ and Li + in Ba 2+ site. It was also found that the grain size and electrical properties of the thick film were strongly affected by the glass content. The grain size and the relative permittivity decreased obviously with the increase of B 2 O 3 -Li 2 O additive. In addition, for the thick film with 4.5 wt% glass content, optimized sintering, and electrical properties were obtained: the sintering temperature of 900 C, relative permittivity of 312 (at 10 kHz), dielectric loss of 0.0039, tunability of 16.2% (at 3 kV/mm). These good sintering and electrical properties indicate that BST thick film with B 2 O 3 -Li 2 O addition is benefit for the development of LTCC technology and tunable devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Field percolation and high current density in 80/20 DyBa2Cu3O7-x/Dy2BaCuO5 bulk magnetically textured composite ceramics

    International Nuclear Information System (INIS)

    Cloots, R.; Liege Univ.; Dang, A.; Vanderbemden, P.; Vanderschueren, A.; Vanderschueren, H.W.; Bougrine, H.; Liege Univ.; Rulmont, A.; Ausloos, M.

    1996-01-01

    We measured the AC susceptibility of magnetically textured (123) 80%/211(20%) DyBaCuO composite in a special set-up in order to enhance the intergrain contribution. The synthesis process led to very clean weak links at grain boundaries. At the percolation threshold bulk shielding paths were such that the intergrain critical current density J C was above 10 5 A/cm 2 . The field dependence of J C was understood through an analytical form indicating a distribution of currents similar to the law of clusters at fracture/percolation thresholds. (orig.)

  15. Mnx/2Nbx/2O3 ceramics

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The paper reports investigations of relative permittivity, εr, electrical conductivity, σ, saturation polarization, Ps, infrared absorption and structural properties of compensating valency substituted BaTiO3. The compositions investigated are BaTi(1–x)Mnx/2Nbx/2O3 for x = 0⋅00; 0⋅025; 0⋅05; 0⋅1; 0⋅2; 0⋅4.

  16. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  17. Composition-induced structural phase transitions in the (Ba1-xLax)2In2O5+x (0=

    International Nuclear Information System (INIS)

    Tenailleau, C.; Pring, A.; Moussa, S.M.; Liu, Y.; Withers, R.L.; Tarantino, S.; Zhang, M.; Carpenter, M.A.

    2005-01-01

    Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba 1-x La x ) 2 In 2 O 5+x , 0= orthorhombic transition, while the cubic->tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken

  18. In situ X-ray and neutron diffraction study of Ba2In2O5

    International Nuclear Information System (INIS)

    Speakman, S.A.; Misture, S.T.

    2001-01-01

    Order-disorder transitions in barium indate, Ba 2 In 2 O 5 , have been studied using in-situ X-ray and neutron diffraction. At room temperature, the crystal structure is an orthorhombic brownmillerite structure. At 706 C, the crystal structure is orthorhombic, possibly of the Imma or Ibm2 space groups. At 900 C, oxygen vacancies begin to disorder. The order-disorder transition occurs slowly in two steps over a temperature range of 900 - 925 C. Above this temperature range, the crystal structure is tetragonal, most likely belonging to the space group I 4/mcm. A second order-disorder transition begins at 1040 C, and proceeds over the temperature range 1040 - 1065 C. Above this temperature range, the crystal structure is a cubic, oxygen-deficient perovskite structure, with space group Pm3m. At an undetermined temperature above 1200 C, Ba 2 In 2 O 5 begins to decompose. (orig.)

  19. Structural, thermal and optical properties of TeO2-ZnO-CdO-BaO glasses doped with VO(2+).

    Science.gov (United States)

    Sreenivasulu, V; Upender, G; Chandra Mouli, V; Prasad, M

    2015-09-05

    The glasses with composition 64TeO2-15ZnO-(20-x)CdO-xBaO-1V2O5 (0⩽x⩽20 mol%) were prepared by conventional melt quenching technique. X-ray diffraction analysis was used to confirm the amorphous nature of the glasses. The optical absorption studies revealed that the cut-off wavelength (λα) decreases while optical band gap energy (Eopt) and Urbach energy (ΔE) values increase with an increase of BaO content. Refractive index (n) evaluated from Eopt was found to decrease with an increase of BaO content. The physical parameters such as density (ρ), molar volume (Vm), oxygen packing density (OPD), optical basicity (Λ), molar refraction (Rm), and metallization criterion (M) evaluated and discussed. FTIR and Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1/TeO3 and ZnO4 units as basic structural units. The glass transition temperature (Tg) of glass sample, onset crystallization temperature (To) and thermal stability ΔT were determined from Differential Scanning Calorimetry (DSC). Using electron paramagnetic resonance (EPR) spectra of vanadium glasses the spin Hamiltonian parameters and dipolar hyperfine coupling parameters of VO(2+) ions were calculated. It was found that V(4+) ions in these glasses exist as VO(2+) in octahedral coordination with a tetragonal distortion and have C4V symmetry with ground state dxy. Tetragonality (Δg∥/Δg⊥) of vanadium ion sites exhibited non-linear variation with BaO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Photocatalytic CO2 reduction by Cr-substituted Ba2 (In2-xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60)

    KAUST Repository

    Yoon, Songhak; Gaul, Michael; Sharma, Sitansh; Son, Kwanghyo; Hagemann, Hans; Ziegenbalg, Dirk; Schwingenschlö gl, Udo; Widenmeyer, Marc; Weidenkaff, Anke

    2018-01-01

    Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV–vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).

  1. Photocatalytic CO2 reduction by Cr-substituted Ba2 (In2-xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60)

    KAUST Repository

    Yoon, Songhak

    2018-02-09

    Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV–vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).

  2. Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60)

    Science.gov (United States)

    Yoon, Songhak; Gaul, Michael; Sharma, Sitansh; Son, Kwanghyo; Hagemann, Hans; Ziegenbalg, Dirk; Schwingenschlogl, Udo; Widenmeyer, Marc; Weidenkaff, Anke

    2018-04-01

    Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV-vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).

  3. The phenomenon of phase separated in Na2O-B2O3-SiO2, Na2O-SiO2-P2O5 glasses

    International Nuclear Information System (INIS)

    Procyk, B.; Bieniarz, P.; Plichta, E.; Pudelek, B.; Kucinski, G.; Staniewicz-Brudnik, B.

    1997-01-01

    During the thermal treatment, the phenomenon of phase separation has been observed in the some glasses. The glass has became opaque, due to the opalescence of phase separated. Investigations of the phenomenon of phase separation were conducted using the basic systems: Na 2 O-B 2 O 3 -SiO 2 , Na 2 O-SiO 2 -P 2 O 5 and theirs modifications. The occurrence of binodal and spinodal phase decomposition was observed by TEM. The phase separation inhomogeneities have drop-like character and with higher concentration shows a tendency for coalescence. The influence of the chemical composition, temperature and time on the phenomenon of phase separation in the investigated glasses has been defined. (author)

  4. Preparation of YBa2Cu3O7-δ powders by the thermal decomposition of a heteronuclear complex, CuY1/3Ba2/3(dhbaen)(NO3)1/3(H2O)3

    International Nuclear Information System (INIS)

    Hasegawa, E.; Aono, H.; Sadaoka, Y.; Traversa, E.

    1999-01-01

    YBa 2 Cu 3 O 7-δ powders were prepared by the thermal decomposition of a heteronuclear complex, CuY 1/3 Ba 2/3 (dhbaen)(NO 3 ) 1/3 (H 2 O) 3 . The products of the complex thermal decomposition were analyzed by TG-DTA, XRD, SEM-Auger and XPS. The decomposition of the CuY 1/3 Ba 2/3 -complex was obtained at about 500 C and the product was a mixture of oxides and carbonates. The formation of YBa 2 Cu 3 O 7-δ proceeded at 800 C, with a gradual decomposition of the carbonates. A homogeneous distribution of each element, Y, Ba, and Cu, was observed for the decomposed CuY 1/3 Ba 2/3 -complex by SEM-Auger analysis. The binding energy values of Ba3d 5/2 and O1s photolines from Ba and O in the superconductive lattice did not shift during the sputtering period. Furthermore, the formation of Ba rich regions on the surface was depressed by using the complex as a starting material for homogeneous 123-oxide, YBa 2 Cu 3 O 7-δ . (orig.)

  5. Composition and crystallization kinetics of R2O-Al2O3-SiO2 glass-ceramics

    International Nuclear Information System (INIS)

    Xiong, Dehua; Cheng, Jinshu; Li, Hong

    2010-01-01

    The crystallization behavior and microstructure of R 2 O-Al 2 O 3 -SiO 2 (R means K, Na and Li) glass were investigated by means of differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization kinetic parameters including the crystallization apparent activation energy (E a ), the Avrami parameter (n), glass transition temperature (T g ) and the activity energy of glass transition (E t ) were also measured with different methods. The results have shown that: the DSC traces of composition A parent glass have two different precipitation crystallization peaks corresponding to E a1 (A) = 151.4 kJ/mol (Li 2 SiO 3 ) and E a2 (A) = 623.1 kJ/mol (Li 2 Si 2 O 5 ), the average value of n = 1.70 (Li 2 Si 2 O 5 ) for the surface crystallization and E t (A) = 202.8 kJ/mol. And E a (B) = 50.7 kJ/mol (Li 2 SiO 3 ), the average value of n = 3.89 (Li 2 SiO 3 ) for the bulk crystallization and E t (B) = 220.4 kJ/mol for the composition B parent glass. Because of the content of R 2 O is bigger than composition A, composition B parent glass has a lower E a , T g and a larger n, E t .

  6. Properties of TiO2 prepared by acid treatment of BaTiO3

    International Nuclear Information System (INIS)

    Okada, Kiyoshi; Yanagisawa, Tomoki; Kameshima, Yoshikazu; Nakajima, Akira

    2007-01-01

    TiO 3 powders were prepared by acid treatment of BaTiO 3 and their properties were investigated. The BaTiO 3 powder was subjected to HNO 3 in concentrations ranging from 10 -3 to 8 M at 90 deg. C for 0.5-6 h. Dissolution of BaTiO 3 and precipitation of TiO 2 occurred at acid concentrations of 2-5 M. BaTiO 3 dissolves completely to form a clear solution at reaction times of 0.5-1 h, but a rutile precipitate is formed after 2 h of acid treatment. By contrast, anatase is precipitated by adjusting the pH of the clear solution to 2-3 using NaOH or NH 4 OH solution. The rutile crystals were small and rod-shaped, consisting of many small coherent domains connected by grain boundaries with small inclination angles and edge dislocations, giving them a high specific surface area (S BET ). With increasing HNO 3 concentration, the S BET value increased from 100 to 170 m 2 /g while the crystallite size decreased from 25 to 11 nm. The anatase crystals obtained here were very small equi-axial particles with a smaller crystallite size than the rutile and S BET values of about 270 m 2 /g (higher than the rutile samples). The photocatalytic activity of these TiO 2 was determined from the decomposition rate of Methylene Blue under ultraviolet irradiation. Higher decomposition rates were obtained with larger crystallite sizes resulting from heat treatment. The maximum decomposition rates were obtained in samples heated at 500-600 deg. C. The photocatalytic activity of the TiO 2 was found to depend more strongly on the sample crystallite size than on S BET

  7. Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties

    International Nuclear Information System (INIS)

    Tuscharoen, S.; Kaewkhao, J.; Limkitjaroenporn, P.; Limsuwan, P.; Chewpraditkul, W.

    2012-01-01

    Highlights: ► BaO:B 2 O 3 :Fly ash glasses have been improved in radiation Shielding, physical and optical properties. ► The visible light transmission of RHA glass was better than SiO 2 . ► At all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete. -- Abstract: Rice husk ash glass (RHA-glass) of composition xBaO:(80 − x)B 2 O 3 :20RHA where x = 45, 50, 55, 60, 65 and 70 wt.% have been prepared using melt-quenching method and investigated on their optical, physical and gamma-rays shielding properties. The densities of these glass samples were increased with increasing of BaO content, due to higher molecular weight of BaO comparing with B 2 O 3 . The molar volume of these glasses was increased with increasing content of BaO; BaO acts as modifier to increase the loose packing. The visible light transmission of RHA glass was better than SiO 2 glass prepared in same formula and preparing condition. The experimental values of gamma ray shielding properties such as; mass attenuation coefficients, atomic cross sections and effective atomic numbers, were found in good agreement with the theoretical values as calculated from WinXCom. Moreover the glass system at all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete.

  8. Synthesis of BaTiO3 nanoparticles from TiO2-coated BaCO3 particles derived using a wet-chemical method

    Directory of Open Access Journals (Sweden)

    Yuuki Mochizuki

    2014-03-01

    Full Text Available BaCO3 particles coated with amorphous TiO2 precursor are prepared by a wet chemical method to produce BaTiO3 nanoparticles at low temperatures. Subsequently, we investigate the formation behavior of BaTiO3 particles and the particle growth behavior when the precursor is subjected to heat treatment. The state of the amorphous TiO2 coating on the surface of BaCO3 particles depends on the concentration of NH4HCO3, and the optimum concentration is found to be in the range 0.5–1.0 M. Thermogravimetric curves of the BaCO3 particles coated with the TiO2 precursor, prepared from BaCO3 particles of various sizes, show BaTiO3 formation occurring mainly at 550–650 °C in the case of fine BaCO3 particles. However, as evidenced from the curves, the temperature of formation of BaTiO3 shifts to higher values with an increase in the size of the BaCO3 particles. The average particle size of single phase BaTiO3 at heat-treatment temperature of 650–900 °C is observed to be in the range 60–250 nm.

  9. Synthesis, structural characterization and fluctuation conductivity of HoBa2Cu3O7-δ-SrTiO3 composites

    International Nuclear Information System (INIS)

    Uribe Laverde, M.A.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2010-01-01

    Single-phase polycrystalline samples of HoBa 2 Cu 3 O 7-δ superconductor and SrTiO 3 isolator were produced by means of the solid state reaction technique. After structural characterization of both materials, superconductor-isolator composites were produced with nominal isolator volume percentages between 0% and 10%. Resistivity measurements for the composites and the HoBa 2 Cu 3 O 7-δ sample with different currents evidenced a superconducting transition with critical temperature T C = 92 K, with wider transitions with increasing either isolator content or measurement current. Fluctuation conductivity analyses were carried out to obtain the exponents characterizing the conductivity divergence. Above T C , apart from the typical Gaussian and critical fluctuations an atypical regime with critical exponent about 0.14 is observed as a precursor of the transition. Below T C , it is observed that the coherence transition characteristic exponent increases rapidly with increasing isolator percentage in the composites and does not show important changes when modifying the current in the pure superconductor sample.

  10. Synthesis, structural characterization and dielectric properties of Nb doped BaTiO3/SiO2 core–shell heterostructure

    International Nuclear Information System (INIS)

    Cernea, M.; Vasile, B.S.; Boni, A.; Iuga, A.

    2014-01-01

    Highlights: • Optimal parameters for preparation by sol–gel of core–shell (BT-Nb 0.005 )/SiO 2 are presented in this paper. • Single crystalline BT-Nb 0.005 /SiO 2 core–shell composite with ∼34 nm shell thick was prepared. • The core–shell ceramic exhibits good dielectric properties and ferroelectric characteristics. -- Abstract: Perovskite complex ceramic oxides, BaTiO 3 doped with 0.5 mol%Nb 2 O 5 and then nanocoated with SiO 2 (abbreviated as BT-Nb 0.005 /SiO 2 ) was successful prepared using conventional sol–gel processing. Phase composition, particle morphology, structure, and electric properties of BT-Nb 0.005 core and BT-Nb 0.005 /SiO 2 core–shell were examined and compared, using X-ray diffraction, transmission electron microscopy and, dielectric and ferroelectric measurements. Core–shell composite with well-defined perovskite tetragonal phase of BaTiO 3 was achieved. Furthermore, single crystalline BT-Nb 0.005 /SiO 2 core–nanoshell heterostructure with ∼34 nm shell thick was prepared, which is a novelty in ferroelectrics field. The ferroelectric quality of BT-Nb 0.005 has suffered an alteration when the (BT-Nb 0.005 )/SiO 2 core–shell heterostructure was realized. One-dimensional BT-Nb 0.005 /SiO 2 core–shell heterostructure exhibits an improvement of dielectric losses and a decrease of dielectric constant, compared to uncoated BT-Nb 0.005 . The (BT-Nb 0.005 )/SiO 2 core–shell material could be interesting for application in the composite capacitors

  11. Interfacial reactions of Ba{sub 2}YCu{sub 3}O{sub 6+z} with coated conductor buffer layer, LaMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G. [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Wong-Ng, W., E-mail: winnie.wong-ng@nist.go [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Kaduk, J.A. [Poly Crystallography Inc., Naperville, IL 60540 (United States); Cook, L.P. [Ceramics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-03-01

    Chemical interactions between the Ba{sub 2}YCu{sub 3}O{sub 6+x} superconductor and the LaMnO{sub 3} buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba{sub 2}YCu{sub 3}O{sub 6+x}-LaMnO{sub 3} system. The Ba{sub 2}YCu{sub 3}O{sub 6+x}-LaMnO{sub 3} join within the BaO-(Y{sub 2}O{sub 3}-La{sub 2}O{sub 3})-MnO{sub 2}-CuO{sub x} multi-component system is non-binary. At 810 deg. C (p{sub O2} = 100 Pa) and at 950 deg. C in purified air, four phases are consistently present along the join, namely, Ba{sub 2-x}(La{sub 1+x-y}Y{sub y})Cu{sub 3}O{sub 6+z}, Ba(Y{sub 2-x}La{sub x})CuO{sub 5}, (La{sub 1-x}Y{sub x})MnO{sub 3}, (La,Y)Mn{sub 2}O{sub 5}. The crystal chemistry and crystallography of Ba(Y{sub 2-x}La{sub x})CuO{sub 5} and (La{sub 1-x}Y{sub x})Mn{sub 2}O{sub 5} were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y{sub 2-x}La{sub x})CuO{sub 5} are Ba(Y{sub 1.8}La{sub 0.2})CuO{sub 5} and Ba(Y{sub 0.1}La{sub 1.9})CuO{sub 5}, respectively. The structure of Ba(Y{sub 1.8}La{sub 0.2})CuO{sub 5} is Pnma (No. 62), a = 12.2161(5) A, b = 5.6690(2) A, c = 7.1468(3) A, V = 494.94(4) A{sup 3}, and D{sub x} = 6.29 g cm{sup -3}. YMn{sub 2}O{sub 5} and LaMn{sub 2}O{sub 5} do not form solid solution at 810 deg. C (p{sub O2} = 100 Pa) or at 950 deg. C (in air). The structure of YMn{sub 2}O{sub 5} was confirmed to be Pbam (No. 55), a = 7.27832(14) A, b = 8.46707(14) A, c = 5.66495(10) A, and V = 349.108(14) A{sup 3}. A reference X-ray pattern was prepared for YMn{sub 2}O{sub 5}.

  12. Intrinsic defect process and O migration in PrBa(Co/Fe)2O5.5

    KAUST Repository

    Salawu, Omotayo Akande

    2017-01-01

    New mixed ion-electron conductors ar desired to lower the operating temperature of solid oxide fuel cells. The O Frenkel energy and migration of O ions in rBa(Co/Fe)2O5.5 are studied for this purpose by density functional theory. We demonstrate

  13. Intrinsic defect processes and O migration in PrBa(Co/Fe)2O5.5

    KAUST Repository

    Salawu, Omotayo Akande; Boulfrad, Samir; Schwingenschlö gl, Udo

    2016-01-01

    © 2016 The Royal Society of Chemistry. New mixed ion-electron conductors are desired to lower the operating temperature of solid oxide fuel cells. The O Frenkel energy and migration of O ions in PrBa(Co/Fe)2O5.5 are studied for this purpose

  14. Composite Fe - BaCe0.2Zr0.6Y0.2O2.9 Anodes for Proton Conductor Fuel Cells

    DEFF Research Database (Denmark)

    Lapina, Alberto; Chatzichristodoulou, Christodoulos; Holtappels, Peter

    2014-01-01

    Symmetrical cells with Fe - BaCe0.2Zr0.6Y0.2O2.9 composite electrodes are produced by screen printing and infiltration, using BaCe0.2Zr0.6Y0.2O2.9 as electrolyte. The electrochemical performance of the composite electrode is studied by impedance spectroscopy at 250–500◦C in dry and wet hydrogen/n...

  15. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    Science.gov (United States)

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  16. Microstructure, Thermal, Mechanical, and Dielectric Properties of BaO-CaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    Science.gov (United States)

    Li, Bo; Bian, Haibo; Fang, Yi

    2017-12-01

    BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) glass-ceramics were prepared via the method of controlled crystallization. The effect of CaO modification on the microstructure, phase evolution, as well as thermal, mechanical, and dielectric properties was investigated. XRD identified that quartz is the major crystal phase; cristobalite and bazirite are the minor crystal phases. Moreover, the increase of CaO could inhibit the phase transformation from quartz to cristobalite, but excessive CaO would increase the porosity of the ceramics. Additionally, with increasing the amount of CaO, the thermal expansion curve tends to be linear, and subsequently the CTE value decreases gradually, which is attributed to the decrease of cristobalite with high CTE and the formation of CaSiO3 with low CTE. The results indicated that a moderate amount of CaO helps attaining excellent mechanical, thermal, and dielectric properties, that is, the specimen with 9 wt% CaO sintered at 950 °C has a high CTE value (11.5 × 10-6/°C), a high flexural strength (165.7 MPa), and good dielectric properties (ɛr = 6.2, tanδ = 1.8 × 10-4, ρ = 4.6 × 1011 Ω•cm).

  17. Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers

    Science.gov (United States)

    Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.

    2016-01-01

    Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.

  18. Influence of Y2O3 Addition on Crystallization, Thermal, Mechanical, and Electrical Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramic for Ceramic Ball Grid Array Package

    Science.gov (United States)

    Li, Bo; Li, Wei; Zheng, Jingguo

    2018-01-01

    Y2O3 addition has a significant influence on the crystallization, thermal, mechanical, and electrical properties of BaO -Al2O3 -B2O3 -SiO2 (BABS) glass-ceramics. Semi-quantitative calculation based on x-ray diffraction demonstrated that with increasing Y2O3 content, both the crystallinity and the phase content of cristobalite gradually decreased. It is effective for the additive Y2O3 to inhibit the formation of cristobalite phase with a large coefficient of thermal expansion value. The flexural strength and the Young's modulus, thus, are remarkably increased from 140 MPa to 200 MPa and 56.5 GPa to 63.7 GPa, respectively. Also, the sintering kinetics of BABS glass-ceramics with various Y2O3 were investigated using the isothermal sintering shrinkage curve at different sintering temperatures. The sintering activation energy Q sharply decreased from 99.8 kJ/mol to 81.5 kJ/mol when 0.2% Y2O3 was added, which indicated that a small amount of Y2O3 could effectively promote the sintering procedure of BABS glass-ceramics.

  19. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln=Gd, Pr)

    Science.gov (United States)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-01

    The A-site ordered double-perovskite oxides, LnBaMn2O5+δ (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn2O5+δ. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn2O5+δ. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln3+ ions larger than Y3+. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn2O5 and fully-oxidized LnBaMn2O6 during changes of the oxygen partial pressure between air and 1.99% H2/Ar. In addition, the oxygen non-stoichiometries of GdBaMn2O5+δ and PrBaMn2O5+δ were determined as a function of pO2 at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching 6. The stabilities of the LnBaMn2O5+δ phases extend over a wide range of oxygen partial pressures (∼10-25≤pO2 (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln3+ cation the lower pO2 for phase conversion. At some temperatures and pO2 conditions, the LnBaMn2O5+δ compounds are unstable with respect to decomposition to BaMnO3-δ and LnMnO3. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions.

  20. Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures

    Science.gov (United States)

    Ivanova, Mariya E.; Escolástico, Sonia; Balaguer, Maria; Palisaitis, Justinas; Sohn, Yoo Jung; Meulenberg, Wilhelm A.; Guillon, Olivier; Mayer, Joachim; Serra, Jose M.

    2016-11-01

    Hydrogen permeation membranes are a key element in improving the energy conversion efficiency and decreasing the greenhouse gas emissions from energy generation. The scientific community faces the challenge of identifying and optimizing stable and effective ceramic materials for H2 separation membranes at elevated temperature (400-800 °C) for industrial separations and intensified catalytic reactors. As such, composite materials with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ revealed unprecedented H2 permeation levels of 0.4 to 0.61 mL·min-1·cm-2 at 700 °C measured on 500 μm-thick-specimen. A detailed structural and phase study revealed single phase perovskite and fluorite starting materials synthesized via the conventional ceramic route. Strong tendency of Eu to migrate from the perovskite to the fluorite phase was observed at sintering temperature, leading to significant Eu depletion of the proton conducing BaCe0.8Eu0.2O3-δ phase. Composite microstructure was examined prior and after a variety of functional tests, including electrical conductivity, H2-permeation and stability in CO2 containing atmospheres at elevated temperatures, revealing stable material without morphological and structural changes, with segregation-free interfaces and no further diffusive effects between the constituting phases. In this context, dual phase material based on BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ represents a very promising candidate for H2 separating membrane in energy- and environmentally-related applications.

  1. Study on crystallization kinetics and phase evolution in Li2O-Al2O3-GeO2-P2O5 glass-ceramics system

    Science.gov (United States)

    Das, Anurup; Dixit, Anupam; Goswami, Madhumita; Mythili, R.; Hajra, R. N.

    2018-04-01

    To address the safety issues related to liquid electrolyte and improve the battery performance, Solid State Electrolytes (SSEs) are now in frontier area of research interest. We report here synthesis of Li-SSE based on Li2O-Al2O3-GeO2-P2O5 (LAGP) system with NASICON structure. Glass sample with nominal composition Li1.5Al0.5Ge1.5P2.5Si0.5O12 was prepared by melt-quenching technique. Non-isothermal crystallization kinetics was studied using DSC and activation energy of crystallisation was calculated to be ˜ 246 kJ/mol using Kissinger's equation. XRD of heat treated samples show the formation of required LiGe2(PO4)3 phase along with other minor phases. Compositional analysis using SEM-EDX confirms enrichment of Ge and Si along the grain boundaries.

  2. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    Science.gov (United States)

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  3. Intrinsic defect process and O migration in PrBa(Co/Fe)2O5.5

    KAUST Repository

    Salawu, Omotayo Akande

    2017-01-08

    New mixed ion-electron conductors ar desired to lower the operating temperature of solid oxide fuel cells. The O Frenkel energy and migration of O ions in rBa(Co/Fe)2O5.5 are studied for this purpose by density functional theory. We demonstrate that Fe substitution strongly affects the formation of defects and consequently the O migration.

  4. Enhanced flux pinning by BaZrO3 and (Gd,y)2O3 nano-structures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Paranthaman, Mariappan Parans [ORNL; Cantoni, Claudia [ORNL; Aytug, Tolga [ORNL; Goyal, Amit [ORNL; Lee, Dominic F [ORNL; Specht, Eliot D [ORNL; Zuev, Yuri L [ORNL; Zhang, Yifei [ORNL

    2009-01-01

    We have formed BaZrO3 nano-columns and (Gd,Y)2O3 nano-precipitates in reel-to-reel MOCVD processed (Gd,Y)Ba2Cu3O7-x coated conductors and increased the critical currents (Ic) of the conductors in applied magnetic fields to remarkable levels. A (Gd,Y)Ba2Cu3O7-x tape of 1m length with 6.5% Zr-additions and 30% composition rich in both Gd and Y showed Ic values of 813 A/cm-width at (self-field, 77K) and above 186 A/cm-width at (1T, 77K). The strongly enhanced flux pinning over a wide range of magnetic field orientations can be attributed to the bidirectionally aligned defect structures of BaZrO3 and (Gd,Y)2O3 created by optimized MOCVD conditions.

  5. Z-contrast imaging of ordered structures in Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3

    International Nuclear Information System (INIS)

    Yan, Y.; Pennycook, S.J.; Xu, Z.; Viehland, D.

    1998-02-01

    Lead-based cubic perovskites such as Pb(B 1/3 2+ B 2/3 5+ )O 3 (B 2+ Mg, Co, Ni, Zn; B 5+ = Nb, Ta) are relaxor ferroelectrics. Localized order and disorder often occur in materials of this type. In the Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) family, previous studies have proposed two models, space-charge and charge-balance models. In the first model, the ordered regions carry a net negative charge [Pb(Mg 1/2 Nb 1/2 )O 3 ], while in the second model it does not carry a net charge [Pb((Mg 2/3 Nb 1/3 ) 1/2 Nb 1/2 )O 3 ]. However, no direct evidence for these two models has appeared in the literature yet. In this paper the authors report the first direct observations of local ordering in undoped and La-doped Pb(Mg 1/3 Nb 2/3 )O 3 , using high-resolution Z-contrast imaging. Because the ordered structure in Ba(Mg 1/3 Nb 2/3 )O 3 is well known, the Z-contrast image from an ordered domain is used as a reference for this study

  6. Atomic Center interactions in BaO; Al2O3; B2O3 glasses containing silver

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Piccini, A.

    1979-01-01

    The EPR study of borate glasses, with 30% of BaO and 5% mole of silver, X-irradiated at 77 0 K, showed Ag 0 and Ag ++ centers. In addition were detected the boron electron center (BEC) and the boron hole center. The silver centers and BEC were studied in detail and the spin Hamiltonian parameters are given. The different Al 2 O 3 concentrations exerted only little influence on the tabulated constants. The Ag + 2 center was not observed, indicating that the collisions between Ag atoms are not very frequent in these glasses, even during the process of thermal bleaching. The hfs of the boron electron center suffered severe variation as one compared the spectra of base glasses and those containing silver. This is an evidence of the action of silver as a glass modifier like the alkali atoms [pt

  7. Superconductivity at 108 K in the simplest non-toxic double-layer cuprate of Ba2CaCu2O4(O,F)2

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Crisan, A; Tanaka, Y; Kodama, Y; Kito, H; Iyo, A

    2008-01-01

    We report the superconductivity in apical fluorine system of Ba 2 CaCu 2 O 6-y F y : the second member of Ba 2 Ca n-1 Cu n O 2n (O,F) 2 homologous series. The polycrystalline samples of Ba 2 CaCu 2 O 6-y F y (F-0212) were synthesized under high pressure as a parameter of nominal fluorine content (y). Samples with y = 2.0 ∼ 1.2 elucidating the very sharp superconducting transitions in temperature dependence of susceptibility from under doping state to slightly over doping state via optimal doping state. A remarkable highest T c of 108 K has been achieved for the sample synthesized from a nominal composition of Ba 2 CaCu 2 O 4.4 F 1.6 . This T c is highest among the double CuO 2 layered system except for that including toxic elements such as Hg and T1. The T c has been systematically controlled from 57 K to 108 K by controlling the doping state, by designing the starting composition of fluorine and oxygen. The strong dependence of the 'a' and 'c' lattice constants were found on the nominal F content. We propose the Ba 2 CaCu 2 O 4 (O,F) 2 as a promising material for practical use due to its high T c and non-toxicity with a simple crystal structure

  8. Theoretical prediction of morphotropic compositions in Na1/2Bi1/2TiO3-based solid solutions from transition pressures

    Science.gov (United States)

    Gröting, Melanie; Albe, Karsten

    2014-02-01

    In this article we present a method based on ab initio calculations to predict compositions at morphotropic phase boundaries in lead-free perovskite solid solutions. This method utilizes the concept of flat free energy surfaces and involves the monitoring of pressure-induced phase transitions as a function of composition. As model systems, solid solutions of Na1/2Bi1/2TiO3 with the alkali substituted Li1/2Bi1/2TiO3 and K1/2Bi1/2TiO3 and the alkaline earth substituted CaTiO3 and BaTiO3 are chosen. The morphotropic compositions are identified by determining the composition at which the phase transition pressure equals zero. In addition, we discuss the different effects of hydrostatic pressure (compression and tension) and chemical substitution on the antiphase tilts about the [111] axis (a-a-a-) present in pure Na1/2Bi1/2TiO3 and how they develop in the two solid solutions Na1/2Bi1/2TiO3-CaTiO3 and Na1/2Bi1/2TiO3-BaTiO3. Finally, we discuss the advantages and shortcomings of this simple computational approach.

  9. Effect of composition on properties of In2O3-Ga2O3 thin films

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2017-06-01

    The In2O3-Ga2O3 mixed oxide polycrystalline thin films with various ratios of components were obtained by pulsed laser deposition. The effect of films composition on surface morphology, electrophysical and gas sensing properties and energies of adsorption and desorption of combustible gases was studied. The films with50%In2O3-50%Ga2O3 composition showed maximum gas response (˜25 times) combined with minimum optimal working temperature (˜530 °C) as compared with the other films. The optical transmittance of the films in visible range was investigated. For 50%In2O3-50%Ga2O3 films, the transmittance is higher in comparison with the other films. The explanation of the dependency of films behaviors on their composition was presented.The In2O3-Ga2O3 films were assumed to have perspectives as gas sensing material for semiconducting gas sensors.

  10. Heat capacity measurement of Ba3SrNb2O9

    International Nuclear Information System (INIS)

    Singh, B.M.; Samui, Pradeep; Agarwal, Renu; Mukerjee, S.K.

    2016-01-01

    Barium, Strontium and Niobium are important fission products in nuclear reactor with reasonable fission yields. During irradiation of oxide fuels, they can combine to form compounds of Ba-Sr-Nb-O system. Therefore, thermodynamic properties of Ba 3 SrNb 2 O 9 are required for modelling fuel behaviour however thermodynamic data of this compound is not available in literature. Ba 3 SrNb 2 O 9 was prepared by solid state route, by mixing stoichiometric amounts of finely grounded SrCO 3 , BaCO 3 and Nb 2 O 5 . Finally mixed powder was pressed into a pellet at 5 ton pressure for 2 minutes in a hydraulic press and the pellet was heated at 1123 K for 60 h in air. The pellet was cooled, finely grounded, re-pelletised and heated at 1473 K for 120 h. The formation of compound was confirmed by X-ray diffraction pattern, collected at room temperature using Cu-K α radiation (λ = 1.54 nm), scanned over the angular range 20-80° (2θ) with steps of 0.02°. Heat capacity of the compound was measured by the classical three-step method, in continuous mode, using LABSYS EVO, in temperature range of 370 and 950 K. No transition was observed in the investigated temperature range

  11. The interaction of NO2 with BaO: from cooperative adsorption to Ba(NO3)2 formation

    International Nuclear Information System (INIS)

    Yi, Cheol-Woo W.; Kwak, Ja Hun H.; Szanyi, Janos

    2007-01-01

    The effect of water on the morphology of BaO/Al2O3-based NOx storage materials was investigated using Fourier transform infrared spectroscopy, temperature programmed desorption, and time-resolved synchrotron X-ray diffraction techniques. The results of this multi-spectroscopy study reveal that, in the presence of water, surface Ba-nitrates convert to bulk nitrates, and water facilitates the formation of large Ba(NO3)2 particles. The conversion of surface to bulk Ba-nitrates is completely reversible, i.e. after the removal of water from the storage material a significant fraction of the bulk nitrates re-convert to surface nitrates. NO2 exposure of a H2O-containing (wet) BaO/Al2O3 sample results in the formation of nitrites and bulk nitrates exclusively, i.e. no surface nitrates form. After further exposure to NO2, the nitrites completely convert to bulk nitrates. The amount of NOx taken up by the storage material is, however, essentially unaffected by the presence of water, regardless of whether the water was dosed prior to or after NO2 exposure. Based on the results of this study we are now able to explain most of the observations reported in the literature on the effect of water on NOx uptake on similar storage materials

  12. Y{sub 2}BaCuO{sub 5} particle distribution in YBa{sub 2}Cu{sub 3}O{sub 7-y} grains of melt growth processed YBCO oxides; Y{sub 2}BaCuO{sub 5}-Partikelverteilung in YBa{sub 2}Cu{sub 3}O{sub 7-y}-Koernern durch das Melt-Growth-Verfahren verarbeiteter YBCO-Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong; Park, Soon-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Neutron Science Div.; Park, Hai-Woong [Korea Univ. of Technology and Education, Chungnam (Korea, Republic of). College of Energy, Materials and Chemical Engineering

    2013-02-01

    Y{sub 2}BaCuO{sub 5} (Y211) particle distribution within YBa{sub 2}Cu{sub 3}O{sub 7-y} (Y123) grains of YBCO samples melt growth (MG) processed was examined. To understand the processing variables on the Y211 distribution, a cooling rate (R{sub C}=1 K/h to R{sub C}=20 K/h) through a peritectic temperature (T{sub p} = 1010 C), a precursor powder size and composition were changed. Two different Y211 distributions (a linear x-like track and planar butterfly-like pattern) were observed, depending on the processing variables. The linear x-like Y211 tracks were observed in the Y123 samples prepared using a stoichiometric Y123 precursor, whereas the planar butterfly-like Y211 patterns were observed in the Y{sub 1.8}Ba{sub 2.4}Cu{sub 3.4}O{sub 7-d} (Y1.8) samples prepared using an Y211-excess composition precursor. The track and planar Y211 patterns were clearer at lower R{sub C} (slower growth rate of Y123 grains) and for the smaller Y211 particles. In contrast, the random Y211 distribution was dominant at the higher R{sub C} and for the larger Y211 particles. The Y211 distribution patterns in the Y123 grains were explained in terms of the interfacial energy difference among growing Y123 fronts. (orig.)

  13. Electronic structure of PrBa2Cu3O7

    International Nuclear Information System (INIS)

    Singh, D.J.

    1994-01-01

    Electronic-structure calculations, within the local spin density approximation (LSDA), are reported for PrBa 2 Cu 3 O 7 . Significant charge transfer from the Pr ions to both the CuO 2 planes and the chains is found relative to YBa 2 Cu 3 O 7 . This supports hole depletion explanations for the insulating character of PrBa 2 Cu 3 O 7 . The LSDA electronic structure shows a prominent ''ridge'' Fermi surface analogous to that in YBa 2 Cu 3 O 7 , but broader. It is proposed that high-resolution positron measurements of this width may provide a useful test of hole depletion models

  14. Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.

    Science.gov (United States)

    Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea

    2014-10-16

    The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.

  15. Thermal and electrical properties of 60V2O55P2O5–(35− x) B2O3 ...

    Indian Academy of Sciences (India)

    The samples of composition 60V2O55P2O5–(35−)B2O3–CeO2, = 1, 2, 3, 4 and 5 mol% were prepared by the melt-quench method. The prepared samples were characterized by X-ray diffraction, thermogravimetric-differential thermal analysis and impedance spectroscopy. The activation energies were evaluated ...

  16. Optical properties of nanocrystalline potassium lithium niobate in the glass system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5).

    Science.gov (United States)

    Ahamad, M Niyaz; Varma, K B R

    2009-08-01

    Optically clear glasses of various compositions in the system (100-x) TeO2-x(1.5K2O-Li2O-2.5Nb2O5) (2 glasses comprising potassium lithium niobate (K3Li2Nb5O15) microcrystallites on the surface and nanocrystallites within the glass were obtained by controlled heat-treatment of the as-quenched glasses just above the glass transition temperature (T(g)). The optical transmission spectra of these glasses and glass-crystal composites of various compositions were recorded in the 200-2500 nm wavelength range. Various optical parameters such as optical band gap, Urbach energy, refractive index were determined. Second order optical non-linearity was established in the heat-treated samples by employing the Maker-Fringe method.

  17. In situ screen-printed BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo{sub 2}O{sub 5+x} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Dong, Yingchao; Zhang, Shangquan; Hu, Mingjun; Zhou, Yang; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Yan, Ruiqiang [Department of Materials Engineering, Taizhou University, Linhai, Zhejiang 317000 (China)

    2009-01-15

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered SmBaCo{sub 2}O{sub 5+x} (SBCO) cathode, a dense BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte was fabricated on a porous anode by in situ screen printing. The porous NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY) anode was directly prepared from metal oxide (NiO, BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) by a simple gel-casting process. An ink of metal oxide (BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) powders was then employed to deposit BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) thin layer by an in situ reaction-sintering screen printing process on NiO-BZCY anode. The bi-layer with 25 {mu}m dense BZCY electrolyte was obtained by co-sintering at 1400 C for 5 h. With layered SBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. A high open-circuit potential of 1.01 V, a maximum power density of 382 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.15 {omega} cm{sup 2} was achieved at 700 C. (author)

  18. Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors

    Science.gov (United States)

    Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.

    2015-01-01

    Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.

  19. Analysis of (Ba,Ca,Sr)3MgSi2O8:Eu2+, Mn2+ phosphors for application in solid state lighting

    International Nuclear Information System (INIS)

    Han, J.K.; Piqutte, A.; Hannah, M.E.; Hirata, G.A.; Talbot, J.B.; Mishra, K.C.; McKittrick, J.

    2014-01-01

    The luminescence properties of Eu 2+ and Mn 2+ co-activated (Ba,Ca,Sr) 3 MgSi 2 O 8 phosphors prepared by combustion synthesis were studied. Eu 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 has a broad blue emission band centered at 450–485 nm and Eu 2+ –Mn 2+ -activated (Ba,Ca,Sr) 3 MgSi 2 O 8 exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu 2+ and Mn 2+ co-activated (Ba,Ca) 3 MgSi 2 O 8 ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba 3 MgSi 2 O 8 originates from secondary phases (Ba 2 SiO 4 and BaMgSiO 4 ) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba 3 MgSi 2 O 8 are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba 3 MgSi 2 O 8 decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr) 3 MgSi 2 O 8 :Eu 2+ , Mn 2+ phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications

  20. Scintillation characteristics of LiB3O5 and β-BaB2O4 single crystals

    International Nuclear Information System (INIS)

    Nazarenko, B.P.; Pedash, V.Yu.; Shekhovtsov, A.N.; Tarasov, V.A.; Zelenskaya, O.V.

    2006-01-01

    LiB 3 O 5 and β-BaB 2 O 4 single crystals have been grown by the top seeded solution growth technique. The optical characteristics and scintillation parameters of the grown single crystals have been tested and discussed

  1. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  2. Study on Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ-Ce0.85Gd0.15O1.95 composite cathode material for intermediate temperature solid oxide fuel cell

    Science.gov (United States)

    Kautkar, Pranay R.; Acharya, Smita A.

    2018-05-01

    xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.

  3. Magnetic and transport properties of Ni2MnGa-BaTiO3 metal-insulator particulate composite with percolation threshold

    International Nuclear Information System (INIS)

    Won, C.J.; Kambale, R.C.; Hur, N.

    2011-01-01

    Highlights: → The Ni 2 MnGa-BaTiO 3 type composites were first time prepared by solid state reaction. → Temperature dependent magnetic properties reveal two kinds of transitions in these composite. → The present materials show negative magnetoresistance effect. → The present studies on magnetic and electrical transport of metal/insulator (NMG/BTO) composites shows the resistivity change associated to filamentary conducting path at percolation threshold. - Abstract: Here we report the magnetic and transport properties of the metal/insulator (f NMG )Ni 2 MnGa/(1 - f NMG )BaTiO 3 composites. The X-ray diffraction study confirms the formation of both the phases in composite. The microstructure reveals that the conducting Ni 2 MnGa particles are well dispersed in an insulating BaTiO 3 matrix. Temperature dependent magnetization shows two transitions one above 300 K and other below 150 K. The temperature dependence resistivity near the percolation threshold f NMG = 0.4 had drastic changes which is higher than the f NMG = 0.5. Also the negative magnetoresistance effect was observed for the studied materials. We suggest that magnetic and transport properties at the percolation threshold can be adjusted by the strain from the surrounding insulator particle.

  4. Study on the equilibrium in the MBr2-CH3OH-H2O system (M = Sr2+, Ba2+) at 25 0C

    International Nuclear Information System (INIS)

    Zlateva, I.; Stoev, M.

    1985-01-01

    The dehydration processes in the three-component system MBr 2 -CH 3 OH-H 2 O (M = Sr 2+ , Ba 2+ ) have been studied at 25 0 C by physio-chemical analyses. Crystallization fields for the lower crystal hydrates SrBr 2 x H 2 O and BaBr 2 x H 2 O have been found. The solubility curves exhibit complex-formation processes. The dehydration and solvation processes in three-component system such as MBr 2 -CH 3 OH-H 2 O at 25 0 C with M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ have been discussed in general terms. (author)

  5. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    Science.gov (United States)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  6. Raman, FTIR, thermal and optical properties of TeO2-Nb2O5-B2O3-V2O5 quaternary glass system

    Directory of Open Access Journals (Sweden)

    Swapna

    2017-07-01

    Full Text Available A series of quaternary glass systems with the composition 79TeO2-(20−xNb2O5-xB2O3-1V2O5 was prepared using the melt quench technique. Such studies as optical absorption, Raman, FTIR spectroscopy, EPR and DSC were carried out on the glass system. The physical properties, such as density (ρ and molar volume (VM, were determined. The Urbach energy (ΔE, optical band gap (Eopt, optical basicity (Λ, refractive index (n and electron polarizability (α of the glasses were determined from optical absorption data. Spin-Hamiltonian parameters of VO2+ ions were calculated from the EPR data. With the gradual substitution of B2O3 at the expense of Nb2O5, the density and optical band gap of the glasses decreased, and the electronic polarizability increased. EPR spectra revealed that VO2+ occupies an octahedral site with tetrahedral compression. Spin-Hamiltonian parameters g|| and g⊥ increased as B2O3 content increased in the glass. The glass transition temperature (Tg also decreased as the B2O3 content in the glass increased.

  7. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  8. Phase equilibria in the system Li2O - MoO3 - Sc2O3

    International Nuclear Information System (INIS)

    Safonov, V.V.; Chaban, N.G.; Porotnikov, N.V.

    1984-01-01

    Using the methods of DTA and X-ray phase analysis, interaction of components in the system Li 2 O-MoO 3 -Sc 2 O 3 in concentration range, adjacent to the vertex of MoO 3 , has been studied. Projection of the Li 2 MoO 4 -MoO 3 -Sc 2 (MoO 4 ) 3 system liquidus on concentrational triangle of the compositions Li 2 O-MoO 3 -Sc 2 O 3 , which consists of the fields of primary separation of Li 2 MoO 4 , Li 2 Mo 5 O 17 , Li 2 Mo 4 O 13 , MoO 3 , Sc 2 (MoO 4 ) 3 , Li 3 Sc(MoO 4 ) 3 and LiSc(MoO 4 ) 2 , is built

  9. State-of-the-art flux pinning in YBa2Cu3O7-δ by the creation of highly linear, segmented nanorods of Ba2(Y /Gd)(Nb/Ta)O6 together with nanoparticles of (Y /Gd)2O3 and (Y /Gd)Ba2Cu4O8

    International Nuclear Information System (INIS)

    Ercolano, G; Bianchetti, M; Wimbush, S C; Harrington, S A; MacManus-Driscoll, J L; Wang, H; Lee, J H

    2011-01-01

    Self-assembled, segmented nanorods of c-axis-aligned Ba 2 (Y /Gd)(Nb/Ta)O 6 as well as randomly distributed nanoparticles of (Y /Gd) 2 O 3 and (Y /Gd)Ba 2 Cu 4 O 8 were grown into YBa 2 Cu 3 O 7-δ (YBCO) thin films by pulsed-laser deposition. The complex pinning landscape proves to be extremely effective, particularly at higher fields where the segmented vortices yield a plateau in critical current density (J c ) with field angle around 60 0 . In 0.3 μm thick films, the J c values are higher than 1 MA cm -2 at 2.5 T (H||c axis). Owing to the combined interactions of the vortices with the different pinning centres, interesting new features are observed at high fields in the angular dependence of J c .

  10. Formation pathways in the synthesis and properties of (Tl0.5Pb0.5)(Sr0.9Ba0.1)2Ca2Cu3Oz and (Tl0.5Pb0.5)(Sr0.8Ba0.2)2Ca2Cu3Oz-1223 superconductors

    International Nuclear Information System (INIS)

    Auinger, M; Gritzner, G; Bertrand, Ch; Galez, Ph; Soubeyroux, J-L

    2007-01-01

    The formation pathway of (Tl 0.5 Pb 0.5 )(Sr 0.9 Ba 0.1 ) 2 Ca 2 Cu 3 O z and (Tl 0.5 Pb 0.5 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O z was studied by neutron and x-ray diffraction. The following reaction pathway was proposed: thallium oxide and lead oxide react with Sr-rich (Sr 1-x Ca x )CuO 2 and Ca-rich (Ca x Sr 1-x )O to form Sr 4 Tl 2 O 7 and (Ca x Sr 1-x )PbO 3 , respectively. The thallate and the plumbate compounds then form the (Tl 0.5 Pb 0.5 )-1212 phase starting at a temperature of 600 deg. C. Finally, between 850 and 900 deg. C, the 1223 phase is formed from (Tl 0.5 Pb 0.5 )-1212 (Ca x Sr 1-x ) 2 CuO 3 and CuO. Parallel experiments to fabricate the (Tl, Pb)-1223 superconductor resulted in specimens with critical temperatures of 117.5 K and 116 K, respectively, and transition widths of 2 K. Differences between the pathways for the formation of Pb-doped, Sr-rich and Pb-free, Ba-rich Tl-1223 superconductors are discussed

  11. Optical Properties and Photoactivity of The Pigmentary TiO2 Doped with P2O5, K2O, Al2O3 and Sb2O3

    International Nuclear Information System (INIS)

    Glen, M; Grzmil, B

    2011-01-01

    The influence of the increasing content of antimony calculated to Sb 2 O 3 (0.08-0.57 mol%) with the constant amount of the other additives (calculated to P 2 O 5 , K 2 O, Al 2 O 3 ) on the optical properties and photostability of doped rutile has been investigated. The properties of the obtained TiO 2 -PKAlSb samples were compared to the commercial TiO 2 -PKAl composition. The starting material was the concentrated suspension of technical-grade hydrated titanium dioxide (HTD). The dopant agents' solutions were introduced to HTD. Prepared samples were calcined with gradually increasing process temperature. The XRD analysis was used to determine the rutile content in the TiO 2 samples. Optical properties of modified titanium dioxide have been determined spectrophotometrically by measuring the colour in the white (brightness, white tone) and grey system (relative lightening power, grey tone). Photostability was characterized by the white lead-glycerin test with UV-Vis light. It was observed that with the increasing content of antimony in rutile TiO 2 , doped with phosphates, potassium and aluminium, the brightness and grey tone were increasing but white tone decreased. The changes of the relative lightening power values were insignificant. Comparing the samples of TiO 2 -PKAlSb with the TiO 2 -PKAl composition it was observed that titanium dioxide doped with antimony had better white and grey tone. The increasing Sb 2 O 3 content in the TiO 2 caused the improvement of the photostability.

  12. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  13. Fluctuation-induced conductivity in melt-textured Pr-doped YBa2Cu3O7-δ composite superconductor

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Siqueira, Ezequiel Costa

    2018-01-01

    In this study, the effects of thermal fluctuations on the electrical conductivity in melt-textured YBa2Cu3O7-δ, Y0.95Pr0.05Ba2Cu3O7-δ and (YBa2Cu3O7-δ)0.95–(PrBa2Cu3O7-δ)0.05 composite superconductor were considered. The composite superconductor samples were prepared through the top seeding method...... using melt-textured NdBa2Cu3O7-d seeds. The resistivity measurements were performed with a low-frequency, low-current AC technique in order to extract the temperature derivative and analyze the influence of the praseodymium ion on the normal superconductor transition and consequently on the fluctuation...

  14. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    Science.gov (United States)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  15. Phase diagrams of systems of Sr2V2O7-M2V2O7 and of Ba2V2O7-M2V2O7 (M=Ca,Cd)

    International Nuclear Information System (INIS)

    Fotiev, A.A.; Zhuravlev, V.D.; Zhukov, V.P.

    1982-01-01

    Using the methods of X-ray phase and differential thermal anlyses phase equilibria in the systems Sr 2 V 2 O 7 -M 2 V 2 O 7 and Ba 2 V 2 O 7 -M 2 V 2 O 7 , where M--Ca, Cd, are studied, their phase diagrams being built. New double pyrovanadates Mosub(0.5)Srsub(1.5)Vsub(2)Osub(7) and MBaV 2 O 7 are found [ru

  16. Preparation dependent superconductivity in T1CaBa2Cu3O7.5+-d above 100 K

    International Nuclear Information System (INIS)

    Porjesz, T.; Halasz, I.; Traeger, T.; Kovacs, G.; Kirschner, I.; Zsolt, G.; Karman, T.

    1988-08-01

    Different heat treatment procedures were applied during the sample preparation process, which result in different superconducting properties in the samples of the same nominal composition of TlCaBa 2 Cu 3 O 7.5+-d . It manifests itself in the different critical temperatures having values of 104 K, 107 K and 93 K. The effect of heat treatments is reflected in the structural and magnetic properties as well. (author). 6 refs, 5 figs

  17. Liquidus Temperature of SrO-Al2O3-SiO2 Glass-Forming Compositions

    DEFF Research Database (Denmark)

    Abel, Brett M.; Morgan, James M.; Mauro, John C.

    2013-01-01

    . In the composition range of interest for industrial glasses, Tliq tends to decrease with increasing strontium-to-alumina ratio. We find that cristobalite, mullite, and slawsonite are the dominant devitrification phases for the compositions with high SiO2, SiO2+Al2O3, and SrO contents, respectively. By comparison...... with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging...... to the SrO-Al2O3-SiO2 family may be designed with a more exact control of the glass-forming ability by avoiding the regions of high liquidus temperature....

  18. Structural characterization of a new vacancy ordered perovskite modification found for Ba3Fe3O7F (BaFeO2.333F0.333): Towards understanding of vacancy ordering for different perovskite-type ferrites

    International Nuclear Information System (INIS)

    Clemens, Oliver

    2015-01-01

    The new vacancy ordered perovskite-type compound Ba 3 Fe 3 O 7 F (BaFeO 2.33 F 0.33 ) was prepared by topochemical low-temperature fluorination of Ba 2 Fe 2 O 5 (BaFeO 2.5 ) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba 3 (FeX 6/2 ) (FeX 5/2 ) (FeX 3/2 X 1/1 ), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe 3+ in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for the structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba 3 Fe 3 O 7 F in comparison to other perovskite type ferrites. • Ba 3 Fe 3 O 7 F was synthesized by low temperature fluorination of Ba 2 Fe 2 O 5 . • Ba 3 Fe 3 O 7 F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba 3 Fe 3 O 7 F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found

  19. Pure and Y-substituted BaZrO3 ceramics. A possible support material for fabrication of YBa2Cu3O7-x high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang Xiandong.

    1993-01-01

    This thesis concerns the preparation and characterization of cuprate based high-T c superconductors (Y-123 and Bi-2223) and especially development and testing of BaZrO 3 based materials. The formation of YBa 2 Cu 3 O y (Y-123) by a CO 2 -free route involving reaction sintering of stoichiometric mixtures of chemically prepared fine powders of Y 2 BaCuO 5 , BaCuO 2 and CuO have been studied by thermal and XRD analysis. The synthesis and sintering of BaZrO 3 powders prepared by the hydroxide-alkoxide-methanol sol-gel route have been studied. The phase relations in the system BaO-Y 2 O 3 -ZrO 2 have been studied to determine the solid solubility limits for the perovskite phase Ba X Y Y Zr Z O N (X+X+Z=3) at 1500 deg. C. In the binary system Y 2 O 3 -BaZrO 3 the solubility limit was found to be ≅19 mol% Y 2 O 3 , i.e. Ba 0.81 Y 0. 4 2 Zr 0.81 O 3 . along the joint BaYO 2.5 -Ba the boundary was determined to be at BaY 0.21 Zr 0 . 79 O 2.895 . evidence for a new solid solution series between Ba 3 Y 4 O 9 and ZrO 2 are given, and a partial 1500 deg. C phase diagram for the ternary system BaO-Y 2 O 3 -ZrO 2 is presented. The growth of BaZrO 3 single crystals have been attempted both by a laser zone floating technique and flux methods. The compatibility between YBa 2 Cu 3 O 7 -X and BaZrO 3 , Ba X Y Y Zr Z O 3-δ as well as BaHfO 3 have been studied at 950 deg. and 1050 deg. C. The results show the four most promising candidates as support materials for fabrication of YBa 2 Cu 3 O y to be BaHfO 3 , BaY 0.05 Zr 0.95 O 2.975 , , BaZrO 3 and BaY 0.1 Zr 0.9 O 2.95 . (EG)

  20. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16

    Science.gov (United States)

    Heyward, Carla; McMillen, Colin D.; Kolis, Joseph

    2013-07-01

    Several new borate compounds, Ba11B26O44(PO4)2(OH)6 (1), Li9BaB15O27(CO3) (2), and Ba3Si2B6O16 (3) were synthesized containing other hetero-oxyanion building blocks in addition to the borate frameworks. They were all prepared under hydrothermal conditions and characterized by single crystal and powder X-ray diffraction, and IR spectroscopy. Crystal data: For 1; space group P21/c, a=6.8909 (14) Å, b=13.629 (3) Å, c=25.851 (5) Å, β=90.04 (3)°; For 2; space group P-31c, a=8.8599 (13) Å, c=15.148 (3) Å; For 3; space group P-1, a=5.0414 (10) Å, b=7.5602 (15) Å, c=8.5374 (17) Å, α=77.15 (3)°, β=77.84 (3)°, γ=87.41 (3)° for 3. Compounds 1 and 2 contain isolated oxyanions [PO4]3- and [CO3]2- respectively, sitting in channels created by the borate framework, while structure 3 has the [SiO4]4- groups directly bonded to the borate groups creating a B-O-Si framework.

  1. Intrinsic defect processes and O migration in PrBa(Co/Fe)2O5.5

    KAUST Repository

    Salawu, Omotayo Akande

    2016-02-10

    © 2016 The Royal Society of Chemistry. New mixed ion-electron conductors are desired to lower the operating temperature of solid oxide fuel cells. The O Frenkel energy and migration of O ions in PrBa(Co/Fe)2O5.5 are studied for this purpose by density functional theory. The electronic structure and charge redistribution during defect formation are analyzed. We demonstrate that Co → Fe substitution strongly affects the formation of defects and consequently the O migration. The low O Frenkel energy points to a high concentration of O vacancies. The migration of the O ions shows a distinct anisotropy.

  2. Effects of Y{sub 2}O{sub 3}/CeO{sub 2} co-doping on microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 38}){sub 1/3}Nb{sub 2/3}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin; Zhou, Xiaohua, E-mail: 1250590698@qq.com; Yang, Xinshi; Sun, Chengli; Yang, Fan; Chen, Hetuo

    2016-09-15

    The effects of CeO{sub 2}/Y{sub 2}O{sub 3} co-doping on the microstructure and microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-xB (x = 0,1,2,3,4,6; A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2}) ceramics prepared by the conventional solid-state route technique were investigated. The X-ray diffraction (XRD) results presented that all the well sintered samples exhibited the main phase BaZn{sub 0.33}Nb{sub 0.67}O{sub 3}−Ba{sub 3}CoNb{sub 2}O{sub 9}. A certain amount of Ba{sub 8}CoNb{sub 6}O{sub 24} surface secondary phase and minority phase of Ba{sub 5}Nb{sub 4}O{sub 15} were also observed in all sintered ceramics. The 1:2 B-site cation ordering degree was found to influenced by the substitution of Y{sup 3+} and Ce{sup 4+} in the crystal lattice, especially for x = 0.02. Then the scanning electron microscopy (SEM) picture of the optimally well-sintered (1350 °C for 20 h) ceramic has shown a dense microstructure. Although the ε{sub r} almost kept unchanged, appropriate doping content would greatly improve the Q × f value. Meanwhile, the τ{sub f} value first declined and then increased with increasing x. At last, the excellent microwave dielectric properties of ε{sub r} = 36.09, Q × f = 72006 GHz, τ{sub f} = 3.35 ppm/ºC were obtained for the ceramic with x = 0.02 sintered in air at 1350 °C for 20 h. - Graphical abstract: Fig. SEM images of as-sintered Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-Xb (A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2)}ceramics: (a) x = 0,(b) x = 0.01,(c) x = 0.02,(d) x = 0.03, (e) x = 0.04,(f) x = 0.06. The images confirmed the presences of two phases on the surface of the ceramics, plate-shaped grains (Ba{sub 8}(C{sub O},Zn){sub 1}Nb{sub 6}O{sub 24}phase) and needle-shaped grains (Ba{sub 3}(Co{sub 0.6}Zn{sub 0.38}){sub 1}Nb{sub 2}O{sub 9} phase). As a small content of CeO{sub 2}/Y{sub 2}O{sub 3} (x = 0.01–0.04) was codoped into the BCZN ceramics, the

  3. Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-deltaN2+2/3delta:Ce3+ (M = Ca, Sr, Ba)

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2005-01-01

    The luminescence properties of Ce3+,Na+-codoped MSi2O22dN2+2/3d (M 5 Ca, Sr, Ba) are reported. The undoped and Ce3+,Na+-codoped MSi2O22dN2+2/3d powders were prepared by a solid-state reaction at temperatures between 1300–1400 uC under N2–H2 (10%) atmosphere in the system MO–SiO2–Si3N4 (M 5 Ca, Sr,

  4. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  5. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  6. Role of BaO/SrO layers in deciding the electronic structure of Cu0.3Co0.7Ba2-xSrxYCu2O7+δ (CoCu-1212) x = 0, 1 and 2

    International Nuclear Information System (INIS)

    Singh, Shiva Kumar; Husain, M.; Kishan, H.; Awana, V.P.S.

    2011-01-01

    Highlights: → Decrease in lattice parameters confirms replacement by Sr ion at Ba ion site. → XPS measurement shows that mixed Cu 1+/2+ and Co 3+/4+ valence state. → With increasing x, Cu valence is non-monotonous whereas Co valence is increasing. → Resistivity reveals that holes in Cu/CoO x planes are taking part in charge transport. → Paramagnetic nature is due to the presence Cu ions in Cu/CoO x chains/planes. - Abstract: In this paper we report the change in electronic structure of Cu 0.3 Co 0.7 Ba 2-x Sr x YCu 2 O 7+δ with change in structural pressure. Rietveld refined X-ray diffraction (XRD) pattern shows that the samples are phase pure. Decrease in lattice parameters with increasing x, confirms replacement by Sr ion at Ba ion site. The calculated tolerance factor of the systems is in accord with lattice parameter changes. The X-ray photoelectron spectroscopy (XPS) is made to find out the variation in ionic state of Co and Cu with ionic size variation in BaO/SrO layers. Effect of the same on the electronic structure and transport properties is explored. The XPS measurement reveals that Cu is in mixed 1+/2+ state and variation in valence state is non-monotonous with increasing x. Whereas Co is in mixed 3+/4+ state and with increasing x its valence state is increasing. The observed changes in electronic structure are subject of structural changes. The resistivity measurement shows that normal state conductivity decreases with increasing x. Resistivity behaviour indicates about holes in Cu/CoO x planes taking part in charge transport. The magnetic measurement (M-T and M-H) shows that paramagnetic nature for all the compositions. The presence of Cu ions in Cu/CoO x chains/planes results in paramagnetic behaviour.

  7. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    Science.gov (United States)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2018-06-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) ( λ = 589 nm). 2 V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  8. Martinandresite, Ba2(Al4Si12O32)·10H2O, a new zeolite from Wasenalp, Switzerland

    Science.gov (United States)

    Chukanov, Nikita V.; Zubkova, Natalia V.; Meisser, Nicolas; Ansermet, Stefan; Weiss, Stefan; Pekov, Igor V.; Belakovskiy, Dmitriy I.; Vozchikova, Svetlana A.; Britvin, Sergey N.; Pushcharovsky, Dmitry Yu.

    2017-12-01

    The new zeolite martinandresite, ideally Ba2(Al4Si12O32)·10H2O, was discovered in the armenite locality of Wasenalp near the Isenwegg peak, Ganter valley, Simplon region, Switzerland. The associated minerals are armenite, quartz, dickite, and chlorite. Martinandresite forms tan-coloured blocky crystals up to 8 × 5 × 3.5 mm, their aggregates up to 6 cm across, as well as cruciform twins up to 3.5 mm. The major form is {010}; the subordinate forms are {100} and {001}. Indistinct cleavage is observed, presumably on (010) and in a direction across (010). The Mohs' hardness is 4½. Density measured by flotation in heavy liquids is 2.482(5) g/cm3. Density calculated using the empirical formula is equal to 2.495 g/cm3. Martinandresite is optically biaxial, negative, α = 1.500(2), β = 1.512(2), γ = 1.515(2) (λ = 589 nm). 2V (meas.) = 55(10)°. The IR spectrum is given. The chemical composition of martinandresite is (wt%; electron microprobe, H2O determined by the modified Penfield method): Na2O 0.37, K2O 0.12, BaO 21.55, Al2O3 15.03, SiO2 49.86, H2O 12.57, total 99.50. The empirical formula based on 16 atoms Si + Al pfu is Na0.17K0.04Ba2.00(Al4.19Si11.81O32)H19.85O9.93. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is orthorhombic, space group Pmmn, with a = 9.4640(5), b = 14.2288(6), c = 6.9940(4) Å, V = 941.82(8) Å3 and Z = 1. The crystal structure of martinandresite is unique and is based on the Al-Si-O tetrahedral framework containing four-, six- and eight-membered rings of tetrahedra. Si and Al are disordered between the two independent tetrahedral sites. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.98 (74) (001), 6.26 (83) (011), 5.61 (100) (101), 3.933 (60) (220, 031), 3.191 (50) (112), 3.170 (62) (041), 3.005 (79) (231, 141). Martinandresite is named after Martin Andres (b. 1965), the discoverer of the armenite locality of Wasenalp.

  9. Studies on Ba(2)YNbO(6) Buffer Layers for Subsequent YBa(2)Cu(3)O(7-x) Film Growth

    National Research Council Canada - National Science Library

    Sathiraju, Srinivas; Barnes, Paul N; Varanasi, Chakrapani; Wheeler, Robert

    2004-01-01

    In this paper, we are reporting a dielectric oxide buffer Ba(2)YNbO(6) (BYNO) and its performance on various substrates for a potential buffer layer for the growth of YBa(2)Cu(3)O(7-x) (YBCO) coated conductors. Ba(2)YNbO(6...

  10. CO gas sensing properties of In_4Sn_3O_1_2 and TeO_2 composite nanoparticle sensors

    International Nuclear Information System (INIS)

    Mirzaei, Ali; Park, Sunghoon; Sun, Gun-Joo; Kheel, Hyejoon; Lee, Chongmu

    2016-01-01

    Highlights: • In4Sn3O12–TeO2 composite nanoparticles were synthesized via a facile hydrothermal route. • The response of the In4Sn3O12–TeO2 composite sensor to CO was stronger than the pristine In4Sn3O12 sensor. • The response of the In4Sn3O12–TeO2 composite sensor to CO was faster than the pristine In4Sn3O12 sensor. • The improved sensing performance of the In4Sn3O12–TeO2 nanocomposite sensor is discussed in detail. • The In4Sn3O12-based nanoparticle sensors showed selectivity to CO over NH3, HCHO and H2. - Abstract: A simple hydrothermal route was used to synthesize In_4Sn_3O_1_2 nanoparticles and In_4Sn_3O_1_2–TeO_2 composite nanoparticles, with In(C_2H_3O_2)_3, SnCl_4, and TeCl_4 as the starting materials. The structure and morphology of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. The gas-sensing properties of the pure and composite nanoparticles toward CO gas were examined at different concentrations (5–100 ppm) of CO gas at different temperatures (100–300 °C). SEM observation revealed that the composite nanoparticles had a uniform shape and size. The sensor based on the In_4Sn_3O_1_2–TeO_2 composite nanoparticles showed stronger response to CO than its pure In_4Sn_3O_1_2 counterpart. The response of the In_4Sn_3O_1_2–TeO_2 composite-nanoparticle sensor to 100 ppm of CO at 200 °C was 10.21, whereas the maximum response of the In_4Sn_3O_1_2 nanoparticle sensor was 2.78 under the same conditions. Furthermore, the response time of the composite sensor was 19.73 s under these conditions, which is less than one-third of that of the In_4Sn_3O_1_2 sensor. The improved sensing performance of the In_4Sn_3O_1_2–TeO_2 nanocomposite sensor is attributed to the enhanced modulation of the potential barrier height at the In_4Sn_3O_1_2–TeO_2 interface, the stronger oxygen adsorption of p-type TeO_2, and the formation of preferential adsorption sites.

  11. Giant electrical conductivity enhancement in BaO-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} glass by nanocrystallization

    Energy Technology Data Exchange (ETDEWEB)

    El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish (Egypt)

    2010-02-15

    The effects of the annealing of 20BaO-30V{sub 2}O{sub 5}-50Bi{sub 2}O{sub 3} glass on the structural and electrical properties were studied by scanning electron micrographs (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) density (d) and dc conductivity ({sigma}). The XRD and SEM observations have shown that the sample under study undergoes structural changes: from amorphous at the beginning, to partly crystalline after nanocrystallization at crystallization temperature (T{sub c}) for 1 h and to colossal crystallization after the annealing at the same temperature for 24 h. The average size of these grains after nanocrystallization at T{sub c} for 1 h was estimated to be about 25-35 nm. However, the glass heat treated at T{sub c} = 580 deg. C for 24 h the microstructure changes considerably. The nanomaterials obtained by nanocrystallization at T{sub c} for 1 h exhibit giant improvement of electrical conductivity up to four order of magnitude and better thermal stability than the as-received glass. The major role in the conductivity enhancement of this nanomaterial is played by the developed interfacial regions 'conduction tissue' between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping is higher than inside the glassy matrix. The annealing at T{sub c} for 24 h leads to decrease of the electronic conductivity. This phenomena lead to disappearance of the abovementioned 'conduction tissue' for electrons and substantial reduction of electronic conductivity. The high temperature (above {theta}/2) dependence of conductivity could be qualitatively explained by the small polaron hopping (SPH) model. The physical parameters obtained from the best fits of this model are found reasonable and consistent with the glass compositions.

  12. Epitaxial thin-film growth of Ruddlesden-Popper-type Ba{sub 3}Zr{sub 2}O{sub 7} from a BaZrO{sub 3} target by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Shariqa Hassan; Rafique, M.S.; Siraj, K.; Latif, A.; Afzal, Amina [University of Engineering and Technology, Laser and Optronics Centre, Department of Physics, Lahore (Pakistan); Awan, M.S. [Ibn-e-Sina Institute of Science and Technology (ISIT), Islamabad (Pakistan); Bashir, Shazia [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Iqbal, Nida [Universiti Teknologi Malaysia, Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Johor Bahru, Johor (Malaysia)

    2016-07-15

    Ruddlesden-Popper Ba{sub 3}Zr{sub 2}O{sub 7} thin films have been synthesized via pulsed laser deposition (PLD) technique. The optimization of deposition parameters in PLD enables the formation of thin film of metastable Ba{sub 3}Zr{sub 2}O{sub 7} phase from BaZrO{sub 3} target. In order to see the post-annealing effects on the structural and optical properties, the deposited Ba{sub 3}Zr{sub 2}O{sub 7} thin films were annealed at 500, 600 and 800 C. X-ray diffraction (XRD) reveals the formation of Ba{sub 3}Zr{sub 2}O{sub 7} phase with tetragonal structure. The changes in the surface of the deposited films were analysed by FE-SEM and AFM. The thin film post-annealed at 500 C exhibited the best structural, optical and surface properties. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Zr and O exist mainly in the form of Ba{sub 3}Zr{sub 2}O{sub 7} Ruddlesden-Popper-type perovskite structure. (orig.)

  13. Transport properties of YBa2Cu3O7/PrBa2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Jakob, G.; Hahn, T.; Stoelzel, C.; Tome-Rosa, C.; Adrian, H.

    1992-01-01

    We investigated the transport properties of high-quality YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 superlattices. The exceptional structural order of the superlattices resulted in satellite peaks up to the ninth order in X-ray diffraction diagrams and high Tc values. We find high superconducting critical transport current densities j c even for ultrafine modulated superlattices which proves the existence of nearly continuous YBa 2 Cu 3 O 7 layers. The activation energy U is found to be constant or to have a linear temperatures dependence over a wide temperature range. (orig.)

  14. Emission analysis of Tb3+ -and Sm3+ -ion-doped (Li2 O/Na2 O/K2 O) and (Li2 O + Na2 O/Li2 O + K2 O/K2 O + Na2 O)-modified borosilicate glasses.

    Science.gov (United States)

    Naveen Kumar Reddy, B; Sailaja, S; Thyagarajan, K; Jho, Young Dahl; Sudhakar Reddy, B

    2018-05-01

    Four series of borosilicate glasses modified by alkali oxides and doped with Tb 3+ and Sm 3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B 2 O 3 + 10SiO 2 + 5MgO + R + 0.5(Tb 2 O 3 /Sm 2 O 3 ) [where R = 10(Li 2 O /Na 2 O/K 2 O) for series A and C, and R = 5(Li 2 O + Na 2 O/Li 2 O + K 2 O/K 2 O + Na 2 O) for series B and D]. The X-ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5 D 4 → 7 F 5 (543 nm) transition of the Tb 3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm 3+ ions with the series C and D glasses showed strong reddish-orange emission at 600 nm ( 4 G 5/2 → 6 H 7/2 ) with an excitation wavelength λ exci = 404 nm ( 6 H 5/2 → 4 F 7/2 ). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb 3+ and Sm 3+ ions was studied to optimize the potential alkali-oxide-modified borosilicate glass. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Structural and luminescent study of TeO2-BaO-Bi2O3-Ag glass system doped with Eu3+ and Dy3+ for possible color-tunable phosphor application

    Science.gov (United States)

    Lewandowski, Tomasz; Seweryński, Cezary; Walas, Michalina; Łapiński, Marcin; Synak, Anna; Sadowski, Wojciech; Kościelska, Barbara

    2018-05-01

    Tellurite glass systems of 73TeO2-4BaO-3Bi2O3-1Ag:xEu2O3-(2-x)Dy2O3 (where x = 0.5, 1, 1.5, 2 in molar ratio) composition have been successfully synthesized. In order to acquire Ag nanoparticles, materials have been heat treated at 350 °C in the air atmosphere. Structural properties of obtained samples were evaluated with various techniques. X-Ray Diffraction (XRD) measurements indicated that obtained materials are amorphous in nature. UV-vis results presented transitions characteristic to Dy3+ and Eu3+ ions. Additionally, X-Ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of silver in metallic form. Photoluminescence measurements shown influence of Ag nanoparticles on emission characteristics. Simultaneous emission of Dy3+ and Eu3+ has been observed when samples were excited with λexc = 390 nm. Change of the emission color induced by heat treatment has been observed and described in case of x = 1 glass series. According to CIE results emission color changes as Eu/Dy ratio and heat treatment time are changed. Emission shifts from reddish-orange to yellowish white color. Obtained photoluminescence results confirm that synthesized materials are good candidates for color tunable phosphors.

  16. Cyclic electrical conductivity in BaTiO{sub 3}–PbTiO{sub 3}–V{sub 2}O{sub 5} glass-ceramic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Bahgat, A.A., E-mail: alaabahgat@hotmail.com; Heikal, Sh.; Mahdy, Iman A.; Abd-Rabo, A.S.; Abdel Ghany, A.

    2014-08-15

    In this present work a glass of the composition 22.5 BaTiO{sub 3}+7.5 PbTiO{sub 3}+70 V{sub 2}O{sub 5} was prepared by applying the conventional melt quashing technique. Isothermal annealing of the glass was applied at 732 K following differential scanning calorimetric analysis. The annealing was performed during different time intervals in the range of 0.25–24.0 h. X-ray diffraction and transmission electron microscopy were used to identify different phases as well as particle size precipitated during the annealing process. Nanocomposite glass-ceramic precipitation was recognized with nonperiodic cyclic particle sizes as a function of the annealing period. DC electrical conductivity, on the other hand, was conducted in the temperature range from 300 to 625 K. Electrical conductivity enhancement of the order 3×10{sup 3} times after 2.5 h of annealing was observed. Nonperiodic cyclic DC electrical conductivity behavior was also observed and which was encountered in a reverse manner with particle size development. Furthermore, the analysis of the electrical conduction mechanism predicts that both adiabatic and nonadiabatic small polaron hopping trend may describe the experimental data depending on the particle size.

  17. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    Science.gov (United States)

    Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  18. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    International Nuclear Information System (INIS)

    Jo, Wook; Roedel, Juergen; Daniels, John E.; Jones, Jacob L.; Tan Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi 1/2 Na 1/2 )TiO 3 -xBaTiO 3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  19. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interfaces as studied by photoemission spectroscopy

    International Nuclear Information System (INIS)

    Dessau, D.S.; Shen, Z.; Wells, B.O.; Spicer, W.E.; List, R.S.; Arko, A.J.; Bartlett, R.J.; Fisk, Z.; Cheong, S.; Mitzi, D.B.; Kapitulnik, A.; Schirber, J.E.

    1990-01-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi 2 Sr 2 CaCu 2 O 8 and gold/EuBa 2 Cu 3 O 7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa 2 Cu 3 O 7-δ substrate in the near surface region (∼5 A) is essentially destroyed by the gold deposition, while the near surface region of Bi 2 Sr 2 CaCu 2 O 8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices

  20. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  1. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-07-15

    The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{sub 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of LnBa

  2. Electronic Structure of TlBa2CaCu2O(7-Delta)

    Science.gov (United States)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-01-01

    The core levels of TlBa2CaCu2O(7-delta) (Tl-1212) epitaxial films have been measured with X-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E(sub F)) for the stoichiometric compound (delta = 0.5), while for 50% oxygen vacancies in the Tl-O layer (delta = 0.5) E(sub F) is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T(sub c), consistent with a shift of E(sub F) closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O(8 + delta)(Tl-2212) and HgBa2CaCu2O)6 + delta) (Hg- 1212). The similarity of the Cu 2p(sub 3/2) spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p(sub 3/2) signals exhibit differences which suggest that the replacement of T(sup 3+) with Hg(sup 2+) results in a decrease in the O 2p right arrow Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  3. Current transport and electronic states in a,b-axis-oriented YBa2Cu3O7/PrBa2Cu3O7/YBa2Cu3O7 sandwich-type junctions

    International Nuclear Information System (INIS)

    Yoshida, J.; Nagano, T.; Hashimoto, T.

    1996-01-01

    Precise measurement of the temperature and voltage dependence of junction conductance has been carried out for a,b-axis-oriented YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 /YBa 2 Cu 3 O 7 sandwich-type junctions to investigate the possible origin of Josephson coupling in these junctions. Regardless of the presence or absence of the Josephson effect, most of the junctions exhibited a dip in conductance around zero voltage in their dI/dV profiles at low temperatures. This dI/dV anomaly was attributed to the existence of a minimum in the density of states due to electron-electron interaction in disordered metals in the vicinity of a tunneling barrier within the junctions. The complex temperature dependence of junction conductance was reproduced well by a theoretical model in which both tunneling conduction paths and variable range hopping paths were assumed to exist within the PrBa 2 Cu 3 O 7 barrier layer. No definite evidence of current transport through a small number of localized levels or a metallic conduction path in PrBa 2 Cu 3 O 7 has been confirmed, even for junctions with a 20-nm-thick barrier layer. copyright 1996 The American Physical Society

  4. A-site order–disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow

    KAUST Repository

    Tonus, Florent

    2017-05-11

    The A-site disordered perovskite manganite, Nd0.5Ba0.5MnO3, has been obtained by heating the A-site-ordered and vacancy ordered layered double perovskite, NdBaMn2O5, in air at 1300 °C for 5 h. Combined transmission electron microscopy (TEM) images and neutron powder diffraction (NPD) analysis at 25 °C revealed that Nd0.5Ba0.5MnO3 has a pseudotetragonal unit cell with orthorhombic symmetry (space group Imma, √2ap × 2ap × √2ap) at 20 °C with the cell dimensions a = 5.503(1) Å, b = 7.7962(4) Å, c = 5.502(1) Å, in contrast to Pm[3 with combining macron]m or Cmcm that have been previously stated from X-ray diffraction studies. The in situ neutron diffraction study carried out on Nd0.5Ba0.5MnO3 in hydrogen flow up to T ∼ 900 °C, allows monitoring the A-site cation disorder–order structural phase transition of this representative member of potential SOFC anode materials between air sintering conditions and hydrogen working conditions. Oxygen loss from Nd0.5Ba0.5MnO3 proceeds with retention of A-site disorder until the oxygen content reaches the Nd0.5Ba0.5MnO2.5 composition at 600 °C. The phase transition to layered NdBaMn2O5 and localization of the oxygen vacancies in the Nd layer proceeds at 800 °C with retention of the oxygen content. Impedance spectroscopy measurements for the oxidized A-site ordered electrode material, NdBaMn2O6, screen printed on a Ce0.9Gd0.1O2−δ (CGO) electrolyte showed promising electrochemical performance in air at 700 °C with a polarization resistance of 1.09 Ω cm2 without any optimization.

  5. LaNiO3 buffer layers for high critical current density YBa2Cu3O7-δ and Tl2Ba2CaCu2O8-δ films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5 K, H=0) than films grown directly on a bare LaAlO 3 substrate. YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films in coated conductor applications. copyright 1999 American Institute of Physics

  6. Characterization of the insulator barrier and the superconducting transition temperature in GdBa2Cu3O7−δ/BaTiO3 bilayers for application in tunnel junctions

    International Nuclear Information System (INIS)

    Navarro, H.; Sirena, M.; Haberkorn, N.; Yang, Ilkyu; Kim, Jeehoon

    2015-01-01

    The optimization of the superconducting properties in a bottom electrode and the quality of an insulator barrier are the first steps in the development of superconductor/insulator/superconductor tunnel junctions. Here, we study the quality of a BaTiO 3 tunnel barrier deposited on a 16 nm thick GdBa 2 Cu 3 O 7−δ thin film by using conductive atomic force microscopy. We find that the tunnel current is systematically reduced (for equal applied voltage) by increasing the BaTiO 3 barrier thickness between 1.6 and 4 nm. The BaTiO 3 layers present an energy barrier of ≈1.2 eV and an attenuation length of 0.35–0.5 nm (depending on the applied voltage). The GdBa 2 Cu 3 O 7−δ electrode is totally covered by a BaTiO 3 thickness above 3 nm. The presence of ferroelectricity was verified by piezoresponse force microscopy for a 4 nm thick BaTiO 3 top layer. The superconducting transition temperature of the bilayers is systematically suppressed by increasing the BaTiO 3 thickness. This fact can be associated with stress at the interface and a reduction of the orthorhombicity of the GdBa 2 Cu 3 O 7−δ . The reduction in the orthorhombicity is expected by considering the interface mismatch and it can also be affected by reduced oxygen stoichiometry (poor oxygen diffusion across the BaTiO 3 barrier)

  7. Unraveling the resistive switching effect in ZnO/0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.P.B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Vorokhta, M.; Dvořák, F. [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Sekhar, K.C. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 610 101 (India); Matolín, V. [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Moreira, J. Agostinho [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M.J.M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2017-04-01

    Highlights: • ZnO/0.5BZT-0.5BCT heterostructures exhibited resistive switching (RS) ratio ≥ 10 4. • Effect of oxygen pressure used in the deposition of ZnO on RS ratio is highlighted. • Determination of the Band alignment in ZnO/0.5BZT-0.5BCT heterojunctions from XPS. • Resistive Switching is explained based on charge coupling effect. - Abstract: This work reports the effect of partial oxygen pressure, used in the deposition of the ZnO layer, on the band alignment at ZnO – 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}-0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (0.5BZT-0.5BCT) interface and on the resistive switching (RS) behavior of pulsed laser deposited ZnO/0.5BZT-0.5BCT heterostructures. X-ray photoelectron spectroscopy (XPS) has been employed to measure the valence band offset and the conduction band offset of the ZnO/0.5BZT-0.5BCT heterojunctions. The valence and conduction band offsets of the ZnO/0.5BZT-0.5BCT heterostucture with ZnO deposited at 10{sup −2} mbar of partial oxygen pressure were found to be 0.27 and 0.80 eV, respectively. The RS effect in heterostructures is explained on the base of the charge coupling between the switchable polarization of ferroelectric layer and the non-switchable polarization of semiconductor layer. The heterostructure with ZnO deposited at 10{sup −2} mbar of partial oxygen pressure displays optimum RS characteristics, with a switching ratio ≥ 10{sup 4} and excellent retention and endurance characteristics. The optimum RS characteristics are attributed to a good interface quality with enough carrier concentration in ZnO, as evidenced by XPS.

  8. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    Science.gov (United States)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  9. Conduction Mechanisms in Multiferroic Multilayer BaTiO3/NiFe2O4/BaTiO3 Memristors

    Science.gov (United States)

    Samardzic, N.; Bajac, B.; Srdic, V. V.; Stojanovic, G. M.

    2017-10-01

    Memristive devices and materials are extensively studied as they offer diverse properties and applications in digital, analog and bio-inspired circuits. In this paper, we present an important class of memristors, multiferroic memristors, which are composed of multiferroic multilayer BaTiO3/NiFe2O4/BaTiO3 thin films, fabricated by a spin-coating deposition technique on platinized Si wafers. This cost-effective device shows symmetric and reproducible current-voltage characteristics for the actuating voltage amplitude of ±10 V. The origin of the conduction mechanism was investigated by measuring the electrical response in different voltage and temperature conditions. The results indicate the existence of two mechanisms: thermionic emission and Fowler-Nordheim tunnelling, which alternate with actuating voltage amplitude and operating temperature.

  10. Magnetoelectric effect of (1-x) Ba0.5Sr0.5Zr0.5Ti0.5O3+(x) Ni0.12Mg0.18Cu0.2Zn0.5Fe2O4 composites

    Science.gov (United States)

    Rahaman, Md. D.; Saha, S. K.; Ahmed, T. N.; Saha, D. K.; Hossain, A. K. M. Akther

    2014-12-01

    The magnetoelectric composites with chemical compositions (1-x) Ba0.5Sr0.5Zr0.5Ti0.5O3+(x) Ni0.12Mg0.18Cu0.2Zn0.5Fe2O4 (x=20, 40, 60 and 80 wt%) was prepared by the conventional solid state reaction method. The presence of a biphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric dispersion is observed at lower frequencies due to interfacial polarization arising from the interface of the two phases. At higher frequencies, the dielectric constant is almost constant due to the inability of electric dipoles to follow the first variation of the alternating applied electric field. The dielectric loss shows maxima which are attributed when the hopping frequency of electrons between different ionic sites becomes nearly equal to the frequency of the applied field. The linearity in the log(σAC) vs. log(ω2) plots confirmed the small polaron hopping type of conduction mechanism. The composite materials are found to exhibit an excellent frequency dependence of magnetic properties. In the high frequency range, with increasing ferrite concentration the initial permeability increases and cut-off frequency decreases. An optimal magnetoelectric coupling responding voltage of about 600 μV cm-1 Oe-1 is obtained for x=20 wt% at room temperature.

  11. LaNiO3 Buffer Layers for High Critical Current Density YBa2Cu3O7δ and Tl2Ba2CaCu2O8δ Films

    International Nuclear Information System (INIS)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-01-01

    We demonstrate high critical current density superconducting films of YBa 2 Cu 3 O 7-δ (YBCO) and Tl 2 Ba 2 CaCu 2 O 8-δ (Tl-2212) using LaNiO 3 (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J c (5K, H=0) than films grown directly on a bare LaAlO 3 substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J c at all temperatures and fields compared to those grown on bare LaAlO 3 , correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications

  12. The influence of SiO2 Addition on 2MgO-Al2O3-3.3P2O5 Glass

    DEFF Research Database (Denmark)

    Larsen, P.H.; Poulsen, F.W.; Berg, Rolf W.

    1999-01-01

    2MgO-Al2O3-3.3P2O5 glasses with increasing amounts of SiO2 are considered for sealing applications in Solid Oxide Fuel Cells (SOFC). The change in chemical durability under SOFC anode conditions and the linear thermal expansion is measured as functions of the SiO2 concentration. Raman spectroscopy...... analysis of the glasses reveals no sign of important changes in the glass structure upon SiO2 addition. Some increase in glass durability with SiO2 concentration is reported and its cause is discussed....

  13. Tools for magnetostructural correlations for the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites: Comparative study with applications to Ni{sup 2+} ions in Y{sub 2}BaNiO{sub 5} and Nd{sub 2}BaNiO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gnutek, P. [Modeling in Spectroscopy Group, Institute of Physics, West Pomeranian University of Technology Szczecin, Al. Piastów 17, 70-310 Szczecin (Poland); Açıkgöz, M., E-mail: macikgoz@bahcesehir.edu.tr [Faculty of Arts and Sciences, Bahcesehir University, Beşiktaş, 34353 Istanbul (Turkey); Rudowicz, C. [Modeling in Spectroscopy Group, Institute of Physics, West Pomeranian University of Technology Szczecin, Al. Piastów 17, 70-310 Szczecin (Poland)

    2015-01-15

    Three approaches are employed to study magnetostructural correlations for the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d{sup 8} states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d{sup 8} ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin–orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)–(iii) are applied for Ni{sup 2+} (S=1) ions in the Haldane gap systems Y{sub 2}BaNiO{sub 5} and Nd{sub 2}BaNiO{sub 5}. The contributions to the ZFSPs due to the spin–spin and spin–other–orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)—corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d{sup 8}({sup 3}A{sub 2} state) ions at orthorhombic sites in crystals. - Highlights: • Magnetostructural correlations for 3d

  14. Al2TiO5-ZrTiO4-ZrO2 composites

    International Nuclear Information System (INIS)

    Parker, F.J.

    1990-01-01

    The characterization and properties of ceramic composites containing the phases Al 2 TiO 5 , ZrTiO 4 , and ZrO 2 are described. The low thermal expansions are apparently due to a combination of microcracking by the titanate phases and a contractive phase transformation by the ZrO 2 . The crystal chemistry and microstructure of the product are processing dependent. Although the composites represent a complex microcracking system, the low thermal expansions and high-temperature stability make them potential candidates for commercial application requiring thermal shock resistance

  15. Investigation of BaMoO4-Ln2(MoO4)3 systems (Ln = Nd, Sm, Yb)

    International Nuclear Information System (INIS)

    Vakulyuk, V.V.; Evdokimov, A.A.; Khomchenko, G.P.

    1982-01-01

    Using the methods of X-ray phase and differential-thermal analyses phase ratios in the systems BaMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=Nd, Sm, Yb); BaNd 2 (MoO 4 ) 4 -MaGd 2 (MoO 4 ) are studied. Unit cell parameters and the character of melting of the compounds BaLn 2 (MoO 4 ) 4 are specified. Effect of growth conditions on laminated nature of BaGd 2 (MoO 4 ) 4 monocrystals is studied

  16. Effect of MgO on compositions of the system CaO-Al2O3-Fe2O3. Solubility

    Directory of Open Access Journals (Sweden)

    Palomo, Ángel

    1986-12-01

    Full Text Available Five different compositions belonging to the equilibrium system CaO-Al2O3-Fe2O3 were dopep with a fixed quantity of MgO (6,5% wt. The compositions, which lie in different primary fields of crystallization and in different triangles of compatibility, were submitted to several thermal treatments. Each composition, which had previously been melted, originates in its solidification the aluminates and ferrites which are usual in the interstitial phase of clinker Portland, although they are in different microstructural arrangements. The effect of MgO on the generated microstructures has been shown. Also, the solubility of MgO on the aluminic and ferritic phases has been measured.CCinco composiciones diferentes pertenecientes al sistema de equilibrio CaO-Al2O3-Fe2O3 fueron dopadas con una cantidad fija de MgO (6,5%. Las cinco composiciones, que están situadas sobre diferentes campos primarios de cristalización y/o sobre diferentes triángulos de compatibilidad, fueron sometidas a varios tratamientos térmicos. Cada composición (previamente fundida origina en su solidificación los aluminatos y ferritos habituales en la fase intersticial del clinker portland, aunque ordenados en microestructuras diferentes. Se ha comprobado el efecto del MgO sobre las microestructuras generadas, así como su solubilidad en las fases alumínicas y ferríticas.

  17. Microwave properties of YBa2Cu3O7-δ/PrBa2Cu3O7-δ superlattices

    International Nuclear Information System (INIS)

    Carlos, W.E.; Kaplan, R.; Lowndes, D.H.; Norton, D.P.

    1992-01-01

    We have used non-resonant microwave absorption to study c-axis YBa 2 Cu 3 O 7-δ /PrBa 2 Cu 3 O 7-δ superlattices and compare the response to a film of similarly grown YBa 2 Cu 3 O 7-δ (YBCO). Near the respective transition temperatures, the response of the superlattice samples and the YBCO film have similar amplitudes and orientation dependences. This is consistent with the microwave loss being related to magnetic flux penetration at (110) slip planes. At lower temperatures, the response of the superlattices is much stronger than that of the YBCO film and, while both responses are hysteretic at low temperatures, the widths of the hysteresis have opposite orientation dependences, which we attribute to the role of the PrBa 2 Cu 3 O 7-δ layers. (orig.)

  18. Synthesis and Dielectric Properties of Mn-Doped BaTi2O5 Ceramics

    Science.gov (United States)

    Akishige, Yukikuni; Honda, Kazuo; Tsukada, Shinya

    2011-09-01

    High-density ceramics of BaTi2O5 have been fabricated by a conventional sintering method using both sol-gel-derived BaTi2O5 powders and MnO2 additives of 0.2-0.8 wt %. The effects of sintering conditions on the densification, microstructural evolution and dielectric properties are investigated. As the effect of Mn addition, the BaTi2O5 phase becomes stable at least up to 1250 °C, and a significant densification is achieved at temperatures as low as 1200-1250 °C. The dielectric constant ɛ' vs temperature T curve of the MnO2-added ceramics exhibits a broad maximum ɛ'max at the ferroelectric phase transition temperature TC, which is 140 °C lower than that of the nondoped ceramics. Among the ceramics with different Mn contents, the 0.2 wt % MnO2-added ceramics have the largest ɛ'max of 470 at 328 °C and the smallest tan δ of <0.05 at a high temperature of around 520 °C at 1 MHz. We observed a ferroelectric D-E hysteresis loop for the first time in the polycrystalline form of BaTi2O5.

  19. Hole filling and interlayer coupling in YBa2Cu3O7/PrBa2Cu3O7 superlattices

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Charge transfer effects in YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 superlattices have been proposed by many authors as the origin of the experimentally observed strong depression of the critical temperature. We performed self-consistent LMTO-ASA calculations and found that no remarkable change in the electronic structure of the superconducting CuO 2 planes occurs in the studied structures, when the PBCO layer thickness is varied. The observed depression of the critical temperature does not seem to be originated intrinsically by a severe modification of the electronic structure or by the hole-filling mechanism. (orig.)

  20. Preparation of MAl 2 O 4 : Eu 2+ , Sm 3+ (M = Ca, Sr, Ba) Phosphors ...

    African Journals Online (AJOL)

    A series of MAl2O4: Eu2+, Sm3+ (M = Ca, Sr, Ba) phosphors was prepared by the combustion method, and the influence of these alkaline earth metals on the structure and luminescent performances for these phosphors was investigated. A relationship was established between their composition, crystallization capacity and ...

  1. Crystallization Mechanism and Kinetics of BaO-Li2O-ZrO2-SiO2 Glasses

    Directory of Open Access Journals (Sweden)

    Cristian Berto da Silveira

    2002-03-01

    Full Text Available Differential thermal analysis and scanning electron microscopy were used to determine the influence of the addition of BaO on the crystallization mechanism of Li2O-ZrO2-SiO2 systems. As the concentration of BaO in the samples increased, a transition occurred in the predominant crystallization mechanism, which passed from superficial to volumetric. To determine the maximum nucleation rate, the crystallization kinetics of the sample containing 20 mole % BaO, which showed the most uniform crystallization, was studied by counting the nuclei with an image analyzer. The first nuclei appeared at the first endothermic inflection point (at the start of Tg, at 440 °C, while the maximum number of nuclei was counted at the midpoint of the glass transition region (446 °C. These results are similar to those observed for other materials that crystallize in volume, and confirm scanning electron microscopy data.

  2. Barium contributions to the valence electronic structure of YBa2Cu3O7-δ, PrBa2Cu3O7-δ, and other barium-containing compounds

    International Nuclear Information System (INIS)

    Mueller, D.R.; Wallace, J.S.; Jia, J.J.; O'Brien, W.L.; Dong, Q.; Callcott, T.A.; Miyano, K.E.; Ederer, D.L.

    1995-01-01

    Monochromatic photon beams were used to excite barium N IV,V soft x-ray emission spectra from YBa 2 Cu 3 O 7-δ , PrBa 2 Cu 3 O 7-δ , BaF 2 , and BaTiO 3 . Near threshold excitation was used to demonstrate that small contributions to the barium N V and N IV emission spectra in the energy region above the 5p→4d core-core transitions do not arise as satellite emission from transitions in multiply excited atoms but rather occur as a result of transitions from the valence states. The emission spectrum of YBa 2 Cu 3 O 7-δ and PrBa 2 Cu 3 O 7-δ reveals a contribution to the electronic density of states at the barium site in the region near the Fermi level. The YBa 2 Cu 3 O 7-δ compound is a superconductor and PrBa 2 Cu 3 O 7-δ is an insulator. It has been proposed that the difference between them is due to mixing of praseodymium and barium among the sites occupied by yttrium and barium, with an accompanying change in electronic structure. However, our measurements indicate that the barium partial density of states for the two compounds are essentially identical

  3. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  4. Electronic structure of TlBa2CaCu2O7-δ

    Science.gov (United States)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-06-01

    The core levels of TlBa2CaCu2O7-δ (Tl-1212) epitaxial films have been measured with x-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (EF) for the stoichiometric compound (δ=0), while for 50% oxygen vacancies in the Tl-O layer (δ=0.5) EF is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher Tc, consistent with a shift of EF closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O8+δ (Tl-2212) and HgBa2CaCu2O6+δ (Hg-1212). The similarity of the Cu 2p3/2 spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p3/2 signals exhibit differences which suggest that the replacement of Tl3+ with Hg2+ results in a decrease in the O 2p-->Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  5. Electronic structure of TlBa2CaCu2O7-δ

    International Nuclear Information System (INIS)

    Vasquez, R.P.; Novikov, D.L.; Freeman, A.J.; Siegal, M.P.

    1997-01-01

    The core levels of TlBa 2 CaCu 2 O 7-δ (Tl-1212) epitaxial films have been measured with x-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E F ) for the stoichiometric compound (δ=0), while for 50% oxygen vacancies in the Tl-O layer (δ=0.5) E F is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T c , consistent with a shift of E F closer to the VHS. Comparisons are made to the core levels and valence bands of Tl 2 Ba 2 CaCu 2 O 8+δ (Tl-2212) and HgBa 2 CaCu 2 O 6+δ (Hg-1212). The similarity of the Cu 2p 3/2 spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p 3/2 signals exhibit differences which suggest that the replacement of Tl 3+ with Hg 2+ results in a decrease in the O 2p→Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states. copyright 1997 The American Physical Society

  6. Fabrication of 2-3 YBa2Cu3O7-x/polymer composite with Tc above liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Wilson, C.M.; Safari, A.

    1990-01-01

    This paper reports on high T c superconducting oxide woven networks fabricated and used to form YBa 2 Cu 3 O 7-x /polymer composites showing a superconducting resistive transition above liquid nitrogen temperature. The ceramic network was produced by soaking biaxially woven carbon fabric in a solution containing the stoichiometric proportions of Y, Ba, and Cu. Decomposition of the infiltrated carbon fabric and reaction of the remaining oxides resulted in a ceramic replica of the original fabric. The fired networks had a strand diameter ∼100 μm and were embedded in a polymer matrix to produce 2--3 superconducting/polymer composites with a superconducting transition of ∼89 K. Linear shrinkage of the networks was constrained during firing, although the radial shrinkage of the superconducting strands occurred freely. XRD of the networks indicated the presence of BaCO 3 , CuO, and BaCuO 2 as impurity phases

  7. Homogeneity of peraluminous SiO2-B2O3-Al2O3-Na2O-CaO-Nd2O3 glasses: Effect of neodymium content

    International Nuclear Information System (INIS)

    Gasnier, E.; Bardez-Giboire, I.; Massoni, N.; Montouillout, V.; Pellerin, N.; Allix, M.; Ory, S.; Cabie, M.; Poissonnet, S.; Massiot, D.

    2014-01-01

    Considering the interest of developing new glass matrices able to immobilize higher concentration of high level nuclear wastes than currently used nuclear borosilicate compositions, glasses containing high rare earth contents are of particular interest. This study focuses on a peraluminous alumino borosilicate system SiO 2 -B 2 O 3 -Al 2 O 3 -Na 2 O-CaO-Nd 2 O 3 defined by a per-alkaline/peraluminous ratio RP = ([Na 2 O] + [CaO])/ ([Na 2 O] + [CaO] + [Al 2 O 3 ]) ≤ 0.5. Samples with various contents of Nd 2 O 3 from 0 to 10 mol% were studied using DSC, XRD, SEM, TEM, STEM and EMPA methods. The glasses present a high thermal stability even after a slow cooling treatment from the melt. Only a slight mullite crystallization is detected for low Nd 2 O 3 content (≤2.3 mol%) and crystallization of a neodymium borosilicate crystalline phase combined to a phase separation occurred at high Nd 2 O 3 content (≥8 mol%). The solubility of neodymium in the presence of aluminum is demonstrated, with higher neodymium incorporation amounts than in per-alkaline glasses. (authors)

  8. Synthesis, structural characterization and fluctuation conductivity of HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}-}SrTiO{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Uribe Laverde, M.A., E-mail: mauribel@bt.unal.edu.c [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Landinez Tellez, D.A.; Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2010-12-15

    Single-phase polycrystalline samples of HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor and SrTiO{sub 3} isolator were produced by means of the solid state reaction technique. After structural characterization of both materials, superconductor-isolator composites were produced with nominal isolator volume percentages between 0% and 10%. Resistivity measurements for the composites and the HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample with different currents evidenced a superconducting transition with critical temperature T{sub C} = 92 K, with wider transitions with increasing either isolator content or measurement current. Fluctuation conductivity analyses were carried out to obtain the exponents characterizing the conductivity divergence. Above T{sub C}, apart from the typical Gaussian and critical fluctuations an atypical regime with critical exponent about 0.14 is observed as a precursor of the transition. Below T{sub C}, it is observed that the coherence transition characteristic exponent increases rapidly with increasing isolator percentage in the composites and does not show important changes when modifying the current in the pure superconductor sample.

  9. Order-disorder transition and electrical conductivity of the brownmillerite solid-solutions system Ba2(In, M)2O5 (M=Ga, Al)

    International Nuclear Information System (INIS)

    Yamamura, Hiroshi; Hamazaki, Hirohumi; Kakinuma, Katsuyoshi; Mori, Toshiyuki; Haneda, Hajime

    1999-01-01

    The brownmillerite solid-solution systems Ba 2 (In 1-x M x ) 2 O 5 (M=Ga, Al) were investigated by means of high-temperature X-ray diffraction (XRD), dilatometry, and electrical-conductivity measurements. XRD showed that the Ba 2 (In 1-x Ga x ) 2 O 5 system had orthorhombic symmetry in the composition range 0.0≤x≤0.2 and cubic symmetry in the range 0.3≤x. The Al system also changed to cubic symmetry from orthorhombic symmetry in the range 0.2≤x. While the orthorhombic phase showed an order-disorder transition in the electrical conductivity measurements, the transition temperature decreased with increasing the M content. The order-disorder transition temperature and the crystal-structure transition temperature were very different. Such a transition was not observed in the cubic phases, and their electrical conductivity were fairly low compared to those of the disordered cubic phase after the transition due to the heating process. These phenomena are discussed in terms of disordering of the tetrahedral site in the brownmillerite structure, which is occupied by the smaller Ga 3+ or Al 3+ rather than ny In 3+

  10. LaNiO(3) Buffer Layers for High Critical Current Density YBa(2)Cu(3)O(7-delta) and Tl(2)Ba(2)CaCu(2)O(8-delta) Films

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-08-24

    We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.

  11. Theoretical and experimental study on solid chemical reaction between BaCO3 and TiO2 in microwave field

    International Nuclear Information System (INIS)

    Liu Hanxing; Guo, Liling; Zou Long; Cao Minhe; Zhou Jian; Ouyang Shixi

    2004-01-01

    Solid-state chemical reaction mechanism for the reaction between BaCO 3 and TiO 2 in microwave field was investigated based on X-ray power diffraction (XRD) data and theory of diffusion. The compositions of the resultant after reaction under different conditions were studied by employing XRD. The quantitative analyses based on XRD data showed the reaction in microwave field was quite different from that in the conventional method. A model was proposed to explain the change of the ratio between the reactant BaCO 3 , TiO 2 and the resultant BaTiO 3 for the chemical reaction. The formation kinetic of BaTiO 3 from the BaCO 3 and TiO 2 was calculated by employing this theoretical model. The reaction rate between BaCO 3 and TiO 2 in microwave field was much higher than that in conventional method. The activation energy of the atomic diffusions in this solid chemical reaction is only 58 kJ/mol, which was only about 1/4 of 232 kJ/mol in the conventional value. The result suggests that the microwave field enhance atomic diffusion during the reaction

  12. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  13. Dynamic compaction of Al2O3-ZrO2 compositions

    International Nuclear Information System (INIS)

    Tunaboylu, B.; McKittrick, J.; Nutt, S.R.

    1994-01-01

    Shock compaction of Al 2 O 3 -ZrO 2 binary and ternary powder compositions resulted in dense, one-piece samples without visible cracks for pressures ≤12.6 GPa. Dynamic pressures were achieved by using a 6.5-m-long two-state gas gun. It is believed that plastic deformation by dislocation slip of α-Al 2 O 3 partially accommodates the tensile stresses created during the release of shock pressures. A fine and narrow particle size distribution is necessary to achieve high bulk densities, but the bulk structural integrity was not strongly related to the distribution. A high-pressure phase of ZrO 2 , which was formed from the monoclinic polymorph, was found at and above shock pressure of 6.3 GPa. No evidence of the orthorhombic cotunnite structure was observed. Compaction of glassy and submicrocrystalline rapidly solidified starting materials showed good structural integrity, although the bulk density was relatively low. It is not clear what the densification/bonding mechanism is in these materials, although it appears not to be plastic deformation. Microstructural analysis showed that fine and uniform microstructures are retained after compaction at appropriate dynamic pressures for all compositions, with some interparticle cohesion present

  14. Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate

    Science.gov (United States)

    Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.

    1988-07-01

    High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.

  15. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  16. Preparation and characterization of Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide formed by cathodic electroplating and anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joo-Hee; Kim, Tae-Yoo; Kim, Nam-Jeong; Lee, Chang-Hyoung; Park, Eun-Mi [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Chan [Division of Materials Science and Engineering, Pukyong National University, Busan 608-739 (Korea, Republic of); Suh, Su-Jeong, E-mail: suhsj@skku.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2011-11-15

    Highlights: > We fabricate Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al film for high performance thin film capacitor. > The optimum condition of electrolyte composition will coat NbO{sub x} on Al without corrosion of Al during the cathodic electroplating. > Increasing annealing temperature will form Nb{sub 2}O{sub 5} crystalline. > The Al{sub 2}O{sub 3} layer will form between Nb{sub 2}O{sub 5} layer and metal Al after anodizing and the thin film capacitor with Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}/Al improve dielectric properties. - Abstract: Al foil was coated with niobium oxide by cathodic electroplating and anodized in a neutral boric acid solution to achieve high capacitance in a thin film capacitor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the niobium oxide layer on Al to be a hydroxide-rich amorphous phase. The film was crystalline and had stoichiometric stability after annealing at temperatures up to 600 deg. C followed by anodizing at 500 V, and the specific capacitance of the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide was approximately 27% higher than that of Al{sub 2}O{sub 3} without a Nb{sub 2}O{sub 5} layer. The capacitance was quite stable to the resonance frequency. Overall, the Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composite oxide film is a suitable material for thin film capacitors.

  17. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  18. Structural and photoluminescence investigations of Sm{sup 3+} doped BaY{sub 2}ZnO{sub 5} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Chahar, Sangeeta; Taxak, V.B.; Dalal, Mandeep; Singh, Sonika; Khatkar, S.P., E-mail: s_khatkar@rediffmail.com

    2016-05-15

    Highlights: • BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphors have been synthesized via solution combustion. • The nanophosphors have been characterized by XRD, TEM and PL spectroscopy. • The crystal structure reveals influence of doping on lattice parameters. • This nanophosphor executes orange–red emission under near UV excitation. - Abstract: BaY{sub 2}ZnO{sub 5}:Sm{sup 3+} nanophosphor was successfully synthesized using solution combustion process. XRD and photoluminescence (PL) techniques were used to analyze the structural and photoluminescence properties. Morphological study of the thermally stable powder was carried out using transmission electron microscope (TEM). Rietveld refinement technique has been used to analyze the samples qualitatively as well as quantitatively. X-Ray diffraction analysis confirms that the highly crystalline single phased Sm{sup 3+} doped BaY{sub 2}ZnO{sub 5} nanophosphor crystallizes in orthorhombic lattice with Pbnm space group. The average particle size lies in the range 80–90 nm with spherical morphology. The photoluminescence excitation at 411 nm yields an intense orange–red emission centered at 610 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition. The concentration dependent luminescent behavior of BaY{sub 2(1−x)}Sm{sub 2x}ZnO{sub 5} nanophosphor shows that the optimum concentration for best luminescence is 3 mol%. These results indicate that these nanophosphors find potential applications in the field of phosphor-converted white LED systems.

  19. Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method

    International Nuclear Information System (INIS)

    Gao, Jinghui; Zhong, Lisheng; Zhang, Lixue; Xue, Dezhen; Kimoto, Takayoshi; Song, Minghui; Ren, Xiaobing

    2014-01-01

    (1−x)(Ba(Zr 0.2 Ti 0.8 )O 3 -x(Ba 0.7 Ca 0.3 )TiO 3 (BZT-xBCT) Pb-free piezoceramic has been reported showing ultrahigh piezoelectric performance in its morphotropic phase boundary (MPB) region. However, the crystal structure characteristic for the MPB composition of BZT-xBCT is still under debate—between single orthorhombic phase and tetragonal + rhombohedral two phase mixture. In the present study, we perform the local symmetry determination on the MPB composition x = 0.5 using convergent beam electron diffraction analysis (CBED). Our CBED results from multiple zone axes suggest that there are two coexisting phases with the point group symmetries of 4 mm (tetragonal) and 3 m (rhombohedral) respectively, which agree with two phase mixture model. The strong piezoelectricity can thus be understood by considering the polarization rotation between tetragonal and rhombohedral phases by external field

  20. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material

    Science.gov (United States)

    Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.

    2017-08-01

    The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.

  1. Cubic Re6+ (5d1) Double Perovskites, Ba2MgReO6, Ba2ZnReO6, and Ba2Y2/3ReO6: Magnetism, Heat Capacity, μSR, and Neutron Scattering Studies and Comparison with Theory.

    Science.gov (United States)

    Marjerrison, Casey A; Thompson, Corey M; Sala, Gabrielle; Maharaj, Dalini D; Kermarrec, Edwin; Cai, Yipeng; Hallas, Alannah M; Wilson, Murray N; Munsie, Timothy J S; Granroth, Garrett E; Flacau, Roxana; Greedan, John E; Gaulin, Bruce D; Luke, Graeme M

    2016-10-04

    Double perovskites (DP) of the general formula Ba 2 MReO 6 , where M = Mg, Zn, and Y 2/3 , all based on Re 6+ (5d 1 , t 2g 1 ), were synthesized and studied using magnetization, heat capacity, muon spin relaxation, and neutron-scattering techniques. All are cubic, Fm3̅m, at ambient temperature to within the resolution of the X-ray and neutron diffraction data, although the muon data suggest the possibility of a local distortion for M = Mg. The M = Mg DP is a ferromagnet, T c = 18 K, with a saturation moment ∼0.3 bohr magnetons at 3 K. There are two anomalies in the heat capacity: a sharp feature at 18 K and a broad maximum centered near 33 K. The total entropy loss below 45 K is 9.68 e.u., which approaches R ln 4 (11.52 e.u.) supporting a j = 3/2 ground state. The unit cell constants of Ba 2 MgReO 6 and the isostructural, isoelectronic analogue, Ba 2 LiOsO 6 , differ by only 0.1%, yet the latter is an anti-ferromagnet. The M = Zn DP also appears to be a ferromagnet, T c = 11 K, μ sat (Re) = 0.1 μ B . In this case the heat capacity shows a somewhat broad peak near 10 K and a broader maximum at ∼33 K, behavior that can be traced to a smaller particle size, ∼30 nm, for this sample. For both M = Mg and Zn, the low-temperature magnetic heat capacity follows a T 3/2 behavior, consistent with a ferromagnetic spin wave. An attempt to attribute the broad 33 K heat capacity anomalies to a splitting of the j = 3/2 state by a crystal distortion is not supported by inelastic neutron scattering, which shows no transition at the expected energy of ∼7 meV nor any transition up to 100 meV. However, the results for the two ferromagnets are compared to the theory of Chen, Pereira, and Balents, and the computed heat capacity predicts the two maxima observed experimentally. The M = Y 2/3 DP, with a significantly larger cell constant (3%) than the ferromagnets, shows predominantly anti-ferromagnetic correlations, and the ground state is complex with a spin frozen component T

  2. Crystal structure and magnetic properties of the Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14 langasites

    DEFF Research Database (Denmark)

    Krizan, J.W.; de la Cruz, C.; Andersen, Niels Hessel

    2013-01-01

    We report the structural and magnetic characterizations of Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14, compounds that are based on the mineral dugganite, which is isostructural to langasites. The magnetic part of the structure consists of layers of Co2+ triangles. Nuclear and magnetic...... structures were determined through a co-refinement of synchrotron and neutron powder diffraction data. In contrast to the undistorted P321 langasite structure of Ba3TeCo3P2O14, a complex structural distortion yielding a large supercell is found for both Pb3TeCo3P2O14 and Pb3TeCo3V2O14. Comparison...... of the three compounds studied along with the zinc analog Pb3TeZn3P2O14, also characterized here, suggests that the distortion is driven by Pb2+ lone pairs; as such, the Pb compounds crystallize in a pyroelectric space group, P2. Magnetic susceptibility, magnetization, and heat capacity measurements were...

  3. Al{sub 2}O{sub 3} reinforced nanoparticle ZrO{sub 2} (3at%?Y{sub 2}O{sub 3}); Al{sub 2}O{sub 3} reforcado com nanoparticulas de ZrO{sub 2}(3%mol Y{sub 2}O{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Cossu, C.M.F.A.; Alves, M.F.R.P.; Campos, L.Q.B.; Magnago, R.O.; Santos, C., E-mail: caio.cossu@usp.br [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil). Faculdade de Tecnologia; Simba, B.G. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia

    2016-07-01

    This work developed a composite Al{sub 2}O{sub 3}-based reinforced with nanoparticles of ZrO{sub 2} (Y{sub 2}O{sub 3}), to evaluate the effect of the content of ZrO{sub 2} nanoparticles (Y{sub 2}O{sub 3}) on the mechanical properties. Mixtures containing a matrix of Al{sub 2}O{sub 3} with fractions in weight of 3%, 5%, 10% and 15%, ZrO{sub 2} (Y{sub 2}O{sub 3}), and were mixed in mortar mill. Mixtures received 5% polymeric binder (PVA); and after adding the binder, the material was pressed uniaxially to 50MPa, and then sintered at a temperature of 1600 ° C - 2h. The sintered products were characterized by X-ray diffraction, scanning electron microscopy (SEM), relative density, hardness and fracture toughness. The results of X-ray diffraction showed that Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2} as crystal phases found after sintering. Furthermore, the relative green density of 55% was predominant in the compact; and after sintering, varied depending on the ZrO{sub 2} content, reaching 97% in sintered compositions with 3% ZrO{sub 2} nanoparticles (Y{sub 2O}3). The hardness of the samples showed values of 1670HV and the maximum toughness of 3.2 MPa × m{sup 1/2}, directly influenced by the presence of nanoparticles ZrO{sub 2} uniformly dispersed in the matrix Al{sub 2}O{sub 3}, which results in at least two main mechanisms tenacifiers: transformation of tetragonal-monoclinic phase of zirconia, and compressive residual strain between the two phases present, Al{sub 2}O{sub 3} and tetragonal ZrO{sub 2}. (author)

  4. Charge transportation in polyaniline/V2O5 composites

    International Nuclear Information System (INIS)

    Huguenin, Fritz; Torresi, Roberto M.

    2004-01-01

    In this work, composites formed from a mixture of V 2 O 5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI] 0.3 V 2 O 5 nanocomposite is achieved predominantly by Li + migration. However, the charge compensation in the [PANI]V 2 O 5 microcomposite occurs by Li + and Cl O 4 - transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties. (author)

  5. Superconducting Tl2Ba2CaCu2O8 thin films prepared by post-annealing in a flow-through multiple-zone furnace

    International Nuclear Information System (INIS)

    Pluym, T.C.; Muenchausen, R.E.; Arendt, P.N.

    1994-01-01

    Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared for the first time by use of a multiple-zone flow-through thallination process. Thallous oxide was volatilized from condensed thallium oxide in a low temperature source zone and convectively transported to a higher temperature thallination zone in which initially amorphous Ba 2 CaCu 2 O 5 precursor films were located. By careful control of the source temperature, film temperature, flow rate, anneal time, and rates of heat up and cool down, smooth Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared on (100) LaAlO 3 with the following properties: inductive T c of 107.6 K and 80% transition width of 1.3 K, transport J c at 75 K of 1.3 x 10 5 A/cm 2 , and R s at 10 GHz and 80 K of 1.3 mΩ. The scalability of the process to large area film processing was demonstrated by the preparation of Tl 2 Ba 2 CaCu 2 O 8 thin films on LaAlO 3 three-inch diameter wafers

  6. Thermal analysis of formation of nano-crystalline BaTiO3 using Ba(NO32 and TiO2

    Directory of Open Access Journals (Sweden)

    Md. Jawed Ansaree

    2015-12-01

    Full Text Available The reaction of Ba(NO32 with TiO2 was studied by thermogravimetric (TG and differential scanning calorimetric (DSC techniques up to 1000 °C and in nitrogen atmosphere. It was found that the formation of BaTiO3 takes place above 600 °C and that precursor mixing time and heating rate have no effect on the reaction temperature. BaTiO3 powder was prepared by calcination of Ba(NO32 and TiO2 precursor mixture at 800 °C for 8 h. X-ray diffraction analysis of the synthesized BaTiO3 confirmed the formation of tetragonal phase with lattice parameters a = 3.9950±0.0003 Å and c = 4.0318±0.0004 Å. Thermal analysis of the synthesized BaTiO3 powder showed weight loss within temperature range 40–1000 °C of only 0.40%. This small amount of weight loss was connected with some impurity phase, and identified as BaCO3 using Fourier transform infrared (FTIR technique.

  7. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    Science.gov (United States)

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Electric-field-induced strain contributions in morphotropic phase boundary composition of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-BaTiO{sub 3} during poling

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); Hinterstein, Manuel [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); Institute for Applied Materials, Karlsruhe Institute for Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Wang, Zhiyang [School of Materials Science and Engineering, UNSW Australia, New South Wales 2052 (Australia); The Australian Synchrotron, Clayton, Victoria 3168 (Australia); Groh, Claudia [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Jo, Wook [School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of)

    2015-12-14

    The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic 0.93(Bi{sub 1/2}Na{sub 1/2}TiO{sub 3})−0.07(BaTiO{sub 3}) with a mixed rhombohedral and tetragonal structure have been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data. The analysis methodology allows a quantification of all strain mechanisms for each phase in a morphotropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is generated from lattice strain, domain switching, and phase transformation strains, respectively. The results also suggest that the tetragonal phase contributes the most to extrinsic domain switching strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible nature of the electric-field-induced phase transformation in the current composition. This information is relevant to on-going compositional development strategies to harness the electric-field-induced phase transformation strain of (Bi{sub 1/2}Na{sub 1/2})TiO{sub 3}-based lead-free piezoelectric materials for actuator applications.

  9. Characterisation and Properties of Lithium Disilicate Glass Ceramics in the SiO2-Li2O-K2O-Al2O3 System for Dental Applications

    Directory of Open Access Journals (Sweden)

    Naruporn Monmaturapoj

    2013-01-01

    Full Text Available This work proposes four different glass formulas derived from the SiO2-Li2O-K2O-Al2O3 system to investigate the effect of glass composition on their crystal formations and properties. Glass LD1 was SiO2-Li2O-K2O-Al2O3 system with the addition of P2O5 and CaF2 as nucleating agents. In Glass LD2, a slight amount of MgO was mixed in order to increase the viscosity of the melting glass. Finally, the important factor of Si : Li ratio was increased in Glasses LD3 and LD4 with compositions otherwise the same as LD1 and LD2. The results found that P2O5 and CaF2 served as a nucleating site for lithium phosphate and fluorapatite to encourage heterogenous nucleation and produce a fine-grained interlocking microstructure of lithium disilicate glass ceramics. MgO content in this system seemed to increase the viscosity of the melting glass and thermal expansion coefficient including the chemical solubility. Increasing the Si : Li ratio in glass compositions resulted in the change of the microstructure of Li2Si2O5 crystals.

  10. Dielectric behavior of samarium-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Li, Yuanliang; Wang, Ranran; Ma, Xuegang; Li, Zhongqiu; Sang, Rongli; Qu, Yuanfang

    2014-01-01

    Graphical abstract: - Highlights: • We investigate dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 ceramics. • The additive amount of Sm 2 O 3 can greatly affect the dielectric properties. • The materials undergo a diffuse type ferroelectric phase transition. • There is an alternation of substitution preference of Sm 3+ ion for the host cations in perovskite lattice. - Abstract: The dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 (BZT20) ceramics were investigated. Room temperature X-ray diffraction study suggested that the compositions had single-phase cubic symmetry. Microstructure studies showed that the grain size decreased and that the Sm 2 O 3 amount markedly affected the dielectric properties of BZT20. A dielectric constant of 5700 at 0.2 mol% Sm 2 O 3 and a dissipation factor of only 0.0011 at 2 mol% Sm 2 O 3 were observed, indicating that BZT20 had significant potential applications. Moreover, the dielectric constant, dissipation factor, phase-transition temperature, and maximum dielectric constant increased with increased Sm 2 O 3 amount at ≤0.2 mol% Sm 2 O 3 but decreased with increased Sm 2 O 3 amount at >0.2 mol% Sm 2 O 3

  11. Microwave dielectric properties of La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yih-Chien; Chen, Kuei-Chien; Hsu, Wei-Yu [Department of Electrical Engineering, Lunghwa University of Science and Technology, Gueishan Shiang, Taoyuan County (China)

    2010-11-15

    This study examined the potential applications of microwave dielectric properties of La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics in rectenna. The La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics were prepared by the conventional solid-state method with various sintering temperatures. An apparent density of 6.62 g/cm{sup 3}, a dielectric constant of 20.3, a quality factor of 51,700 GHz, and a temperature coefficient of resonant frequency of -78.2 ppm/K were obtained for La{sub 2.98/3}Ba{sub 0.01}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics that were sintered at 1550 C for 4 h. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Preparation and characterization of self-assembled percolative BaTiO3–CoFe2O4 nanocomposites via magnetron co-sputtering

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2014-04-01

    Full Text Available BaTiO3–CoFe2O4 composite films were prepared on (100 SrTiO3 substrates by using a radio-frequency magnetron co-sputtering method at 750 °C. These films contained highly (001-oriented crystalline phases of perovskite BaTiO3 and spinel CoFe2O4, which can form a self-assembled nanostructure with BaTiO3 well-dispersed into CoFe2O4 under optimized sputtering conditions. A prominent dielectric percolation behavior was observed in the self-assembled nanocomposite. Compared with pure BaTiO3 films sputtered under similar conditions, the nanocomposite film showed higher dielectric constants and lower dielectric losses together with a dramatically suppressed frequency dispersion. This dielectric percolation phenomenon can be explained by the 'micro-capacitor' model, which was supported by measurement results of the electric polarization and leakage current.

  13. Interface effects on the electronic transport properties in highly epitaxial LaBaCo2O(5.5+δ) films.

    Science.gov (United States)

    Ma, C R; Liu, M; Liu, J; Collins, G; Zhang, Y M; Wang, H B; Chen, C L; Lin, Y; He, J; Jiang, J C; Meletis, E I; Jacobson, A J

    2014-02-26

    Single-crystalline perovskite LaBaCo2O5.5+δ thin films were grown on a (110) NdGaO3 single-crystal substrate in order to systematically investigate the effect of lattice mismatch on the electrical transport properties in comparison to the films on LaAlO3, SrTiO3, and MgO substrates. Microstructure studies reveal that all of the LaBaCo2O5.5+δ films are of excellent quality with atomically sharp interface structures. The electrical and magnetic transport property studies indicate that the resistivity, magnetoresistance, and magnetic moment of the film are very sensitive to the substrate materials because of the lattice mismatch/interface strain. The Curie temperature, however, is almost independent of the strain imposed by the substrate, probably because of the strong coupling between the nanodomain boundary and interface strain.

  14. Synthesis and optical properties of turquoise- and green-colored brownmillerite- type Ba2In2-x-yMnxAlyO5+x codoped with manganese and aluminum

    Institute of Scientific and Technical Information of China (English)

    Peng Jiang; Wen-hui Yang; Yun-cheng Zhou; Jian-lei Kuang; Yong Li; Ting Xiao

    2016-01-01

    Brownmillerite-type oxides Ba2In2−x−yMnxAlyO5+x (0≤x≤ 0.6, 0≤y≤ 0.5) were prepared at 1300°C through solid-state reaction. X-ray diffraction (XRD) analysis showed that the structure symmetry evolved from orthorhombic to cubic with increasing Mn and Al con-tents. Wheny was greater than 0.3, peaks associated with small amounts of BaAl2O4 and Ba2InAlO5 impurities were observed in the XRD patterns. When substituted with a small amount of Mn (x≤ 0.3), the Ba2In2−x−yMnxAlyO5+x samples exhibited an intense turquoise color. The color changed to green and dark-green with increasing Mn concentration. UV–vis absorbance spectra revealed that the color changed only slightly upon Al doping. The valence state of Mn ions in Ba2In2−x−yMnxAlyO5+x was confirmed to be +5 on the basis of X-ray photoelectron spectroscopic analysis. According to this analysis, the intense turquoise color of the Ba2In2−x−yMnxAlyO5+x samples is rooted in the existence of Mn5+; thus, the introduction of Al does not affect the optical properties of the compounds.

  15. Ho2O3 additive effects on BaTiO3 ceramics microstructure and dielectric properties

    Directory of Open Access Journals (Sweden)

    Paunović Vesna

    2012-01-01

    Full Text Available Doped BaTiO3-ceramics is very interesting for their application as PTCR resistors, multilayer ceramic capacitors, thermal sensors etc. Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320° and 1380°C in an air atmosphere for 4 hours. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope (SEM equipped with EDS system. SEM analysis of Ho/BaTiO3 doped ceramics showed that in samples doped with a rare-earth ions low level, the grain size ranged from 20-30μm, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2- 10μm. Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1380°C, display the high value of dielectric permittivity at room temperature, 2400 for 0.01Ho/BaTiO3. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss low and modified Curie-Weiss low the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (γ were calculated. The obtained value of γ pointed out that the specimens have almost sharp phase transition. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  16. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    Science.gov (United States)

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  17. Raman spectroscopy, thermal and optical properties of TeO2-ZnO-Nb2O5-Nd2O3 glasses.

    Science.gov (United States)

    Kamalaker, V; Upender, G; Ramesh, Ch; Mouli, V Chandra

    2012-04-01

    The glasses with composition 75TeO2-10ZnO-(15-x)Nb2O5-xNd2O3 (0≤x≤9 mol%) were prepared using melt quenching method and their physical properties such as density (ρ), molar volume (VM), average crosslink density (nc¯), oxygen packing density (OPD) and number of bonds per unit volume (nb) were determined. Raman spectroscopic studies showed that the glass network consists of TeO4, TeO3+1, TeO3 and NbO6 units as basic structural units. The glass transition temperature (Tg), crystallization onset (To) and thermal stability (ΔT) were determined from DSC thermograms. The Raman and DSC results were found to be correlated with the physical properties. In the optical absorption spectra six absorption bands were observed with different relative intensities at around 464, 522, 576, 742, 801 and 871 nm which are assigned to the transition of electrons from (ground state) 4I9/2→G11/2; 4I9/22K3/2, 2G7/2; 4I9/2→4G5/2, 4G7/2; 4I9/2→4S3/2; 4F7/22H9/2, 4F5/2 and 4I9/22F3/2 respectively. From optical absorption data the energy band gap (Eopt) and Urbach energy (ΔE) were calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Green-emissive transparent BaSi 2O 5:Eu 2 + film phosphor on quartz glass created by a sputtering thermal diffusion process

    Science.gov (United States)

    Seo, K. I.; Park, J. H.; Kim, J. S.; Na, Y. H.; Choi, J. C.; Bae, J. S.

    2009-10-01

    Eu 2+-doped BaSi 2O 5 film phosphors on quartz substrates are fabricated by radio-frequency magnetron sputtering thermal diffusion. The BaSi 2O 5: Eu 2+ phosphor crystals have some preferred orientations that are lattice-spacing matched with the crystallized β- SiO 2 crystals, and they show pore and grain boundary-free morphology with a rod-like shape fused into the crystallized β- SiO 2 crystals. The BaSi 2O 5: Eu 2+ film phosphor has a high transparency, with a transmittance of about 30% in visible light. The BaSi 2O 5: Eu 2+ film phosphor shows 510 nm green emission from the f-d transition of the Eu 2+ ions, and in particular the best sample shows a green photoluminescence brightness of about 5% of a BaSi 2O 5: Eu 2+ powder phosphor screen. These excellences in optical properties can be explained by less optical scattering at pores or grain boundaries, and less reflection at the continuously index-changed interface.

  19. Solid state compatibility in the ZnO-rich region of ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems

    Directory of Open Access Journals (Sweden)

    Jardiel, T.

    2010-04-01

    Full Text Available The obtaining of ZnO-Bi2O3-Sb2O3 (ZBS based varistor thick films with high non-linear properties is constrained by the bismuth loss by vaporization that takes place during the sintering step of these ceramics, a process which is yet more critical in the thick film geometry due to its inherent high are/volume ratio. This volatilization can be controlled to a certain extent by modifying the proportions of the Bi and/or Sb precursors. Obviously this requires a clear knowledge of the different solid state compatibilities in the mentioned ZBS system. In this sense a detailed study of the thermal evolution of the ZnO-Bi2O3-Sb2O3 and ZnO-Bi2O3-Sb2O5 systems in the ZnO-rich region of interest for varistors, is presented in this contribution. A different behaviour is observed when using Sb2O3 or Sb2O5 as starting precursor, which should be attributed to the oxidation process experimented by Sb2O3 compound during the heating. On the other hand the use of high amounts of Bi in the starting formulation leads to the formation of a liquid phase at lower temperatures, which would allow the use of lower sintering temperatures.La obtención de varistors en lámina gruesa basados en ZnO-Bi2O3-Sb2O3 (ZBS y con propiedades altamente no-lineales está limitada por la perdida de bismuto por volatilización durante la sinterización de estos cerámicos, un proceso que es todavía más crítico en la geometría de lámina gruesa debido a su elevada relación área/volumen inherente. Dicha volatilización puede ser no obstante controlada hasta cierta extensión modificando las proporciones de los precursores de Bi y/o Sb. Obviamente ello conlleva un amplio conocimiento de las diferentes compatibilidades en estado sólido en el mencionado sistema ZBS. En este sentido, en la presente contribución se presenta un estudio detallado de la evolución térmica de los sistemas ZnO-Bi2O3-Sb2O3 y ZnO-Bi2O3-Sb2O5 en la región rica en ZnO de interés para varistores. Como

  20. Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment(Conference Presentation)

    Science.gov (United States)

    Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.

    2016-10-01

    Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first

  1. Investigation of thermal stability and spectroscopic properties in Er3+/Yb3+-codoped TeO2-Li2O-B2O3-GeO2 glasses.

    Science.gov (United States)

    Nie, Qiu-Hua; Gao, Yuan; Xu, Tie-Feng; Shen, Xiang

    2005-06-01

    The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.

  2. Mixed valent noble metal perovskites Ba/sub 3/B/sup 3 +/Pt/sub x/Ru/sub 2-x//sup 4. 5+/O/sub 9/

    Energy Technology Data Exchange (ETDEWEB)

    Moessner, B; Kemmler-Sack, S; Ehmann, A [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1982-04-01

    In perovskites of type Ba/sub 3/B/sup 3 +/Pt/sub x/Ru/sub 2-x//sup 4.5+/O/sub 9/ the ruthenium can be substituted by platinum up to x = 1. The compounds crystallize in a 1:2 ordered hexagonal BaTiO/sub 3/ structure (sequence (hcc)/sub 2/) with face connected Pt/sub x/Ru/sub 2-x/O/sub 9/ double octahedra. Intensity calculations on powder data of Ba/sub 3/YPt/sub 1/2/Ru/sub 3/2/O/sub 9/ (space group P6/sub 3//mmc) gave a refined, intensity related R' value of 8.6%. The vibrational spectroscopic and catalytic properties are reported.

  3. Structural and luminescence studies of Eu3+: TeO2sbnd B2O3sbnd AOsbnd AF2 (A = Pb, Ba, Zn, Cd, Sr) glasses

    Science.gov (United States)

    Selvi, S.; Marimuthu, K.; Muralidharan, G.

    2017-09-01

    Eu3+ doped oxyfluoro boro-tellurite (TBXFE) with molar composition 29 TeO2sbnd 30B2O3sbnd 20AOsbnd 20AF2sbnd 1Eu2O3 (where A = Pb, Ba, Zn, Cd, Sr) glasses were prepared and investigated by XRD, FTIR, UV-Vis-NIR, luminescence and decay measurements. XRD patterns confirm the glassy nature of the prepared glasses. The influence of metal ions on the structure of boro-tellurite glasses were investigated through FTIR spectra. The intra band (4f-4f) transitions of Eu3+ ions are discussed through UV-Vis-NIR absorption spectra. The covalent nature around the Eu3+ ions with ligands are discussed using the bonding parameter (δ) and nephelauxetic ratio (β). The fundamental absorption edge, direct, indirect band gap, Urbach energy and band tailing parameters are reported. A bright red emission at 616 nm corresponding to the 5D0 → 7F2 transition of Eu3+ ions could be observed in the title glasses. Judd-Ofelt parameters were estimated from the emission spectra of Eu3+ ions. The dependence of these parameters on the composition of the glass is discussed. Judd-Ofelt parameters were used to derive the radiative parameters such as transition probabilities (A, s-1), branching ratios (βR), radiative lifetime (τrad) and stimulated emission cross-section (σPE) for the 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) transitions. The luminescence intensity ratio (LIR) of 5D0 → 7F2/5D0 → 7F1 transitions was estimated to analyze the local site symmetry around the Eu3+ ions in the present glasses. The chromaticity coordinates and colour purity were calculated from the emission spectra and analyzed with Commission International de I'Eclairage (CIE) 1931 diagram. The experimental lifetime of 5D0 level could be fitted to a single exponential indicating the absence of energy transfer between the Eu3+ ions in the present glasses.

  4. Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system. Extending to high selenate concentrations

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Felmy, Andrew R.; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi; Moore, Dean A.

    2014-01-01

    The aqueous solubility of BaSeO 4 (cr) was studied at 23 ± 2 C as a function of Na 2 SeO 4 concentrations (0.0001 to 4.1 mol kg -1 ) and equilibration periods (3 to 596 d). The equilibrium, approached from both the under- and over-saturation directions, in this system was reached rather rapidly (≤ 3d). The SIT and Pitzer's ion-interaction models were used to interpret these data and the predictions based on both of these models agreed closely with the experimental data. Thermodynamic analyses of the data show that BaSeO 4 (cr) is the solubility-controlling phase for Na 2 SeO 4 concentrations -1 . The log 10 K 0 value for the BaSeO 4 (cr) solubility product (BaSeO 4 (cr) ↔ Ba 2+ + SeO 4 2- ) calculated by the SIT and Pitzer models were very similar (-7.32 ± 0.07 with Pitzer and -7.25 ± 0.11 with SIT). Although the BaSeO 4 (cr) solubility product and Ba concentrations as a function of Na 2 SeO 4 concentrations predicted by both the SIT and Pitzer models are similar, the models required different sets of fitting parameters. For examples, (1) interpretations using the SIT model required the inclusion of Ba(SeO 4 ) 2 2- species with log 10 K 0 = 3.44 ± 0.12 for the reaction (Ba 2+ + 2SeO 4 2- ↔ Ba(SeO 4 ) 2 2- ), whereas these species are not needed for Pitzer model, and (2) at Na 2 SeO 4 concentrations > 0.59 mol kg -1 it was also possible to calculate the value for log 10 K 0 for the solubility product of a proposed double salt (Na 2 Ba(SeO 4 ) 2 (s) ↔ 2Na + + Ba 2+ + 2SeO 4 2- ) which for the SIT model is -(8.70 ± 0.29) whereas for the Pitzer model it is -(9.19 ± 0.19). The ion-interaction/ion-association parameters hitherto unavailable for both the SIT and Pitzer models required to fit these extensive data extending to as high ionic strengths as 12.3 mol kg -1 were determined. The model developed in this study is consistent with all of the reliable literature data, which was also used to extend the model to barium concentrations as high as 0.22 mol kg

  5. Hexagonal perovskites with cationic vacancies. 7. Vibrational spectroscopic investigations on the rhombohedral 12 L-stacking polytypes Ba/sub 4/Bsup(II)(Re/sub 2/vacantO/sub 12/) and Ba/sub 4/Bsub(2/3)sup(III)vacantsub(1/3)(Re/sub 2/vacantO/sub 12/)

    Energy Technology Data Exchange (ETDEWEB)

    Fadini, A; Kemmler-Sack, S; Schittenhelm, H J; Rother, H J; Treiber, U [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1979-07-01

    For the rhombohedral 12 L stacking polytypes Ba/sub 4/Bsup(II)(Re/sub 2/vacantO/sub 12/) and Ba/sub 4/Bsub(2/3)sup(III)vacantsub(1/3)(Re/sub 2/vacantO/sub 12/), space group R3m, sequence (3)(1), the lattice consists of groups of three face sharing octahedra with the composition Re/sub 2/vacantO/sub 12/. They are isolated from each other by the Ba and B ions. The vibrational spectra are interpreted according to the factor group analysis. For the Re/sub 2/vacantO/sub 12/ unit (symmetry Dsub(3d) the results of a complete vibrational analysis and the calculation of the force constants are reported.

  6. Structural evolution of Ba8Ti3Nb4O24 from BaTiO3 using a series of Ba(Ti1−5xNb4x)O3 solid solutions

    International Nuclear Information System (INIS)

    Barrientos Hernández, F.R.; Lira Hernández, I.A.; Gómez Yáñez, C.; Arenas Flores, A.; Cabrera Sierra, R.; Pérez Labra, M.

    2014-01-01

    Highlights: • The evolution phase Ba 8 Ti 3 Nb 4 O 24 was obtained through the mechanism Ba(Ti 1-5x Nb 4x )O 3 . • Addition of niobium can accelerate grain growth of BaTiO 3 ceramics. • Ba 8 Ti 3 Nb 4 O 24 presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb 5+ content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba 8 Ti 3 Nb 4 O 24 by adding Nb 2 O 5 to perovskite structure of BaTiO 3 was investigated. The compositions Ba(Ti 1-5x Nb 4x )O 3 ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO 3 , BaCO 3 and Nb 2 O 5 , were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba 8 Ti 3 Nb 4 O 24 from BaTiO 3 was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba 8 Ti 3 Nb 4 O 24 which resonates at microwave frequencies

  7. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    Science.gov (United States)

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  8. Synthesis and photoluminescence properties of Ba2CaZn2Si6O17:Eu3+ red phosphors for white LED applications

    International Nuclear Information System (INIS)

    Annadurai, G.; Kennedy, S. Masilla Moses

    2016-01-01

    Novel pellyite type Ba 2 CaZn 2 Si 6 O 17 :Eu 3+ red emitting phosphors with different Eu 3+ contents were synthesized by the solid state reaction method. The crystal structure, photoluminescence properties and concentration quenching of Ba 2 CaZn 2 Si 6 O 17 :Eu 3+ phosphors were investigated. Powder X-ray diffraction measurements confirmed the structure of the samples. The photoluminescence emission (PL) and excitation (PLE) spectra were measured. The results showed that the dominant hypersensitive red emission peak of the phosphors Ba 2 CaZn 2 Si 6 O 17 :Eu 3+ was located at 613 nm attributed to the Eu 3+ transition ( 5 D 0 → 7 F 2 ) which could be effectively excited by 395 nm (near-UV). The latter band matched well with the emission from the near-UV LED chips. The intensity ratio of 5 D 0 → 7 F 2 to 5 D 0 → 7 F 1 transition showed slight variation with Eu 3+ concentrations. The Eu 3+ emission intensity was maximum for 9 mol%. The luminescence quantum efficiency was determined and also the decay profiles were obtained and analyzed. In addition, the Commission International del'Eclairage (CIE) chromaticity coordinates of Ba 2 CaZn 2 Si 6 O 17 :0.09Eu 3+ phosphor were calculated to be 0.637 and 0.362. The experimental results demonstrated that the Ba 2 CaZn 2 Si 6 O 17 :Eu 3+ red emitting phosphor is a potential candidate for white light emitting diodes (WLEDs) pumped by near-UV chip. - Highlights: • A novel Ba 2 CaZn 2 Si 6 O 17 :Eu 3+ red phosphor was synthesized. • The samples yielded a dominant PL emission of Eu 3+ at 613 nm. • Eu 3+ concentration was optimized to be 9 mol% in Ba 2 CaZn 2 Si 6 O 17. • CIE chromaticity coordinates were estimated from the emission spectrum.

  9. Directed laser processing of compacted powder mixtures Al2O3-TiO2-Y2O3

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2013-01-01

    Full Text Available The phase formation, microstructure and surface texture of laser treated ternary powder mixtures of Al2O3-TiO2-Y2O3 had been studied. Rapid high temperature heating and subsequent rapid cooling due to the directed movement of the laser beam forms concave ceramic tracks. Phase composition and microstructure of the tracks depends on the Al2O3 content and the TiO2/Y2O3 ratio of the initial mixtures. The main phases observed are Y3Al5O12, Y2Ti2O7, Al2O3 and Al2TiO5. Due to the temperature gradient in the heating zone, complex layered structures are formed. The tracks consist of three main layers: a thin surface layer, a layer of crystallization products of eutectic alloys, and a lower sintered layer. The thickness of the crystallization layer and the shrinkage of the irradiation zone depend on the amount of Y3Al5O12 and Al2O3 crystallized from the melt.

  10. Oxygen isotope effect in YBa2Cu3O7 prepared by burning YBa2Cu3 in 16O and 18O

    Science.gov (United States)

    Yvon, Pascal J.; Schwarz, R. B.; Pierce, C. B.; Bernardez, L.; Conners, A.; Meisenheimer, R.

    1989-04-01

    We prepared YBa2Cu3 powder by ball milling a 2:1 molar mixture of the intermetallics BaCu and CuY. We synthesized YBa2Cu3(16O)7-x and YBa2Cu3(18O)7-x by oxidizing the YBa2Cu3 powder in 16O and 18O. The 16O/18O ratios were determined by laser-ionization and sputtering-ionization mass spectroscopy. The YBa2Cu3(160)7-x sample had 99.8 at. %16O, and the YBa2Cu3(18O)7-x sample had 96.5 at. %18O. Susceptibility measurements of the superconducting transition temperature (Tc=91.7 K for 16O; half-point transition at 84 K show an isotope effect of 0.4+/-0.1 K.

  11. Positron studies in as received and electron irradiated YBa2Cu3O6.9, DyBa2Cu3O6.9 and CaSr2Bi2Cu2O8-δ

    International Nuclear Information System (INIS)

    Moser, P.; Henry, J.Y.

    1988-01-01

    The temperature dependence of the positron annihilation parameters is measured between 77K and 300K in different oxide superconductors before and after electron irradiation. Before irradiation a reproducible behaviour is observed in YBa 2 Cu 3 O 6.9 and DyBa 2 Cu 3 O 6.9 : a maximum of the positron lifetime and Doppler broadening is found at 150K suggesting that positrons are trapped in a well defined charged defect identified as the [Cu(1),nO] polyvacancy, with n=1 or 2. After electron irradiation, an increase in positron lifetime is found, which disappears by annealing between 100K and 500K

  12. Tc dependence on the number of CuO2 planes in multilayered Ba2Can-1CunO2n(O, F)2 superconductors

    International Nuclear Information System (INIS)

    Iyo, A; Tanaka, Y; Kodama, Y; Kito, H; Tokiwa, K; Watanabe, T

    2006-01-01

    Multilayered cuprates of Ba 2 Ca n-1 Cu n O 2n (O, F) 2 (F-02(n-1)n) with n = 5 - 9 have been synthesized by using high pressure synthesis method in order to investigate the variation of T c . The temperature dependence of susceptibility showed that the T c (about 80 K) does not depend on n for n 5 - 9. This result can be explained using the carrier imbalance model in multilayered cuprates. Charge reservoir layers supply most of the carriers to adjacent CuO 2 planes (OP) and the OP keeps the T c constant even for large n

  13. Oxygen potentials and phase equilibria of the quaternary Y-Ba-Cu-O system in the region involving the YBa2Cu3O7-x phase

    International Nuclear Information System (INIS)

    Fitzner, K.; Musbah, O.; Hsieh Kerchang; Zhang Minxian; Chang, Y.A.

    1993-01-01

    The equilibrium oxygen potentials of four-phase equilibria (counting only the condensed phases) in the CuO-Cu 2 O-BaCuO 2 -Y 2 BaCuO 5 (211)-YBa 2 Cu 3 O 7-x (123) phase region were determined using the following solid-oxide electrolyte e.m.f. cell: Pt10Rh, air (psub(O 2 )=0.21 atm) vertical stroke ZrO 2 +Y 2 O 3 vertical stroke mixtures of oxides, Pt. The oxide mixtures whose oxygen potentials were measured were CuO-Cu 2 O-211-123, CuO-Cu 2 O-BaCuO 2 -123, Cu 2 O-BaCuO 2 -211-123 and CuO-BaCuO 2 -211-123. The phase in some of the mixtures were identified by X-ray diffraction. These data were analyzed and are presented using stability diagrams, i.e., oxygen potential as a function of the reciprocal of the temperature. Extrapolation of these data for the four four-phase equilibra to high temperatures yields a metastable five-phase equilibrium, i.e., 123=CuO+Cu 2 O+BaCuO 2 +211, at ∼1243 K (970 ) and log psub(O 2 ) ∼ -1.21 (psub(O 2 )∼0.062 atm). (orig.)

  14. Crystal and molecular structure of the coordination compounds of Er3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL21(NO3)2]2[Er(NO3)2(H2O)5]0.333(NO3)2.333 · 2.833H2O and its ethyl substituted derivative [ErL22(NO3)2][Er(NO3)5]0.5 · 0.5H2O

    International Nuclear Information System (INIS)

    Polyakova, I. N.; Baulin, V. E.; Ivanova, I. S.; Pyatova, E. N.; Sergienko, V. S.; Tsivadze, A. Yu.

    2015-01-01

    The coordination compounds of Er 3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL 2 1 (NO 3 ) 2 ] 2 [Er(NO 3 ) 2 (H 2 O) 5 ] 0.333 (NO 3 ) 2.333 · 2.833H 2 O (I) and its ethyl substituted derivative [ErL 2 2 (NO 3 ) 2 ][Er(NO 3 ) 5 ] 0.5 · 0.5H 2 O (II) are synthesized and their crystal structures are studied. I and II contain [ErL 2 (NO 3 ) 2 ] + complex cations of identical composition and close structure. The eight-vertex polyhedron of the Er atom in the shape of a distorted octahedron with two split trans vertices is formed by the O atoms of the phosphoryl groups of L ligands and nitrate anions. L ligands close nine-membered metallocycles. The structures contain spacious channels which are populated differently, namely, by disordered [Er(NO 3 ) 2 (H 2 O) 5 ] + complex cations, NO 3 − anions, and crystallization water molecules in I and disordered [Er(NO 3 ) 5 ] 2− complex anions and crystallization water molecules in II. The IR spectra of I and II are studied

  15. Magnetic order in PrBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Nutley, M.P.; Boothroyd, A.T.

    1994-01-01

    We have studied the magnetic ordering of the Cu and Pr ions in PrBa2Cu3O6+x by neutron diffraction on single crystals with different oxygen contents. Two types of Cu ordering were observed, qualitatively similar to the anti-ferromagnetic phases reported in some studies of YBa2Cu3O6+x. A third...... magnetic structure was observed below 15K, which we believe corresponds to the magnetic ordering of the Pr sub-lattice....

  16. Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses

    International Nuclear Information System (INIS)

    Sudarsan, V.; Kulshreshtha, S.K.; Shrikhande, V.K.; Kothiyal, G.P.

    2002-01-01

    Lead borosilicate glasses having general formulae (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x with 0.0≤x≤0.4 and (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y with 0.0≤y≤0.5 have been prepared by a conventional melt-quench method and characterized by 29 Si, 11 B magic angle spinning (MAS) NMR techniques and infrared spectroscopy, as regards their structural features. From 29 Si NMR results, it has been inferred that with increasing concentration of boron oxide, (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 )x glasses exhibit a systematic increase in the number of Q 4 structural units of Si at the expense of Q 2 structural units, along with the formation of Si-O-B linkages. On the other hand, for (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y glasses, there is no direct interaction between SiO 2 and B 2 O 3 in the glass network, as revealed by the 29 Si MAS NMR studies. Boron exists in both trigonal and tetrahedral configurations for these two series of glasses and for the (PbO) 0.5 (SiO 2 ) 0.5-y (B 2 O 3 ) y series of glasses; the relative concentration of these two structural units remains almost constant with increasing B 2 O 3 concentration. In contrast, for (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x glasses, there is a slight increase in the number of BO 3 structural units above x = 0.2, as there is a competition between SiO 2 and B 2 O 3 for interaction with Pb 2+ , thereby leading to the formation of BO 3 structural units. For both series of glasses, the thermal expansion coefficient is found to decrease with increasing B 2 O 3 concentration, the effect being more pronounced for the (PbO) 0.5-x (SiO 2 ) 0.5 (B 2 O 3 ) x series of glasses due to the increased concentration of Q 4 structural units of silicon and better cross-linking as a result of the formation of Si-O-B-type linkages. (author)

  17. Dynamics of Li+ ions in Li2O-TeO2-P2O5 glasses

    Science.gov (United States)

    Chatterjee, A.; Ghosh, A.

    2018-04-01

    In the present work we have studied transport properties of lithium ions in 0.3Li2O-0.7[xTeO2-(1-x)P2O5] glasses, where x=0.5, 0.6, 0.7. We have measured acconductivity for a wide range offrequency and temperature. The real part of the conductivity spectra has been analyzed by the power law in Almond-West formalism. The dc conductivity has been obtained from the complex impedance plots. We have found that dc conductivity increases and activation energy decreases on increase of TeO2 for a particular Li2O content. We have also found that the dc conductivity and crossover frequency obey Arrhenius relation. The time temperature superposition has been verified using the scaling formalism of the conductivity spectra. We have found that the conductivity isotherms scaled to a single master curve with suitable scaling parameters for a particular composition at different temperatures. However the scaling to a single master curve fails for different compositions at a particular temperature.

  18. VUV-UV–vis photoluminescence of Ce{sup 3+} and Ce{sup 3+}-Eu{sup 2+} energy transfer in Ba{sub 2}MgSi{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Liu, Chunmeng; Zhou, Weijie [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Huang, Yan; Tao, Ye [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Liang, Hongbin, E-mail: cesbin@mail.sysu.edu.cn [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-05-15

    A series of Ce{sup 3+} doped and Ce{sup 3+}-Eu{sup 2+} co-doped Ba{sub 2}MgSi{sub 2}O{sub 7} phosphors was prepared via a high-temperature solid-state reaction technique. The photoluminescence properties, which include synchrotron radiation VUV-UV excitation spectra, emission spectra and concentration effect, thermal stability of Ce{sup 3+} are investigated. Hence the energies of the crystal field split 5d excited states of Ce{sup 3+} are determined. Due to spectral overlap, the energy transfer from sensitizer Ce{sup 3+} to activator Eu{sup 2+} in Ba{sub 2}MgSi{sub 2}O{sub 7}:Ce{sup 3+}, Eu{sup 2+} occurs, and the mechanism is demonstrated to be an electric dipole−dipole interaction. - Highlights: •The energies of five crystal field split 5d states of Ce{sup 3+} in Ba{sub 2}MgSi{sub 2}O{sub 7} were determined by synchrotron radiation VUV-UV excitation spectrum. •The concentration effect, thermal stability of Ce{sup 3+} were investigated. •The energy transfer from Ce{sup 3+} to Eu{sup 2+} and its influence on luminescence decays of Ce{sup 3+} and Eu{sup 2+} were studied.

  19. Zero photoelastic and water durable ZnO-SnO-P2O5-B2O3 glasses

    Science.gov (United States)

    Saitoh, Akira; Nakata, Kohei; Tricot, Grégory; Chen, Yuanyuan; Yamamoto, Naoki; Takebe, Hiromichi

    2015-04-01

    We report properties of zero birefringent xZnO-(67-x)SnO-(33-y)P2O5-y B2O3 glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC) and improved water durability. x = 19 and y = 3 compositions show minimum PEC of -0.002 × 10-12 Pa-1, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007)].

  20. Compounds of type Ba/sub 2/Bsup(III)Ossup(V)O/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-07-01

    The black perovskites of type Ba/sub 2/Bsup(III)Ossup(V)O/sub 6/ crystallize cubic (Bsup(III) = Pr, Nd, Sm-Lu, Y) and rhombohedral (Bsup(III) = La) respectively; the cell volumina decrease linearily with (rsub(B)sup(III))/sup 3/. Intensity calculations on powder data for Ba/sub 2/YOsO/sub 6/ (space group Fm3m-Osub(h)/sup 5/) and Ba/sub 2/LaOsO/sub 6/ (space group R-3m-Dsub(3d)/sup 5/) gave the intensity related R'values of 4.6% and 5.0% respectively. The results of the vibrational spectroscopic investigations are reported in common with the bond orders, M-O distances and mean amplitudes and compared with the corresponding values of the series Ba/sub 2/Bsup(III)Irsup(V)O/sub 6/ and Ba/sub 2/Bsup(III)Rusup(V)O/sub 6/.

  1. Defect equilibrium in PrBaCo2O5+δ at elevated temperatures

    International Nuclear Information System (INIS)

    Suntsov, A.Yu.; Leonidov, I.A.; Patrakeev, M.V.; Kozhevnikov, V.L.

    2013-01-01

    A defect equilibrium model for PrBaCo 2 O 5+δ is suggested based on oxygen non-stoichiometry data. The model includes reactions of oxygen exchange and charge disproportionation of Co 3+ cations. The respective equilibrium constants, enthalpies and entropies for the reactions entering the model are obtained from the fitting of the experimental data for oxygen non-stoichiometry. The enthalpies of oxidation Co 2+ →Co 3+ and Co 3+ →Co 4+ are found to be equal to 115±9 kJ mol –1 and 45±4 kJ mol –1 , respectively. The obtained equilibrium constants were used in order to calculate variations in concentration of cobalt species with non-stoichiometry, temperature and oxygen pressure. - Graphical abstract: Variations in concentration of cobalt species with oxygen content in PrBaCo n 2+ Co z 3+ Co p 4+ O 5+δ at 650 °S. Display Omitted - Highlights: • The defect equilibrium model based on oxygen non-stoichiometry data is suggested. • Disproportionation of Co 3+ cations gives significant contribution to defect equilibrium. • The hole concentration obtained from the model is in accord with electrical properties

  2. Two new octahedral/pyramidal frameworks containing both cation channels and lone-pair channels: syntheses and structures of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4

    International Nuclear Information System (INIS)

    Johnston, Magnus G.; Harrison, William T.A.

    2004-01-01

    The hydrothermal syntheses, single crystal structures, and some properties of Ba 2 Mn II Mn 2 III (SeO 3 ) 6 and PbFe 2 (SeO 3 ) 4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO 6 ) and vertex/edge linked (MnO 6 ) octahedra and SeO 3 pyramids. In each case, the MO 6 /SeO 3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the Se IV lone pairs. Crystal data: Ba 2 Mn 3 (SeO 3 ) 6 , M r =1201.22, monoclinic, P2 1 /c (No. 14), a=5.4717 (3)A, b=9.0636 (4)A, c=17.6586 (9)A, β=94.519 (1) o , V=873.03 (8)A 3 , Z=2, R(F)=0.031, wR(F 2 )=0.070; PbFe 2 (SeO 3 ) 4 , M r =826.73, triclinic, P1-bar (No. 2), a=5.2318 (5)A, b=6.7925 (6)A, c=7.6445 (7)A, α=94.300 (2) o , β=90.613 (2) o , γ=95.224 (2) o , V=269.73 (4)A 3 , Z=1, R(F)=0.051, wR(F 2 )=0.131

  3. Coherent intergrowth of simple cubic and quintuple tetragonal perovskites in the system Nd_2_−_εBa_3_+_ε(Fe_,Co)_5O_1_5_−_δ

    International Nuclear Information System (INIS)

    Kundu, Asish K.; Yu Mychinko, Mikhail; Caignaert, Vincent; Lebedev, Oleg I.; Volkova, Nadezhda E.; Deryabina, Ksenia M.; Cherepanov, Vladimir A.; Raveau, Bernard

    2015-01-01

    Investigation of the Nd_2_−_εBa_3_+_ε(Fe,Co)_5O_1_5_−_δ system, combining X-ray diffraction and electron microscopy, has allowed a tetragonal quintuple ordered perovskite “a_p×a_p×5a_p” phasoid inter-grown within a single cubic perovskite matrix to be evidenced for ε=0. This nanoscale chemically twinned perovskite is compared with other members, Ln=Sm, Eu, Pr. The unusual long range ordering of the layers develops strains due to size mismatch between Ba"2"+ and Ln"3"+ cations. Importantly, two factors allow the strains to be decreased: (i) special intergrowths of double (LnBaFe_2O_6_−_δ) and triple (LnBa_2Fe_3O_9_−_δ) perovskite ribbons/layers oriented at 90°, (ii) nanoscale chemical twinning. The spin locking effect of the nano-domain boundaries upon the magnetic properties of these perovskites is discussed. - Graphical abstract: Nd_2Ba_3Fe_5O_1_4_._5_4 is a tetragonal quintuple perovskite phasoid embedded in a simple cubic perovskite matrix, which shows collinear antiferromagnetic behavior.

  4. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  5. Mixed valent perovskites Ba/sub 3/B/sup 3 +/Ru/sub 2/sup(4. 5+)O/sub 9/. Catalytic activity of perovskite oxides with noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Treiber, U; Kemmler-Sack, S; Ehmann, A; Schaller, H U; Duerrschmidt, E; Thumm, I; Bader, H [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-10-01

    The black compounds Ba/sub 3/B/sup 3 +/Ru/sub 2/O/sub 9/ crystallize with B/sup 3 +/ = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Y in a hexagonal BaTiO/sub 3/ structure (6L, sequence (hcc)/sub 2/) with an ordered distribution (1:2 order) of B/sup 3 +/ and ruthenium (BO/sub 6/ single octahedra; Ru/sub 2/O/sub 9/ double groups). The mean oxidation state of ruthenium is about +4.5. The properties are compared with those of other isotypic stacking polytypes Ba/sub 3/B/sup 3 +/M/sub 2/sup(4.5)O/sub 9/ (M/sub 2/ = IrRu, Ir/sub 2/, PtRu) and Ba/sub 3/B/sup 2 +/M/sub 2//sup 5 +/O/sub 9/ (M = Ru, Ir). The results of activity tests concerning the efficiency of perovskite oxides with noble metals in respect of the oxidation of CO or CHsub(x) and the reduction of NOsub(x) are reported.

  6. Crystallization of rare earth germanates in the K2O-Ln2O3-GeO2-H2O at 280 deg C

    International Nuclear Information System (INIS)

    Panasenko, E.B.; Begunova, R.G.; Sklokina, N.F.

    1980-01-01

    Crystallization of rare earth germanates in potassium hydroxide solutions is studied at 280 deg C. Stability limits for different crystalline phases are established. Diorthogermanates Ln 2 O 3 x2GeO 3 (three structural modifications) are formed with all lanthanides except lanthanum. Germanates-apatites 7Ln 2 O 3 x9GeO 2 are characteristic for ''large'' lanthanides La-Nd. Alkali germanate of the composition 0.5 K 2 OxLn 2 O 3 xGeO 2 xnH 2 O is realized with the elements of the end of rare earth series, i.e., Tm-Lu. Some properties of the germanates synthesized are considered [ru

  7. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    Science.gov (United States)

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  8. Effects of cationic substitution on the electronic and magnetic properties of manganocuprate with a layered Eu3Ba2Mn2Cu2O12 structure

    International Nuclear Information System (INIS)

    Matsubara, Ichiro; Funahashi, Ryoji; Ueno, Kazuo; Ishikawa, Hiroshi; Kida, Noriaki; Ohno, Nobuhito

    1998-01-01

    Systematic studies on the effect of substitutions on the layered manganocuprate Eu 3 Ba 2 Mn 2 Cu 2 O 12 have been conducted. To introduce holes, the authors have made substitutions of Ca for Eu and/or Sc for Mn, (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 . Single-phase compounds are obtained over a fairly wide range of x and y values for x ≤ 0.7 (y = 0), x ≤ 0.5 (y = 0.5), and x ≤ 0.1 (y = 1.0). The doped holes are received predominantly at the Mn-O site and change the charge of Mn from 3+ to 4+, and no superconductivity has been obtained for any sample. The electronic ground state of (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 is discussed by comparing with that of the three-dimensional perovskite La 1-x Ca x MnO 3 and K 2 NiF 4 -type La 1-x Sr 1+x MnO 4 compounds. The substitution of Sr for Ba gives rise to a different crystal structure, the Sr 3 Ti 2 O 7 structure

  9. Inducing self-assembly of Y2BaCuO5 nanoparticles via Ca-doping for improved pinning in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Barnes, P.N.; Haugan, T.J.; Baca, F.J.; Varanasi, C.V.; Wheeler, R.; Meisenkothen, F.; Sathiraju, S.

    2009-01-01

    Different mechanisms may exists as a means to provide additional or specialized enhancement of existing nanoparticulate pinning in YBa 2 Cu 3 O 7-x (YBCO) thin films. In the particular case of Y 2 BaCuO 5 (Y211) nanoparticles, Ca-doping of these nanoparticles via addition to the Y211 target material provides an additional increase to the J c (H). YBCO + Y211 samples were created by pulsed laser deposition with alternating targets of YBCO with Y211 and Y211 doped with Ca. Initial indications suggest that this improvement in pinning results from some scattered short-ranged self-assembly of the nanoparticles into short nanocolumns.

  10. Growth and characterizations of Ba2Ti2Fe2As4O single crystals

    Directory of Open Access Journals (Sweden)

    Yun-Lei Sun, Abduweli Ablimit, Jin-Ke Bao, Hao Jiang, Jie Zhou and Guang-Han Cao

    2013-01-01

    Full Text Available Single crystals of a new iron-based superconductor Ba2Ti2Fe2As4O have been grown successfully via a Ba2As3-flux method in a sealed evacuated quartz tube. Bulk superconductivity with Tc ~ 21.5 K was demonstrated in resistivity and magnetic susceptibility measurements after the as-grown crystals were annealed at 500 °C in vacuum for a week. X-ray diffraction patterns confirm that the annealed and the as-grown crystals possess the identical crystallographic structure of Ba2Ti2Fe2As4O. Energy-dispersive x-ray spectra indicate that partial Ti/Fe substitution exists in the [Fe2As2] layers and the annealing process redistributes the Ti within the Fe-plane. The ordered Fe-plane stabilized by annealing exhibits superconductivity with magnetic vortex pinned by Ti.

  11. Properties of half metallic (Ba0.8Sr0.2)2-x La2x/3x/3FeMoO6 double perovskites

    International Nuclear Information System (INIS)

    Serrate, D.; De Teresa, J.M.; Blasco, J.; Morellon, L.; Ibarra, M.R.

    2005-01-01

    Previous work in (Ba 0.8 Sr 0.2 ) 2- x La x FeMoO 6 and Ba 1+ x Sr 1-3 x La 2 x FeMoO 6 have stated electron doping as the most important parameter in terms of T c enhancement. Here we report complementary structural, magnetic and transport properties, say a series where there is no doping and only structural parameters are changed: (Ba 0.8 Sr 0.2 ) 2- x La 2 x /3 x /3 FeMoO 6 . We propose a complete phase diagram where structural and bandfilling impact on the Curie temperature is clearly evidenced

  12. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  13. Study of the tellurite-rich composition range in the Bi2O3-TeO2 system

    International Nuclear Information System (INIS)

    Ghazaryan, A.A.

    2015-01-01

    The TeO 2 and Bi 2 O 3 based glasses and glass ceramics are widely used for various technical needs. However, information about the phase diagram of the Bi 2 O 3 -TeO 2 system is limited, and the existing data are inconsistent. According to Demina L.A. with co-authors the Bi 2 Te 4 O 1 1 compound has a congruent melting at 662°C and forms two eutectics with neighbors. In another case, according to the Schmidt P. with co-authors, it melts incongruently at 645°C without indication of Liquidus temperature. It was the motivation for the Bi 2 Te 4 O 1 1 melting behavior investigation and the binary Bi 2 O 3 -TeO 2 system phase diagram correction in the TeO 2 rich area of compositions. As initial materials the glass and solid state sintered samples were used for these purposes. The differential thermal and X-ray analyses were used for glassy and crystallized products identification. The exothermic effect with maximum at 420°C and two endothermal effects with minimum at 635°C and 720 Degree C are clearly observed on the DTA curve of the 80 TeO 2 -20 Bi 2 O 3 (mol.percent) glass composition corresponding to the Bi 2 Te 4 O 1 1 compound. The product of Bi 2 Te 4 O 1 1 glass powder crystallization at 420°C is the Bi 2 Te 4 O 1 1 compound with melting point of 635 ± 5°C. The second endothermic effect on the DTA curve in the range of temperature 680-765°C with minimum at 720°C, is associated with dissolution of TeO 2 in the melt, formed as result of the Bi 2 Te 4 O 1 1 incongruent melting. The existence of eutectic E 1 (87 mol.percent TeO 2 ) between Bi 2 Te 4 O 1 1 and TeO 2 with a melting point of 580 ±5°C has been confirmed. Incongruent melting promotes the peritectic P 1 (81 mol.percent TeO 2 ) formation between Bi 2 Te 4 O 1 1 and eutectic E 1 (87 mol.percent TeO 2 ) with a melting point of 635±5°C. Three endothermic effects at 560 °C, 635 °C and 720°C have been observed on the DTA curve of Bi 2 Te 4 O 1 1 compound, obtained by solid state synthesis. Last

  14. Anisotropy in Ba2Cu3O4Cl2 single crystals grown by the traveling solvent floating zone method

    International Nuclear Information System (INIS)

    Yamada, Shigeki; Iwagaki, Yohei; Noro, Sumiko

    2007-01-01

    Magnetic and electrical properties of layered copper oxychloride Ba 2 Cu 3 O 4 Cl 2 single crystals are measured. Single crystal growth of Ba 2 Cu 3 O 4 Cl 2 by the traveling solvent floating zone method is attempted using Ba 3 Cu 2 O 4 Cl 2 as solvent. By optimization of the growth conditions, large single crystals of (φ5mmx30mm) of Ba 2 Cu 3 O 4 Cl 2 are grown. The resistivity with the current parallel to the c-axis is 10 2 -10 3 times larger than that with the current perpendicular to the a-axis. The temperature dependence of the dielectric spectrum for each direction is measured and analyzed by using the Debye model. The spectrum width, which is related to the effective number of electrons (n/m), does not show an appreciable dependence on temperature. The characteristic frequencies at which the dielectric constant changes, which are related to the dissipation (γ), increase with warming. The temperature dependence is almost the same as the resistivity curve. This indicates that the hopping process dominates both DC- and AC-type electrical transport. The spectrum width with the electric field parallel to the a-axis is 30 times larger than that with the electric field parallel to the c-axis. On the other hand, the characteristic frequencies do not show an appreciable dependence on electric field direction

  15. Phonon modes in Gd1-xCexBa2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    SH Mozaffari

    2009-08-01

    Full Text Available  XRD and Raman analyses were performed to probe the phase formation and the variation of the normal phonon frequencies of the high temperature superconductor GdBa2Cu3O7-δ upon Ce doping. It was found that in addition to the orthorhombic 123 phase, some nonsuperconducting peaks, which are mainly due to the BaCeO3 secondary phase, are also formed that suppress the superconducting transition temperature. Besides, analysis of the Raman peaks shows that substitutions of Ce for Gd in GdBa2Cu3O7-δ are restricted to low concentrations in favor of impurity island formation .

  16. Thermoelectric properties of Ba3Co2O6(CO3)0.7 containing one-dimensional CoO6 octahedral columns

    OpenAIRE

    Iwasaki, Kouta; Yamamoto, Teruhisa; Yamane, Hisanori; Takeda, Takashi; Arai, Shigeo; Miyazaki, Hidetoshi; Tatsumi, Kazuyoshi; Yoshino, Masahito; Ito, Tsuyoshi; Arita, Yuji; Muto, Shunsuke; Nagasaki, Takanori; Matsui, Tsuneo

    2009-01-01

    The thermoelectric properties of Ba3Co2O6(CO3)0.7 have been investigated using prismatic single crystals elongated along the c axis. Ba3Co2O6(CO3)0.7 has a pseudo-one-dimensional structure similar to that of 2H perovskite-type BaCoO3 and contains CoO6 octahedral columns running parallel to the c axis. The prismatic crystals are grown by a flux method using a K2CO3BaCl2 flux. The electrical conductivity(σ) along the columns (c axis) exhibits a metallic behavior (670–320 S cm−1 in the temperat...

  17. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  18. Structural and Physical Properties of Fe2O3-B2O3-V2O5 Glasses

    Directory of Open Access Journals (Sweden)

    Virender Kundu

    2008-01-01

    Full Text Available The structural and physical properties of xFe2O3-(40-x B2O3-60V2O5  (0≤x≤20 glass system have been investigated. The samples were prepared by normal melt-quench technique. The structural changes were inferred by means of FTIR by monitoring the infrared (IR spectra in the spectral range 600–4000 cm-1. The absence of boroxol ring (806 cm-1 in the present glass system suggested that these glasses consist of randomly connected BO3 and BO4 units. The conversion of BO3 to BO4 and VO5 to VO4 tetrahedra along with the formation of non-bridging oxygen's (NBOs attached to boron and vanadium takes place in the glasses under investigation. The density and molar volume of the present glass system were found to depend on Fe2O3 content. DC conductivity of the glass system has been determined in the temperature range 310–500 K. It was found that the general behavior of electrical conductivity was similar for all glass compositions and found to increase with increasing iron content. The parameters such as activation energy, average separation between transition metal ions (TMIs, polaron radius, and so forth have been calculated in adiabatic region and are found consistent with Mott's model of phonon-assisted polaronic hopping.

  19. Spin-Coating and Characterization of Multiferroic MFe{sub 2}O{sub 4} (M=Co, Ni) / BaTiO{sub 3} Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Quandt, Norman [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany); Roth, Robert [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Syrowatka, Frank [Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Germany); Steimecke, Matthias [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Germany); Ebbinghaus, Stefan G., E-mail: stefan.ebbinghaus@chemie.uni-halle.de [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany)

    2016-01-15

    Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.

  20. Syntheses, structures, and properties of Ag4(Mo2O5)(SeO4)2(SeO3) and Ag2(MoO3)3SeO3

    International Nuclear Information System (INIS)

    Ling Jie; Albrecht-Schmitt, Thomas E.

    2007-01-01

    Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) has been synthesized by reacting AgNO 3 , MoO 3 , and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO 2 2+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C 2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C 2 distortion. Upon heating Ag 4 (Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 ) looses SeO 2 in two distinct steps to yield Ag 2 MoO 4 . Crystallographic data: (193 K; MoKα, λ=0.71073 A): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) A, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 was synthesized by reacting AgNO 3 with MoO 3 , SeO 2 , and HF under hydrothermal conditions. The structure of Ag 2 (MoO 3 ) 3 SeO 3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO 6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 A): monoclinic, space group P2 1 /n, a=7.7034(5), b=11.1485(8), c=12.7500(9) A, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag 2 (MoO 3 ) 3 SeO 3 decomposes to Ag 2 Mo 3 O 10 on heating above 550 deg. C. - Graphical abstract: A view of the one-dimensional [(Mo 2 O 5 )(SeO 4 ) 2 (SeO 3 )] 4- chains that extend down the c-axis in the structure of Ag 4 (Mo 2 O 5 )(SeO 4

  1. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  2. Calculation of Al2O3 contents in Al2O3-PTFE composite thick films fabricated by using the aerosol deposition

    International Nuclear Information System (INIS)

    Kim, Hyung-Jun; Kim, Yoon-Hyun; Nam, Song-Min; Yoon, Young-Joon; Kim, Jong-Hee

    2010-01-01

    Low-temperature fabrication of Al 2 O 3 -PTFE (poly tetra fluoro ethylene) composite thick films for flexible integrated substrates was attempted by using the aerosol deposition method. For optimization of composite thick films, a novel calculation method for the ceramic contents in the composites was attempted. Generally, a thermogravimetry (TG) analysis is used to calculate the ceramic contents in the ceramic-polymer composites. However, the TG analysis requires a long measurement time in each analysis, so we studied a novel calculation method that used a simple dielectric measurement. We used Hashin-Shtrikman bounds to obtain numerical results for the relationship between the dielectric constant of the composites and the contents of Al 2 O 3 . A 3-D electrostatic simulation model similar to the deposited Al 2 O 3 -PTFE composite thick films was prepared, and the simulation result was around the lower bound of the Hashin-Shtrikman bounds. As a result, we could calculate the Al 2 O 3 contents in the composites with a low error of below 5 vol.% from convenient dielectric measurements, and the Al 2 O 3 contents ranged from 51 vol.% to 54 vol.%.

  3. High magnetic field study of HoBaCo2O5.5 and GdBaCo2O5.5 layered cobaltites: the effect of rare-earth size

    International Nuclear Information System (INIS)

    Frontera, C.; Respaud, M.; Garcia-Munoz, J.L.; Llobet, A.; Carrillo, A.E.; Caneiro, A.; Broto, J.M.

    2004-01-01

    By means of high-pulsed magnetic field up to μ 0 H=32 T we have studied HoBaCo 2 O 5+δ (δ=0.52(1)). The high-field M(H) integrated curves evidence a magnetic field-induced phase transition visible from about T=75 to 275 K. The obtained results are compared with the field-induced transition found for GdBaCo 2 O 5+δ (with δ=0.54(2)). The jump of the magnetization at the field-induced transition is independent of the rare earth at this level of oxygen content. In contrast, we have observed larger values of the critical field, and that the transition persists up to higher temperature, when reducing the rare-earth size. This indicates that the low-temperature antiferromagnetic phase becomes more stable when the size of the rare earth is reduced

  4. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    Science.gov (United States)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  5. Radiation shielding with Bi2O3 and ZrO2:Y composites: preparation and characterization

    International Nuclear Information System (INIS)

    Fontainha, Crissia C.P.

    2015-01-01

    Despite the benefits of medical imaging examinations, there is a worrying contribution of dose of radiation to population due to the high dose procedures. Procedures as interventional radiology, Computed Tomography (CT) and nuclear medicine provide high doses to the skin of patients, provoking radiation deleterious effects. New attenuators materials have been widely investigated for radiation shielding in those regions of high risk, allowing significant dose reduction near the patient's skin. Composites with Bi 2 O 3 and ZrO 2 :Y metals were obtained by mixing them with P(VDF-TrFe) copolymers from casting. Composites were produced with concentrations of 2, 4 and 8% wt. of Yttrium stabilized zirconia. Bi 2 O 3 containing composites were produced with the same concentrations (2, 4 and 8% wt.), with Bi 2 O 3 particles being previously functionalized with methacrylic acid (MAA). The composites were characterized by FTIR. The entrance skin dose characterization was performed with and without the use of radiation protective shielding. The composite samples were exposed to an absorbed dose of 100 mGy of RQR5 beam quality (70 kV X-ray beam). The attenuation factors, evaluated by XR-QA2 radiochromic films, indicate that both P(VDF-TrFE)/Bi 2 O 3 and P(VDF-TrFE)/ZrO 2 :Y composites are good candidates for use as patient radiation shielding in high dose medical procedures. (author)

  6. Batisivite, V8Ti6[Ba(Si2O)]O28, a new mineral species from the derbylite group

    Science.gov (United States)

    Reznitsky, L. Z.; Sklyarov, E. V.; Armbruster, T.; Galuskin, E. V.; Ushchapovskaya, Z. F.; Polekhovsky, Yu. S.; Karmanov, N. S.; Kashaev, A. A.; Barash, I. G.

    2008-12-01

    Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15-0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220-1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm— R {max/'}/ R {min/'}): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P overline 1 ; the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %)( hkl)] are: 3.09(8)(12 overline 2 ); 2.84, 2.85(10)(021, 120); 2.64(8)(21 overline 3 ); 2.12(8)(31 overline 3 ); 1.785(8)(32 overline 4 ), 1.581(10)(24 overline 2 ); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses

  7. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  8. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  9. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  10. Magnetostriction in composites of LiFe5O8-BaTiO3

    International Nuclear Information System (INIS)

    Sarah, P.; Suryanarayana, S.V.

    2003-01-01

    Polycrystalline lithium ferrite, LiFe 5 O 8 was prepared by adopting two preparation techniques, the solid-state double sintering method and the sol-gel method. This ferrite powder was thoroughly mixed with barium titanate, BaTiO 3 for preparation of di-phasic composites of lithium ferrite and barium titanate. X-ray diffraction study of these composites revealed the presence of both the phases. Magnetostriction of these composites was measured in varying magnetic fields. The value of magnetostriction for the composites prepared by the sol-gel method was found to be higher than the values obtained in case of composites prepared by the solid-state method. Magnetostriction was found to decrease with increasing content of barium titanate. The saturation field was found to increase with the introduction of barium titanate

  11. Analysis of (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors for application in solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.K. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); Piqutte, A.; Hannah, M.E. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); Hirata, G.A. [Centro de Nanociencias y Nanotecnolgía, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada Apdo, Ensenada MX CP 22860 (Mexico); Talbot, J.B. [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Nanoengineering, La Jolla, CA 92093 (United States); Mishra, K.C. [OSRAM SYLVANIA Central Research, 71 Cherry Hill Drive Beverly, MA 01915 (United States); McKittrick, J., E-mail: jmckittrick@ucsd.edu [University of California, San Diego, Materials Science and Engineering Program, La Jolla, CA 92093 (United States); University of California, San Diego, Department of Mechanical and Aerospace Engineering, La Jolla, CA 92093 (United States)

    2014-04-15

    The luminescence properties of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} phosphors prepared by combustion synthesis were studied. Eu{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} has a broad blue emission band centered at 450–485 nm and Eu{sup 2+}–Mn{sup 2+}-activated (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8} exhibits a red emission around 620–703 nm, depending on the relative concentrations of Ba, Ca and Sr. The particle size of Eu{sup 2+} and Mn{sup 2+} co-activated (Ba,Ca){sub 3}MgSi{sub 2}O{sub 8} ranges from 300 nm to 1 μm depending on the metal ion and are agglomerated due to post-synthesis, high temperature annealing. The green emission of Ba{sub 3}MgSi{sub 2}O{sub 8} originates from secondary phases (Ba{sub 2}SiO{sub 4} and BaMgSiO{sub 4}) confirmed by emission spectra and X-ray diffraction patterns. The secondary phases of Ba{sub 3}MgSi{sub 2}O{sub 8} are removed by the addition of Sr. The quantum efficiencies range from 45% to 70% under 400 nm excitation and the lifetime of red emission of Ba{sub 3}MgSi{sub 2}O{sub 8} decreases significantly with increasing temperature, which is 54% at 400 K of that at 80 K compared to that of blue emission (90% at 400 K of that at 80 K). -- highlights: • (Ba,Ca,Sr){sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+}, Mn{sup 2+} phosphors were prepared by a combustion synthesis method. • The emission spectra consist of broad blue-emission band and red-emission band. • The quantum efficiencies range between 45% and 70%, depending on the relative concentrations of Ba, Ca and Sr. • The secondary phases were eliminated by additions of Sr. • Lifetime of the red-emission decreases with increasing temperature, suggesting that these phosphors are not useful for solid state lighting applications.

  12. Exchange Bias in Layered GdBaCo2O5.5 Cobaltite

    Science.gov (United States)

    Solin, N. I.; Naumov, S. V.; Telegin, S. V.; Korolev, A. V.

    2017-12-01

    It is established that excess oxygen content δ influences the exchange bias (EB) in layered GdBa-Co2O5 + δ cobaltite. The EB effect arises in p-type (δ > 0.5) cobaltite and disappears in n-type (δ training effect inherent in systems with EB has been studied. The results are explained in terms of exchange interaction between the FM and AFM phases. It is assumed that the EB originates from the coexistence of Co3+ and Co4+ ions that leads to the formation of monodomain FM clusters in the AFM matrix of cobaltite.

  13. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  14. Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 lead-free multiferroic structures

    Science.gov (United States)

    Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui

    2017-10-01

    We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.

  15. Research of the lime rich portions of the CaO-SiO2-P2O5 system

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1995-03-01

    Full Text Available A detailed study has been carried out to explain the influence of Pp^ in silicate phases and in industrial raw meals upon their mineralogical compositions. Some compositions in the lime rich portion of the CaO-SiO2-P2O5 system are studied using laboratory reactants. The results showed that the compositions lying in the range of CaO = 69,5-70,1; P2O5= 16,2-19,5; SiO2 = 11,1-13,6 (wt% give, at 1000 °C, the mineralogical composition (HAp, β-C2S, C5PS which can develop a high strength in chemically bonded ceramics. At high temperature (1400 ºC these compositions give a large amount of silicocarnotite (C5PS and 2C2.C3P phase. A selected composition of the industrial raw meal with added phosphate: CaO = 62,66; SiO2 -= 17,33; Al2O3 = 4,88; Fe2O3 = 4,29; P2O5 = 8,73; MgO = 2,09 (wt% forms at 1350 ºC a clinker containing high amount of α-C2S to replace C3S. Such a clinker may have good applications in the synthesis of active belite cement.Se estudia con detalle la influencia del P2O5 sobre las composiciones mineralógicas en fases silicato y en un crudo industrial. Asimismo se estudian algunas composiciones de la zona rica en cal del sistema CaO-SiO2-P2O5 utilizando reactivos químicos. Los resultados demuestran que, a presión atmosférica y recinto abierto, las composiciones dentro de los límites CaO = 69,5-70,1; P2O5= 16,2-19,5; SiO2 = 11,1-13,6 (% en peso dan a 1000ºC la composición mineralógica siguiente: HAp, β-C2S, C5PS; pueden desarrollar una alta resistencia química en "chemically bonded ceramics". A altas temperaturas (1400°C producen una elevada proporción de silicocarnotita (C5PS S y la fase 2C2.C3P. Con la adición de fosfato a una determinada dosificación de crudo industrial (CaO = 62,66; SiO2 = 17,33; Al2O3 = 4,88; Fe2O3 = 4,29; P2O5 = 8,73; MgO = 2,09 -% en peso- se forma, a 1350°C, un clinker que contiene una alta proporción de α-C2S que reemplaza al C3S. Este clinker puede tener buenas aplicaciones en la obtención de

  16. Synthesis, band structure, and optical properties of Ba2ZnV2O8

    International Nuclear Information System (INIS)

    Chen, D.-G.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Zhang, Y.-C.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A novel compound Ba 2 ZnV 2 O 8 has been synthesized in high temperature solution reaction and its crystal structure has been characterized by means of single crystal X-ray diffraction analysis. It crystallizes in monoclinic system and belongs to space group P2 1 /c with a=7.9050(16), b=16.149(3), c=6.1580(12)A, β=90.49(3). It builds up from 1-D branchy chains of [ZnV 2 O 8 4- ] ∞ , and the Ba 2+ cations are located in the space among these chains. The IR spectrum, ultraviolet-visible diffuse reflection integral spectrum and fluorescent spectra of this compound have been investigated. The calculated results of energy band structure by the density functional theory method show that the solid-state compound of Ba 2 ZnV 2 O 8 is an insulator with direct band gap of 3.48eV. The calculated total and partial density of states indicate that the top valence bands are contributions from the mixings of O-2p, V-3d, and Zn-3d states and low conduction bands mostly originate from unoccupied antibonding states between the V-3d and O-2p states. The V-O bonds are mostly covalence characters and Zn-O bonds are mostly ionic interactions, and the ionic interaction strength is stronger between the Ba-O than between the Zn-O. The refractive index of n x , n y , and n z is estimated to be 1.7453, 1.7469, and 1.7126, respectively, at wavelength of 1060nm for Ba 2 ZnV 2 O 8 crystal

  17. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    Science.gov (United States)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  18. Crystal Structure Analysis of Electromagnetic Wave Absorber Material BaFe12-xTix/2Znx/2O19Based

    Science.gov (United States)

    Delina, M.; Nenni, N.; Adi, W. A.

    2018-04-01

    The optimization of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8)single phase composition have been performed. The materials were synthesized by solid state reaction method through mechanical milling technique.The materials were made from the mixture of oxide materials, which are BaCO3, Fe2O3, TiO2 and ZnO. The mixture was milled for five hours using a High Energy Milling (HEM), was dried at 100°C in the Oven and then was sintered at 1000°C for five hours in the Furnace. The phase identification of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8) were carried out by using a Match Program while the crystal structure analysis were investigated by using a General Structure Analysis System (GSAS) program. The refinement results of x-ray diffraction pattern showed that the sample of x ≤ 2.4 have a BaFe12O19 single phase while the sample of x> 2.4 have two phases, which are BaFe12O19 and ZnFe2O4 phases. The surface morphology of sample and the element of sample were identified through an analysis of Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) data.

  19. Zn2+ in-situ substitution behavior during the formation of BaTiO3 coatings from plasma-sprayed powders collected in liquid nitrogen

    Science.gov (United States)

    Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo

    2018-04-01

    The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.

  20. Influence of the Gd.sub.2./sub.BaCuO.sub.5./sub. fine particles on thermoelectric power of melt-textured (Nd-Sm-Gd) Ba.sub.2./sub.Cu.sub.3./sub.O.sub.7 -.delta../sub.

    Czech Academy of Sciences Publication Activity Database

    Okram, G. A.; Muralidhar, M.; Jirsa, Miloš; Murakami, M.

    2004-01-01

    Roč. 402, - (2004), s. 94-97 ISSN 0921-4534 Institutional research plan: CEZ:AV0Z1010914 Keywords : melt-textured materials * thermoelectric power * (Nd,Sm,Gd)Ba 2 Cu 3 O y * Gd 2 BaCuO 5 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.072, year: 2004

  1. Multilevel Resistance Switching Memory in La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (011) Heterostructure by Combined Straintronics-Spintronics.

    Science.gov (United States)

    Zhou, Weiping; Xiong, Yuanqiang; Zhang, Zhengming; Wang, Dunhui; Tan, Weishi; Cao, Qingqi; Qian, Zhenghong; Du, Youwei

    2016-03-02

    We demonstrate a memory device with multifield switchable multilevel states at room temperature based on the integration of straintronics and spintronics in a La2/3Ba1/3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) (011) heterostructure. By precisely controlling the electric field applied on the PMN-PT substrate, multiple nonvolatile resistance states can be generated in La2/3Ba1/3MnO3 films, which can be ascribed to the strain-modulated metal-insulator transition and phase separation of Manganite. Furthermore, because of the strong coupling between spin and charge degrees of freedom, the resistance of the La2/3Ba1/3MnO3 film can be readily modulated by magnetic field over a broad temperature range. Therefore, by combining electroresistance and magnetoresistance effects, multilevel resistance states with excellent retention and endurance properties can be achieved at room temperature with the coactions of electric and magnetic fields. The incorporation of ferroelastic strain and magnetic and resistive properties in memory cells suggests a promising approach for multistate, high-density, and low-power consumption electronic memory devices.

  2. Structure and properties of ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}-TeO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mosner, Petr, E-mail: petr.mosner@upce.cz [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Vosejpkova, Katerina; Koudelka, Ladislav [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Montagne, Lionel; Revel, Bertrand [Unite de Catalyse et de Chimie du Solide - UCCS, Univ Lille Nord de France, F-59000, CNRS UMR 8181, USTL F-59655, ENSCL F-59652, Villeneuve d' Ascq (France)

    2010-11-01

    Zinc borophosphate glasses doped with TeO{sub 2} were studied in the compositional series (100 - x)[0.5ZnO-0.1B{sub 2}O{sub 3}-0.4P{sub 2}O{sub 5}]-xTeO{sub 2} in a broad concentration range of x = 0-80 mol% TeO{sub 2}. The structure of the glasses was studied by Raman and IR spectroscopy and by {sup 31}P and {sup 11}B MAS NMR spectroscopy. According to the Raman and IR spectra, TeO{sub 2} is incorporated in the structural network in the form of TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} structural units. The ratio of TeO{sub 4}/TeO{sub 3} increases with increasing TeO{sub 2} content in the glasses. The incorporation of TeO{sub x} units into the glass network is associated with the depolymerisation of phosphate chains, as revealed by Raman spectroscopy. The incorporation of TeO{sub 2} modifies also the coordination of boron atoms, where B(OP){sub 4} structural units are gradually replaced by B(OP){sub 4-n}(OTe){sub n} units. The addition of TeO{sub 2} to the parent zinc borophosphate glass results in a decrease of glass transition temperature associated with the replacement of stronger P-O and B-O bonds by weaker Te-O bonds. Chemical durability of glasses reveals a minimum at the glass containing 10 mol% TeO{sub 2}, but with further additions of TeO{sub 2} it improves and the glasses with a high TeO{sub 2} content reveal better durability than the parent zinc borophosphate glass.

  3. Chemical durability and Structural approach of the glass series (40-y) Na2O-yFe2O3-5Al2O3-55P2O5-by IR, X-ray diffraction and Mössbauer Spectroscopy

    International Nuclear Information System (INIS)

    Aqdim, S; Sayouty, El H; Elouad, B; Greneche, J M

    2012-01-01

    The relationship between the composition and structure for the glasses of general composition (40-y)Na 2 O-yFe 2 O 3 -5Al 2 O 3 -55P 2 O 5 (5≤y≤20), has been studied. The chemical durability and density of these glasses increase with increasing Fe 2 O 3 content. The dissolution rate (D R ), calculated from the weight loss in distilled water at 90°C for up to 20 days was ≈ 3.10 −9 g/cm 2 /mn which is 30 times lower than that of window glass. The structure and valence states of the iron ions in the glasses were investigated using, X-ray diffraction, 57Fe Mössbauer spectrometry, potentiometric analysis, and infrared spectroscopy. Both Mössbauer spectrometry and potentiometric analysis allow to estimate both Fe 2+ and Fe 3+ contents in all these glasses. X-ray diffraction indicates that the local structure of iron phosphate glasses is related to the short range structures of NaFeP 2 O 7 . Infrared spectra indicate the formation of P–O–Fe bonds in the pyrophosphate glasses that replace P–O–Na bonds. The presence of a small content of Al 2 O 3 in the glass seems to play a role as a network modifier. The addition of Fe 2 O 3 to Al 2 O 3 in phosphate glasses favours the enhancement of the formation of pyrophosphate units because iron ions have stronger effect on the depolymerization of metaphosphate chains than the aluminium ions. Finally, the I.R spectra indicate that the presence of P-O-Fe bands of these glasses containing more than 15 mol%Fe 2 O 3 is consistent with their good chemical durability.

  4. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  5. Crystal and Electronic Structures, Photoluminescence Properties of Eu2+-Doped Novel Oxynitride Ba4Si6O16-3x/2Nx

    Directory of Open Access Journals (Sweden)

    Takashi Takeda

    2010-03-01

    Full Text Available The crystal structure and the photoluminescence properties of novel green Ba4-yEuySi6O16-3x/2Nx phosphors were investigated. The electronic structures of the Ba4Si6O16 host were calculated by first principles pseudopotential method based on density functional theory. The results reveal that the top of the valence bands are dominated by O-2p states hybridized with Ba-6s and Si-3p states, while the conduction bands are mainly determined by Ba-6s states for the host, which is an insulator with a direct energy gap of 4.6 eV at Γ. A small amount of nitrogen can be incorporated into the host to replace oxygen and forms Ba4-yEuySi6O16-3x/2Nx solid solutions crystallized in a monoclinic (space group P21/c, Z = 2 having the lattice parameters a = 12.4663(5 Å, b = 4.6829(2 Å, c = 13.9236(6 Å, and β = 93.61(1°, with a maximum solubility of nitrogen at about x = 0.1. Ba4Si6O16-3x/2Nx:Eu2+ exhibits efficient green emission centered at 515–525 nm varying with the Eu2+ concentration when excited under UV to 400 nm. Furthermore, the incorporation of nitrogen can slightly enhance the photoluminescence intensity. Excitation in the UV-blue spectral range (λexc = 375 nm, the absorption and quantum efficiency of Ba4-yEuySi6O16-3x/2Nx (x = 0.1, y = 0.2 reach about 80% and 46%, respectively. Through further improvement of the thermal stability, novel green phosphor of Ba4-yEuySi6O16-3x/2Nx is promising for application in white UV-LEDs.

  6. Mechanosynthesis of the ferroelectric materials Ba2ANb5O15 (A = K, Na, Li)

    International Nuclear Information System (INIS)

    Khachane, M.; Moure, A.; Elaatmani, M.; Zegzouti, A.; Daoud, M.; Castro, A.

    2006-01-01

    A novel mechanochemical activation route was applied in order to obtain the Ba 2 ANb 5 O 15 (A = K, Na, Li) ferroelectric materials. The evolution of the 4BaO 2 :A 2 CO 3 :5Nb 2 O 5 powder mixtures during mechanical treatment and subsequent annealings, was followed by X-ray powder diffraction (XRD), thermal analysis and scanning electron microscopy (SEM). The sought bronze-type phases were mechanosynthesized after 48 h of treatment in a planetary mill. Very crystalline phases can be obtained with very important decreases in the temperatures and reaction times as compared with the traditional ceramic method. Dense ceramics were processed from mechanosynthesized precursors at relative low temperature, by a conventional-sintering route, and their dielectric properties characterized

  7. Characterization of the insulator barrier and the superconducting transition temperature in GdBa{sub 2}Cu{sub 3}O{sub 7−δ}/BaTiO{sub 3} bilayers for application in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar; Sirena, M.; Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Yang, Ilkyu [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of)

    2015-07-28

    The optimization of the superconducting properties in a bottom electrode and the quality of an insulator barrier are the first steps in the development of superconductor/insulator/superconductor tunnel junctions. Here, we study the quality of a BaTiO{sub 3} tunnel barrier deposited on a 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film by using conductive atomic force microscopy. We find that the tunnel current is systematically reduced (for equal applied voltage) by increasing the BaTiO{sub 3} barrier thickness between 1.6 and 4 nm. The BaTiO{sub 3} layers present an energy barrier of ≈1.2 eV and an attenuation length of 0.35–0.5 nm (depending on the applied voltage). The GdBa{sub 2}Cu{sub 3}O{sub 7−δ} electrode is totally covered by a BaTiO{sub 3} thickness above 3 nm. The presence of ferroelectricity was verified by piezoresponse force microscopy for a 4 nm thick BaTiO{sub 3} top layer. The superconducting transition temperature of the bilayers is systematically suppressed by increasing the BaTiO{sub 3} thickness. This fact can be associated with stress at the interface and a reduction of the orthorhombicity of the GdBa{sub 2}Cu{sub 3}O{sub 7−δ}. The reduction in the orthorhombicity is expected by considering the interface mismatch and it can also be affected by reduced oxygen stoichiometry (poor oxygen diffusion across the BaTiO{sub 3} barrier)

  8. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    Science.gov (United States)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  9. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    International Nuclear Information System (INIS)

    Urbach, J.S.; Mitzi, D.B.; Kapitulnik, A.; Wei, J.Y.T.; Morris, D.E.; Physics Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)

    1989-01-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi 2 CaSr 2 Cu 2 O 8 and Tl 2 Ca 2 Ba 2 Cu 3 O 10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0) less than or equal to 1 mJ/mole K 2

  10. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    Science.gov (United States)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  11. Studies on compensating valency substituted BaTi (Mnx/2Nbx/2O3 ...

    Indian Academy of Sciences (India)

    Studies on compensating valency substituted BaTi(1-)Mn/2Nb/2O3 ceramics ... Annealing is observed to improve quality factor `' of the materials with a ... material engineering efforts are required to improve the material properties.

  12. Ising-like spin anisotropy and competing antiferromagnetic-ferromagnetic orders in GdBaCo2O5.5 single crystals.

    Science.gov (United States)

    Taskin, A A; Lavrov, A N; Ando, Yoichi

    2003-06-06

    In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.

  13. Thermal and fragility studies on microwave synthesized K_2O-B_2O_3-V_2O_5 glasses

    International Nuclear Information System (INIS)

    Harikamalasree; Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-01-01

    Glasses with composition xK_2O–60B_2O_3–(40-x) V_2O_5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔC_p) at glass transition (T_g), width of glass transition (ΔT_g), heat capacities in the glassy (C_p_g) and liquid (C_p_l) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(V_m"3T_g) and (ΔC_p/C_p_l)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K_2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K_2O concentration. The observed variations are qualitatively analyzed.

  14. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gó mez, Javier Alexandra M; Larkin, Ivan A.; Schwingenschlö gl, Udo

    2010-01-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  15. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gómez, Javier Alexandra M

    2010-11-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  16. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    Science.gov (United States)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  17. Chemical, structural and magnetic studies of new mono- and diphosphates appearing in ternary diagrams AO-CuO-(P2O5); A= Mg, Ca, Sr, Ba

    International Nuclear Information System (INIS)

    Moqine, A.

    1990-01-01

    A systematic study of mixed mono- and diphosphates of AO-CuO-(P 2 O 5 ) systems (A= Mg, Ca, Sr, Ba) has been carried out. This study showed up, on one hand, continuous and wide ranges in magnesium system and on the other hand, eight new phases in the other systems: Sr sub 18 Cu sub 3 (PO 4 ) 14 , A 2 Cu (PO 4 ) 2 , (A= Sr, Ba), Sr 3 Cu 3 (PO 4 ) 4 , BaCu 2 (PO 4 ) 2 and ACu(P 2 O 7 ) (A= Ca, Sr, Ba). The crystalline structures of SrCu(P 2 O 7 ), BaCu(P 2 O 7 ),Sr 3 Cu 3 (PO 4 ) 4 and BaCu 2 (PO 4 ) 2 phosphates have been described and discussed. The first compound presents a Tunnel structure and the three others have Foliation structures. The magnetic behaviours of some Cu sup 2+ ions phos-phates have been correlated to their crystalline structures. The experimental data have been parametered using the Ising model and/or the Heisenberg model. In this work, three Ising theoretical models have been developed. This magnetic study showed up new chains of antiferro- or ferrimagnetic Cu sup 2+ ions. 59 figs., 32 tabs., 113 refs. (author)

  18. Densification and mechanical properties of sintered Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Paneto, Flavio Jose; Pereira, Joaquim Lopes; Oliveira, Jean de Lima; Jesus Filho, Edson de; Silva, Leandro Anselmo da; Cabral, Ricardo de Freitas; Santos, Claudinei dos [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Lima, Eduardo de Sousa [Institutlo Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2014-06-15

    In this work, Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} ceramic composites were developed with different proportions of Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12}, which were mixed and compacted at different pressures of 40MPa to 100MPa, being consequently sintered at 1600 deg C-2h. The sintered samples were characterized by X-ray diffraction presenting α-Al{sub 2}O{sub 3} and Y{sub 3}Al{sub 5}O{sub 12} as crystalline phases. Samples with relative densities ranging from 78 to 80% and 87 to 91% were obtained depending on the composition and the compaction pressure used. The hardness values obtained were of 1010 to 1080HV and 370- 470HV, for mixes Al{sub 2}O{sub 3}-Y{sub 3}Al{sub 5}O{sub 12} having the composition with levels of 20 and 36.5wt.%, respectively. (author)

  19. De-chlorination and solidification of radioactive LiCl waste salt by using SiO_2-Al_2O_3-P_2O_5 (SAP) inorganic composite including B_2O_3 component

    International Nuclear Information System (INIS)

    Lee, Ki Rak; Park, Hwan-Seo; Cho, In-Hak; Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Han, Seung Youb; Ahn, Do-Hee

    2017-01-01

    SAP (SiO_2-Al_2O_3-P_2O_5) composite has been recently studied in KAERI to deal with the immobilization of radioactive salt waste, one of the most problematic wastes in the pyro-chemical process. Highly unstable salt waste was successfully converted into stable compounds by the dechlorination process with SAPs, and then a durable waste form with a high waste loading was produced when adding glassy materials to dechlorination product. In the present study, U-SAP composite which is SAP bearing glassy component (Boron) was synthesized to remove the adding and mixing steps of glassy materials for a monolithic wasteform. With U-SAPs prepared by a sol-gel process, a series of wasteforms were fabricated to identify a proper reaction condition. Physical and chemical properties of dechlorination products and U-SAP wasteforms were characterized by XRD, DSC, SEM, TGA and PCT-A. A U-SAP wasteform showed suitable properties as a radioactive wasteform such as dense surface morphology, high waste loading, and high durability at the optimized U-SAP/salt ratio 2.

  20. Influence of Y2BaCuO5 precipitates on the current density of melt processed YBa2Cu3Ox superconductor

    International Nuclear Information System (INIS)

    Salama, K.; Selvamanickam, V.

    1992-01-01

    YBa 2 Cu 3 O x superconductors fabricated by melt processing methods have been shown to exhibit current density around 10 5 A/cm 2 at 77 K. Since YBa 2 Cu 3 O x decomposes peritectically above 1000 C, more than 50 vol. % of Y 2 BaCuO 5 (211) precipitates are formed during the incongruent melting. Even under stringent slow cooling conditions, a significant amount of these precipitates remain unreacted with the liquid and are left embedded in the long 123 grains. The potential of these precipitates as flux pinning sites has been investigated extensively, but remains controversial. In this study, we have performed transport current density measurements on melt processed YBa 2 Cu 3 O x superconductor prepared with varying amount of 211 precipitates. The current density measurements were performed in magnetic fields up to 1.5 T at 77 K with the field aligned at different angles to the a-b plane. The results provided in this paper show that Jc decreases monotonically with increasing amount of 211, irrespective of the angle between the field and the a-b plane indicating the absence of significant pinning by 211 precipitates in melt processed YBa 2 Cu 3 O x superconductor

  1. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Peculiarities electron-phonon interaction in DyBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kazej, Z.A.; Kolmakova, N.P.; Ivanenko, O.M.; Mitsen, K.V.

    1991-01-01

    Young modulus and sound absorption by DyBa 2 Cu 3 O 7-δ (δ=0.7-0.1) tetragonal and rhombic ceramics within temperature range from 1.8 K up to 100 K and within magnetic fields up to 4T are measured. Softening of ∼(1-2)x10 -2 Young modules at temperature decrease lower than 70 K is detected for both investigated ceramics. Different symmetry deformation susceptibilities calculated for a certain crystalline field explain the observed anomalies of Young modulus in the assumption of essential young-teller correlations. The conducted studies allow to consider DyBa 2 u 3 O 7-δ compound belonging to young-teller elastics type

  3. Cube textured CeO2, BaZrO3 and LaAlO3 buffer layers on Ni based Substrates

    International Nuclear Information System (INIS)

    Deinhofer, C; Gritzner, G

    2006-01-01

    CeO 2 , BaZrO 3 as well as LaAlO 3 buffer layers were deposited on {100} Ni + 5 weight-% W substrates by a wet chemical technique. The solutions were prepared by dissolving the metal nitrates or acetates and zirconiumacetylacetonate, respectively, in mixtures of acetic acid, methanol and water. The solutions were applied by dip- or spincoating, dried at 135 deg. C and annealed at temperatures between 900 and 1 400 deg. C depending on the buffer layer for 15 min. under Ar-5% H 2 gas flow. Pole-figure measurements proved the exact texture of each buffer layer. Electron microscopy showed dense and smooth buffer layers

  4. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    Science.gov (United States)

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  5. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    Science.gov (United States)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  6. Comparison of Ba2YCu3O7-δ films on NdGaO3 and LaAlO3

    International Nuclear Information System (INIS)

    Phillips, J.M.; Siegal, M.P.; Perry, C.L.; Marshall, J.H.

    1991-01-01

    This paper studies the properties of 100 nm films of Ba 2 YCu 3 O 7-δ (BYCO) grown on LaAlO 3 (100) and NdGaO 3 (100) by co- evaporation of Cy, Y, and BaF 2 followed by a two-stage anneal ex situ. The authors find that the structural properties of the films on both substrates are optimized when the maximum temperature of the anneal is 900 degrees C, while the superconducting properties are slightly better if the maximum temperature does not exceed 875 degrees C. Films on LaAlO 3 can tolerate a longer time at the maximum annealing temperature than can films on NdGaP 3 . The authors postulate that this is due to a reaction between Ga in the NdGaO 3 and at least one of the constituents of the BYCO film (probably Y)

  7. Synthesis, stability range and characterization of Pr2Cu2O5

    Science.gov (United States)

    Fernández-Sanjulián, Javier; Morán, Emilio; Ángel Alario-Franco, Miguel

    2010-03-01

    A novel Pr2Cu2O5 phase has been prepared under high-pressure and high-temperature conditions (P ∼6 GPa and T ∼1673 K) in a Belt-type apparatus and characterized by X-ray diffraction and electron microscopy. The crystal structure appears to be an orthorhombic "oxygen-deficient perovskite" (M.T. Anderson, J.T. Vaughey, and K.R. Poeppelmeier, Structural similarities among oxygen-deficient perovskites, Chem. Mater. 5 (1993), pp. 151-165) isostructural with La2Cu2O5 (J.F. Bringley, B.A. Scott, S.J. La Placa, R.F. Boheme, T.M. Shaw, M.W. McElfresh, S.S. Trail, and D.E. Cox, Synthesis of the defect perovskite series LaCuO 3-δ with copper valence varying from 2+to 3+, Nature 347 (1990), pp. 263-265) and Nd2Cu2O5 (B.-H. Chen, D. Walker, E. Suard, B.A. Scott, B. Mercey, M. Hervieu, and B. Raveau, High pressure synthesis of NdCuO3-δ perovskites (0≤δ≤0.5). Inorg. Chem. 34 (1995), pp. 2077-2083).

  8. High temperature oxidation-sulfidation behavior of Cr-Al2O3 and Nb-Al2O3 composites densified by spark plasma sintering

    International Nuclear Information System (INIS)

    Saucedo-Acuna, R.A.; Monreal-Romero, H.; Martinez-Villafane, A.; Chacon-Nava, J.G.; Arce-Colunga, U.; Gaona-Tiburcio, C.; De la Torre, S.D.

    2007-01-01

    The high temperature oxidation-sulfidation behavior of Cr-Al 2 O 3 and Nb-Al 2 O 3 composites prepared by mechanical alloying (MA) and spark plasma sintering (SPS) has been studied. These composite powders have a particular metal-ceramic interpenetrating network and excellent mechanical properties. Oxidation-sulfidation tests were carried out at 900 deg. C, in a 2.5%SO 2 + 3.6%O 2 + N 2 (balance) atmosphere for 48 h. The results revealed the influence of the sintering conditions on the specimens corrosion resistance, i.e. the Cr-Al 2 O 3 and Nb-Al 2 O 3 composite sintered at 1310 deg. C/4 min showed better corrosion resistance (lower weight gains) compared with those found for the 1440 deg. C/5 min conditions. For the former composite, a protective Cr 2 O 3 layer immediately forms upon heating, whereas for the later pest disintegration was noted. Thus, under the same sintering conditions the Nb-Al 2 O 3 composites showed the highest weight gains. The oxidation products were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy

  9. Thermal conductivity of ferrimagnet GdBaMn2O5.0 single crystals

    Directory of Open Access Journals (Sweden)

    J. C. Wu

    2017-05-01

    Full Text Available GdBaMn2O5.0 is a double-perovskite ferrimagnet consisting of pyramidal manganese layers. In this work, we study the in-plane and the c-axis thermal conductivities of GdBaMn2O5.0 single crystals at low temperatures down to 0.3 K and in high magnetic fields up to 14 T. The κc(T curve shows a broad hump below the Néel temperature (TN = 144 K, which indicates the magnon heat transport along the c axis. Whereas, the κa(T shows a kink at TN, caused by a magnon-phonon scattering effect. This anisotropic behavior is caused by the anisotropy of spin interactions along different directions. At very low temperatures, magnetic-field-induced changes of κa and κc, which is likely due to phonon scattering by free Gd3+ spins, is rather weak. This indicates that the spin coupling between Gd3+ and Mn2+/Mn3+ is rather strong at low temperatures.

  10. Hydrostatic pressure dependence of the superconducting transition temperature of HgBa2CaCu2O6+δ and HgBa2Ca2Cu3O8+δ

    International Nuclear Information System (INIS)

    Klehe, A.K.; Schilling, J.S.

    1994-02-01

    The dependence of the superconducting transition temperature T c (P) on purely hydrostatic pressure to 0.9 GPa has been determined in ac susceptibility studies in a He-gas pressure system for optimally doped ceramic samples of HgBa 2 CaCu 2 O 6+δ and HgBa 2 Ca 2 Cu 3 O 8+δ with superconducting transitions at T c (0) ≅ 126.6 K and 133.9 K, respectively. T c increases reversibly under hydrostatic pressure at the rates, d T c /dP ≅ +1.80 ± 0.06 K/GPa and +1.71 ± 0.05 K/GPa, respectively. Within experimental error, these values are the same as found previously for optimally doped single-layered HgBa 2 CuO 4+δ , where d T c /dP ≅ +1.72 ± 0.05 K/GPa. Remarkably, the logarithmic volume derivative of T c is nearly identical for all three compounds, dln T c /dlnV ≅ -1.20 ± 0.05, even though the bulk modulus differs by more than 30%. This provides strong evidence that a common mechanism is responsible for the pressure dependence of the superconducting state in all three compounds

  11. Effective role of CaO/P2O5 ratio on SiO2-CaO-P2O5 glass system

    Directory of Open Access Journals (Sweden)

    P. Kiran

    2017-05-01

    Full Text Available In the present work, the effect of the CaO/P2O5 ratio on the composition of sol-gel synthesized 58SiO2-(19 − xP2O5–(23 + xCaO (x = 0, 5, 10 and 15 mol% glass samples was studied. Further, the effect of NBO/BO ratio on hydroxy carbonated apatite layer (HCA forming ability based on dissolution behavior in simulated body fluid (SBF solution was also investigated. CaO/P2O5 ratios of synthesized glass samples were 1.2, 2, 3.6, and 9.5, respectively. NBO/BO ratios were obtained using Raman spectroscopic analysis as 0.58, 1.20, 1.46, and 1.78, respectively. All samples were soaked in the SBF solution for 7 days. The calculated weight losses of these samples were 58%, 64%, 83%, and 89% for corresponding NBO/BO ratios. The increase in CaO/P2O5 ratio increases the NBO/BO ratios. However, the increase in NBO/BO ratio increases HCA forming ability of SBF treated samples. The HCA crystalline layer formation was confirmed through X-ray Diffraction (XRD, Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Raman and Infrared spectroscopic analysis. Higher CaO/P2O5 ratio favors the increase in HCA formation for SBF treated calcium phospho silicate glasses.

  12. Assessment for the role of rare earth oxide in the R2O3 - RuO2 - Pt composite electrode

    International Nuclear Information System (INIS)

    Do Ngoc Lien; Nguyen Van Sinh

    2004-01-01

    Our work has showed several results related to assessment for the role of rare earth oxide in the R 2 O 3 - RuO 2 - Pt composite electrode. The precursor method was used for preparing composite electrode in the following forms: a- RuO 2 - Pt electrode b- La 2 O 3 (55%) - RuO 2 (45%) - Pt electrode c- CeO 2 (60%) - RuO 2 (40%) - Pt electrode By measurements of anodic polarization and cyclic potential for the types of a, b, c electrodes we can see that the La 2 O 3 (55%) - 45% RuO 2 - Pt electrode will be the best anodic electrode. It means that the partial replacement of ruthenium oxide by lanthanum oxide in composite oxide electrode will be an effective one. (author)

  13. Electronic structures of PrBa2Cu3O7, Pr2Ba4Cu7O15-y(y=0,1), and PrBa2Cu4O8 based on LSDA+U method

    International Nuclear Information System (INIS)

    Tavana, A.; Shirazi, M.; Akhavan, M.

    2009-01-01

    The electronic structures of PrBa 2 Cu 3 O 7 (Pr123), Pr 2 Ba 4 Cu 7 O 15-y (Pr247), and PrBa 2 Cu 4 O 8 (Pr124) cuprates have been obtained using density-functional theory in the local spin density approximation plus onsite Coulomb interaction (LSDA+U). Onsite Hubbard correlation, U, has been considered for Pr-f and Cu-d orbitals and the effects of considering these correlation corrections on the Pr-O hybridizations have been inspected. Results imply that the Pr ionization state in Pr123 system is constituted from two different configurations, and the energy of the f states in these two configurations has an important role in superconductivity properties of the system. Our calculations also show that in both Pr124 and Pr247 systems, suppression of superconductivity is weaker than that in the Pr123 system. This occurs due to the weaker Pr-O bond in both Pr124 and Pr247 systems. The role of the double chain and single chain on the conduction properties of these compounds has been investigated. We have also studied the effect of oxygen deficiency in Pr247 system, which seems to revive superconductivity in this system. Investigating the hole carriers in the CuO 2 plane shows a correlation between superconductivity suppression and hole decrement in the planes. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Order-disorder transition and electrical conductivity of the brownmillerite solid-solutions system Ba sub 2 (In, M) sub 2 O sub 5 (M=Ga, Al)

    CERN Document Server

    Yamamura, H; Kakinuma, K; Mori, T; Haneda, H

    1999-01-01

    The brownmillerite solid-solution systems Ba sub 2 (In sub 1 sub - sub x M sub x) sub 2 O sub 5 (M=Ga, Al) were investigated by means of high-temperature X-ray diffraction (XRD), dilatometry, and electrical-conductivity measurements. XRD showed that the Ba sub 2 (In sub 1 sub - sub x Ga sub x) sub 2 O sub 5 system had orthorhombic symmetry in the composition range 0.0<=x<=0.2 and cubic symmetry in the range 0.3<=x. The Al system also changed to cubic symmetry from orthorhombic symmetry in the range 0.2<=x. While the orthorhombic phase showed an order-disorder transition in the electrical conductivity measurements, the transition temperature decreased with increasing the M content. The order-disorder transition temperature and the crystal-structure transition temperature were very different. Such a transition was not observed in the cubic phases, and their electrical conductivity were fairly low compared to those of the disordered cubic phase after the transition due to the heating process. These p...

  15. Influence of B2O3 content on sintering behaviour and dielectric properties of La2O3-B2O3-CaO/Al2O3 glass-ceramic composites for LTCC applications

    Science.gov (United States)

    Wang, F. L.; Zhang, Y. W.; Chen, X. Y.; Mao, H. J.; Zhang, W. J.

    2018-01-01

    La2O3-B2O3-CaO glasses with different B2O3 content were synthesized by melting method to produce glass/ceramic composites in this work. XRD and DSC results revealed that the diminution of B2O3 content was beneficial to increase the crystallization tendency of glass and improve the quality of crystalline phase, while decreasing the effect of glass during sintering process as sintering aids. The choice of glass/ceramic mass ratio was also influenced by the B2O3 content of glass. Dense samples sintered at 875 ºC showed good dielectric properties which meet the requirement of LTCC applications: moderate dielectric constant (7.8-9.4) and low dielectric loss (2.0×10-3).

  16. Redetermination of clinobarylite, BaBe2Si2O7

    Directory of Open Access Journals (Sweden)

    Adrien J. Di Domizio

    2012-10-01

    Full Text Available Clinobarylite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate, is a sorosilicate mineral and dimorphic with barylite. It belongs to a group of compounds characterized by the general formula BaM2+2Si2O7, with M2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobarylite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia. The structure of clinobarylite can be considered as a framework of BeO4 and SiO4 tetrahedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetrahedra share corners, forming chains parallel to the c axis, which are interlinked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m.. are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m.. bond length, the Si—Onbr (non-bridging O atoms bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004. N. Jb. Miner. Mh. pp. 373–384].

  17. YBa2Cu3O7-δ/NdBa2(Cu1-xNix)3O7-δ double layers by liquid-phase epitaxial growth

    International Nuclear Information System (INIS)

    Yao, X.; Izumi, Toru; Hobara, Natsuro; Nakamura, Yuichi; Izumi, Teruo; Shiohara, Yuh

    2001-01-01

    Our present investigation has answered questions pertaining to the REBa 2 Cu 3 O 7-δ (RE123, RE=rare-earth elements)-coated conductor application when NdBa 2 (Cu 1-x Ni x ) 3 O 7-δ (Ni-NdBCO) solid solution is used as a buffer layer by the liquid-phase epitaxy(LPE) process. The NiO/Ni substrate has no substantial reaction in the Ni-saturated Nd-Ba-Cu-O liquid. There is no essential Ni interdiffusion between YBa 2 Cu 3 O 7-δ (YBCO) and Ni-NdBCO LPE thick films as evident from T c values of 90 K obtained from multilayer YBCO/Ni-NdBCO samples. (author)

  18. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Yang; Zhao Weiwei; Zhang Xiaogang

    2008-01-01

    Co 3 O 4 /RuO 2 .xH 2 O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO 3 ) 2 .6H 2 O and RuCl 3 .0.5H 2 O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 deg. C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m 2 g -1 . The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 deg. C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM)

  19. Activity of RE/sub 2/O/sub 3/ in liquid La/sub 2/O/sub 3/-Al/sub 2/O/sub 3/-CaF/sub 2/ and Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slags

    International Nuclear Information System (INIS)

    Changzhen, W.; Shuqing, Y.; Qieng, D.

    1985-01-01

    In the course of electro-slag refining, if the slag contains rare earth oxides, the amount of rare earth introduced to the steel depends on the composition of the slag and other conditions. The main aim of this investigation is to study the activity of RE/sub 2/O/sub 3/ in the electro-slags of various compositions. One is the La/sub 2/O/sub 3/-CaO-CaF/sub 2/ ternary slag system and the other is the Ce/sub 2/O/sub 3/-CaO-CaF/sub 2/ slag system. The iso-activity diagram for RE/sub 2/O/sub 3/ and the liquid boundary for slags system were estimated

  20. Phase relations, crystal structure, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 system

    International Nuclear Information System (INIS)

    Su, Liumei; Fan, Xing; Cai, Gemei; Liu, Huashan; Jin, Zhanpeng

    2015-01-01

    Phase relations, crystal structures, and phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) in In_2O_3–Nb_2O_5–TiO_2 ternary system were investigated for the first time. A number of samples with different compositions were prepared by a solid-state reaction method, and phase assembles were analyzed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe micro-analysis (EPMA). Five three-phase regions, ten two-phase regions, and six single-phase solid solutions were determined in this system. The solid solution of In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) is composed of both ordered monoclinic wolframite-type structure (0 ≤ x < 0.35) and disordered orthorhombic α-PbO_2 type structure (0.35 < x < 0.45). Driving force for composition-driven phase transformation in In_1_−_xNb_1_−_xTi_2_xO_4 (0 ≤ x < 0.45) stems from the ordering of cations. The ever reported compound InNbTiO_6 with an orthorhombic α-PbO_2 type structure was amended to be a monoclinic wolframite-type structure. Present investigations will be useful for the whole ceramic community working with In_2O_3–Nb_2O_5–TiO_2 ternary system as well as for the development of functional materials. - Highlights: • Phase relations of In_2O_3–Nb_2O_5–TiO_2 ternary system were constructed. • Crystal structures of a novel solid solution In_1_−_xNb_1_−_xTi_2_xO_4 were determined. • Crystal structure of InNbTiO_6 was amended to be a wolframite-type structure. • Composition-driven phase transformation of In_1_−_xNb_1_−_xTi_2_xO_4 was investigated.

  1. Red, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+ Nanophosphors

    Directory of Open Access Journals (Sweden)

    Claudia Wickleder

    2013-07-01

    Full Text Available Divalent europium doped barium orthosilicate is a very important phosphor for the production of light emitting diodes (LEDs, generally associated to the green emission color of micron-sized crystals synthesized by means of solid-state reactions. This work presents the combustion synthesis as an energy and time-saving preparation method for very small nano-sized Ba2SiO4 particles, flexibly doped to acquire different emission energies. The size of the resulting spherical nanoparticles (NPs of the green emitting Ba2SiO4:Eu2+ was estimated to about 35 nm applying the Scherrer equation and further characterized with aid of atomic force microscopy (AFM as well as scanning electron microscopy (SEM. This phosphor is able to build homogeneous luminescent suspensions and was successfully down-sized without changing the optical properties in comparison to the bulk phosphors. Besides the X-ray diffraction (XRD analysis and the different types of microscopy, the samples were characterized by luminescence spectroscopy. Undoped Ba2SiO4 NPs are not luminescent, but show characteristic red emission of the 5D0 → 7FJ (J = 0–4 electronic transitions when doped with Eu3+ ions. Moreover, these orthosilicate nanoparticles generate blue light at low temperatures due to impurity-trapped excitons, introduced by the partial substitution of the Ba2+ with Sr2+ ions in the Ba2SiO4 lattice causing a substantial distortion. A model for the temperature behavior of the defect luminescence as well as for their nature is provided, based on temperature-dependent luminescence spectra and lifetime measurements.

  2. Comparative study of electronic structure and charge transport in isostructural cuprates YBa2Cu3O7 and PrBa2Cu3O7

    International Nuclear Information System (INIS)

    Kormilets, V.I.

    1997-01-01

    The self-consistent calculations of electronic structure and charge distribution in YBa 2 Cu 3 O 7 and PrBa 2 Cu 3 O 7 crystals were performed by the method of linear muffin-tin orbitals with full potentials (FP-LMTO). It is revealed that the substitution of Pr for Y results in the charge transfer from a CuO chain to a CuO 2 plane. In its turn, this results in partial innihilation of holes responsible for superconductivity. The effect is analogous to that arisen from the removal of oxygen atoms from CuO chains. It is shown that the degree of covalence of 1-2-3 compounds being considered constitutes and essential value and decreases with pr substitution for Y

  3. Hexagonal perovskites with cationic vacancies. 26. Ba/sub 12/Ba/sub 2//sub 2/3/M/sub 7//sup V//sub 1/3/vacant/sub 2/O/sub 33/vacant/sub 3/ (Msup(V) =Nb, Ta) - the first stacking polytypes of a rhombohedral 36 L-type

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-05-01

    In the systems BaO-M/sub 2//sup V/O/sub 5/ (M/sup V/ = Nb, Ta) for a Ba:M/sup V/ ratio of 2:1 polymorphism is observed. Here the low temperature modifications are described. They crystallize in a rhombohedral 36 L structure with three formula units Ba/sub 12/Ba/sub 2//sub 2/3/M/sub 7//sup V//sub 1/3/vacant/sub 2/O/sub 33/vacant/sub 3/ for the trigonal setting (M/sup V/ = Nb: a = 5.92/sub 2/ A; c = 93./sub 25/ A; Ta: a = 5.92/sub 2/ A; c = 93.4 A).

  4. Properties of epitaxial Ba2YCu3O7-x films on LaAlO3(001) grown using optimized conditions

    International Nuclear Information System (INIS)

    Siegal, M.P.; Phillips, J.M.; van Dover, R.B.; Tiefel, T.H.; Marshall, J.H.; Carlson, D.J.

    1990-01-01

    The superconducting and structural properties of Ba 2 YCu 3 O 7-x (BYCO) films on LaAlO 3 (001) substrates can be improved by carefully optimizing the post-deposition annealing parameters. Films are grown by codeposition of BaF 2 , Y, and Cu in the correct stoichiometric ratio to within 1% of 2:1:3. Compositional deviations greater than ± 1% result in the degradation of film quality. Important annealing parameters include the ambient, annealing temperature, oxidation temperature, and duration of the anneal. Films are characterized for epitaxial quality (χ min ), morphology, critical temperature (T c ), sharpness of the superconducting transition (ΔT), and critical current density (J c ). The optimized films have relatively smooth morphology with χ min c > 90 K, ΔT c > 10 6 A/cm 2 in essentially zero magnetic field at 77 K

  5. Tuning the electrical and optical properties of Gd_1_-_xCa_xBaCo_2O_5_+_δ (x = 0–0.5) using solar energy

    International Nuclear Information System (INIS)

    Lu, Yi; Zhang, Rong; Wei, Ling; Lu, Chunhua; Fang, Zhenggang; Ni, Yaru; Xu, Zhongzi; Tao, Shunyan

    2016-01-01

    This study reveals that the use of a Ca dopant can increase the solar absorption of GdBaCo_2O_5_+_δ, with an optimal composition of Gd_0_._8Ca_0_._2BaCo_2O_5 achieving 85% solar absorptance. Electrical conductivity measurements revealed that this composition allows for faster insulator-metal transition and higher conductivity, with the observed variation in conductivity with 0.8 W/cm"2 of solar illumination explained in terms of a first-order spin-state transition. Thermal radiation imaging confirmed that regions of different radiative temperature are related to a change in free carriers that promote scattering, and therefore, cause an increase in infrared reflection. This rapid electrical conductivity transition and the low infrared radiation properties at high temperatures strongly suggest that Gd_0_._8Ca_0_._2BaCo_2O_5 could be used in a variety of potential fields, such as high-temperature thermosensitive or thermal storage materials. - Highlights: • The solar absorption properties of GdBaCo_2O_5_+_δ can be improved by Ca doping. • Gd_0_._8Ca_0_._2BaCo_2O_5 shows ultrafast conductivity transition induced by solar energy. • Gd_0_._8Ca_0_._2BaCo_2O_5 exhibits low thermal radiative properties at high temperature.

  6. Co2FeAl based magnetic tunnel junctions with BaO and MgO/BaO barriers

    Directory of Open Access Journals (Sweden)

    J. Rogge

    2015-07-01

    Full Text Available We succeed to integrate BaO as a tunneling barrier into Co2FeAl based magnetic tunnel junctions (MTJs. By means of Auger electron spectroscopy it could be proven that the applied annealing temperatures during BaO deposition and afterwards do not cause any diffusion of Ba neither into the lower Heusler compound lead nor into the upper Fe counter electrode. Nevertheless, a negative tunnel magnetoresistance (TMR ratio of -10% is found for Co2FeAl (24 nm / BaO (5 nm / Fe (7 nm MTJs, which can be attributed to the preparation procedure and can be explained by the formation of Co- and Fe-oxides at the interfaces between the Heusler and the crystalline BaO barrier by comparing with theory. Although an amorphous structure of the BaO barrier seems to be confirmed by high-resolution transmission electron microscopy (TEM, it cannot entirely be ruled out that this is an artifact of TEM sample preparation due to the sensitivity of BaO to moisture. By replacing the BaO tunneling barrier with an MgO/BaO double layer barrier, the electric stability could effectively be increased by a factor of five. The resulting TMR effect is found to be about +20% at room temperature, although a fully antiparallel state has not been realized.

  7. Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5(SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification

    International Nuclear Information System (INIS)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun

    2012-01-01

    Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of Fe 2 O 3 into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP(Fe=0.1). The experimental results indicated that the addition of Fe 2 O 3 increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing B 2 O 3 into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP (SiO 2 -Al 2 O 3 -P 2 O 5 ) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3 - 4 g of wasteform for final disposal. The final volume would be about 3 - 4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

  8. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Hayashi, Akitoshi; Muramatsu, Hiromasa; Ohtomo, Takamasa; Hama, Sigenori; Tatsumisago, Masahiro

    2014-01-01

    Highlights: • Chemical stability in air of Li 2 S–P 2 S 5 –P 2 O 5 –ZnO composite electrolytes was examined. • A partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation. • The addition of ZnO to the glasses reduced the amount of H 2 S. • All-solid-state lithium cells using the developed composite electrolytes exhibited good cyclability. -- Abstract: Sulfide glasses with high Li + ion conductivity are promising solid electrolytes for all-solid-state rechargeable lithium batteries. This study specifically examined the chemical stability of Li 2 S–P 2 S 5 -based glass electrolytes in air. Partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation from glass exposed to air. The addition of ZnO to the Li 2 S–P 2 S 5 –P 2 O 5 glasses as a H 2 S absorbent reduced the H 2 S gas release. A composite electrolyte prepared from 90 mol% of 75Li 2 S⋅21P 2 S 5 ⋅4P 2 O 5 (mol%) glass and 10 mol% ZnO was applied to all-solid-state cells. The all-solid-state In/LiCoO 2 cell with the composite electrolyte showed good cyclability as a lithium secondary battery

  9. Resistência química de vitro-cerâmicos pertencentes a sistemas Li2O-ZrO2-BaO-SiO2 frente ao tratamento com soluções ácidas e básicas Chemical durability of the Li2O-ZrO2-BaO-SiO2 glass-ceramic treated with acidic and basic solution

    Directory of Open Access Journals (Sweden)

    Silvia Denofre de Campos

    2002-05-01

    Full Text Available The chemical durability of the Li2O-ZrO2-BaO-SiO2 system was examined by determination of the Vickers hardness. The dependence of hardness and of the chemical resistance with BaO addition was investigated. The experimental results indicate that the hardness increases with the BaO content. The samples surface's morphology submitted to the chemical treatment in acidic (H2SO4 and basic (KOH solution was accompanied by scanning electron microscopy. The chemical durability of the materials with BaO showed better than the glass ceramic without this content. These materials treated with H2SO4 solution showed a preferential attack to the silica rich sites.

  10. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Ellis, W.P.; Borg, A.; Kang, J.; Mitzi, D.B.; Lindau, I.

    1989-01-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , BaBiO 3 , and Nd 1.85 Ce 0.15 CuO 4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO 3 than in Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ , in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO 3 and Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d→4f, La 4d→4f, and Nd 4d→4f transitions) are also reported

  11. Compounds of the type Ba/sub 3/Bsup(II)M/sub 2/sup(V)O/sub 9/ with Bsup(II) = Mg, Ca, Sr, Ba, and Msup(V) = Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Thumm, I; Herrmann, M [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-08-01

    The hexagonal perovskites Ba/sub 3/Bsup(II)M/sub 2/sup(V)O/sub 9/ (Msup(V) = Nb, Ta) crystallize with Bsup(II) = Mg, Ca in a 3 L structure (sequence (c)/sub 3/) and Bsup(II) = Sr in the hexagonal BaTiO/sub 3/ type (6 L; sequence (hcc)/sub 2/) with an 1:2 order for the B and M ions. Intensity calculations for Ba/sub 3/SrNb/sub 2/O/sub 9/ and Ba/sub 3/SrTa/sub 2/O/sub 9/ gave in the space group P6/sub 3//mmc a refined, intensity related R' value of 8.4% (Nb) and 9.0% (Ta) respectively. For Bsup(II) = Ba the perovskite Ba/sub 3/BaTa/sub 2/O/sub 9/ has an orthorhombic distorted 6 L structure and forms with Ba/sub 3/SrTa/sub 2/O/sub 9/ a continuous series of mixed crystals (Ba/sub 3/Srsub(1-x)Basub(x)Ta/sub 2/O/sub 9/). In the system Ba/sub 3/Srsub(1-x)Basub(x)Nb/sub 2/O/sub 9/ the range of existence of the hexagonal BaTiO/sub 3/ type is confined to the Sr richer end. The pure Ba compound posesses a proper structure type (5 L: Ba/sub 5/BaNb/sub 3/vacantOsub(13.5)vacantsub(1.5)).

  12. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    Science.gov (United States)

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta

  13. A Double Layer Sensing Electrode “BaTi(1-XRhxO3/Al-Doped TiO2” for NO2 Detection above 600 °C

    Directory of Open Access Journals (Sweden)

    Bilge Saruhan

    2016-04-01

    Full Text Available NO2 emission is mostly related to combustion processes, where gas temperatures exceed far beyond 500 °C. The detection of NO2 in combustion and exhaust gases at elevated temperatures requires sensors with high NO2 selectivity. The thermodynamic equilibrium for NO2/NO ≥ 500 °C lies on the NO side. High temperature stability of TiO2 makes it a promising material for elevated temperature towards CO, H2, and NO2. The doping of TiO2 with Al3+ (Al:TiO2 increases the sensitivity and selectivity of sensors to NO2 and results in a relatively low cross-sensitivity towards CO. The results indicate that NO2 exposure results in a resistance decrease of the sensors with the single Al:TiO2 layers at 600 °C, with a resistance increase at 800 °C. This alteration in the sensor response in the temperature range of 600 °C and 800 °C may be due to the mentioned thermodynamic equilibrium changes between NO and NO2. This work investigates the NO2-sensing behavior of duplex layers consisting of Al:TiO2 and BaTi(1-xRhxO3 catalysts in the temperature range of 600 °C and 900 °C. Al:TiO2 layers were deposited by reactive magnetron sputtering on interdigitated sensor platforms, while a catalytic layer, which was synthesized by wet chemistry in the form of BaTi(1-xRhxO3 powders, were screen-printed as thick layers on the Al:TiO2-layers. The use of Rh-incorporated BaTiO3 perovskite (BaTi(1-xRhxO3 as a catalytic filter stabilizes the sensor response of Al-doped TiO2 layers yielding more reliable sensor signal throughout the temperature range.

  14. Influence of Al{sub 2}O{sub 3} addition on microstructure and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Abden, Md. Jaynul [International Islamic Univ., Chittagong (Bangladesh). Dept. of Electrical and Electronic Engineering; Afroze, Jannatul Dil [Noakhali Science and Technology Univ. (Bangladesh). Faculty of Science and Engineering; Gafur, Md. Abdul [Bangladesh Council of Scientific and Industrial Research, Dhaka (Bangladesh). Pilot Plant and Process Development Centre; Chowdhury, Faruque-Uz-Zaman [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2015-07-01

    The effect of the amount of Al{sub 2}O{sub 3} content on microstructure, tetragonal phase stability and mechanical properties of 3YSZ-Al{sub 2}O{sub 3} composites are investigated in this study. The ceramic composites are obtained by means of uniaxial compacting at 210 MPa and green compacts are sintered at 1550 C for 3 h in air. The monoclinic zirconia (m-ZrO{sub 2}) phase has completely been transformed into tetragonal zirconia (t-ZrO{sub 2}) phase with corresponding higher Al{sub 2}O{sub 3} content. The t-ZrO{sub 2} grains induce transgranular fracture mode that has contribution in improvement of fracture toughness. The maximum flexural strength of 340 MPa, Vickers hardness value of 14.31 GPa and fracture toughness of 5.1 MPa x m{sup 1/2} in the composition containing 40 wt.-% Al{sub 2}O{sub 3} is attributed to the microstructure with t-ZrO{sub 2} grains as inter- and intragranular particles in the Al{sub 2}O{sub 3} grains, which makes it suitable for dental applications.

  15. Investigation of 70SiO2-15CaO-10P2O5-5Na2O Glass Composition for Bone Regeneration Applications

    Directory of Open Access Journals (Sweden)

    Vikas Anand

    2014-11-01

    Full Text Available Glass with the composition 70SiO2-15CaO -10P2O5-5Na2O has been prepared by using sol gel technique. Bioactive behavior of the glass sample has been checked by in vitro study using TRIS simulated body fluid. Bioactive properties of the sample has been analyzed by using XRD, Raman, FE-SEM, EDX and Brunauer Emmett Teller studies. pH study has been conducted to check the non- acidic nature of the glass sample. Drug delivery behavior of the sample has been estimated by using gentamicin as an antibiotic. Reported sample has been found to be potential candidate for bone regeneration applications.

  16. Valence determination as a function of doping in $PrBa_{2} Cu_{3} O_{7}$

    CERN Document Server

    Staub, U; Wasserman, S R; Conner, A G O; Kramer, M J; Patterson, B D; Shi, M; Knapp, M P

    2000-01-01

    We present results of X-ray absorption near edge spectra (XANES), neutron powder diffraction, and resonant X-ray diffraction on samples of PrBa/sub 2/Cu/sub 3/O/sub 7- delta / and Pr/sub 1-x/Ca/sub x/Ba /sub 2/Cu/sub 3/O/sub 7/. The data are obtained as a function of the doping levels of oxygen and Ca. There are significant changes in the Pr L/sub 3/ XANES spectra with changes in oxygen or Ca concentrations, indicating that the Pr electronic properties are affected by doping. The resonant X-ray scattering experiments show that the changes observed occur on Pr ions incorporated in the PrBa /sub 2/Cu/sub 3/O/sub 7- delta / structure, and are not the result of changes to a Pr-containing impurity phase. A quantitative model, based on literature precedent, is used to extract Pr valences from the data, although the XANES cannot distinguish between models involving charge transfer and those involving hybridization. The results are compared with data obtained from Pb/sub 2/Sr/sub 2/Pr/sub 1-x/Ca/sub x/Cu/sub 3/O/sub ...

  17. Batisite, Na2BaTi2(Si4O12)O2, from Inagli massif, Aldan, Russia: crystal-structure refinement and high-temperature X-ray diffraction study

    Science.gov (United States)

    Zolotarev, Andrey A.; Zhitova, Elena S.; Gabdrakhmanova, Faina A.; Krzhizhanovskaya, Maria G.; Zolotarev, Anatoly A.; Krivovichev, Sergey V.

    2017-12-01

    The crystal structure of batisite, Na2BaTi2 (Si4O12)O2, from the Inagli massif (Aldan, Yakutia, Russia) was refined to R 1 = 0.032 for 1449 unique observed reflections. The mineral is orthorhombic, Imma, a = 8.0921(5), b = 10.4751(7), c = 13.9054(9) Å, V = 1178.70(13) Å3. The mineral is based upon three-dimensional titanosilicate framework consisting of chains of corner-sharing MO6 octahedra ( M = Ti, Nb, Fe and Zr) and vierer chains of corner-sharing SiO4 tetrahedra. Both chains are parallel to the a axis and are linked by sharing peripheral O atoms. The octahedral chains display disorder of M atoms and bridging O sites related to the out-of-center distortion of octahedral geometry around Ti4+ cations. Electron microprobe analysis gives SiO2 39.46, TiO2 24.66, BaO 21.64, Na2O 7.56, K2O 4.38, Fe2O3 0.90, ZrO2 0.66, Nb2O5 0.36, (H2O)calc 0.58, sum 99.76 wt%. The seven strongest X-ray powder-diffraction lines [listed as d in Å (I) hkl] are: 8.39 (94) 011, 3.386 (56) 031, 3.191 (36) 123, 2.910 (46) 222, 2.896 (100) 024, 2.175 (45) 035, 1.673 (57) 055. The thermal behaviour of batisite in the temperature range from 25 to 950 °C was studied using high-temperature powder X-ray diffraction. The thermal expansion coefficients along the principal crystallographic axes are: α a = 14.4 × 10-6, α b = 8.7 × 10-6, α c = 8.4 × 10-6, α V = 31.5 °C-1 for the temperature range 25-500 °C and α a = 19.6 × 10-6, α b = 9.1 × 10-6, α c = 8.8 × 10-6, α V = 37.6 °C-1 for the temperature range 500-900 °C. The direction of maximal thermal expansion is parallel to the chains of both MO6 octahedra and SiO4 tetrahedra, which can be explained by the stretching of silicate chains due to the increasing thermal vibrations of the Ba2+ cations. At 1000 °C, the titanosilicate framework in batisite collapses with the formation of fresnoite, Ba2TiSi2O7O.

  18. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    CERN Document Server

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K

    2000-01-01

    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  19. Structural, dielectric and ferroelectric studies of (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} magnetoelectric nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Khader, S. Abdul, E-mail: khadersku@gmail.com; Sankarappa, T., E-mail: sankarappa@rediffmail.com [Department of Physics, Gulbarga University, Gulbarga-585106, Karnataka (India); Muneeswaran, M.; Giridharan, N. V. [Department of Physics, National Institute of Technology, Tiruchirapalli-620015 (India)

    2016-05-06

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO{sub 3} (BT) and highly magneto-strictive magnetic component Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4}(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  20. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    Science.gov (United States)

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  1. Direct writing Eu3+-doped Ba2TiSi2O8 crystalline pattern by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Zhu Bin; Dai Ye; Ma Hongliang; Zhang Songmin; Qiu Jianrong

    2008-01-01

    A femtosecond laser with 800 nm, 250 kHz and 150 fs has been used to irradiate Eu 3+ -doped BaO-TiO 2 -SiO 2 glasses. It is found from micro-Raman spectra and optical microscope that crystalline dots and lines are formed around the focal point of the femtosecond laser beam. Both blue emission at 400 nm due to the second harmonic generation and red emission due to the transitions of Eu 3+ are observed from the irradiation region with the precipitation of Ba 2 TiSi 2 O 8 crystal. The mechanism of the observed phenomenon is discussed

  2. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  3. Luminescence properties of Eu2+ - activated alkaline-earth silicon-oxynitride MSi2O2-deltaN2+2/3delta (M = Ca, Sr, Ba) : A promising class of novel LED conversion phosphors

    NARCIS (Netherlands)

    Li, Y.Q.; Delsing, A.C.A.; With, de G.; Hintzen, H.T.J.M.

    2005-01-01

    The luminescence properties of Eu2+-activated alk.-earth Si-oxynitrides were studied. In the BaO-SiO2-Si3N4 system, a new BaSi2O2N2 compd. was obtained having the monoclinic structure with lattice parameters a 14.070(4), b 7.276(2), c 13.181(3) .ANG., b 107.74(6)°. All MSi2O2-dN2+2/3d:Eu2+ (M = Ca,

  4. Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

    Science.gov (United States)

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112

  5. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  6. Study of critical current density from ac susceptibility measurements in (La1-xYx)2Ba2CaCu5O2 superconductors

    International Nuclear Information System (INIS)

    Nayak, P.K.; Ravi, S. . sravi@iitg.ernet.in

    2008-01-01

    We have prepared a series of compounds (La 1-x Y x ) 2 Ba 2 CaCu 5 O 2 for x = 0 to 0.5 by adding a CaCuO 2 layer to the parent compound La 2 Ba 2 Cu 4 O 2 and by doping Y in place of La. These materials are also prepared by adding 5 wt% of Ag to enhance the intergranular coupling and critical current density. X-ray diffraction measurements show that all the samples are essentially in single phase form and the patterns could be refined using P4/mmm space group in tetragonal cell. The typical lattice parameters are found to be a = b 3.856 A, c = 11.576 A for x = 0.5 sample. Temperature variations of dc electrical resistivity measured on the above samples show that they exhibit superconductivity with T c ranging from 60 to 75 K. Temperature and ac field amplitude variation of ac susceptibility have been measured on the above samples. The field variation of ac susceptibility data has been analyzed by using Bean critical state model. Using both temperature and field variations of ac susceptibility data, the material dependent parameters, such as critical current density as a function of temperature and effective volume fraction grains have been estimated. The Ag doped samples show relatively large critical current density compared to pure samples due to improved intergranular coupling. (author)

  7. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O52-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  8. Improved the lithium storage capability of BaLi2Ti6O14 by electroless silver coating

    International Nuclear Information System (INIS)

    Lin, Xiaoting; Wang, Pengfei; Li, Peng; Yu, Haoxiang; Qian, Shangshu; Shui, Miao; Wang, Dongjie; Long, Nengbing; Shu, Jie

    2015-01-01

    Highlights: • BaLi 2 Ti 6 O 14 /Ag is fabricated via a facile electroless deposition. • Highly dispersed Ag nanoparticles are successively coated on BaLi 2 Ti 6 O 14 . • BaLi 2 Ti 6 O 14 /Ag is used as anode material for lithium storage. • BaLi 2 Ti 6 O 14 /Ag exhibits improved lithium storage capability. - Abstract: To form BaLi 2 Ti 6 O 14 /Ag, highly dispersed Ag nanoparticles are successfully deposited on the surface of BaLi 2 Ti 6 O 14 by a simple chemical deposition method. The morphology, quantity and size of Ag nanoparticles in BaLi 2 Ti 6 O 14 /Ag composites are significantly influenced by the Ag coating contents. Electrochemical results show that Ag nanoparticles play a positive role in reducing redox polarization and improving electrical conductivity of BaLi 2 Ti 6 O 14 during lithiation/delithiation processes. Among all the as-obtained products, 6 wt.% Ag coated BaLi 2 Ti 6 O 14 shows the highest initial charge specific capacity of 160 mAh g −1 at the current density of 100 mA g −1 (1C), which is much higher than the 149.1 mAh g −1 for bare BaLi 2 Ti 6 O 14 . After 100 charge/discharge cycles, the reversible capacity can be maintained at 117.0 mAh g −1 . Moreover, this sample also shows excellent rate performance with high reversible charge capacities of 147.5, 139.7, 132.6, and 126.7 mAh g −1 at the rates of 2C, 3C, 4C and 5C, respectively. Compared with bare BaLi 2 Ti 6 O 14 , the superior electrochemical performance indicates that BaLi 2 Ti 6 O 14 /Ag can be a good anode material in lithium ion batteries.

  9. Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi,Pb)2Ba2O4+/-ω]0.5CoO2

    Science.gov (United States)

    Sakai, K.; Karppinen, M.; Chen, J. M.; Liu, R. S.; Sugihara, S.; Yamauchi, H.

    2006-06-01

    We report strongly enhanced thermoelectric characteristics for a misfit-layered oxide, [Bi2Ba2O4±ω]0.5CoO2, in a wide temperature range, as achieved through substituting up to 20% of Bi by Pb. The Pb substitution kept the thermal conductivity (κ) unchanged but decreased the electrical resistivity (ρ) and increased the Seebeck coefficient (S) simultaneously, such that a three-fold enhancement in the thermoelectric figure of merit, Z (≡S2/ρκ), was realized. At the same time x-ray absorption near-edge structure data indicated that the valence and spin states of Co are not affected by the Pb-for-Bi substitution.

  10. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    Science.gov (United States)

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  11. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  12. Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses

    Science.gov (United States)

    Sayyed, M. I.; Çelikbilek Ersundu, M.; Ersundu, A. E.; Lakshminarayana, G.; Kostka, P.

    2018-03-01

    In this work, glasses in the MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) system, which show a great potential for optoelectronic applications, were used to evaluate their resistance under high energy ionizing radiations. The basic shielding quantities for determining the penetration of radiation in glass, such as mass attenuation coefficient (μ/ρ), half value layer (HVL), mean free path (MFP) and exposure buildup factor (EBF) values were investigated within the energy range 0.015 MeV ‒ 15 MeV using XCOM program and variation of shielding parameters were compared with different glass systems and ordinary concrete. From the derived results, it was determined that MeO-PbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses show great potentiality to be used under high energy radiations. Among the studied glass compositions, Bi2O3 and WO3 containing glasses were found to possess superior gamma-ray shielding effectiveness.

  13. Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics

    Science.gov (United States)

    Gajula, Ganapathi Rao; Buddiga, Lakshmi Rekha; Chidambara Kumar, K. N.; Ch, Arun Kumar; Samatha, K.; Kokkiragadda, Sreeramachandra Murthy; Dasari, Madhava Prasad

    2018-06-01

    We have prepared a composite BaTi0.9Zr0.1O3 (BTZr) doped with Li0.5Fe2.5O4 (LF) having chemical formulae (1- x) BTZr + (x) LF (x=0, 0.05, 0.1 and 0.15) conventional solid state reaction technique. We have sintered the grown composites at 1150 °C for 3 h. We have characterized the grown composites using XRD, FESEM, P-E loop tracer and LCR meter. The XRD measurements reveal the tetragonal nature of the composites. The morphological studies reveal that the composite exhibits dense microstructure with small pores. The P-E loops confirm that the composites exhibit remnant polarization and the coercive field increases with increasing concentration of Lithium Ferrite (LF). We have studied dielectric property of the composites by varying the temperature of the sample from 30 °C to 500 °C at 1 kHz, 10 kHz and also by varying the frequency from 1 Hz to 10 MHz at 30 °C. The dielectric property of BTZr has increased after doping LF in BTZr which reveals the enhancement of electrical properties of the grown composite.

  14. Preparation of Er"3"+:Y_3Al_5O_1_2/KNbO_3 composite and application in innocent treatment of ketamine by using sonocatalytic decomposition method

    International Nuclear Information System (INIS)

    Zhang, Hongbo; Wei, Chunsheng; Huang, Yingying; Li, Guanshu; Wu, Qiong; Wang, Jun; Song, Youtao

    2016-01-01

    Highlights: • Upconversion luminescence agent Er:YAG can enhance sonocatalytic activity of KNbO_3. • Harmless of narcotic drugs was achieved through sonocatalytic destruction. • Possible sonocatalytic destruction mechanism on narcotic drugs was proposed. - Abstract: A novel sonocatalyst, Er"3"+:Y_3Al_5O_1_2/KNbO_3 composite, was synthesized, and then, characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of prepared Er"3"+:Y_3Al_5O_1_2/KNbO_3 composite, the sonocatalytic degradation of ketamine, a kind of narcotic drug, was studied. In addition, some influencing factors such as mass ratio, heat-treated temperature and heat-treated time on the sonocatalytic activity of prepared Er"3"+:Y_3Al_5O_1_2/KNbO_3 powders and ultrasonic irradiation time on the sonocatalytic degradation of ketamine were examined by using GC–MS machine. The experimental results showed that the Er"3"+:Y_3Al_5O_1_2/KNbO_3 composite is a good sonocatalyst in the field of ultrasonic chemistry and the sonocatalytic degradation was an effective method for the innocent treatment of ketamine.

  15. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2; Fe2O3-Sb2O3-TeO2 kei garasu no denki dendo

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Honghua; Mori, H; Sakata, H; Hirayama, T [Tokai Univ., Tokyo (Japan). Faculty of Engineering

    1995-01-01

    In this study, taking into consideration that TeO2 is a component of the glass network and Sb2O3 shows the redox effect in the glasses reducing its possibility of transformation of Sb{sup 3+} to Sb{sup 5+} as well as glass basicity, highly conductive tellurite based glasses have been prepared by the press-quenching method selecting the Fe2O3-Sb2O3-TeO2 system, and the electroconductive mechanism of the glasses has been examined by measuring its D.C. conductivity {sigma}. Part of the obtained information is as follows; the glass formation range of the Fe2O3-Sb2O3-TeO2 system has been 0 {le} Fe2O3 {le} 15mol%, 0 {le} Sb2O3 {le} 18mol% and 78 {le} TeO2 {le} 100mol% and about 15mol% of the additional amount of Fe2O3 has been the limit of glass formation. As the amount of Fe2O3 has increased, C{sub Fe} has also increased and with this, the linear electroconductivity of the glasses has increased from 1.86 {times} 10{sup -7}S{center_dot}cm{sup -1} to 1.62 {times} 10{sup -6}S{center_dot}cm{sup -1} and the glasses have been confirmed as the n-type semiconductor. The factor determining {sigma} of the glasses has been C{sub Fe} which has increased as the amount of Fe2O3 has increased. 34 refs., 8 figs., 2 tabs.

  16. Transporte de carga em compósitos de polianilina/V2O5 Charge transportation in polyaniline/V2O5 composites

    Directory of Open Access Journals (Sweden)

    Fritz Huguenin

    2004-06-01

    Full Text Available In this work, composites formed from a mixture of V2O5 and polyaniline (PANI were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.

  17. B2O3/SiO2 substitution effect on structure and properties of Na2O-CaO-SrO-P2O5-SiO2 bioactive glasses from molecular dynamics simulations.

    Science.gov (United States)

    Ren, Mengguo; Lu, Xiaonan; Deng, Lu; Kuo, Po-Hsuen; Du, Jincheng

    2018-05-23

    The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials. Both short-range (such as bond length and bond angle) and medium-range (such as polyhedral connection and ring size distribution) structures were determined as a function of glass composition. The simulation results were used to explain the experimental results for glass properties such as glass transition temperature and bioactivity. The fraction of bridging oxygen increased linearly with increasing B2O3 content, resulting in an increase in overall glass network connectivity. Ion diffusion behavior was found to be sensitive to changes in glass composition and the trend of the change with the level of substitution is also temperature dependent. The differential scanning calorimetry (DSC) results show a decrease in glass transition temperature (Tg) with increasing B2O3 content. This is explained by the increase in ion diffusion coefficient and decrease in ion diffusion energy barrier in glass melts, as suggested by high-temperature range (above Tg) ion diffusion calculations as B2O3/SiO2 substitution increases. In the low-temperature range (below Tg), the Ea for modifier ions increased with B2O3/SiO2 substitution, which can be explained by the increase in glass network connectivity. Vibrational density of states (VDOS) were calculated and show spectral feature changes as a result of the substitution. The change in bioactivity with B2O3/SiO2 substitution is discussed with the change in pH value and release of boric acid into the solution.

  18. Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean

    International Nuclear Information System (INIS)

    Kim, D.; Szanyi, J.; Kwak, J.; Wang, X.; Hanson, J.; Engelhard, M.; Peden, C.

    2009-01-01

    Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31, and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

  19. Hexagonal perovskites with cationic vacancies. 21. Structure of Ba/sub 4/Nb/sub 2/WvacantO/sub 12/ and Ba/sub 3/LaNb/sub 3/vacantO/sub 12/

    Energy Technology Data Exchange (ETDEWEB)

    Rother, H J; Kemmler-Sack, S; Treiber, U; Cyris, W R [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-07-01

    Compounds of type Ba/sub 4/M/sub 2/sup(V)WvacantO/sub 12/ and Ba/sub 3/LaM/sub 3/sup(V)vacantO/sub 12/ with Msup(V) = Nb, Ta belong to the group of rhombohedral 12 L stacking polytypes (space group R-3m, sequence (hhcc)/sub 3/). The structure determinations on powder patterns for the Nb compounds gave a refined, intensity related R' value of 6.3% (Ba/sub 4/Nb/sub 2/WvacantO/sub 12/) and 6.6% (Ba/sub 3/LaNb/sub 3/vacantO/sub 12/). The octahedral net consists of blocks of three face connected octahedra with a central void (M/sub 2/vacantO/sub 12/ unit), which are linked to each other through single corner sharing octahedra. In both compounds the M atoms in the M/sub 2/vacantO/sub 12/ groups are displaced in the direction of the central void. The A atoms move in the same direction but the dislocation for A in the hexagonal packed sheets (neighbouring the vacancies) is stronger than in the cubic packed AO/sub 3/ sheets. The results of the vibrational spectroscopic investigations are reported for Ba/sub 4/Nb/sub 2/WvacantO/sub 12/, Ba/sub 4/Ta/sub 2/WvacantO/sub 12/, Ba/sub 3/LaNb/sub 3/vacantO/sub 12/ and Ba/sub 4/CeW/sub 2/vacantO/sub 12/; they are discussed in connection with the factor group analysis.

  20. Redetermination of clinobaryl-ite, BaBe(2)Si(2)O(7).

    Science.gov (United States)

    Domizio, Adrien J Di; Downs, Robert T; Yang, Hexiong

    2012-10-01

    Clinobaryl-ite, ideally BaBe(2)Si(2)O(7) (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl-ite. It belongs to a group of compounds characterized by the general formula BaM(2+) (2)Si(2)O(7), with M(2+) = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl-ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl-ite can be considered as a framework of BeO(4) and SiO(4) tetra-hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO(4) tetra-hedra share corners, forming chains parallel to the c axis, which are inter-linked by the Si(2)O(7) units oriented parallel to the a axis. The Ba(2+) cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si-O(br) (bridging O atom, at site symmetry m..) bond length, the Si-O(nbr) (non-bridging O atoms) bond lengths, and the Si-O-Si angle within the Si(2)O(7) unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373-384].

  1. Preparation and characterization of BaFe12O19/Y3Fe5O12 composites

    International Nuclear Information System (INIS)

    Lin, Ying; Kang, Pan; Yang, Haibo; Liu, Miao

    2015-01-01

    Highlights: • BaM/YIG composites were fabricated by microwave sintering method. • A simple sol–gel method was used to synthesize BaM/YIG composite powders. • The BaM phase and YIG phase are well exchange coupled in the composites. • The (BH) max can be much enhanced by the introduction of YIG. - Abstract: BaFe 12 O 19 /Y 3 Fe 5 O 12 (BaM/YIG) composites with giant enhancement of magnetic energy product ((BH) max ) were fabricated by microwave sintering the BaM/YIG composite powders, which were firstly prepared using a simple sol–gel method. The phase composition and surface morphology of the as-synthesized composites were characterized by an X-ray diffractometer and a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, respectively. The magnetic properties of the composites were investigated by a vibrating sample magnetometer. All the composites show single-phase-like magnetic hysteresis loops. The results reveal the hard phase (BaM) and soft phase (YIG) are well exchange coupled and the introduction of YIG could significantly enhance the remnant magnetization (M r ), coercivity (H c ) and (BH) max of BaM

  2. Photoluminescence of trivalent rare earths in perovskite stacking polytypes Ba/sub 2/Lasub(2-x)REsub(x)/sup 3 +/MgW/sub 2/vacantO/sub 12/, Ba/sub 6/Ysub(2-x)REsub(x)/sup 3 +/W/sub 3/vacantO/sub 18/, and Sr/sub 8/SrGdsub(2-x)REsub(x)/sup 3 +/W/sub 4/vacantO/sub 24/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-12-01

    Rhombohedral 12 L staking polytypes Ba/sub 2/Lasub(2-x)REsub(x)/sup 3 +/MgW/sub 2/vacantO/sub 12/ show with RE/sup 3 +/ = Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm; the 18 L stacking polytypes Ba/sub 6/Ysub(2-x)REsub(x)/sup 3 +/W/sub 3/vacantO/sub 18/ and the polymorphic perovskites Sr/sub 8/SrGdsub(2-x)REsub(x)/sup 3 +/W/sub 4/vacantO/sub 24/ with RE/sup 3 +/ = Sm, Eu, Dy, Ho, Er visible photoluminescence. The concentration dependence and the influence of the coordination number of the rare earth are reported.

  3. Compressive strain-dependent bending strength property of Al2O3-ZrO2 (1.5 mol% Y2O3) composites performance by HIP

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Esparza-Ponce, H.; De la Torre, S.D.; Torres-Moye, E.

    2009-01-01

    Nanometric powders and sintered ceramics of Al 2 O 3 -ZrO 2 (1.5 mol% Y 2 O 3 ) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain (ε) increased from 0.56 to 1.18 (10 -3 ) as the t-ZrO 2 content increased too. The HREM interface study conducted along the [0 0 0 1]Al 2 O 3 ||[0 0 1]ZrO 2 zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO 2 martensitic phase transformation on cooling, t-ZrO 2 grains coalescence and to the grain growth of α-Al 2 O 3 which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure

  4. Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers

    Science.gov (United States)

    Liu, Shaohui; Xue, Shuangxi; Shen, Bo; Zhai, Jiwei

    2015-07-01

    Homogeneous ceramic-polymer nanocomposites consisting of core-shell structured BaTiO3/SiO2 nanofibers and a p oly(vinylidene fluoride) (PVDF) polymer matrix have been prepared. The correlation between the energy discharged density and interfacial polarization is studied in PVDF nanocomposites by the measurements of the discharge performance and impedance spectroscopy. According to the results of dielectric constant, breakdown strength, and complex impedance analysis, coating SiO2 layers on the surface of BaTiO3 nanofibers can block the movement of charge carriers through the nanocomposites by playing a shielding role on the charge-rich inter layer, which resulted in weak Maxwell-Wagner-Sillars interfacial polarization and thus reduces the energy loss and improved the energy discharged density of the nanocomposites. The energy discharged density in the nanocomposite with 2.5 vol. % BaTiO3/SiO2 core-shell nanofibers is 6.28 J/cm3 at 3.3 MV/cm, which is over 11.94% higher than that of nanocomposite with BaTiO3 nanofibers at the same electric field.

  5. Dechlorination Reaction of Metal Chloride Wastes with Inorganic Composite (SiO{sub 2}-Al{sub 2}O{sub 3}- P{sub 2}O{sub 5}) at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Pyrochemical process to recover uranium and transuranic elements from the spent nuclear fuel indispensably generates radioactive metal chlorides waste containing fission products. These wastes are difficult to solidify and stabilize by conventional method due to their volatility and low comparability with silicate glass. Our research group is under development of dechlorination method to remove Clinduced problems. For dechlorination of metal chloride waste, an inorganic composite, SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} (SAP), has been investigated as dechlorination agent. The composite reacts with metal chloride to produce aluminosilicates, alumino phosphate and orthophosphate. The products are thermally stable up to 1200 .deg. C and compatible with silicate glass. In this study, modified SAP containing Fe{sub 2}O{sub 3} as another component was investigated to enhance the dechlorination reaction and characterize the reaction behavior of LiCl

  6. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Zhiping Zhang

    2017-11-01

    Full Text Available Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes' methods. The obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12 and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  7. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    Science.gov (United States)

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  8. Structural and Transition Temperature of HgPbxBa2Ca2Cu3O8+δ Superconductor

    International Nuclear Information System (INIS)

    Hermiz, G.Y.; Abbass, M.M.

    2005-01-01

    Solid state reaction technique (SSR) was used to prepare high-T c phase in HgPb x Ba 2 Ca 2 Cu 3 O 8+δ superconductors. The effect of additional Pb to HgBa 2 Ca 2 Cu 3 O 8+δ was investigated. It has been found that the maximum transition temperature T c =133K is at x=0.1.X-ray diffraction showed a tetragonal structure with an average value of e=15.816 A . The average value of the valence of copper (v) is equal to 2.025. There is an increasing of density with the enhancement of the concentration of Pb 2

  9. Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia)

    Science.gov (United States)

    Yakovenchuk, Victor N.; Ivanyuk, Gregory Yu.; Pakhomovsky, Yakov A.; Panikorovskii, Taras L.; Britvin, Sergei N.; Krivovichev, Sergey V.; Shilovskikh, Vladimir V.; Bocharov, Vladimir N.

    2018-02-01

    Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, is a new Ba-Sc phosphate from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia). It is orthorhombic, Pnma, a = 11.256(1), b = 8.512(1), c = 27.707(4) Å, V = 2654.6(3) Å3 and Z = 4 (from powder diffraction data) or a = 11.2261(9), b = 8.5039(6), c = 27.699(2) Å, V = 2644.3(3) Å3 (from single-crystal diffraction data). The mineral was found in a void within the calcite-magnetite phoscorite (enriched in hydroxylapatite and Sc-rich baddeleyite) inside the axial zone of the Kovdor phoscorite-carbonatite pipe. Kampelite forms radiated aggregates (up to 1.5 mm in diameter) of platy crystals grown on the surfaces of crystals of quintinite-2 H in close association with pyrite, bobierrite and quintinite-3 R. Kampelite is colourless, with a pearly lustre and a white streak. The cleavage is perfect on {001}, the fracture is smooth. Mohs hardness is about 1. In transmitted light, the mineral is colourless without pleochroism or dispersion. Kampelite is biaxial + (pseudouniaxial), α ≈ β = 1.607(2), γ = 1.612(2) (589 nm), and 2 V calc = 0°. The calculated and measured densities are 3.28 and 3.07(3) g·cm-3, respectively. The mean chemical composition determined by electron microprobe is: MgO 4.79, Al2O3 0.45, P2O5 31.66, K2O 0.34, Sc2O3 16.17, Mn2O3 1.62, Fe2O3 1.38, SrO 3.44, and BaO 29.81 wt%. The H2O content estimated from the crystal-structure refinement is 7.12 wt%, giving a total of 96.51 wt%. The empirical formula calculated on the basis of P = 6 apfu (atoms per formula unit) is (Ba2.62Sr0.45K0.10Ca0.06)Σ3.23Mg1.60Mn0.28(Sc3.15Fe3+ 0.23Al0.12)Σ3.50(PO4)6(OH)2.61·4.01H2O. The simplified formula is Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O. The mineral easily dissolves in 10% cold HCl. The strongest X-ray powder-diffraction lines [listed as d in Å ( I) ( hkl)] are as follows: 15.80(100)(001), 13.86(45)(002), 3.184(18)(223), 3.129(19)(026), 2.756(16)(402), 2.688(24)(10 10). The crystal structure of kampelite was

  10. Anomalous properties of PrBa2Cu3O7: a comment

    International Nuclear Information System (INIS)

    Sampathkumaran, E.V.

    1992-01-01

    Considerable attention has been paid in the literature to understand the suppression of superconductivity and the large Neel temperature of the Pr sub-lattice in PrBa 2 Cu 3 O 7 . Here we briefly recall the superconducting and magnetic anomalies noted earlier in other Pr based systems due to the partial delocalisation of the Pr-4f orbital to show that the gross anomalous features observed for PrBa 2 Cu 4 O 7 are not unique. (orig.)

  11. Precipitation method for barium metaborate (BaB2O4) synthesis from borax solution

    International Nuclear Information System (INIS)

    Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye

    2013-01-01

    In this study, barium metaborate (BaB 2 O 4 , BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β−BaB 2 O 4 single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na 2 B 4 O 7⋅ 10H 2 O, BDH) and barium chloride (BaCI 22H 2 O, Ba) in the glass-batch reactor with stirring. The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique

  12. Precipitation method for barium metaborate (BaB2O4) synthesis from borax solution

    Science.gov (United States)

    Akşener, Eymen; Figen, Aysel Kantürk; Pişkin, Sabriye

    2013-12-01

    In this study, barium metaborate (BaB2O4, BMB) synthesis from the borax solution was carried out. BMB currently is used in production of ceramic glazes, luminophors, oxide cathodes as well as additives to pigments for aqueous emulsion paints and also β-BaB2O4 single crystals are the best candidate for fabrication of solid-state UV lasers operating at a wavelength of 200 nm due to excellent nonlinear optical properties. In the present study, synthesis was carried out from the borax solution (Na2B4O7ṡ10H2O, BDH) and barium chloride (BaCI22H2O, Ba) in the glass-batch reactor with stirring. The effect of, times (5-15 min), molar ratio [stoich.ration (1.0:2.0), 1.25:2.0, 1.5:2.0, 2.5:2:0, 3.0:2.0, 3.5:2.0,4.0:2.0, 5.0:2.0] and also crystallization time (2-6 hour) on the BMB yield (%) was investigated at 80 °C reaction temperature. It is found that, BMB precipitation synthesis with 90 % yield can be performed from 0.50 molar ration (BDH:Ba), under 80 °C, 15 minute, and 6 hours crystallization time. The structural properties of BMB powders were characterized by using XRD, FT-IR and DTA-TG instrumental analysis technique.

  13. Refractories in the Al2O3-ZrO2-SiO2 system

    International Nuclear Information System (INIS)

    Banerjee, S.P.; Bhadra, A.K.; Sircar, N.R.

    1978-01-01

    The effect of addition of ZrO 2 in different proportions in the refractories of the Al 2 O 3 -SiO 2 system was studied. The investigation was confined to two broad ranges of compositions incorporating zirconia (15-30 percent and 80-85 percent) in the Al 2 O 3 -ZrO 2 -SiO 2 system. The overall attainment of properties is dependent upon the mode of fabrication and firing, and bears a relationship with the phase assemblages and the relative proportion thereof. Of the different characteristics, the trend of dissociation of zircon has been found to be specially significant vis-a-vis the temperature of firing and thermal shock resistance. Reassociation of the dissociated products has been ascribed to bring forth improved resistance to thermal spalling. The different products developed during this investigation are considered to be very promising which find useful applications in view of the properties attained by them. (auth.)

  14. SmBa2NbO6 Nanopowders, an Effective Percolation Network Medium for YBCO Superconductors

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available The percolation behavior of superconductor-insulator composite, YBa2Cu3O7–δ, and nano SmBa2NbO2 synthesized by modified combustion technique was studied. Particle size of nano SmBa2NBO6 was determined using transmission electron microscopy. The chemical nonreactivity of nano SmBa2NbO6 with YBCO is evident from the X-Ray diffraction study which makes it a suitable nanoceramic substrate material for high temperature superconducting films. A systematic increase in the sintered density, approaching the optimum value of the insulating nanophase is clearly observed, as the vol.% of YBCO in the composite decreases. SEM micrograph showed uniform distribution of nanopowder among the large clusters of YBCO. The obtained percolation threshold is ~26 vol% of YBCO in the composite. All the composites below the threshold value showed TC(0~92 K even though the room resistivity increases with increase in vol.% of nano SmBa2NbO6. The values of critical exponents obtained matches well with the theoretically expected ones for an ideal superconductor-insulator system.

  15. Forming of composites Al2O3-ZrO2 by direct coagulation casting method

    International Nuclear Information System (INIS)

    Tomaszewska-Grzeda, A.; Szafran, M.

    2003-01-01

    The role of enzymes in the DCC process in the decomposition of an appropriately selected substance which results in slow liberation over the whole volume of molecules changing the pH or also in the synthesis of salts modifying the double electric layer. The results of using the urease-urea system and the properties of ceramic casting slips, green samples and after sintering with aluminium oxide and Al 2 O 3 -nZrO 2 composites are presented in the paper. The obtained results of studies show a considerable probability of obtaining in the future of Al 2 O 3 -nZrO 2 composites of good strength parameters resulting from their high degree of thickening, providing that a deagglomeration method of nZrO 2 in the above presented processes will be elaborated. (author)

  16. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    2017-04-15

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eu concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  17. Synthesis and characterization of YBaCu2O5-δ compound

    Science.gov (United States)

    Ehsandoust, A.; Sandoghchi, M.; Mokhtari, P.; Akhavan, M.

    2018-05-01

    YBaCu2O5 compound as one of the possible microstructures of Y3Ba5Cu8O19 has been synthesized. The X-ray diffraction analysis of this compound indicates that its formation is accompanied with the formation of YBa2Cu3O7-δ. The observed superconductivity around ∼92 K supports this. So, it seems that YBa2Cu3O7-δ is responsible for the observed superconductivity in YBaCu2O5, and this phase is not an independent superconducting phase. Consequently, the overall effect of the YBaCu2O5 formation during the Y3Ba5Cu8O19 fabrication process could be a reduction in Tc.

  18. Fabrication and Characterization of 5 vol.% (Al2O3p + 8 vol.% (Al2O3f/A336 Hybrid Micron and Nano-Composites

    Directory of Open Access Journals (Sweden)

    Ren Luyang

    2017-01-01

    Full Text Available Hybrid composites are fabricated by adding two reinforcements into matrix materials so that the expected excellent properties can be achieved through the combined advantages of short fibres, and different size particles (micron or nano, which provide a high degree of design freedom. In this paper, hybrid preforms were produced with the different size reinforcement of the Al2O3 particles and short fibres. The Al-Si alloy-based hybrid composites reinforced by 5 vol. % Al2O3 particles and 8 vol. % Al2O3 fibres were fabricated by preform-squeezing casting route. The structure and performance of composite materials were studied with Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM. The results show that the reinforcements, both particles and fibres, distribute homogeneously in the matrix materials, and the properties of composites are found to improve in comparison with the matrix Al-Si alloy.

  19. Thermal properties of the Nd{sub 1−x}Ca{sub x}BaCo{sub 2}O{sub 5.5} compositions (0 ≤ x ≤ 0.2)

    Energy Technology Data Exchange (ETDEWEB)

    Gutowska, M.U., E-mail: mugut@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Wieckowski, J.; Szewczyk, A. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Kolesnik, S.; Dabrowski, B. [Physics Department, Northern Illinois University, DeKalb, IL 60115 (United States); Kowalczyk, M. [Fac. of Materials Engineering, Warsaw Univ. of Techn., Warsaw (Poland); Pietosa, J.; Nedelko, N.; Minikayev, R. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-06-15

    Layered cobaltites RBaCo{sub 2}O{sub 5.5}, considered for application as cathodes of fuel cells, exhibit a rich spectrum of magnetic and electronic properties. Taking advantage of the fact that Nd{sup 3+} and Ca{sup 2+} ions have nearly identical ionic radii, by synthesizing the Nd{sub 1−x}Ca{sub x}BaCo{sub 2}O{sub 5.5} compounds (for x = 0, 0.02, 0.06, 0.08, 0.16, and 0.2), a hole doping was realized, without significant disturbing the crystalline structure and the ordering of oxygen vacancies. In order to study the influence of the hole doping on thermal properties of these compositions, specific heat studies were performed over the temperature range from 2 to 395 K. The main, i.e., lattice, magnon and Schottky, contributions to the specific heat were separated from the total specific heat measured and described theoretically. In particular, the lattice contribution was described by combining the Debye and the Einstein models, whereas the magnon specific heat was described in frames of a model developed for anisotropic magnetic materials (A. I. Akhiezer et al., Sov. Phys. Usp. 3 (1961) 567). Changes of width and height of a specific heat anomaly accompanying the insulator-metal phase transition, appearing unmonotonously as a function of x, were ascribed to small deviations of the oxygen content from the assumed stoichiometry and to non-uniformity of the oxygen content over the sample volume. Smearing of specific heat anomalies related to magnetic phase transitions was found and attributed tentatively to disorder introduced by nonuniform distribution of the calcium ions within (Nd,Ca)–O planes. An impact of the calcium substitution on the position of the Schottky anomaly, related to thermal excitations of the Nd{sup 3+} ions, was found and interpreted qualitatively as a side effect of the hole doping, which causes also deformations of the crystalline structure and affects the magnetic structure of the Co sublattice. - Highlights: • Charge doping without

  20. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  1. A screen-printed Ce 0.8Sm 0.2O 1.9 film solid oxide fuel cell with a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ cathode

    Science.gov (United States)

    Zhang, Yaohui; Huang, Xiqiang; Lu, Zhe; Liu, Zhiguo; Ge, Xiaodong; Xu, Jiahuan; Xin, Xianshuang; Sha, Xueqing; Su, Wenhui

    Screen-printing technology was developed to fabricate Ce 0.8Sm 0.2O 1.9 (SDC) electrolyte films onto porous NiO-SDC green anode substrates. After sintering at 1400 °C for 4 h, a gas-tight SDC film with a thickness of 12 μm was obtained. A novel cathode material of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ was subsequently applied onto the sintered SDC electrolyte film also by screen-printing and sintered at 970 °C for 3 h to get a single cell. A fuel cell of Ni-SDC/SDC (12 μm)/Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ provides the maximum power densities of 1280, 1080, 670, 370, 180 and 73 mW cm -2 at 650, 600, 555, 505, 455 and 405 °C, respectively, using hydrogen as fuel and stationary air as oxidant. When dry methane was used as fuel, the maximum power densities are 876, 568, 346 and 114 mW cm -2 at 650, 600, 555 and 505 °C, respectively. The present fuel cell shows excellent performance at lowered temperatures.

  2. Incommensurate magnetism in PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; Boothroyd, A.T.; Andersen, N.H.

    1998-01-01

    We report resonant x-ray magnetic scattering and high-resolution neutron-diffraction studies of the Pr site magnetism in high quality single crystals of PrBa2Cu3O6.92. These studies reveal that the Pr sublattice orders at 19 K in a well correlated, long period incommensurate structure with probable...

  3. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  4. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    Science.gov (United States)

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spectral properties and anti-Stokes luminescence of TeO2-BaF2:Ho3+, Ho3+/Yb3+ ceramics and glass excited by 1.9-μm radiation of a Tm:LiYF4 laser

    Science.gov (United States)

    Savikin, A. P.; Egorov, A. S.; Budruev, A. V.; Perunin, I. Yu.; Krasheninnikova, O. V.; Grishin, I. A.

    2017-07-01

    We demonstrate the up-conversion of Tm:LiYF4 infrared (IR) laser radiation with 1908-nm wavelength into visible light with a spectral maximum at 650 nm by ceramics with a composition of (100 - x)TeO2- xBaF2 - 1 wt % HoF3- yYbF3, where x = 20, 30, or 40 mol % and y = 0 or 0.5 wt %. The samples of 60TeO2-40BaF2 - 1 wt % HoF3 - 0.5 wt % YbF3 exhibited anti-Stokes luminescence at a threshold radiation power density of 1.0-1.5 W cm-2.

  6. (La, Pr)0.8Sr0.2FeO3-δ-Sm 0.2Ce0.8O2composite cathode for proton-conducting solid oxide fuel cells

    KAUST Repository

    Chen, Yonghong

    2014-08-01

    Mixed rare-earth (La, Pr)0.8Sr0.2FeO 3-δ-Sm0.2Ce0.8O2-δ (LPSF-SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y 0.2O3-δ (BZCY) electrolyte. The powders of La 0.8-xPrxSr0.2FeO3-δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2-δ (SDC) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8-xPrxSr 0.2FeO3-δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2-SDC, BZCY and NiO-BZCY is 12.50 × 10-6 K-1, 13.51 × 10-6 K-1 and 13.47 × 10-6 K -1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2-SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm -2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2-SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  7. Magnetic flux motion in (PrxY1−xBa2Cu3O7−δ polycrystal samples sintered in Ar and O2 atmospheres

    Directory of Open Access Journals (Sweden)

    S. Favre

    2016-09-01

    Full Text Available We present a comparative study of the magnetic flux motion in ceramic pellets made of (PrxY1−xBa2Cu3O7−δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material’s parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  8. Stable and easily sintered BaCe0.5Zr0.3Y0.2O3−δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells

    International Nuclear Information System (INIS)

    Li, Yong; Guo, Ruisong; Wang, Chao; Liu, Yu; Shao, Zongping; An, Jing; Liu, Chongwei

    2013-01-01

    Highlights: ► Sintering temperature of BCZY-Z pellets was reduced by adding ZnO and Na 2 CO 3 . ► Chemical stability of BCZY-Z towards CO 2 was improved with Na 2 CO 3 addition. ► Good chemical stability against boiling water was observed for BCZY-Z-C2 sample. ► The electrical conductivity is 7.68 × 10 −3 S cm −1 for BCZY-Z-C2 sample at 700 °C. ► An anode-supported POFC delivered a peak output 302 mW cm 2 at 700 °C. -- Abstract: BaCe 0.5 Zr 0.3 Y 0.2 O 3−δ (BCZY) based composite electrolyte materials were fabricated with ZnO sintering aid (BCZY-Z). The effects of Na 2 CO 3 modification on sintering behavior, chemical stability and electrochemical performance were systematically investigated. The X-ray diffraction patterns indicate that the specimens with Na 2 CO 3 addition possessed a single perovskite structure after sintering at 1320 °C for 2 h. The linear shrinkage of 0.5 mol% Na 2 CO 3 -modified BCZY-Z sample (BCZY-Z-C2) was about 17.5%, higher than that without Na 2 CO 3 addition (14.9%). Energy dispersive spectrometer shows that Na and C elements still existed and mainly distributed along the grain boundaries. Reactivities with carbon dioxide and boiling water of BCZY-Z and Na 2 CO 3 -modified BCZY-Z samples were also evaluated and good chemical stability was observed for Na 2 CO 3 -modified BCZY-Z samples. A conductivity of 7.68 × 10 −3 S cm −1 for BCZY-Z-C2 was obtained at 700 °C in 3% wet hydrogen atmosphere. An anode-supported fuel cell with thin-film BCZY-Z-C2 as electrolyte was fabricated. The fuel cell delivered a peak power density of 302 mW cm 2 and interface resistance value of 0.08 Ω cm 2 at 700 °C

  9. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    Science.gov (United States)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  10. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    Science.gov (United States)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  11. STRUCTURAL AND DIELECTRIC STUDIES ON Sr0.5-3y/2LayBa0.5Nb2O6 CERAMIC SYSTEMS WITH VARIED SINTERING TIME AND La CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zahariman S. R.

    2013-12-01

    Full Text Available Sr0.5Ba0.5Nb2O6 (SBN50 ceramic doped with different concentration of Lanthanum, La according to stoichiometric formulation of Sr0.5-3y/2LayBa0.5Nb2O6 (LSBN with y = 0.01, 0.03, 0.05 and 0.07 prepared using traditional ceramic method at the calcination temperature of 1200°C and sintered at 1300°C at varied sintering time. The effects of the sintering time and La3+ substitution on the morphological, compositional, structural and electrical properties of the LSBN is presented using scanning electronic microscopy (SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD and dielectric analysis. The XRD spectra confirm the presence of TTB structure in the ceramics. The Curie temperature (Tc of the ceramic identified from the dielectric studies performed in the temperature range of 28°C to 300°C. The temperature dependent dielectric exhibits broad peaks indicating a diffuse phase transition and relaxor behavior of the ceramic. The measured density of the samples is proportional to the sintering time and inversely proportional to the amount of the La3+ substitution. The solubility limit of La3+ ions in the SBN solid solution is at y ~ 0.05. This observation is also supported by the dielectric results where the dielectric properties of the ceramic deteriorate for y > 0.05 La substitution.

  12. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  13. Dispersion and guidance characteristics of microstructured 68TeO2 - 22WO3 - 8La2O3 - 2Bi2O3 glass fibres for supercontinuum generation

    International Nuclear Information System (INIS)

    Yatsenko, Yu P; Nazaryants, V O; Kosolapov, A F; Astapovich, M S; Plotnichenko, V G; Dianov, Evgenii M; Moiseev, A N; Churbanov, M F; Dorofeev, V V; Chilyasov, A V; Snopatin, G E

    2010-01-01

    We report the preparation of a high-purity optical-quality four-component glass of composition 68TeO 2 - 22WO 3 - 8La 2 O 3 - 2Bi 2 O 3 , containing (2.7±0.5)x10 -5 mol % OH groups. Its refractive index has been determined in the range 0.9 - 5.45 μm using interference refractometry. The data are used to assess the dispersion and guidance characteristics of microstructured optical fibres potentially attractive for supercontinuum generation in the range 1 - 5 μm (optical fibres)

  14. Crystal structures and thermal decomposition of permanganates AE[MnO_4]_2 . n H_2O with the heavy alkaline earth elements (AE=Ca, Sr and Ba)

    International Nuclear Information System (INIS)

    Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas

    2017-01-01

    Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO_4]_2 . 4 H_2O, Sr[MnO_4]_2 . 3 H_2O and Ba[MnO_4]_2 are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO_4]_2 a long time ago, we employed a cation-exchange column loaded with Ba"2"+ cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO_4]_2 . 4 H_2O exhibiting [CaO_8] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO_4]_2 . 3 H_2O with [SrO_1_0] polyhedra adopts the cubic space group P2_13 with a=964.19(7) pm and Z=4. So the harder the AE"2"+ cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO_4]_2 in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO_1_2] polyhedra. During the thermal decomposition of Ca[MnO_4]_2 . 4 H_2O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H_2O molecule at 157 C. The crystal structure of Sr[MnO_4]_2 . 3 H_2O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn_2O_3 and the oxomanganates(III,IV) AEMn_3O_6 (AE=Ca and Sr) remain as final decomposition products at 800 C next to amorphous phases. On the other hand, the already anhydrous Ba[MnO_4]_2 thermally decomposes to hollandite-type BaMn_8O_1_6 and BaMnO_3 at 800 C.

  15. Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}: A new telluro-phosphate with S=1/2 Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mingjun [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Shipeng; Lu, Jun; Sun, Young [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, R.K., E-mail: rkli@mail.ipc.ac.cn [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-15

    A new telluro-phosphate compound Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, one dimensional [CuTePO{sub 7}]{sup 3−} chains are formed by tetrahedral PO{sub 4} and trigonal bi-pyramidal TeO{sub 4} joining square planar CuO{sub 4} groups. Those [CuTePO{sub 7}]{sup 3−} chains are inter-connected by sharing one oxygen atom from the TeO{sub 4} group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system. - Graphical abstract: Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, containing (CuTePO{sub 7}){sup 3−} chains formed by PO{sub 4} and TeO{sub 4} joining CuO{sub 4} groups, shows typical 1D Heisenberg antiferromagnetic chain model behavior as confirmed by magnetic measurements. - Highlights: • New telluro-phosphate Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} has been grown. • It features layered structure composed of [CuTePO{sub 7}]{sup 3−} chains and TeO{sub 4} groups. • It shows the Heisenberg antiferromagnetic chain behavior. • It is transparent in the range of 1000–2500 nm with a UV absorption edge of 393 nm.

  16. Spectroscopic features of Ni(2+) ion in PbO-Bi2O3-SiO2 glass system.

    Science.gov (United States)

    Suresh, B; Srinivasa Reddy, M; Siva Sesha Reddy, A; Gandhi, Y; Ravi Kumar, V; Veeraiah, N

    2015-04-15

    Glasses of the composition (30-x)PbO-5Bi2O3-65SiO2: xNiO (with x ranging from 0 to 1.0 mol%) were synthesized. A variety of spectroscopic studies, viz., IR, Raman optical absorption and luminescence properties of these glasses have been carried out as a function of NiO concentration. The analysis of results of all these studies has indicated that the nickel ions occupy both octahedral and tetrahedral positions. However, with the increase of NiO concentration the octahedral occupancy of Ni(2+) ions prevailed over the tetrahedral ions. The luminescence spectra of these glasses have exhibited a broad NIR emission band in region 1100-1500 nm. This band is identified as being due to (3)T2(3F)→(3)A2(3F) octahedral transition of Ni(2+) ions. The luminescence efficiency and cross section have been found to be the highest for the glass containing the highest concentration of NiO. The reasons for such high luminescence efficiency have been discussed in the light of structural variations taking place in the host glass network. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Superconducting TlCa2Ba2Cu3O9 thick films

    International Nuclear Information System (INIS)

    1994-01-01

    GE Corporate Research and Development's (GE-CRD) program to develop the two-zone silver addition (TZSA) process for fabricating superconducting films of TlCa 2 Ba 2 Cu 3 O 9 has activities in the areas of (1) precursor preparation, (2) the thallium oxide vapor process, (3) the effects of post-synthesis annealing ambient and temperature on superconducting properties, (4) the influence of film stoichiometry and composition on superconducting properties, (5) microstructure and film growth mechanism, (6) the preparation of thicker films, (7) the fabrication of films on flexible substrates, and (8) process scale-up. As part of its effort under the ANL Pilot Center Agreement, GE-CRD has supplied to ANL a complete two-zone furnace, has provided consultation on its use and on the planning of experiments, has processed ANL samples in GE's furnaces to help define optimum process conditions, and has provided precursor and finished films as requested. These contributions are described more fully in the descriptions of the work performed at ANL presented elsewhere in this report. Under the Pilot Center Agreement work at GE-CRD has been directed toward the optimization of the TZSA process with emphasis on (A) process improvement, (B) effects of silver content on film properties, (C) the relationship between microstructure and J c , and (D) toward the assessment of the compatibility of silver substrates with the process chemistry

  18. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  19. In situ study of interface reactions of ion beam sputter deposited (Ba0.5Sr0.5)TiO3 films on Si, SiO2, and Ir

    International Nuclear Information System (INIS)

    Gao, Y.; Mueller, A.H.; Irene, E.A.; Auciello, O.; Krauss, A.; Schultz, J.A.

    1999-01-01

    (Ba 0.5 ,Sr 0.5 )TiO 3 (BST) thin films were deposited on MgO, Si, SiO 2 and Ir surfaces by ion beam sputter deposition in oxygen at 700 degree C. In situ spectroscopic ellipsometry (SE) has been used to investigate the evolution of the BST films on different surfaces during both deposition and postannealing processes. First, the optical constants of the BST films in the photon energy range of 1.5 - 4.5 eV were determined by SE analysis on crystallized BST films deposited on MgO single crystal substrates. The interfaces in BST/Si and BST/SiO 2 /Si structure were examined by SE and Auger electron spectroscopy depth profiles. Subcutaneous oxidation in the BST/Ir structure was observed by in situ SE during both ion beam sputter deposition and postdeposition annealing in oxygen at 700 degree C. A study of the thermal stability of the Ir/TiN/SiO 2 /Si structure in oxygen at 700 degree C was carried out using in situ SE. The oxidation of Ir was confirmed by x-ray diffraction. The surface composition and morphology evolution after oxidation were investigated by time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and atomic force microscopy. It has been found that Ti from the underlying TiN barrier layer diffused through the Ir layer onto the surface and thereupon became oxidized. It was also shown that the surface roughness increases with increasing oxidation time. The implications of the instability of Ir/TiN/SiO 2 /Si structure on the performance of capacitor devices based on this substrate are discussed. It has been shown that a combination of in situ SE and TOF-MSRI provides a powerful methodology for in situ monitoring of complex oxide film growth and postannealing processes. copyright 1999 American Vacuum Society

  20. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    Science.gov (United States)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  1. Glass formation and properties of glasses in V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ system

    Energy Technology Data Exchange (ETDEWEB)

    Sedmale, G P; Vajvad, Ya A; Arkhipova, S E; Laukmanis, L A

    1987-01-01

    The glass formation in the system V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ and the properties of the obtained glasses have been studied by methods including that of the mathematical design and the treatment of the obtained data on ECM. The glass formation region is limited by the molar content of V/sub 2/O/sub 5/ 30-80%, B/sub 2/O/sub 3/ 0-45%, P/sub 2/O/sub 5/ 20-65%. The chemical stability data show that at the molar content of V/sub 2/O/sub 5/ 45-50% the transfer of vanadium from the state of the modificator to the glass-forming agent takes place. For the studied glasses the electron mechanism of conductivity is the dominating one.

  2. Ionic conductivity of co-doped Sc2O3-ZrO2 ceramics

    DEFF Research Database (Denmark)

    Omar, Shobit; bin Najib, Waqas; Chen, Weiwu

    2012-01-01

    The oxide ionic conductivity of Sc0.18Zr0.82O1.91 doped with 0.5 mol.% of both Yb2O3 and In2O3 is evaluated at various temperatures in air. Among various co-doped compositions, In0.02Sc0.18Zr0.80O1.90 exhibits the highest grain ionic conductivity followed by Yb0.02Sc0.18Zr0.80O1.90 at 500°C....... However, it also possesses phase transformation from c- to β-phase at 475°C on cooling. In the present work, an attempt is made to completely stabilize the cphase in In0.02Sc0.18Zr0.80O1.90 by substituting 0.5 mol.% of In2O3 with Yb2O3, which can enhance the ionic conductivity in co-doped compositions....

  3. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  4. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  5. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  6. Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    Science.gov (United States)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents.

  7. Compatibilities of YBa2Cu3O(9-delta)-type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    International Nuclear Information System (INIS)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents

  8. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  9. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    Science.gov (United States)

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary

  10. EPR Structural Investigations on Ag2O-B2O3-CaO-P2O5 Vitreous System

    Directory of Open Access Journals (Sweden)

    Razvan Stefan

    2011-10-01

    Full Text Available Glass samples from vitreous system 1.5Ag2O98.5%[0.47B2O3(0.53-xCaOxP2O5] with 0  x  0.08 have been obtained by undercooled method. The magnetic species existing in glass powders have been highlighting by mean of electronic paramagnetic resonance (EPR. The resonance linewidth analysis reveal the interactions between magnetic ions.

  11. Tailoring the piezoelectric and relaxor properties of (Bi1/2 Na1/2) TiO3- BaTiO3 via zirconium doping

    DEFF Research Database (Denmark)

    Glaum, Julia; Simons, Hugh; Acosta, Matias

    2013-01-01

    This article details the influence of zirconium doping on the piezoelectric properties and relaxor characteristics of 94(Bi1/2Na1/2)TiO3-6Ba(ZrxTi1-x)O3 (BNT-6BZT) bulk ceramics. Neutron diffraction measurements of BNT-6BZT doped with 0%-15% Zr revealed an electric-field-induced transition...

  12. Dielectric Performance of High Permitivity Nanocomposites: Impact of Polystyrene Grafting on BaTiO3 and TiO2

    Science.gov (United States)

    2016-09-22

    prepared using high-shear mixing (Ultra-Turrax T18, IKA). All BaTiO3 nanocomposites were solution cast from DMF onto aluminum-coated glass substrates...coated from chlorobenzene onto aluminum-coated glass substrates. Figure 3 a Real dielectric permittivity ε′ measured at 1 kHz for PS@BaTiO3 HNPs... SiO2 nanocomposites, where 15% v/v PS  +  SiO2 blends exhibited degraded energy storage efficiencies when driven above 100 V/μm, while 18% v/v PS@ SiO2

  13. Solid Phase Equilibrium Relations in the CaO-SiO2-Nb2O5-La2O3 System at 1273 K

    Science.gov (United States)

    Qiu, Jiyu; Liu, Chengjun

    2018-02-01

    Silicate slag system with additions Nb and RE formed in the utilization of REE-Nb-Fe ore deposit resources in China has industrial uses as a metallurgical slag system. The lack of a phase diagram, theoretical, and thermodynamic information for the multi-component system restrict the comprehensive utilization process. In the current work, solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 quaternary system at 1273 K (1000 °C) were investigated experimentally by the high-temperature equilibrium experiment followed by X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer. Six spatial independent tetrahedron fields in the CaO-SiO2-Nb2O5-La2O3 system phase diagram were determined by the Gibbs Phase Rule. The current work combines the mass fraction of equilibrium phase and corresponding geometric relation. A determinant method was deduced to calculate the mass fraction of equilibrium phase in quaternary system according to the Mass Conservation Law, the Gibbs Phase Rule, the Lever's Rule, and the Cramer Law.

  14. Smooth surfaces in very thin GdBa2Cu3O7−δ films for application in superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Navarro, H.; Sirena, M.; Kim, Jeehoon; Haberkorn, N.

    2015-01-01

    Highlights: • A detailed study of the morphological properties of GdBa 2 Cu 3 O 7−δ thin films was realized. • The inclusion of a very thin SrTiO 3 buffer layer modifies the surface of the SrTiO 3 substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa 2 Cu 3 O 7−δ film. • GdBa 2 Cu 3 O 7−δ films with large areas free of topological defects and T c close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa 2 Cu 3 O 7−δ films grown on (0 0 1) SrTiO 3 substrates by DC sputtering. We find that the use of a very thin SrTiO 3 buffer layer (≈2 nm) modify the nucleation of GdBa 2 Cu 3 O 7−δ on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa 2 Cu 3 O 7−δ films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm 2 ) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry

  15. Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2-BaO-CaO-Na2O-P2O5 glass system

    Science.gov (United States)

    Kiran, P.; Ramakrishna, V.; Shashikala, H. D.; Udayashankar, N. K.

    2017-11-01

    Barium soda lime phosphosilicate [(58SiO2-(32 - x)BaO- xCao-6Na2O-4P2O5 (where x = 15, 20, 25 and 30 mol%)] samples were synthesised using conventional sol-gel method at 700 °C sintering temperature. Thermal, structural properties were studied using thermo gravimetric analysis and differential thermal analysis, X-ray diffraction, scanning electron microscopy, fourier transform infrared and Raman spectroscopy. Using Raman spectra non-bridging oxygen concentrations were estimated. The hydroxy-carbonated apatite (HCA) layer formation on samples was analysed for 7 days using simulated body fluid (SBF) soaked samples. The growth of HCA layers self-assembled on the sample surface was discussed as a function of NBO/BO ratio. Results indicated that the number of Ca2+ ions released into SBF solution in dissolution process and weight loss of SB-treated samples vary with NBO/BO ratio. The changes in NBO/BO ratios were observed to be proportional to HCA forming ability of barium soda lime phosphosilicate glasses.

  16. Phonon dispersion relations in PrBa2Cu3O6+x (x approximate to 0.2)

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa2Cu3O6+x (xapproximate to0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all...

  17. Large low field room temperature magneto-dielectric response from (Sr_0_._5Ba_0_._5)Nb_2O_6/Co(Cr_0_._4Fe_1_._6)O_4 bulk 3-0 composites

    International Nuclear Information System (INIS)

    Rathore, Satyapal Singh; Vitta, Satish

    2016-01-01

    Highlights: • The essential highlights of this work are;. • Bulk composite with varying amounts of relaxor and ferromagnetic phases has been synthesized by simple steps. • Processing yields an optimal structure with 30% ferromagnetic phase to couple the two ferroic orders. • Magneto dielectric constant shows large changes, 3.2%, at room temperature in moderate magnetic fields. • Large changes in dielectric constant are due to configurational arrangement of the two phases. - Abstract: Bulk magneto-dielectric composites with a 3-0 configuration comprised of ferroelectric-magnetostrictive phases have been synthesized using (Sr_0_._5Ba_0_._5)Nb_2O_6–Co(Cr_0_._4Fe_1_._6)O_4 as the two constituents, respectively. The ferroelectric phase made by a dual stage sintering process has a uniform grain size of 15 μm while the magnetostrictive phase has a grain size of 23 μm. Composites synthesized by conventional solid state processing using these two constituents exhibit large magneto-dielectric coupling at room temperature which increases with increasing magnetic field. The composite with 30% magnetostrictive phase distributed uniformly in the ferroelectric phase has the most desirable microstructure and exhibits a large coupling with 3.2% change in the dielectric constant at 1 kHz and 8 kOe magnetic field. This change in dielectric constant was found to be a maximum with respect to variation of the fraction of magnetostrictive phase, indicating that 30% is the optimal value to realize large coupling between the two phases. The decrease in magneto-dielectric constant upon application of an external magnetic field is possibly due to the inherent magnetoresistance of the magnetic component. The resistivity of the magnetic component decreases in an external magnetic field leading to the formation of 3D percolating conducting paths. This causes the coupling to decrease in composites with >30% magnetostrictive phase.

  18. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  19. Hydrothermal-precipitation preparation of CdS@(Er3+:Y3Al5O12/ZrO2) coated composite and sonocatalytic degradation of caffeine.

    Science.gov (United States)

    Huang, Yingying; Wang, Guowei; Zhang, Hongbo; Li, Guanshu; Fang, Dawei; Wang, Jun; Song, Youtao

    2017-07-01

    Here, we reported a novel method to dispose caffeine by means of ultrasound irradiation combinated with CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) coated composite as sonocatalyst. The CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) was synthesized via hydrothermal-precipitation method and then characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and UV-vis diffuse reflectance spectra (DRS). After that, the sonocatalytic degradation of caffeine in aqueous solution was conducted adopting CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) and CdS@ZrO 2 coated composites as sonocatalysts. In addition, some influencing factors such as CdS and ZrO 2 molar proportion, caffeine concentration, ultrasonic irradiation time, sonocatalyst dosage and addition of several inorganic oxidants on sonocatalytic degradation of caffeine were investigated by using UV-vis spectra and gas chromatograph. The experimental results showed that the presence of Er 3+ :Y 3 Al 5 O 12 could effectively improve the sonocatalytic degradation activity of CdS@ZrO 2 . To a certain extent some inorganic oxidants can also enhance sonocatalytic degradation of caffeine in the presence of CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ). The best sonocatalytic degradation ratio (94.00%) of caffeine could be obtained when the conditions of 5.00mg/L caffeine, 1.00g/L prepared CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ), 10.00mmol/LK 2 S 2 O 8 , 180min ultrasonic irradiation (40kHz frequency and 50W output power), 100mL total volume and 25-28°C temperature were adopted. It seems that the method of sonocatalytic degradation caused by CdS@(Er 3+ :Y 3 Al 5 O 12 /ZrO 2 ) displayspotentialadvantages in disposing caffeine. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2006-01-01

    PbO-BaO-B 2 O 3 glass system has been investigated in terms of molar mass, mass attenuation coefficient and half value layer parameters by using gamma-ray at 511,662 and 1274keV photon energies. Gamma-ray attenuation coefficients of the prepared glass samples have been compared with tabulations based upon the results of XCOM. Good agreement has been observed between experimental and theoretical tabulations. Our results have uncertainty less than 3%. Radiation shielding properties of the glass system have been compared with some standard radiation shielding concretes

  1. Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants.

    Science.gov (United States)

    Zarrin, Saviz; Heshmatpour, Felora

    2018-06-05

    In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Preparation and dielectric properties of Dy, Er-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Hao Sue; Sun Liang; Huang Jinxiang

    2008-01-01

    Ba(Zr x Ti 1-x )O 3 nanopowders and ceramics with different Zr/Ti ratios of 1:9; 2:8; 2.5:7.5; 3.5:6.5 and 4:6 (x = 0.1, 0.2, 0.25, 0.35, 0.4) have been prepared by sol-gel technology using inorganic zirconium as raw materials, and Zr/Ti ratio of 2:8 is determined as the best one according to the measurements of dielectric properties. So the modified Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics doped by Dy and Er (the additive content is 0.10%, 0.15%, 0.20%, 0.30% and 0.50% molar ratio, respectively) have been prepared, and the effects of rare earth on the microstructure and dielectric properties of Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics have been studied. The experimental results show that the effect of Er is better than that of Dy in improving the dielectric properties of BaZr 0.2 Ti 0.8 O 3 ceramics. When the content of Er is 0.15 mol%, the dielectric constant is the highest of 12767, while the dielectric loss is lowered to 0.011; the frequency stabilities and the temperature dependence are also better, which is suitable for application in condenser field

  3. Raman scattering study of the ferroelectric phase transition in BaT i2O5

    Science.gov (United States)

    Tsukada, Shinya; Fujii, Yasuhiro; Yoneda, Yasuhiro; Moriwake, Hiroki; Konishi, Ayako; Akishige, Yukikuni

    2018-02-01

    Uniaxial ferroelectric BaT i2O5 with a Curie temperature TC of 743 K was investigated to clarify its paraelectric-ferroelectric phase-transition behavior. The mechanism is discussed on the basis of the structure from short to long ranges determined by synchrotron x-ray diffraction and the lattice dynamics probed by Raman spectroscopy. BaT i2O5 is regarded as a homogeneous system, and the lattice dynamics can be interpreted by the selection rules and tensor properties of the homogeneous structure. Angle-resolved polarized Raman spectroscopy clearly shows that an A -mode-type overdamped phonon plays the key role in the phase transition. Using a combination of experimental results and first-principles calculations, we explain the phase transition as follows: In one of three Ti O6 octahedral units, Ti vibrates along the b axis opposite an oxygen octahedral unit with large damping in the paraelectric phase, whereas this vibration is frozen in the ferroelectric phase, leading to a change in the space group from nonpolar C 2 /m to polar C 2 .

  4. Structural evolution of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} using a series of Ba(Ti{sub 1−5x}Nb{sub 4x})O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos Hernández, F.R., E-mail: frbh68@hotmail.com [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Lira Hernández, I.A. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Industrial Engineering Department, Technological Institute of Pachuca, Road México-Pachuca km. 87.5, Pachuca de Soto zip code 42080, Hidalgo (Mexico); Gómez Yáñez, C. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Arenas Flores, A. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Cabrera Sierra, R. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Pérez Labra, M. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico)

    2014-01-15

    Highlights: • The evolution phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} was obtained through the mechanism Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3}. • Addition of niobium can accelerate grain growth of BaTiO{sub 3} ceramics. • Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb{sup 5+} content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} by adding Nb{sub 2}O{sub 5} to perovskite structure of BaTiO{sub 3} was investigated. The compositions Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3} ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO{sub 3}, BaCO{sub 3} and Nb{sub 2}O{sub 5}, were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} which

  5. The Role of Fe2O3 Species in Depressing the Formation of N2O in the Selective Reduction of NO by NH3 over V2O5/TiO2-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Moon Hyeon Kim

    2018-03-01

    Full Text Available Promotion of 2.73% Fe2O3 in an in-house-made V2O5-WO3/TiO2 (VWT and a commercial V2O5-WO3/TiO2 (c-VWT has been investigated as a cost effective approach to the suppression of N2O formation in the selective catalytic reduction of NO by NH3 (NH3-SCR. The promoted VWT and c-VWT catalysts all gave a significantly decreased N2O production at temperatures >400 °C compared to the unpromoted samples. However, such a promotion led to the loss in high temperature NO conversion, mainly due to the oxidation of NH3 to N-containing gases, particularly NO. Characterization of the unpromoted and promoted catalysts using X-ray diffraction (XRD, NH3 adsorption-desorption, and Raman spectroscopy techniques could explain the reason why the promotion showed much lower N2O formation levels at high temperatures. The addition of Fe2O3 to c-VWT resulted in redispersion of the V2O5 species, although this was not visible for 2.73% Fe2O3/VWT. The iron oxides exist as a highly-dispersed noncrystalline α-Fe2O3 in the promoted catalysts. These Raman spectra had a new Raman signal that could be tentatively assigned to Fe2O3-induced tetrahedrally coordinated polymeric vanadates and/or surface V-O-Fe species with significant electronic interactions between the both metal oxides. Calculations of the monolayer coverage of each metal oxide and the surface total coverage are reasonably consistent with Raman measurements. The proposed vanadia-based surface polymeric entities may play a key role for the substantial reduction of N2O formed at high temperatures by NH3 species adsorbed strongly on the promoted catalysts. This reaction is a main pathway to greatly suppress the extent of N2O formation in NH3-SCR reaction over the promoted catalysts.

  6. Phase relations in the ZrO2-Nd2O3-Y2O3 system. Experimental study and CALPHAD assessment

    International Nuclear Information System (INIS)

    Fabrichnaya, Olga; Savinykh, Galina; Schreiber, Gerhard; Seifert, Hans J.

    2010-01-01

    The thermodynamic parameters of the Nd 2 O 3 Y 2 O 3 system were re-assessed for better reproduction of experimental data. The thermodynamic parameters were combined from binary descriptions to calculate phase diagrams for the ternary system ZrO 2 -Nd 2 O 3 Y 2 O 3 . The calculated phase diagrams were used to select compositions for the experimental studies at 1250, 1400 and 1600 C. The samples were synthesised by co-precipitation and heat treated at 1250-1600 C, investigated by X-ray diffraction and scanning electron microscopy combined with energy dispersive X-ray spectroscopy. It was found that solubility of the Y 2 O 3 in the pyrochlore phase exceeds 10 mol.%. The experimental data obtained for phase equilibria were used to derive thermodynamic parameters for fluorite, Y 2 O 3 cubic phase C, monoclinic B and Nd 2 O 3 hexagonal A phases by CALPHAD method. The isothermal sections and liquidus surface were calculated for the ZrO 2 -Nd 2 O 3 Y 2 O 3 system. (orig.)

  7. Hexagonal perovskites with cationic vacancies. 25. Hexagonal 5 L stacking polytypes in the systems Ba/sub 5/BaWsub(3-x)sup(VI)Msub(x)sup(V)vacantOsub(15-x/2)vacantsub(x/2) with Msup(V) = Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-12-01

    In the systems BaO-M/sub 2/sup(V)O/sub 5/-WO/sub 3/ (Msup(V) = Nb, Ta) a new phase Ba/sub 5/BaWsub(3-x)Msub(x)sup(V)vacantOsub(15-x/2)vacantsub(x/2) with hexagonal 5 L structure (sequence hhccc; space group P-3m1) could be prepared. The range of existence is restricted to Msup(V) containing compounds. With Msup(V) = Nb the lower phase boundary is x = 3. In the Ta system it is reached between x = 2 and 3; the pure Ta pervoskite (Ba:Ta:O = 6:3:13 1/2 = 4:2:9) represents the final member of the series Ba/sub 3/Srsub(1-y)Basub(y)Ta/sub 2/O/sub 9/ with y = 1.

  8. Synthesis, characterization and electrochemical properties of the V2O5.nH2O/AlO(OH).nH2O xerogel composite

    International Nuclear Information System (INIS)

    Zampronio, Elaine C.; Lassali, Tania A.F.; Oliveira, Herenilton P.

    2005-01-01

    In this work, we report the synthesis, characterization and electrochemical properties of a new multicomponent material obtained from the polymerization of vanadium pentoxide in an inorganic matrix (alumina xerogel), forming a xerogel composite. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, electron microscopy, energy dispersive X-ray spectrometry, cyclic voltammetry and impedance spectroscopy. It was found that the V 2 O 5 xerogel is dispersed in the alumina matrix, but its lamellar structure is not strongly affected, thus, its conductivity properties are maintained. Moreover, the electrochemical behaviour of the V 2 O 5 xerogel dispersed in the alumina matrix is quite similar to that found for the V 2 O 5 xerogel alone and the inorganic matrix leads to stabilization of V 2 O 5 xerogel structure

  9. Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M=Ca, Sr, Ba) phosphors for white LED

    International Nuclear Information System (INIS)

    Cui Zhiguang; Jia Guohua; Deng Degang; Hua Youjie; Zhao Shilong; Huang Lihui; Wang Huanping; Ma Hongping; Xu Shiqing

    2012-01-01

    Eu 2+ doped silicate glasses were prepared of the system 52SiO 2 -48MO: xEu 2+ (in molar ratio, M=Ca, Sr, Ba; x=1, 3, 5, 7, 9) by a high temperature melt-quenching method in a reducing atmosphere. Glass ceramics containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) nano-phosphors were obtained after the heat treatment of the glass samples. The excitation, emission spectra and lifetime decay curves of 4f 6 5d 1 →4f 7 of Eu 2+ were measured and interpreted with respect to their crystal structures and multi-site occupations of divalent europium in the hosts. Their excitation bands mainly extend from 450 to 250 nm, which is adaptable to the main emission region of the UV LED chip. With UV light excitation, the Eu 2+ emission in CaSiO 3 , SrSiO 3 and BaSiO 3 shows blue, green and yellow colors centered at 440, 505 and 555 nm, respectively. The critical Eu 2+ concentration was studied and determined to be x=5 for both CaSiO 3 and SrSiO 3 and x=7 for BaSiO 3 phosphors. The results show that the Eu 2+ doped glass ceramic phosphors containing MSiO 3 (M=Ca, Sr, Ba) nano-crystals can be used as potential matrix materials for a high power white LED pumped by the UV LED chip. - Highlights: → Glass ceramic containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) phosphors prepared. → Derived phosphors emit intensively blue, green and yellow colors. → Their luminescence properties and crystal structures have been investigated. → Concentration quenching effects observed and analyzed. → Potential application for UV chip exciting white LED evaluated.

  10. Transformational dynamics of BZO and BHO nanorods imposed by Y2O3 nanoparticles for improved isotropic pinning in YBa2Cu3O7 -δ thin films

    Science.gov (United States)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.

    2017-07-01

    An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.

  11. Microstructural morphologies of slag based glass-ceramics nucleated with 5 wt% Cr{sub 2}O{sub 3} and 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oevecoglu, M.L.; Oezkal, B. [Istanbul Technical Univ. (Turkey). Dept. of Metallurgical and Materials Enginering; Catakli, E. [Mimar Sinan Univ., Istanbul (Turkey). Faculty of Science and Literature; Erkmen, Z.E. [Istnabul Univ. (Turkey). Dept. of Metallurgical Engineering

    2002-07-01

    Glass-ceramic materials were developed from the blast-furnace slags by mixing 5 wt% Cr{sub 2}O{sub 3} and 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2}. The samples were nucleated for 18 h at 780 C and crystallized for 20 min. at 905 C, respectively. SEM and SEM/EDS investigations revealed the presence of clover-shaped TiO{sub 2} particles in the glassy matrix of the sample nucleated with 5 wt% Cr{sub 2}O{sub 3} + 5 wt% TiO{sub 2} and polygonal-shaped Cr{sub 2}O{sub 3} platelets for both samples. XRD scans revealed the presence of akermanite (2CaO.MgO.2SiO{sub 2}) and gehlenite (2CaO.Al{sub 2}O{sub 3}.SiO{sub 2}) peaks indicating the existence of the mellilite solid solution for the crystallized glass-ceramic samples. (orig.)

  12. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hosseini

    2017-04-01

    Full Text Available The photocatalytic activity of Bi2O3 and Ag2O-Bi2O3 was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi2O3 was synthesized using chemical precipitation method. Structural analysis revealed that Bi2O3 contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi2O3 particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag2O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag2O-Bi2O3 nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight. Copyright © 2017 BCREC GROUP. All rights reserved Received: 15th August 2016; Revised: 20th December 2016; Accepted: 21st December 2016 How to Cite: Hosseini, S.A., Saeedi, R. (2017. Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 96-105 (doi:10.9767/bcrec.12.1.623.96-105 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.623.96-105

  13. Properties of Y Ba2 Cu3 O7-x-Ag prepared by the citrate technique

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    1996-01-01

    Y Ba 2 Cu 3 O 7-x (Y123) ceramic superconductor and YBa 2 Cu 3 O 7-x- Ag composite superconductors have been prepared by the citrate technique. Microstructural analysis has been done by X-ray diffractometry and optical ceramography. The superconducting behavior has been studied by 4 probe dc electrical resistivity in the 77 K - 140 K temperature range. Silver percolation in the ceramic matrix was studied by electrical resistivity measurements at room temperature; the percolation threshold was found to be approximately 25 vol. % (35.5 wt. %) Ag. Specimens with silver addition showed improvement in the flexural strength of the Y123 compound. The main results show that the critical temperatures does not depend on the silver content in the composite specimens, the normal state electrical behavior of the superconductor is affected by silver addition and approximately 3 wt. % (1.8 vol. %) Ag doping yields and optimized composite superconductor from the electrical, mechanical and microstructural pont of view, with platelet-like grain shapes. (author)

  14. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics.

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar

    2015-03-10

    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  15. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar

    2015-01-01

    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm−3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400–1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm−3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10−21 cm2 for ~ 5.0 × 1021 cm−3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10−24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser. PMID:25754819

  16. Muon-spin-relaxation study of magnetism in ErBa2Cu3O6.2

    International Nuclear Information System (INIS)

    Lichti, R.L.; Chan, K.B.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Flint, J.A.; Cooke, D.W.; Kwok, R.S.; Willis, J.O.

    1990-01-01

    The copper magnetism of ErBa 2 Cu 3 O 6.2 is examined by transverse-field (TF) and zero-field (ZF) muon-spin relaxation (μSR). These data indicate two magnetic phases with T N1 congruent 330 K and T N2 ∼65 K. The second phase is signaled by deviation of the ZF-μSR frequencies from a standard magnetization curve and an abrupt change in the TF-μSR relaxation rate. A relaxation feature indicates a muon depolarization mechanism with a T 3/2 dependence in the low-temperature phase. Observed fields are compared to those calculated for proposed magnetic structures

  17. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  18. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-03-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  19. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Xiong, Rui [School of Physics and Technology, Wuhan University, Hubei 430072 (China); Li, Xiazhang [Analysis and Testing Center, Changzhou University, Jiangsu 213164 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China)

    2016-03-15

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of the absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.

  20. Magnetic nanoparticles induced dielectric enhancement in (La, Gd)2O3: SiO2 composite systems

    Science.gov (United States)

    Kao, T. H.; Mukherjee, S.; Yang, H. D.

    2013-11-01

    Magnetic Gd2O3 and non-magnetic La2O3 nanoparticles (NPs) have been synthesized together with different doping concentrations in SiO2 matrix via sol-gel route calcination at 700 °C and above. Properly annealed NP-glass composite systems show enhancement of dielectric constant and magnetodielectric effect (MDE) near room temperature, depending on superparamagnetic NPs concentrations. From application point of view, the enhancement of dielectric constant along with MDE can be achieved by tuning the NPs size through varying calcination temperature and/or increasing the doping concentration of magnetic rare earth oxide.

  1. LaNiO{sub 3} buffer layers for high critical current density YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} films

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-10-01

    We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5 K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both {ital a}-axis grain and nonsuperconducting phase formation. LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films in coated conductor applications. {copyright} {ital 1999 American Institute of Physics.}

  2. Electronic structures of PrBa2Cu3O7 and PrBa2Cu4O8 systems based on LSDA+U approach

    International Nuclear Information System (INIS)

    Shirazi, M.; Tavana, A.; Akhavan, M.

    2007-01-01

    Full text: The electronic structures of PrBa 2 Cu 3 O 7 (Pr123) and PrBa 2 Cu 4 O 8 (Pr124) have been obtained by means of the density functional theory in the local spin density approximation plus on-site Coulomb interaction. The correlation correction has been applied to the Cu 3d and Pr 4f states. Calculations show that the localized Pr-O bands form near the Fermi surface and do not cross the Fermi level. Comparison of the hole absorbing ability of pfy and the pdy states shows that pfy state has dominant role in grabbing holes from the system and causes Pr124 to be non-superconducting like Pr123. We suggest that hybridization of Pr and O atoms in Pr124 system is weaker than Pr123 compound and this may be the reason for the higher critical doping of Pr by which the superconductivity is completely suppressed. Displacement of the conduction bands at the Fermi level is the criterion of Cu (3dx2-y2) character, and when Cu (3dx2-y2) character is stronger in a band, the band displaces more intensively under applying the correction Ucu. We estimate the hole-concentration from this displacement, and good agreement with experiment is seen. The displacement of the CuO 2 plane bands in the minority and majority spin channels in Pr124 is less than that in Pr123. Displacement of the double chain bands in Pr124 is higher than the single chain bands in Pr123. This feature is related to a stronger Cu (3dx2-y2) character in the double chain. So, the spin and conduction features of the Pr124 double chains are stronger than Pr123 single chain, which is the origin of metallic behavior of Pr124 at low temperatures.(authors)

  3. Electronic structures of PrBa2Cu3O7 and PrBa2Cu4O8 systems based on LSDA+U approach

    International Nuclear Information System (INIS)

    Shirazi, M.; Tavana, A.; Akhavan, M.

    2007-01-01

    Full text: The electronic structures of PrBa 2 Cu 3 O 7 (Pr123) and PrBa 2 Cu 4 O 8 (Pr124) have been obtained by means of the density functional theory in the local spin density approximation plus on-site Coulomb interaction. The correlation correction has been applied to the Cu 3d and Pr 4f states. Calculations show that the localized Pr-O bands form near the Fermi surface and do not cross the Fermi level. Comparison of the hole absorbing ability of pfy and the pdy states shows that pfy state has dominant role in grabbing holes from the system and causes Pr124 to be non-superconducting like Pr123. We suggest that hybridization of Pr and O atoms in Pr124 system is weaker than Pr123 compound and this may be the reason for the higher critical doping of Pr by which the superconductivity is completely suppressed. Displacement of the conduction bands at the Fermi level is the criterion of Cu (3dx2-y2) character, and when Cu (3dx2-y2) character is stronger in a band, the band displaces more intensively under applying the correction Ucu. We estimate the hole-concentration from this displacement, and good agreement with experiment is seen. The displacement of the CuO 2 plane bands in the minority and majority spin channels in Pr124 is less than that in Pr123. Displacement of the double chain bands in Pr124 is higher than the single chain bands in Pr123. This feature is related to a stronger Cu (3dx2-y2) character in the double chain. So, the spin and conduction features of the Pr124 double chains are stronger than Pr123 single chain, which is the origin of metallic behavior of Pr124 at low temperatures. (authors)

  4. Stabilization of the high coercivity ε-Fe2O3 phase in the CeO2–Fe2O3/SiO2 nanocomposites

    International Nuclear Information System (INIS)

    Mantlikova, A.; Poltierova Vejpravova, J.; Bittova, B.; Burianova, S.; Niznansky, D.; Ardu, A.; Cannas, C.

    2012-01-01

    We have investigated the processes leading to the formation of the Fe 2 O 3 and CeO 2 nanoparticles in the SiO 2 matrix in order to stabilize the ε-Fe 2 O 3 as the major phase. The samples with two different concentrations of the Fe were prepared by sol–gel method, subsequently annealed at different temperatures up to 1100 °C, and characterized by the Mössbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe 2 O 3 phases under various conditions of preparation was investigated, starting with the preferential appearance of the γ-Fe 2 O 3 phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major ε-Fe 2 O 3 phase for high Fe concentration and high annealing temperature, coexisting with the most stable α-Fe 2 O 3 phase. A continuous increase of the particle size of the CeO 2 nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic γ-Fe 2 O 3 phase with negligible coercivity to the high coercivity ε-Fe 2 O 3 phase has been observed. Highlights: ► Research of the stabilization of the high coercivity ε-Fe 2 O 3 in CeO 2 –Fe 2 O 3 /SiO 2 . ► Samples with two different concentrations of Fe and three annealing temperatures. ► Phase transition γ→ε→(β)→α with increasing annealing temperature and particle size. ► Elimination of the superparamagnetic phases in samples with higher content of Fe. ► Best conditions for high coercivity ε-Fe 2 O 3 —higher Fe content and T A =1100°C.

  5. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S

    2016-04-20

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  6. Electrochemical Characteristics and Li+ Ion Intercalation Kinetics of Dual-phase Li4Ti5O12/Li2TiO3 Composite in Voltage Range of 0−3 V

    KAUST Repository

    Bhatti, Humaira S; Anjum, Dalaver H.; Ullah, Shafiq; Ahmed, Bilal; Habib, Amir; Karim, Altaf; Hasanain, Syed Khurshid

    2016-01-01

    Li4Ti5O12, Li2TiO3 and dual-phase Li4Ti5O12/Li2TiO3 composite were prepared by sol-gel method with average particle size of 1 µm, 0.3 µm and 0.4 µm, respectively. Though Li2TiO3 is electrochemically inactive, the rate capability of Li4Ti5O12/Li2TiO3 is comparable to Li4Ti5O12 at different current rates. Li4Ti5O12/Li2TiO3 also shows good rate performance of 90 mA h g-1 at high rate of 10 C in voltage range of 1−3 V, attributable to increased interfaces in the composite. While Li4Ti5O12 delivers capacity retention of 88.6 % at 0.2 C over 50 cycles, Li4Ti5O12/Li2TiO3 exhibits no capacity fading at 0.2 C (40 cycles) and capacity retention of 98.45 % at 0.5 C (50 cycles). This highly stable cycling performance is attributed to the contribution of Li2TiO3 in preventing undesirable reaction of Li4Ti5O12 with the electrolyte during cycling. CV curves of Li4Ti5O12/Li2TiO3 in 0−3 V range exhibit two anodic peaks at 1.51 V and 0.7−0.0 V, indicating two modes of lithium intercalation into the lattice sites of active material. Owing to enhanced intercalation/de-intercalation kinetics in 0−3 V, composite electrode delivers superior rate performance of 203 mAh/g at 2.85 C and 140 mAh/g at 5.7 C with good reversible capacity retention over 100 cycles.

  7. Raman spectroscopic study of structure and crystallisation behaviour of MoO3-La2O3-B2O3 and MoO3-ZnO-B2O3 glasses

    Science.gov (United States)

    Aleksandrov, L.; Komatsu, T.; Nagamine, K.; Oishi, K.

    2011-03-01

    In this study, we focus on the structure and crystallization behavior of MoO3-La2O3-B2O3 and MoO3-ZnO-B2O3 glasses. Glasses of both systems were prepared by a melt-quenching method. The thermal stability of the glasses was examined using differential thermal anaysis (DTA) measurements, and the crystalline phases formed by heat treatments were identified by X-ray diffraction (XRD) analysis. Raman scattering spectra at room temperature for the glasses and crystallized samples were measured with a laser microscope operated with an Ar+ (wavelength: 488 nm) laser. DTA measurements indicated that the thermal stability against crystallization of the glasses decreases drastically with increasing MoO3 content. XRD analysis confirmed that crystallization at 600°C for 3 h of glass with the nominal composition of 50MoO3-25La2O3-25B2O3 resulted in the formation of monoclinic LaMoBO6. Crystallization of 50ZnO-xMoO3-(50-x)B2O3 glasses formed triclinic α-ZnMoO4 as an initial crystalline phase. Moreover, for 30 mol% MoO3 glass, transmission electron microscopy observations showed the formation of α-ZnMoO4 nanocrystals with a diameter of ~ 5 nm. Raman bands at 860, 930 and 950 cm-1 suggested that the coordination state of Mo6+ ions in the glasses were mainly (MoO4)2- tetrahedral units. Therefore, MoO3-containing glasses have good potential for optical applications.

  8. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Hussain, Shabeeb; Tavakoli, Mohammad Mahdi; Waleed, Aashir; Virk, Umar Siddique; Yang, Shihe; Waseem, Amir; Fan, Zhiyong; Nadeem, Muhammad Arif

    2018-03-27

    We demonstrate for the first time the application of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films as anode materials for light-assisted electrolysis of water. The p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin films were deposited on planar fluorinated tin oxide (FTO)-coated glass as well as on 3D array of nanospike (NSP) substrates. The effect of substrate (planar FTO and 3D-NSP) and percentage change of each component (i.e., NiFe 2 O 4 and Fe 2 O 3 ) of composite was studied on photoelectrochemical (PEC) water oxidation reaction. This work also includes the performance comparison of p-NiFe 2 O 4 /n-Fe 2 O 3 composite (planar and NSP) devices with pure hematite for PEC water oxidation. Overall, the nanostructured p-NiFe 2 O 4 /n-Fe 2 O 3 device with equal molar 1:1 ratio of NiFe 2 O 4 and Fe 2 O 3 was found to be highly efficient for PEC water oxidation as compared with pure hematite, 1:2 and 1:3 molar ratios of composite. The photocurrent density of 1:1 composite thin film on planar substrate was equal to 1.07 mA/cm 2 at 1.23 V RHE , which was 1.7 times higher current density as compared with pure hematite device (0.63 mA/cm 2 at 1.23 V RHE ). The performance of p-NiFe 2 O 4 /n-Fe 2 O 3 composites in PEC water oxidation was further enhanced by their deposition over 3D-NSP substrate. The highest photocurrent density of 2.1 mA/cm 2 at 1.23 V RHE was obtained for the 1:1 molar ratio p-NiFe 2 O 4 /n-Fe 2 O 3 composite on NSP (NF1-NSP), which was 3.3 times more photocurrent density than pure hematite. The measured applied bias photon-to-current efficiency (ABPE) value of NF1-NSP (0.206%) was found to be 1.87 times higher than that of NF1-P (0.11%) and 4.7 times higher than that of pure hematite deposited on FTO-coated glass (0.044%). The higher PEC water oxidation activity of p-NiFe 2 O 4 /n-Fe 2 O 3 composite thin film as compared with pure hematite is attributed to the Z-path scheme and better separation of electrons and holes. The increased surface area and greater light

  9. Dielectric and magnetic characterization of the electroceramic Ba2Co2Fe12O22 doped with Bi2O3 for applications in electronics components

    International Nuclear Information System (INIS)

    Pires Junior, G.F.M.; Sales, A.J.M.; Rodrigues, H.O.; Sombra, A.S.B.

    2012-01-01

    The objective of this work is to study the dielectric and magnetic properties of electroceramics (Ba 2 Co 2 Fe 12 O 22 - Co 2 Y) doped with (3; 5 and 10 wt%) of Bi 2 O 3 in order to promote better dielectric and magnetic properties for applications in electronics. Phase Co 2 Y was obtained through the method of solid-state reaction. The structural characterization was performed by X-ray Diffraction using the Rietveld refinement. Magnetic hysteresis curves of the samples were obtained at room temperature. The Impedance Spectroscopy was used in the study of the dielectric function of frequency in the range 100-100 MHz, at room temperature. It follows that the Rietveld refinement confirmed the structure to the hexagonal crystalline phase obtained. The curve analysis confirmed the magnetic hysteresis behavior of the ferrimagnetic samples. Furthermore, the samples showed large values of dielectric permittivity (30.8) and small dielectric loss (3,66 x10 -1 ) at 100 MHz for the sample B1, making them passive miniaturization. (author)

  10. Effect of Fe{sub 2}O{sub 3} in Fe{sub 2}O{sub 3}/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhenye [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China); Nanjing University of Technology, Nanjing (China); Li, Fengsheng; Bai, Huaping [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-12-15

    A technique of composite processing of Fe{sub 2}O{sub 3} and ammonium perchlorate (AP) was employed in making the propellant. The effects of composite processing of Fe{sub 2}O{sub 3} on catalytic activity, on the thermal decomposition of AP, and on the burning rate of the composite propellant were investigated in this paper. Fe{sub 2}O{sub 3}/AP composite particles were prepared by a novel solvent-nonsolvent method. The results show that AP is successfully coated on the surface of Fe{sub 2}O{sub 3}. Composite processing of Fe{sub 2}O{sub 3} and AP can improve the catalytic activity of Fe{sub 2}O{sub 3}. Fe{sub 2}O{sub 3} exhibits better catalytic effect with increasing Fe{sub 2}O{sub 3} content. The larger interface between Fe{sub 2}O{sub 3} and AP and lower density of composite propellant (with the added Fe{sub 2}O{sub 3}/AP composite particles) are responsible for the enhancement of the catalytic activity of Fe{sub 2}O{sub 3}. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Sc2[Se2O5]3: The First Rare-Earth Metal Oxoselenate(IV with Exclusively [Se2O5]2− Anions

    Directory of Open Access Journals (Sweden)

    Stefan Greiner

    2018-04-01

    Full Text Available The scandium oxodiselenate(IV Sc2[Se2O5]3 was synthesized via solid-state reactions between scandium sesquioxide (Sc2O3 and selenium dioxide (SeO2 with thallium(I chloride (TlCl as fluxing agent in molar ratios of 1:4:2. Evacuated fused silica ampoules were used as reactions vessels for annealing the mixtures for five days at 800 °C. The new scandium compound crystallizes in the triclinic space group P 1 ¯ with the lattice parameters a = 663.71(5 pm, b = 1024.32(7 pm, c = 1057.49(8 pm, α = 81.034(2°, β = 87.468(2°, γ = 89.237(2° and Z = 2. There are two distinct Sc3+ positions, which show six-fold coordination by oxygen atoms as [ScO6]9− octahedra (d(Sc–O = 205–212 pm. Three different [Se2O5]2− anions provide these oxygen atoms with their terminal ligands (Ot. Each of the six selenium(IV central atoms exhibit a stereochemically active lone pair of electrons, so that all [Se2O5]2− anions consist of two ψ1-tetrahedral [SeO3]2− subunits (d(Se–Ot = 164–167 pm, d(Se–Ob = 176–185 pm, ∢(O–Se–O = 93–104° sharing one bridging oxygen atom (Ob with ∢(Se–Ob–Se = 121–128°. The vibrational modes of the complex anionic [Se2O5]2− entities were characterized via single-crystal Raman spectroscopy.

  12. Critical parameters in the sputter-deposition of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hakuraku, Y.; Yokoyama, N.; Doi, T.; Inoue, T. [Faculty of Engineering, Kagoshima University, Koorimoto, Kagoshima 890, (Japan); Mori, Z.; Koba, S. [Yatsushiro National College of Technology, Yatsushiro 866 (Japan)

    1999-08-01

    A superconducting thin film of NdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (NBCO) was prepared on an MgO(100) substrate by dc magnetron sputtering. Superconducting properties as well as features such as resistivity at room temperature and surface morphology were improved by optimizing the composition of sputtering target and critical parameters such as substrate temperature and oxidation gas pressure. A highly c-axis oriented thin film with T{sub c} (zero resistance temperature) = 95.2 K was obtained reproducibly with NdBa{sub 2}Cu{sub 3.2}O{sub 7-{delta}} off-stoichiometric target sputtering. T{sub c} = 95.2 K was 8 K higher than that deposited by stoichiometric target sputtering. Critical current density was 1x10{sup 6} A cm{sup -2} at 77 K, and surface roughness was 35 nm. (author)

  13. Ab initio studies on the reaction of O2 with Ban (n=2,5) clusters

    International Nuclear Information System (INIS)

    Li, S.F.; Xue Xinlian; Chen, G.; Yuan, D.W.; Jia Yu; Gong, X.G.

    2006-01-01

    Ab initio theoretical calculations have been performed to study the reaction of O 2 with Ba n (n=2,5) clusters. Our results show that O 2 can easily chemisorb and dissociate on small Ba n clusters and there is no obvious energy barrier in the process of the dissociation. The local magnetic moment contributed by oxygen must vanish during the intermediate states before the O 2 dissociation. Correspondingly, local magnetic moment only decreases from 2μ B to about 1μ B if O 2 molecularly adsorbs onto Ba 5 cluster. The electronic structure analysis indicates that the charge transfer from Ba n cluster to O 2 as well as the orbital hybridization between the cluster and the oxygen molecule may play a key role in O 2 dissociation

  14. Effect of molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dong, E-mail: 1078155409@qq.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Luo, Xudong, E-mail: luoxudongs@aliyun.com [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Guodong [School of High Temperature Materials and Magnesium Resource Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Xie, Zhipeng [Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-01-01

    In order to determine the relationship between the property of MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics and molar ratios of MgO/Al{sub 2}O{sub 3}, especially the sintering behavior and thermal shock resistance, the MgOAl{sub 2}O{sub 3}SiO{sub 2} composite ceramics were fabricated with micro-size MgO, Al{sub 2}O{sub 3} powder and nano-size SiO{sub 2} as main raw materials. The sample was characterized by phase analysis, densification and thermal shock times. Moreover, field emission scanning electron microscope was also conducted to study microstructure of the samples before and after thermal shock. Effect of different molar ratios of MgO/Al{sub 2}O{sub 3} on the sintering behavior and thermal shock resistance of composite ceramics were investigated. The results showed that the sample possess better sintering behavior and thermal shock resistance with the molar ratio of MgO/Al{sub 2}O{sub 3} equal to 2/1. Grains of periclase and spinel were directly bonded together, resulting in a dense and compact microstructure, and the bulk density of obtained sample reached 3.4 g/cm{sup 3}. The microstructure of sample after thermal shock revealed that the crack propagation path was deflected and bifurcated, the main-crack propagation was restricted and more fracture energy was consumed, the thermal shock resistance of composite ceramics was greatly improved. - Highlights: • Effect of MgO/Al{sub 2}O{sub 3} on the composite ceramic was firstly researched with 1 mol% SiO{sub 2}. • Microcracks for a short distance by interlinking can eliminate the crack propagation. • The composite ceramic have optimal synthetic property with MgO/Al{sub 2}O{sub 3} was 2/1.

  15. Investigation of the Na2(H2PO2)2 - Ba(H2PO2)2 - H2O Water-Salt Ternary System at Room Temperature

    OpenAIRE

    Erge, Hasan; Turan, Hakan; Kul, Ali Riza

    2016-01-01

    Objective: In this study, the solubility, density, conductivity and phase equilibria of the Na2(H2PO2)2-Ba(H2PO2)2-H2O ternary system located in the structure of the Na+, Ba2+, (H2PO2)-//H2O quaternary reciprocal water-salt system were investigated using physicochemical analysis methods. Material and Methods: Riedel-de Haen and Merck salts were used to investigate the solubility and phase equilibria of the Na2(H2PO2)2 -Ba(H2PO2)2-H2O ternary water–salt system at room temperature Res...

  16. Strain induced enhancement of magnetization in Ba{sub 2}FeMoO{sub 6} based heterostructure with (Ba{sub x}Sr{sub 1-x})TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong-Won; Norton, David P. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Ghosh, Siddhartha, E-mail: ghoshsid@gmail.com; Buvaev, Sanal; Hebard, Arthur F. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2016-05-14

    High quality epitaxial Ba{sub 2}FeMoO{sub 6} thin films and Ba{sub 2}FeMoO{sub 6}–(Ba{sub x}Sr{sub 1−x})TiO{sub 3} bi-layer (BL) and superlattice (SL) structures were grown via pulsed laser deposition under low oxygen pressure, and their structural, magnetic, and magneto-transport properties were examined. Superlattice and bi-layer structures were confirmed by X-ray diffraction patterns. Low temperature magnetic measurement shows that the saturation magnetization (M{sub S}) is significantly higher for SLs and almost similar or lower for BLs, when compared to phase pure Ba{sub 2}FeMoO{sub 6} thin films. The variation of the coercive field (H{sub C}) follows exact opposite trend, where BL samples have higher H{sub C} and SL samples have lower H{sub C} than pure Ba{sub 2}FeMoO{sub 6} thin films. Also, a significant decrease of the Curie temperature is found in both BL and SL structures compared to pure Ba{sub 2}FeMoO{sub 6} thin films. Negative magneto-resistance is seen in all the BL and SL structures as well as in pure Ba{sub 2}FeMoO{sub 6} thin films. In contrast to the magnetic properties, the magneto-transport properties do not show much variation with induced strain.

  17. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    Science.gov (United States)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  18. Magnetic and electrical transport properties of LaBaCo2O(5.5+δ) thin films on vicinal (001) SrTiO3 surfaces.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Collins, Gregory; Wang, Haibin; Bao, Shanyong; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Lin, Yuan; Whangbo, Myung-Hwan

    2013-01-23

    Highly epitaxial LaBaCo(2)O(5.5+δ) thin films were grown on the vicinal (001) SrTiO(3) substrates with miscut angles of 0.5°, 3.0°, and 5.0° to systemically study strain effect on its physical properties. The electronic transport properties and magnetic behaviors of these films are strongly dependent on the miscut angles. With increasing the miscut angle, the transport property of the film changes from semiconducting to semimetallic, which results most probably from the locally strained domains induced by the surface step terraces. In addition, a very large magnetoresistance (34% at 60 K) was achieved for the 0.5°-miscut film, which is ~30% larger than that for the film grown on the regular (001) SrTiO(3) substrates.

  19. Raman study of HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) superconductors

    Science.gov (United States)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-02-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) high- Tc superconductor family using different laser frequencies. Local laser annealing measurements were carried out to investigate the variation of the Raman spectra with the excess oxygen content, δ. A systematic evolution of the spectra, which display mainly peaks near 590, 570, 540 and 470 cm -1, with increasing number of CuO 2 layers has been observed; its origin has been shown to lie in the variation of the interstitial oxygen content. In addition to confirming that the 590 cm -1 mode represents vibration of apical oxygens in the absence of neighboring excess oxygen, the 570 cm -1 mode, which may be composed of some finer structures, has been assigned to the vibration of the apical oxygen modified by the presence of the neighboring excess oxygens. The 540 and 470 cm -1 modes may represent the direct vibration of excess oxygens. The implication of possible different distribution sites of excess oxygens is discussed. All other observed lower-frequency modes are also assigned.

  20. Barium diffusion in metallo-organic solution deposited barrier layers and Y1Ba2Cu3O7-x films

    International Nuclear Information System (INIS)

    Lipeles, R.A.; Leung, M.S.; Thiede, D.A.

    1990-01-01

    This paper reports on barium silicate and barium aluminate films that were studied for use as chemical reaction and diffusion barrier layers for Y 1 Ba 2 Cu 3 O 7-x (YBC) deposited on sapphire and fused silica substrates by the sol-gel technique. Depth profiling by secondary ion mass spectrometry (SIMS) was used to characterize the abruptness of the interfaces between the barrier layer and the YBC film as well as the barrier layer and the substrate. The authors found that barium aluminate films reacted with fused silica substrates forming a coarse-grained barium silicate phase. Barium silicate, BaSiO 3 , also reacted with silica substrates forming a broad, amorphous reaction zone containing some BaSi 2 O 5 . Although barium silicate and barium aluminate deposited on sapphire formed a BaAl 12 O 19 phase, they provided a barrier to barium diffusion from sol-gel deposited YBC. Crystalline barium aluminate grown on c-cut sapphire was the most effective barrier layer for the growth of YBC films; compositionally uniform YBC films were made similar to that grown on strontium titanate substrates. These data show that chemically stable, crystalline films are more effective barrier layers than amorphous films

  1. Properties of Y Ba2 Cu3 O7-δ-Ag superconductors prepared by the citrate method

    International Nuclear Information System (INIS)

    Fonseca, F.C.; Muccillo, R.

    1996-01-01

    Y Ba 2 Cu 3 O 7-δ (123) ceramic superconductor and YBa 2 Cu 3 O 7-δ - Ag composite superconductors have been prepared by the citrate method. Microstructural analysis has been done by X-ray diffractometry and optical ceramography. The superconducting behaviour has been studied by 4-probe dc resistivity in the 77 K - 140 K temperature range. Silver percolation in the ceramic matrix was studied by electrical resistivity measurements at room temperature; the percolation threshold was found to be approximately 25 vol% (35.5 wt%) Ag. Specimens with silver addition showed improvement in the flexural strength of the 123 compound. The main results show that the critical temperature does not depend on the silver content in the composite specimens, and that approximately 3 wt% (1.8 vol%) Ag doping yields an optimized composite superconductor from the microstructural point of view, with platelet-like grain shapes. (author)

  2. Study on spectroscopic properties and effects of tungsten ions in 2Bi2O3-3GeO2/SiO2 glasses.

    Science.gov (United States)

    Yu, Pingsheng; Su, Liangbi; Cheng, Junhua; Zhang, Xia; Xu, Jun

    2017-04-01

    The 2Bi 2 O 3 -3GeO 2 /SiO 2 glass samples have been prepared by the conventional melt quenching technique. XRD patterns, absorption spectra, excitation-emission spectra and Raman measurements were utilized to characterize the synthesized glasses. When substitute SiO 2 for GeO 2 , the 0.4Bi 2 O 3 -(0.4-0.1)GeO 2 -(0.2-0.5)SiO 2 glasses exhibit strong emission centered at about 475nm (under 300nm excitation), and the decay constants are within the scope of 20-40ns. W doping into 2Bi 2 O 3 -3SiO 2 glass could increase the emission intensity of 470nm, and the W-doped 2Bi 2 O 3 -3SiO 2 glass has shown another emission at about 433nm with much shorter decay time (near 10ns). The 2Bi 2 O 3 -3GeO 2 /SiO 2 glass system could be the possible candidate for scintillator in high energy physics applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PENGUJIAN AKTIVITAS KOMPOSIT Fe2O3-SiO2 SEBAGAI FOTOKATALIS PADA FOTODEGRADASI 4-KLOROFENOL (The Activity Test of Fe2O3-SiO2 Composite As Photocatalyst on 4-Chlorophenol Photodegradation

    Directory of Open Access Journals (Sweden)

    Eko Sri Kunarti

    2009-03-01

    degradation was carried out in a closed reactor equipped with UV light. In this test, the influences of irradiation time and 4-chlorophenol pH were studied.  Results showed that the composite could be prepared through sol-gel method. The Fe2O3-SiO2 composite could increase activity of 4-chlorophenol photodegradation from 11.86 % to 55.38 %. The photodegradation effectiveness was influenced by irradiating time and pH of solution. The pH of solution gave different 4-chlorophenol photodegradation effectiveness.

  4. Investigation of (Y,Gd)Ba2Cu3O7-x grown by MOCVD on a simplified IBAD MgO template

    International Nuclear Information System (INIS)

    Stan, L; Holesinger, T G; Maiorov, B; Civale, L; DePaula, R F; Jia, Q X; Chen, Y; Xiong, X; Selvamanickam, V

    2010-01-01

    We have used an ion beam sputtered Y 2 O 3 -Al 2 O 3 (YALO) composite to simplify the architecture of high temperature superconducting (HTS) coated conductors (CCs) based on a IBAD MgO template. By implementing YALO, we have reduced the total non-superconducting layers between the polycrystalline metal substrate and the superconducting film from five (the standard architecture) to four. Well textured (Y,Gd)Ba 2 Cu 3 O 7-x ((Y, Gd)BCO) films have been successfully grown by MOCVD on this simplified template. The microstructural characterization revealed that all layers are continuous and uniform with sharp and clean interfaces. Additionally, the YALO maintained its amorphous nature after the deposition of the superconductive layer, which is a plus in terms of its efficiency as a diffusion barrier. The achievement of a self-field critical current of 230 A cm -1 at 75.5 K is another proof of the effectiveness of YALO as a diffusion barrier and nucleation seed for the MgO. The transport properties under an applied magnetic field of MOCVD grown (Y, Gd)BCO on LMO buffered MgO/YALO/Ni-alloy are comparable with those of (Y, Gd)BCO on a standard architecture, thus demonstrating good compatibility between the simplified template with the MOCVD grown (Y, Gd)BCO. The use of a single composite YALO layer instead of individual layers of Y 2 O 3 and Al 2 O 3 for the large scale fabrication of HTS CCs based on IBAD MgO provides advantages such as potentially reduced cost due to the reduced number of fabrication steps.

  5. MgO–CaO–Cr2O3 composition as a novel refractory brick: Use of Cr2O3 nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, S.; Dehsheikh, H.G.; Boroujerdnia, M.

    2017-07-01

    At this study the effect of Cr2O3 nanoparticles (up to 3wt.%) on the physical and mechanical properties of MgO–CaO refractory composition with emphasis on the hydration resistance improvement have been investigated. Specimens pressed at 90MPa then were sintered at 1650°C for 5h in an electric furnace. Properties such as bulk density, apparent porosity, cold crushing strength and hydration resistance were examined. The crystalline phases and microstructure characteristics of sintered specimens were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDS), respectively. Results shown that add of the 1.5wt.% Cr2O3 nanoparticles have the best results i.e. increased the bulk density (3.41g/cm3), cold crushing strength (848kg/cm2), hydration resistance (1.5%) and decreased apparent porosity (5.58%), respectively. The mechanism of specimens hydration resistance improvement are: (i) decreasing the amount of free CaO and MgO with converted to high hydration resistance phases such as CaCr2O4 and MgCr2O4 phases, (ii) promotion of the densification as well as (iii) modification of the microstructure. (Author)

  6. Effect of titanium and calcium oxide additions on Zr2O2 polymorphism during Al2O3+Zr2O2 mixture fusion

    International Nuclear Information System (INIS)

    Gladkov, V.E.; Zhekhanova, N.B.; Fotiev, A.A.; Viktorov, V.V.; Ivashinnikov, V.T.; Zubov, A.S.

    1985-01-01

    The effect of titanium and calcium containing additions introduced into the Al 2 O 3 +ZrO 2 melt on the phase composition and temperature ranges of ZrO 2 polymorphous transformation in the material is investigated. It is shown that introducing sponge titanium into the 70Al 2 O 3 +30ZrO 2 prepared composition melt (mass. %) with its subsequent intensive cooling one can conserve upto room temperatures 50-70% of ZrO 2 metastable tetragonal modification and therefore reduce the volume changes causing metal cracking. Calcium oxide doping stabilizes the ZrO 2 cubic modification and reduces α-Al 2 O 3 content due to formation of aluminates

  7. Ordered oxygen deficient '112'perovskites, LnBaCo2 O5⋅ 50 ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 32; Issue 3. Ordered oxygen deficient '112' perovskites, LnBaCo2O5.50+: complex magnetism and transport properties. B Raveau Md Motin Seikh V Pralong V Caignaert. Volume 32 Issue 3 June 2009 pp 305-312 ...

  8. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  9. Effects of La{sub 2}O{sub 3}-doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Wei; Chang, Chun Rui [College of Science, North China University of Science and Technology, Hebei Province (China); Li, Yuan Liang [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Hebei Province (China); Yan, Chun Liang [Analysis and Testing Center, North China University of Science and Technology, Hebei Province (China)

    2016-03-15

    Using BaCO{sub 3}, SrCO{sub 3} and TiO{sub 2}, et al as crude materials, La{sub 2}O{sub 3} as dopant, Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) Ceramics of perovskite structure were prepared by solid state reaction method. We investigated the effects of La{sub 2}O{sub 3} -doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics. The experiment results show that: The amount of La{sub 2}O{sub 3} can increase the dielectric constant of the sample, with the doping amount increasing, the dielectric constant increases. The sintering temperature has also significant impact on the dielectric properties. The dielectric constant of the sample reaches its highest point at 1280 °C. (author)

  10. Glass-ceramic enamels derived from the Li2O-Na2O-Al2O3-TiO2-SiO2 system

    Directory of Open Access Journals (Sweden)

    SNEZANA R. GRUJIC

    2002-02-01

    Full Text Available The results of research on the conditions for obtaining model glass-ceramic enamels, derived from the basic Li2O-Na2O-Al2O3-TiO2-SiO2 system, by varying the initial composition and thermal treatment conditions, are presented in this paper. Segregation of the crystal phases in the glassy-matrix was carried out during subsequent thermal treatment. The formation of different crystal phases was evidenced through the results of differential-thermal analysis and X-ray powder diffraction analysis.

  11. Investigation of the effect of doping of Cr2O3 on bioactivity properties of the SiO2-CaO-P2O5 bioceramics

    Science.gov (United States)

    Sarin, Nonita; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Raminderjit; Singh, Jatinder

    2018-05-01

    Due to better biocompatibility among various types of biomaterials, bioceramics have been found to be useful for the repair of damaged bone tissues. Authors have prepared bioceramics of the composition xCr2O3-(40-x) SiO2- 40CaO-20P2O5(where, x = 0 and 2 mole %) by using sol gel technique. Prepared samples have been assessed for their bioactivity and cell viability with the help of X-ray diffraction, Fourier transform infrared and MG63 cell line. The aim of this study is to estimate the practical utility of the prepared samples as successful implant materials in human body.

  12. Microstructure and mechanical properties of in situ TiC and Nd2O3 particles reinforced Ti-4.5 wt.%Si alloy composites

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Li, Yibin; Song, Guangping; Sun, Yue; Peng, Qingyu; Li, Yuxin; He, Xiaodong

    2011-01-01

    Highlights: → (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized. → The phase components and microstructures of the composites were investigated. → In situ reinforcements improve the mechanical properties of the matrix alloy. -- Abstract: (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized by a non-consumable arc-melting technology. The phases in the composites were identified by X-ray diffraction. Microstructures of the composites were observed by optical microscope and scanning electron microscope. The composite contains four phases: TiC, Nd 2 O 3 , Ti 5 Si 3 and Ti. The TiC and Nd 2 O 3 particles with dendritic and near-equiaxed shapes are well distributed in Ti-4.5 wt.%Si alloy matrix, and the fine Nd 2 O 3 particles exist in the network Ti + Ti 5 Si 3 eutectic cells and Ti matrix of the composites. The hardness and compressive strength of the composites are markedly higher than that of Ti-4.5 wt.%Si alloy. When the TiC content is fixed as 10 wt.% in the composites, the hardness is enhanced as the Nd 2 O 3 content increases from 8 wt.% to 13 wt.%, but the compressive strength peaks at the Nd 2 O 3 content of 8 wt.%.

  13. Crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses; Li2O-SiO2, Na2O-SiO2, Na2O-CaO-SiO2 kei glass no kessho sekishutsu kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Otake, J.; Nagasaka, T.; Hino, M. [Tohoku University, Sendai (Japan)

    1998-06-01

    It has been known that crystallization of mold powder is effective on the disturbance of heat transfer between mold and solidified shell in production of middle carbon steel slabs in continuous casting process. But it has not yet been made clear which composition of mold powder is the most suitable for crystallization. The crystallization behavior of Li2O-SiO2, Na2O-SiO2 and Na2O-CaO-SiO2 glasses was observed by differential thermal analysis (DTA) and hot-thermocouple methods with DTA in the present work. As a result, addition of alkaline metal and alkaline earth metal oxides to SiO2 increased the critical cooling rate for glass formation in binary system of Li2O-SiO2 and Na2O-SiO2 and Li2O-SiO2 system crystallized easier than Na2O-SiO2 system. In ternary system of Na2O-CaO-SiO2, addition of Na2O hurried the critical cooling rate at CaO/SiO2=0.93 mass ratio, but the rate was almost constant in the composition range of more than 15 mass% Na2O. The slag of CaO/SiO2=0.93 made the rate faster than the slag of CaO/SiO2=0.47 at constant content of 10mass% Na2O. 17 refs., 10 figs., 3 tabs.

  14. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    Science.gov (United States)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  15. Critical current density of four-CuO2-layer T1Ba2Ca3Cu4O11-δ

    International Nuclear Information System (INIS)

    Zhang, L.; Liu, J.Z.; Shelton, R.N.

    1998-01-01

    Full text: A key requirement for technological application is to have superconductors with high critical current density at practical operating temperatures and magnetic fields. The critical current density is strongly related to underlying properties of high T c superconductors, such as layering, anisotropy and other intrinsic material structures. The thallium-based superconductors attracted much attention at early stage mainly due to their high superconducting transitions. Recent studies show that these materials appear to be a better choice for achieving higher critical current density because of a stronger interlayer coupling between superconducting layers. Single crystals of TlBa 2 Ca 3 Cu 4 O 11-δ were grown by a self-flux method. This material is a strong-layered superconductor with four-CuO 2 -planes in a unit cell and a superconducting transition temperature of 128K. Our experimental results show that TlBa 2 Ca 3 Cu 4 O 11-δ crystals have high irreversibility line, large critical current density and high upper critical field. The impact of layering and the number of Cu-O layers on flux pinning, critical current density and other magnetic properties will also be discussed

  16. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    Science.gov (United States)

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  17. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    Science.gov (United States)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  18. Effect of the Molar Ratio of B2O3 to Bi2O3 in Al Paste with Bi2O3-B2O3-ZnO Glass on Screen Printed Contact Formation and Si Solar Cell Performance

    Science.gov (United States)

    Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon

    2013-10-01

    In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.

  19. Defect chemistry of ''BaCuO2''. Pt. 1. Oxygen non-stoichiometry, cation molecularity and X-ray diffraction determinations

    International Nuclear Information System (INIS)

    Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Ghigna, P.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia

    1995-01-01

    ''BaCuO 2 '' is the key intermediate in the synthesis of the Ba 2 YCu 3 O 7-δ superconductor. Its very complex crystal structure is able to accommodate a large change in oxygen content. Oxygen non-stoichiometry of ''BaCuO 2 '' materials with 1:1 and 88:90 (Ba:Cu) molecularity has been investigated by polythermal X-ray powder diffraction coupled with isobaric-isothermal gravimetry determinations under different temperature and oxygen partial pressure conditions [300 ≤ T ≤ 820 C, 1 ≥ P(O 2 ) ≥3 . 10 -3 atm]. The 1:1 composition does not give well reproducible results, thus suggesting its polyphasic nature, at least in part of the investigated range. The results for the 88:90 ≅ 0.98 (Ba:Cu) composition are well reproducible and show that the material is single phase. Ba 0.98 CuO 1.98 + δ is oxygen over-stoichiometric in the whole investigated [T, P(O 2 )] range, with a maximum value δ ∼ 0.21. A Rietveld X-ray profile fitting is in agreement with previous single-crystal data. The trend of δ vs. P(O 2 ) is consistent with the presence of oxygen interstitial defects on (possibly different) crystallographic sites. (orig.)

  20. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    OpenAIRE

    Qidi Xie; Bowen Li; Xin He; Mei Zhang; Yan Chen; Qingguang Zeng

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to ...