WorldWideScience

Sample records for composite films effect

  1. Alginate-magnesium aluminum silicate composite films: effect of film thickness on physical characteristics and permeability.

    Science.gov (United States)

    Pongjanyakul, Thaned; Puttipipatkhachorn, Satit

    2008-01-04

    The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films.

  2. The effective flux through a thin-film composite membrane

    Science.gov (United States)

    Bruna, M.; Chapman, S. J.; Ramon, G. Z.

    2015-05-01

    Composite membrane structures, used extensively in separation processes, comprise an ultra-thin selective polymer film cast over a porous support, whose pores partially obstruct transport out of the top film. Here, we model the composite as a finite thickness slab with a periodic array of circular absorbing patches in an otherwise reflective surface and study the effective transport properties of the composite. We obtain an analytical approximation for the effective diffusive flux as a function of the geometrical parameters, namely the film thickness, the support porosity and the pore size. We find a good agreement with full numerical solutions, and that a good effective rate is achievable with a relatively small number of pores.

  3. Effects of the composite nanovesicles on the physical properties and cellular adhesion of chitosan films.

    Science.gov (United States)

    Lionzo, Maria I Z; Lorenzini, Giulia C; Tomedi, Joelson; Pranke, Patricia; Silveira, Nádya P

    2012-04-01

    Chitosan films were prepared by the casting of a chitosan gel in absence and presence of composite nanovesicles. The microscopy images showed the occurrence of agglomerates on the surface and internal pores when the nanovesicles were added to the films, differently from the smooth surface of the pure chitosan films. Despite the hydrophobic character that composite nanovesicles gave to the chitosan films, as showed by the reduction of the water permeation at prolonged times, there was a reduction on the contact angle values for these samples related to the roughness of the surface. The peak of water desorption observed on calorimetric analysis of chitosan was shifted to higher values when the nanovesicles were added to the films. Furthermore, the desappearance of Tg on the films containing nanovesicles denoted their plastifier effect in the chitosan film. The swelling results showed higher water diffusion at the first times for the films containing nanovesicles because of the pores observed by microscopy. However, at prolonged times, there was a reduction on the swelling because of the lipofilic composition of the nanovesicles. Furthermore, the presence of nanovesicles led to a reduction on the water content in the chitosan films. Due to the effect on the physical properties of the chitosan films, the addition of nanovesicles on discrete concentrations contributed to the cell adhesion.

  4. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    Science.gov (United States)

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis.

  5. Effect of preheating on the film thickness of contemporary composite restorative materials

    OpenAIRE

    Dimitrios Dionysopoulos; Kosmas Tolidis; Paris Gerasimou; Eugenia Koliniotou-Koumpia

    2014-01-01

    Background/purpose: Recently, the placement of composite materials at an elevated temperature has been proposed in order to increase their flow for better adaptation in cavity walls. The aim of this in vitro study was to evaluate the effect of preheating on the film thickness of a variety of commercially available conventional composites and to compare them with those obtained from a variety of flowable composites at room temperature. Materials and methods: The composites were three nanohy...

  6. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  7. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film.

    Science.gov (United States)

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-10-12

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  8. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    Directory of Open Access Journals (Sweden)

    Ji Eun Cha

    2016-10-01

    Full Text Available To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties.

  9. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    Science.gov (United States)

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents.

  10. Structure and composition effects on electrical and optical properties of sputtered PbSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xigui; Gao, Kewei [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Pang, Xiaolu, E-mail: pangxl@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Huisheng [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States)

    2015-10-01

    Lead selenide (PbSe) thin films were grown on Si (111) substrates using magnetron sputtering, and the structure and composition effects on the photoelectric and optical properties of the sputtered PbSe thin films were studied using field emission scanning electron microscope, energy dispersive X-ray detector, X-ray diffraction, X-ray photoelectron spectroscopy, physical property measurement system and Fourier transform infrared spectroscopy. The optical band gaps of all the sputtered PbSe thin films ranged from 0.264 eV to 0.278 eV. The PbSe thin film prepared with oxygen flux 1.0 sccm, deposition time 240 min, sputtering power 150 W and substrate temperature 150 °C showed the highest resistance change rate under illumination, about 84.47%. The variation trends of the photoelectric and optical properties with the average crystal size, lattice constant, oxygen content and lattice oxygen percentage were similar, respectively. The sputtered PbSe thin films showed poor photoelectric sensitivity, when the average crystal size was similar to the Bohr radius (46 nm), while the photoelectric sensitivity increased almost linearly with the oxygen content in the thin films, indicating that both deviating the average crystal size from the Bohr radius and increasing the oxygen content are two direct and effective ways to obtain high photoelectric sensitivity in PbSe thin films. - Highlights: • Lead selenide thin films were grown on Si (111) using magnetron sputtering. • Lead selenide thin films show superior photoelectric sensitivity. • The effects of structure and composition to the film properties were studied. • The photoelectric property was mainly affected by grain size and oxygen content.

  11. Effect of preheating on the film thickness of contemporary composite restorative materials

    Directory of Open Access Journals (Sweden)

    Dimitrios Dionysopoulos

    2014-12-01

    Conclusion: The film thickness of the composites tested is material dependent. The thickness of the preheated conventional composites is significantly lower than those at room temperature. The conventional composites provide film thickness values greater than those of the flowable composites regardless of preheating temperature.

  12. Polymer film composite transducer

    Science.gov (United States)

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  13. Effect of substrate temperature on microstructures and dielectric properties of compositionally graded BST thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bai-shun; GUO Tao; ZHANG Tian-jin; WANG Jin-zhao; QUAN Zu-ci

    2006-01-01

    Compositionally graded Ba1-xSrxTiO3 (BST) (x = 0-0.3) thin films were prepared on Pt/Ti/SiO2/Si substrate at different substrate temperatures ranging from 550 ℃ to 650 ℃ by radio-frequency (rf) magnetron sputtering. The effect of substrate temperature on the preferential orientation,microstructures and dielectric properties of compositionally graded BST thin films was investigated by X-ray diffraction,scanning electron microscopy and dielectric frequency spectra,respectively. As the temperature increases,the preferential orientation evolves in the order: randomly orientation→ (111) → highly oriented (111) (α(111) = 60.2%). The surface roughness of the graded BST thin films varies with the substrate temperatures. No visible internal interface in the compositionally graded thin films can be observed in the cross-sectional SEM images. The graded BST thin films deposited at 650 ℃ possess the highest dielectric constant and dielectric loss,which are 408 and 0.013,respectively.

  14. Determination of the effective refractive index of porous silicon/polymer composite films

    Institute of Scientific and Technical Information of China (English)

    Zhenhong Jia

    2005-01-01

    The equation for calculating the effective refractive index of porous silicon inserted polymer was obtained by three-component Bruggeman effective medium model. The dependence of the effective refractive index of porous silicon/polymer composite films on the polymer fraction with various initial porosity was given theorically and experimentally respectively. The porous silicon and polymer polymethylmetacrylate based dispersive red one (PMMA/DR1) composite films were fabricated in our experiments. It is found that the measured effective refractive index of porous silicon inserted polymer was slightly lower than the calculated result because of the oxidization of porous silicon. The effective refractive index of oxidized porous silicon inserted polymer also was analyzed by four-component medium system.

  15. Effect of Material Property of Interply Film on the Delamination in Laminated Composites 8

    Institute of Scientific and Technical Information of China (English)

    WeiFENG; QiaoHUANG

    1999-01-01

    The delamination is one of the main failure modes in laminated composites.In order to suppress and /or delay it,considerable research has been devoted to the reduction of the interlaminar stresses at the interfaces between two different plies.This paper studies the effect of isotropic layers placed at ply interface on the interlaminar behaviour of the angle-ply laminated composites.The results of the experiment and numerical analysis show that the material properties of interply film have strong influence on the interlaminar behaviour of laminated composites.In order to suppress delamination,the material of interply film has to been selected carefully due to the fact that different matrials have different results .SOme materials may increase the stress values at the interfaces.Some materials may reduce the stress concertration.

  16. Carrot fiber (CF) composite films for antioxidant preservation: Particle size effect.

    Science.gov (United States)

    Idrovo Encalada, Alondra M; Basanta, Maria F; Fissore, Eliana N; De'Nobili, Maria D; Rojas, Ana M

    2016-01-20

    The effect of particle size (53, 105 and 210 μm) of carrot fiber (CF) on their hydration properties and antioxidant capacity as well as on the performance of the CF-composite films developed with commercial low methoxyl pectin (LMP) was studied. It was determined that CF contained carotenoids and phenolics co-extracted with polysaccharides (80%), rich in pectins (15%). CF showed antioxidant activity and produced homogeneous calcium-LMP-based composites. The 53-μm-CF showed the lowest hydration capability and produced the least elastic and deformable composite film due probably to CF bridged by calcium-crosslinked LMP chains. Antioxidant activity associated to the loaded CF was found in composites. When L-(+)-ascorbic acid (AA) was also loaded, its hydrolytic stability increased with the decrease in CF-particle size, showing the lowest stability in the 0%-CF- and 210 μm-CF-LMP films. Below ≈ 250 μm, the particle size determined the hydration properties of pectin-containing CF, affecting the microstructure and water mobility in composites.

  17. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Science.gov (United States)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no "void" defect was observed.

  18. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films

    Institute of Scientific and Technical Information of China (English)

    FengWei; XuYou-Long; YiWen-Hui; ZhouFeng; WangXiao-Gong; YoshinoKatsumi

    2003-01-01

    To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency a powerful stratergy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained. Annealing effect improved the photovoltaic performance of ITO/CP-PV/Al Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.

  19. Effect of crystalline microstructure on the photophysical performance of polymer/perylene composite films

    Institute of Scientific and Technical Information of China (English)

    封伟; 徐友龙; 易文辉; 周峰; 王晓工; 吉野勝美

    2003-01-01

    To obtain high carrier mobility, better charge injection capability, and high photovoltaic device conversion efficiency, a powerful strategy is to improve the morphology of the polymer/dye composite films. Conjugated conducting polymer (CP) thin films doped with perylene derivative (PV) of various concentrations were prepared by spin-casting method, and their morphology and photovoltaic characteristics were examined. The change in morphology and molecular reorientation occurring in CP-PV composite films upon annealing at different temperatures was investigated using scanning electron microscopy, x-ray diffraction, Fourier transform infrared and UV-vis absorption. By changing the annealing temperature, PV microcrystallines of 8-10μm in size lying parallel to the substrate surface can be obtained.Annealing effect improved the photovoltaic performance of ITO/CP-PV/A1 Schottky-type solar cells, which can be attributed to the formation of an electron conducting PV crystal network. Preliminary studies indicate that the morphological structure in CP-PV composite films has an important influence to their photovoltaic properties.

  20. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  1. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  2. Garnet composite films with Au particles fabricated by repetitive formation for enhancement of Faraday effect

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H; Nakai, Y [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, Sendai, Miyagi 982-8577 (Japan); Mizutani, Y; Inoue, M [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A A, E-mail: uchida_hn@tohtech.ac.jp [Faculty of Physics, Moscow State University, Moscow 119992 (Russian Federation)

    2011-02-16

    To prepare garnet (Bi : YIG) composite films with Au particles, we used a repetitive formation method to increase the number density of particles. On increasing the number of repetitions, the diameter distribution of the particles changed. After five repetitions using 5 nm Au films, the diameter distribution separated into two size groups. Shift of wavelength-excited localized surface plasmon resonance is discussed relative to the diameter distribution. In the composite films, enhancement of Faraday rotation associated with surface plasmons was observed. With six repetitions, a maximum enhanced rotation of -1.2{sup 0} was obtained, which is 20 times larger than that of a single Bi : YIG film. The figures of merit for the composite films are discussed. The thickness of a Bi : YIG composite film working for enhanced Faraday rotation was examined using an ion milling method.

  3. An effective combination of electrodeposition and layer-by-layer assembly to construct composite films with luminescence switching behavior.

    Science.gov (United States)

    Gao, Wenmei; Ma, Hongwei; Zheng, Daming; Dong, Zhaojun; Wu, Lixin; Bi, Lihua

    2015-09-07

    This article presents a combination strategy of electrodeposition and a layer-by-layer assembly to fabricate functional composite films with luminescence switching behavior. Firstly, a novel green luminescence film consisting of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HOPTS) was first obtained on ITO by a facile electrodeposition method. Then, the multilayer films containing different layers of tungstophosphate K12.5Na1.5[NaP5W30O110]·15H2O (P5W30) were further fabricated on the green luminescence film to form the composite films [(HOPTS)50/(PDDA/P5W30)n] (n = 10, film 1; n = 27, film 2; n = 57, film 3). Cyclic voltammetry and fluorescence spectroscopy were used to characterize the electrochemical activity of P5W30 and the luminescence property of HOPTS in the composite films, respectively. Lastly, in situ UV-Vis spectroelectrochemical and fluorescence spectroelectrochemical measurements were applied to investigate the luminescence switching behaviors of the composite films controlled by the electrochromism component of P5W30 upon electrochemical modulation. In summary, the investigation results revealed that the electrodeposition method is convenient and rapid, and thus-prepared composite films showed improved luminescence switching performance in terms of switching process, activation cycles, coloration efficiency, and bleached-state transparency as well as good stability, wide voltage range and good reversibility. Therefore, the present study offers a new fabrication route for the multifunctional composite films through an effective combination of electrodeposition and layer-by-layer assembly technique.

  4. Interfacial effects in oxide-polymer laminar composite thin film dielectrics for capacitor applications

    Science.gov (United States)

    Tewari, Pratyush

    Continuous increase in the density of active components on microelectronic chip/circuit board requires development of new capacitors with smaller size, weight and cost. Miniaturization in the size of capacitors demands development of high energy density dielectric materials, which are the core of parallel plate capacitors. Nano composite dielectrics comprising high polarizibility oxide fillers randomly dispersed in high breakdown strength polymer matrix are considered as a potential high energy density materials for capacitor applications. Large interfacial volume, generated due to introduction of nano fillers in polymer matrix, might have significant positive contribution towards energy storage in nano composites. However, percolation issues associated with nano fillers and generation of large interfacial volume in nano composites, where complex electric field distribution overlaps with interfacialy modified polymer lead to unclear understanding of polymer-filler interfacial interactions in nano composites. Hence, in the current work laminar composite double layered dielectric structures, which provide relatively simple local field distribution at the interface and ideal series connectivity between oxide and polymer, are used as a model system to understand polymer-oxide interfacial interactions. Interfacial effects are reported for both low permittivity (SiO2-Parylene C) and medium permittivity (ZrO2-P(VDF-TrFE)) laminar composite dielectrics. Pyrolytic vapor decomposition polymerization process was used to grow Parylene C thin films on gold and thermally grown SiO2 surfaces. Enhancement in crystallite dimension with post deposition annealing treatments of Parylene C thin films was found to reduce dielectric loss tangent and hence enhance its dielectric properties. Electric field and temperature dependant leakage current analysis suggested hopping as dominant conduction mechanism in Parylene C thin films. Parylene C thin films in laminar composites showed

  5. Synergistic effect of bias and target currents for magnetron sputtered MoS{sub 2}-Ti composite films

    Energy Technology Data Exchange (ETDEWEB)

    Buelbuel, Ferhat; Efeoglu, Ihsan [Ataturk Univ., Erzurum (Turkey). Dept. of Mechanical Engineering

    2016-07-01

    In terms of modification of the properties of MoS{sub 2}-Ti composite films, especially tribological properties, significant advances have recently been recorded. However, the commercially production of MoS{sub 2}-Ti composite films is still limited, because the production of desirable MoS{sub 2}-Ti composite coating is only possible by using closed field unbalanced magnetron systems and by the selection of convenient deposition parameters. This requirement has focused the researchers' attention on optimization of deposition parameters. This study is concentrating on the effect of the bias voltage and the target currents for MoS{sub 2}-Ti composite films deposited by pulsed magnetron sputtering (PMS). It is found that the bias and the target currents clearly affect the mechanical, structural and tribological properties of MoS{sub 2}-Ti films.

  6. [The effect of C-SiO2 composite films on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm(2) to -5.3006 μA/cm(2). Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  7. The effect of composition on structural and electronic properties in polycrystalline CuGaSe2 thin film

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; He Qing; Xu Chuan-Ming; Xue Yu-Ming; Li Chang-Jian; Sun Yun

    2008-01-01

    Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by co-evaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spec-troscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are de-tected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100 mW/cm2 at room temperature (aperture area, 0.24cm2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.

  8. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.

    Science.gov (United States)

    Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2015-11-01

    Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food.

  9. Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films

    Institute of Scientific and Technical Information of China (English)

    Qiu Jian-Hua; Ding Jian-Ning; Yuan Ning-Yi; Wang Xiu-Qin

    2013-01-01

    A Landau-Devonshire thermodynamic theory is employed to investigate the effects of composition and misfit strain on the room-temperature electrocaloric effect of epitaxial Pb1-xSrxTiO3 thin films.The “temperature-misfit strain” phase diagrams with the Sr composition x of 0.1,0.3,and 0.5 are constructed.The introduction of Sr composition reduces the Curie temperature greatly,and enhances the electrocaloric effect.Moreover,the electrocaloric effect largely depends on the misfit strain.Therefore,the Sr composition and the misfit strain can be controlled to obtain the giant room-temperature electrocaloric effect.

  10. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    Science.gov (United States)

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  11. Evaluation of SOCl2 doping effect on electrical conductivity of thin films of SWNTs and SWNT/PEDOT-PSS composites.

    Science.gov (United States)

    Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Chang, Jingbo; Kim, Jae-Ho

    2011-07-01

    Transparent conductive thin films of single-walled carbon nanotubes (SWNTs) and their nanocomposites with an organic conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) with different CNT loadings ranging from 20 to 90 wt% were prepared and doped by exposing them to thionyl chloride (SOCl2) vapors. After exposure to SOCl2 vapor for 1 h, the SWNT film showed about 15-18% increase of electrical conductivity, while on the other hand pristine polymer film showed a decrease of electrical conductivity. The SWNT-polymer composite films showed a drastic increase in conductivity by doping with SOCl2 vapor, most interestingly, the doping effect was much higher for composite films with less CNT weight fraction and it was linearly decreased with increasing CNT loading. For instance, composite film with 10% and 90% CNT loading demonstrated about 65% and 10% increase of electrical conductivity, respectively. The interaction of SOCl2 vapors on SWNTs and composite films is investigated by UV-visible absorption and Raman spectroscopy.

  12. Effect of Structure, Composition, and Micromorphology on the Hydrophobic Property of F-DLC Film

    Directory of Open Access Journals (Sweden)

    Aihua Jiang

    2013-01-01

    Full Text Available Fluorinated diamond-like carbon (F-DLC films were prepared by radio frequency plasma-enhanced chemical vapor deposition technique with CF4 and CH4 as source gases under different deposition conditions. The chemical bonding structure and composition of the films were detected by Raman, Fourier transform infrared absorption spectrometry (FTIR, and X-ray photoelectron spectroscopy (XPS characterization. The micromorphology and surface roughness of the film were observed and analyzed by atomic force microscopy (AFM. The results indicated that all the prepared films presented a diamond-like carbon structure. The relative content of fluorine in the films increased, containing more CF2 groups. The ratio of hybrid structure sp3/sp2 decreased. The surface roughness of the films increased when the gas flow ratio R (R = CF4/[CH4 + CF4] or the deposition power increased. The contact angle of water with the surface of the F-DLC film was measured with a static drop-contact angle/surface tension measuring instrument. The hydrophobic property of the F-DLC films was found to be dependent on the sp2 structure, fluorine content, and surface roughness of the films. The contact angle increased when the relative content of fluorine in the films and sp2 content increased, whereas the contact angle first increased and then decreased with the surface roughness.

  13. Decreased group velocity in compositionally graded films.

    Science.gov (United States)

    Gao, Lei

    2006-03-01

    A theoretical formalism is presented that describes the group velocity of electromagnetic signals in compositionally graded films. The theory is first based on effective medium approximation or the Maxwell-Garnett approximation to obtain the equivalent dielectric function in a z slice. Then the effective dielectric tensor of the graded film is directly determined, and the group velocities for ordinary and extraordinary waves in the film are derived. It is found that the group velocity is sensitively dependent on the graded profile. For a power-law graded profile f(x)=ax(m), increasing m results in the decreased extraordinary group velocity. Such a decreased tendency becomes significant when the incident angle increases. Therefore the group velocity in compositionally graded films can be effectively decreased by our suitable adjustment of the total volume fraction, the graded profile, and the incident angle. As a result, the compositionally graded films may serve as candidate material for realizing small group velocity.

  14. Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N.L. [Physics Department, M.S. University of Baroda, Vadodara 390002 (India)]. E-mail: singhnl_msu@yahoo.com; Qureshi, Anjum [Physics Department, M.S. University of Baroda, Vadodara 390002 (India)]. E-mail: anjumqur@gmail.com; Singh, F. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-02-25

    Ferric oxalate was used as organometallics fillers in polyvinyl chloride (PVC) to form polymer matrix composite films at different concentration of filler. These films were irradiated with 80 MeV O{sup 6+} ions at the fluences of 1 x 10{sup 11} and 1 x 10{sup 12} ions/cm{sup 2}. The radiation induced modifications in dielectric properties, microhardness, surface morphology and surface roughness of polymer composite films have been investigated at different concentration (i.e. 5%, 10% and 15%) of filler. It was observed that hardness and electrical conductivity of the films increase with the concentration of the dispersed ferric oxalate and also with the fluence. From the analysis of frequency, f, dependence of dielectric constant, {epsilon}, it has been found that the dielectric response in both pristine and irradiated samples obey the Universal law given by {epsilon} {proportional_to} f {sup n-1}. The dielectric constant/loss is observed to change significantly due to the irradiation. This suggests that ion beam irradiation promotes (i) the metal to polymer bonding and (ii) convert the polymeric structure into hydrogen depleted carbon network. Thus irradiation makes the polymer harder and more conductive. Atomic force microscopy (AFM) shows that average roughness (R {sub a}) of the irradiated films is lower than that of unirradiated films. Surface morphology of irradiated polymer composite films is observed to change. Scanning electron microscopy (SEM) results show that partial agglomeration of fillers in the polymer matrix.

  15. Novel Microporous Films and Their Composites

    OpenAIRE

    P.C. Wu, Ph.D; Greg Jones, Ph.D; Chris Shelley, Ph.D; Bert Woelfli, Ph.D

    2007-01-01

    Cost-effective microporous films and composites can be made by using polyolefinic material and inorganic fillers. These microporous films and their composites can be designed and manufactured at high speed using commercial equipment for disposable hygiene articles, protective health care garments, building construction and many other industrial applications where air and moisture breathability is needed. The theory, formulations and methods of making these cost-effective polyolefinic-calcium ...

  16. Surface plasmon effect in nanocrystalline copper/DLC composite films by electrodeposition technique

    Indian Academy of Sciences (India)

    S Hussain; A K Pal

    2006-11-01

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in the absorbance spectra of the films was observed with the reduction in size and volume fraction of metal particles. Mie theory was found to describe the experimental spectra quite well.

  17. Effects of Mineral Tourmaline Particles on Photocatalytic Activities of RE/TiO2 Composite Thin Films

    Institute of Scientific and Technical Information of China (English)

    Meng Junping; Liang Jinsheng; Ding Yan; Xu Gangke

    2004-01-01

    The composite TiO2 films containing the mineral tourmaline particles and rare earth elements (T/RE/TiO2 )were prepared by a sol-gel method using Ti( OC4H9 )4 as raw material. The microstructure and forming mechanism of T/RE/TiO2 films were studied by scanning electron microscope (SEM). Effects of tourmaline on the photocatalytic activities of RE/TiO2 were determined by photocatalytic degradation of formaldehyde. The results show that the photocatalytic degradation ratio of formaldehyde increases by 44.2% with the composite films of Ce/TiO2 containing 0.04%tourmaline, more than that with the thin films of Ce/TiO2 under UV irradiation.

  18. Optical and Compositional Properties of SiO x Films Deposited by HFCVD: Effect of the Hydrogen Flow

    Science.gov (United States)

    Luna López, J. A.; Vázquez Valerdi, D. E.; Benítez Lara, A.; García Salgado, G.; Hernández-de la Luz, A. D.; Morales Sánchez, A.; Flores Gracia, F. J.; Dominguez, M. A.

    2017-04-01

    In this work, the effect of hydrogen flow and thermal annealing on the compositional and optical properties of non-stoichiometric silicon oxide (SiO x) films with embedded silicon nanocrystals is reported. The SiO x films are obtained by hot filament chemical vapor deposition technique at three different hydrogen flow levels, namely, 50 sccm, 100 sccm, and 150 sccm. The SiO x films are characterized by different techniques. It is found by x-ray photoelectron spectroscopy (XPS) that with increasing hydrogen flow, the SiO x films contain higher silicon (Si) concentration. When the hydrogen flow decreases, the absorption edge of the as-grown SiO x films, as obtained from the transmittance spectra, shifts from 300 nm to 500 nm, and this opens the possibility of band gap tuning. Increasing the hydrogen flow level in turn means that the SiO x films contain higher Si concentration, as confirmed by the XPS profile composition measured in the SiO x films. After thermal annealing, the SiO x films transmittance spectra showed a further shift of the absorption edge toward larger wavelengths. The Fourier transform infrared (FTIR) spectroscopy reveals film composition changes induced by the hydrogen flow variations. In addition, the FTIR spectra reveal the bands attributed to the hydrogen presence in the as-grown SiO x films. The bands become more intense with increasing hydrogen flow, but they rapidly disappear after the thermal annealing. The as-grown SiO x films exhibit wide band photoluminescence (PL) spectra with the main components at 688 nm, 750 nm, and 825 nm. The SiO x film deposited at 100 sccm hydrogen flow level shows the strongest PL intensity. According to PL results, the thermal annealing of the SiO x films generates the PL quenching in all samples due to hydrogen evaporation. The defects such as OH and Si-H groups in the as-grown SiOx films not only modify the optical band gap structure, but they also play the role of passivating non-radiative defects, which

  19. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, Iuliana Mihaela; Stroescu, Marta [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Stoica-Guzun, Anicuta, E-mail: stoica.anicuta@gmail.com [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Dobre, Tanase; Jinga, Sorin [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer The paper reports the obtaining of composite materials between PVA and BC. Black-Right-Pointing-Pointer The composite films were {gamma}-irradiated at doses up to 50 kGy. Black-Right-Pointing-Pointer The films have a good resistance, being suitable as food packaging materials. - Abstract: Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different {gamma} radiation doses using an irradiator GAMMATOR provided with {sup 137}Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during {gamma} irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for {gamma} irradiated products.

  20. Effect of Initial Bulk Material Composition on Thermoelectric Properties of Bi2Te3 Thin Films

    Science.gov (United States)

    Budnik, A. V.; Rogacheva, E. I.; Pinegin, V. I.; Sipatov, A. Yu.; Fedorov, A. G.

    2013-07-01

    V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10-4 W/K2 m and 35 × 10-4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.

  1. Effect of radio frequency power on composition, structure and optical properties of MoSe{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-ping, E-mail: lpfeng@nwpu.edu.cn; Li, Ning; Liu, Zhengtang

    2014-07-01

    MoSe{sub x} films were prepared by radio frequency (RF) magnetron sputtering under various RF powers in the range of 40–130 W. Effects of RF power on composition, structure and optical properties of MoSe{sub x} films were investigated. Results show that the chemical bonding, binding energy, structure, and optical properties of MoSe{sub x} films depend greatly on RF power. When the RF power varies from 40 to 70 W, the bonding atomic ratio of Se/Mo in MoSe{sub x} films increase and Mo 3d{sub 5/2} and Se 3d{sub 5/2} peaks shift towards lower binding energies. With further increase in the RF power from 70 to 130 W, the bonding atomic ratio of Se/Mo in MoSe{sub x} films decreases and Mo 3d{sub 5/2} and Se 3d{sub 5/2} peaks move to higher binding energies. Structures of MoSe{sub x} films are amorphous with the RF power ≤70 W, whereas structures of MoSe{sub x} films exhibit nanostructure with the RF power >70 W. Moreover, MoSe{sub x} films deposited at 70 W have larger refractive index, lower extinction coefficient, and higher band gap than those deposited at other RF power.

  2. Novel Microporous Films and Their Composites

    Directory of Open Access Journals (Sweden)

    P.C. Wu, Ph.D

    2007-04-01

    Full Text Available Cost-effective microporous films and composites can be made by using polyolefinic material and inorganic fillers. These microporous films and their composites can be designed and manufactured at high speed using commercial equipment for disposable hygiene articles, protective health care garments, building construction and many other industrial applications where air and moisture breathability is needed. The theory, formulations and methods of making these cost-effective polyolefinic-calcium carbonate compositions are discussed. Special engineering fibers and their fabrics can be combined with these novel microporous films to achieve a variety of properties for practical applications. However, one should keep intellectual property considerations in mind when contemplating the manufacture of microporous film products, their companies and their applications.

  3. Effect of electrodeposition potential on composition and morphology of CIGS absorber thin film

    Indian Academy of Sciences (India)

    N D Sang; P H Quang; L T Tu; D T B Hop

    2013-08-01

    CuInGaSe (CIGS) thin films were deposited on Mo/soda-lime glass substrates by electrodeposition at different potentials ranging from −0.3 to −1.1 V vs Ag/AgCl. Cyclic voltammetry (CV) studies of unitary Cu, Ga, In and Se systems, binary Cu–Se, Ga–Se and In–Se systems and quaternary Cu–In–Ga–Se were carried out to understand the mechanism of deposition of each constituent. Concentration of the films was determined by energy dispersive spectroscopy. Structure and morphology of the films were characterized by X-ray diffraction and scanning electron microscope. The underpotential deposition mechanism of Cu–Se and In–Se phases was observed in voltammograms of binary and quaternary systems. Variation in composition with applied potentials was explained by cyclic voltammetry (CV) data. A suitable potential range from −0.8 to −1.0 V was found for obtaining films with desired and stable stoichiometry. In the post-annealing films, chalcopyrite structure starts forming in the samples deposited at −0.5 V and grows on varying the applied potential towards negative direction. By adjusting the composition of electrolyte, we obtained the desired stoichiometry of Cu(In0.7Ga0.3)Se2.

  4. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  5. Enhancement effects of two kinds of carbon black on piezoelectricity of PVDF-HFP composite films

    Science.gov (United States)

    Hu, Bin; Hu, Ning; Wu, Liangke; Cui, Hao; Ying, Ji

    2015-12-01

    Two kinds of carbon black (CB) (i.e., CB#300 and CB#3350) were added into poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), respectively, to improve its piezoelectricity. The results revealed that when 0.5 wt.% CB was added, the best performance of the PVDF-HFP/CB composite films was obtained. The calibrated open circuit voltage and the density of harvested power of 0.5 wt.% CB#3350 contained composite films were 204%, and 464% (AC) and 561% (DC) of those of neat PVDF-HFP films. Similarly, for 0.5 wt.% CB#300 contained films, they were 211%, and 475% (AC) and 624% (DC), respectively. The enhancement mechanisms of piezoelectricity were clarified by the observation of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). We found that the added CBs act as nucleate agents to promote the formation of elongated, oriented and fibrillar β-phase crystals during the fabrication process, which increase the piezoelectricity. Overdosed CBs lead to a lower crystallinity degree, resulting in the lower piezoelectricity. Compared with CB#3350, CB#300 performs slightly better, which may be ascribed to its higher specific surface area.

  6. The effects of radiation damage on power VDMOS devices with composite SiO2-Si3N4 films

    Institute of Scientific and Technical Information of China (English)

    Gao Bo; Liu Gang; Wang Li-Xin; Han Zheng-Sheng; Song Li-Mei; Zhang Yan-Fei; Teng Rui

    2013-01-01

    Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor (VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.

  7. The Effect of Ormosil Matrix Composition and Alkaline Earth Metal Doping on the Photochromic Response of Ormosil-Phosphotungstate Films

    OpenAIRE

    Ferreira Neto,Elias P.; Simões,Mateus B.; Noveletto,Julia C.; Yabarrena,Jean M. S. C.; Ullah,Sajjad; Ubirajara P. Rodrigues Filho

    2015-01-01

    In this study, polyoxometallate based hybrid photochromic materials were prepared by incorporating phosphotungstate anion, PW12O403−, (PW) in hybrid tetraethyl orthosilicate and (3-glycidyloxypropyl)trimethoxysilane TEOS-GPTMS derived organomodified silicates (Ormosil) matrices by sol-gel method and the resulting materials were used to prepare multilayer films by dip-coating method. The effect of alkaline earth metal cations doping and matrix composition (%GPTMS) on the photochromic res...

  8. The Effect of the Melt Viscosity and Impregnation of a Film on the Mechanical Properties of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-06-01

    Full Text Available Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf, and void content (Vc were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC and dynamical mechanical thermal analysis (DMTA. The tensile property, flexural property, interlaminar shear strength (ILSS, and scanning electron microscopy (SEM were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites.

  9. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Rodrigues, M.S. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139,7), 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Espinós, J.P.; González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-University Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Cunha, L.; Marques, L.; Vasilevskiy, M.I.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Optical behaviour of ZrO{sub x}N{sub y} films were correlated with structural properties. • A continuous depopulation of the d-band and an opening of an energy gap was observed. • Drude–Lorentz parameters changed for the metallic samples. • Optical bandgap of the films increases with non-metallic elements incorporation. - Abstract: This work is devoted to the investigation of zirconium oxynitride (ZrO{sub x}N{sub y}) films with varied optical responses prompted by the variations in their compositional and structural properties. The films were prepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N{sub 2} + O{sub 2} (17:3). The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gas flows to red-brownish for intermediate gas flows. Associated to this colour change there was a significant decrease of brightness. With further increase of the reactive gas flow, the colour of the samples changed from red-brownish to dark blue or even to interference colourations. The variations in composition disclosed the existence of four different zones, which were found to be closely related with the variations in the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirconium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallized over-stoichiometric nitride phase, which may be similar to that of Zr{sub 3}N{sub 4} with some probable oxygen inclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For high reactive gas flows, the films developed an oxynitride-type phase, similar to that of γ-Zr{sub 2}ON{sub 2} with some oxygen atoms occupying some of the nitrogen positions, evolving to a ZrO{sub 2} monoclinic type structure within the zone where films were prepared with relatively high reactive gas flows. The analysis carried out by reflected electron energy

  10. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films

    Energy Technology Data Exchange (ETDEWEB)

    Campos, João M., E-mail: jmdcampos@ua.pt [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Instituto de Biotecnologia e Bioengenharia (IBB) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ferraria, Ana M.; Botelho do Rego, Ana M. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ribeiro, M. Rosário [Centro de Química Estrutural (CQE) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Barros-Timmons, Ana [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-09-15

    Polylactide (PLA) with a terminal triple bond was synthesized by organocatalyzed ring-opening polymerization and coupled with azide-functionalized graphene oxide (GO) through an azide-alkyne cycloaddition “click” reaction. The functionalized graphenic species involved were analyzed by spectroscopic techniques (FT-IR, solid state {sup 13}C NMR, Raman), which confirmed the coupling of PLA and GO. Additionally, an in depth study of the prepared GO, intermediates and GO-g-PLA hybrid was carried out that sheds light on the mechanisms involved in the functionalization path. The obtained GO-g-PLA hybrid, containing at least 20% of biopolymer, presented an exfoliated graphenic structure, as established by XRD. The conditions used in the grafting of the PLA chains inhibited the crystallization and melting observed for the free polymer. Furthermore, the graphene oxide seems to be reduced during functionalization, which can also be an advantage. Nanocomposites were obtained as solvent-cast films, prepared by dispersion of the GO-g-PLA hybrid in commercial PLA. Preliminary results regarding the performance of these nanocomposites, obtained by DSC and DMA, highlighted the effect of functionalization. Loading values as low as 0.5% suffice to improve the mechanical properties over a broad temperature range due to the high surface area resulting from the good dispersibility of polymer functionalized nanofillers and/or their effect on the polymer chain organization. - Highlights: • A graphene oxide/PLA (GO-g-PLA) hybrid was obtained by a grafting-to method. • Grafting of PLA chains onto the surface of GO inhibited polymer crystallization. • The GO-g-PLA material was used in the reinforcement of PLA, as nanocomposite films. • GO-g-PLA provides more homogeneously reinforced nanocomposite films, than neat GO. • Nanocomposite films with 0.5% loading present high storage modulus even above T{sub g}.

  11. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    Science.gov (United States)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-05-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8-17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9-5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  12. Electric Field Simulation and Effect of Different Solvent Ratios on the Performance of Single Electrospun PVDF/PEI Composite Film

    Directory of Open Access Journals (Sweden)

    Jin-gang Jiang

    2016-01-01

    Full Text Available On the basis of the finite element calculation theory of electric field, the electric field distribution in a representative electrospinning device is computed. The electric field structure of a needle-plate type electrospinning device was simulated by means of ANSYS software. And the vector distribution of the nozzle on the spinneret pipe was got. For the purpose of the analysis on the influence of different solvent ratios on the performance of a single electrospun PVDF/PEI composite film, polyvinylidene fluoride and polyetherimide with a mass ratio of 8/2 were dissolved in a mixed solvent. The mixed solvent is composed of N,N-dimethylformamide and tetrahydrofuran, added in different proportions. Through the electrostatic spinning technology, PVDF/PEI composite fiber membranes were prepared. Using scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC, and mechanical properties testing, the effects of tetrahydrofuran on the composite microstructure, crystallinity, and mechanical properties of the PVDF/PEI composite fiber membranes are discussed.

  13. Design and characterization of chitosan/zeolite composite filmsEffect of zeolite type and zeolite dose on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gustavo P.; Debone, Henrique S. [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil); Severino, Patrícia [Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Aracaju (Brazil); Souto, Eliana B. [Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Silva, Classius F. da, E-mail: cfsilva@unifesp.br [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil)

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  14. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  15. Enhanced stability and mechanical strength of sodium alginate composite films.

    Science.gov (United States)

    Liu, Sijun; Li, Yong; Li, Lin

    2017-03-15

    This work aims to study how three kinds of nanofillers: graphene oxide (GO), ammonia functionalized graphene oxide (AGO), and triethoxylpropylaminosilane functionalized silica, can affect stability and mechanical strength of sodium alginate (SA) composite films. The filler/sodium alginate (SA) solutions were first studied by rheology to reveal effects of various fillers on zero shear viscosity η0. SA composite films were then prepared by a solution mixing-evaporation method. The structure, morphology and properties of SA composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), contact angle and mechanical testing. Compared to GO and silica, the presence of AGO significantly improved the interaction between AGO and SA, which led to the increase in stability and mechanical strength of the resulting SA composite films. The tensile strength and elongation at break of AGO/SA composite film at 3wt% AGO loading were increased by 114.9% and 194.4%, respectively, in contrast to pure SA film. Furthermore, the stability of AGO/SA composite films at high temperatures and in a wet environment were better than that of silica/SA and GO/SA composite films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Annealing effect on the electrical properties and composition of a NiCrAl thin film resistor

    Science.gov (United States)

    Chuang, Nai-Chuan; Lin, Jyi-Tsong; Chen, Huey-Ru

    2015-12-01

    The composition of NiCrAl thin film resistors, under different annealing conditions in a N2 atmosphere, was investigated. The Auger electron spectrum (AES) has been used in studying the composition of NiCrAl thin films. The concentration ratio of Cr to Ni decreases when the annealing temperature increases. The electrical properties of a NiCrAl thin film resistor are affected by the concentrations of Cr and Ni, which lead to a higher temperature coefficient of resistance (TCR) and a lower sheet resistivity. The TCR of a NiCrAl thin film resistor is -5 ppm/°C at a 250 °C annealing temperature.

  17. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    Science.gov (United States)

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.

  18. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.

    Science.gov (United States)

    Spence, Kelley L; Venditti, Richard A; Habibi, Youssef; Rojas, Orlando J; Pawlak, Joel J

    2010-08-01

    Films of microfibrillated celluloses (MFCs) from pulps of different yields, containing varying amounts of extractives, lignin, and hemicelluloses, were produced by combining refining and high-pressure homogenization techniques. MFC films were produced using a casting-evaporation technique and the physical and mechanical properties (including density, roughness, fold endurance and tensile properties) were determined. Homogenization of bleached and unbleached Kraft pulps gave rise to highly individualized MFCs, but not for thermo-mechanical pulp (TMP). The resulting MFC films had a roughness equivalent to the surface upon which the films were cast. Interestingly, after homogenization, the presence of lignin significantly increased film toughness, tensile index, and elastic modulus. The hornification of fibers through a drying and rewetting cycle prior to refining and homogenization did not produce any significant effect compared to films from never-dried fibers, indicating that MFC films can potentially be made from low-cost recycled cellulosic materials.

  19. Effect of applied dc bias voltage on composition, chemical bonding and mechanical properties of carbon nitride films prepared by PECVD

    Institute of Scientific and Technical Information of China (English)

    LI Hong-xuan; XU Tao; HAO Jun-ying; CHEN Jian-min; ZHOU Hui-di; XUE Qun-ji; LIU Hui-wen

    2004-01-01

    Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.

  20. Effect of Bi{sub 4}Ti{sub 3}O{sub 12} nanoparticles on the electroactive phase content of poly (vinylidene-difluoride) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Sumit, E-mail: sumit.bhardwaj4@gmail.com [Centre for Materials Science and Engineering, National Institute of Technology, Hamirpur, H.P. 177005 India (India); Department of Materials and Metallurgical Engineering, PEC University of Technology, Chandigarh – 160012 (India); Chand, Subhash [Department of Physics, National Institute of Technology, Hamirpur, H.P. 177005 (India); Raina, K. K. [School of Physics and Materials Science, Thapar University, Patiala, Punjab -147004 (India); Kumar, Ravi [Centre for Materials Science and Engineering, National Institute of Technology, Hamirpur, H.P. 177005 India (India)

    2015-08-28

    Poly (vinylidene-difluoride) (PVDF) composite films with homogeneously dispersed Bi{sub 4}Ti{sub 3}O{sub 12} nanoparticles were synthesized by spin coating method from mixed solvent solutions. The effects of ferroelectric nanoparticles loading on the formation of α, β and γ phases of PVDF were studied using X-ray diffraction, infrared and Raman spectroscopy. The amount of the ferroelectric β and γ phases present in the composite films was found to increase with increased nanoparticles loading. We have shown that the formation of electroactive phases of PVDF with extended chain conformations can be enhanced by the addition of a well-dispersed nanoparticles loading.

  1. COMPOSITION EFFECT ON DRY SLIDING WEAR BEHAVIORS OF Ti-B-N THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    P. Sit; Y.H. Lu; H. Chen; Z.F. Zhou; Y.G. Shen; K.Y. Li

    2005-01-01

    Friction and sliding wear behaviour of Ti-B-N coatings against AISI440C steel ball and WC-6wt%Co ball were studied by using pin-on-disk tribometer along with microstructure characterization using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It is shown that the wear resistance of film depended on the wear mechanism. In the case of AISI440C steel, adhesive wear were pre-dominant and the wear rate increased sharply to a maximum when N content reach ~38at. %. This might be related to the change of film microstructure and phase configuration, so the least adhesive transfer of tribo-film was observed. If WC-6wt% Co ball was used, less deformation wear debris was observed, this was responsible for the rise of wear rate. Despite of different wear modes, friction coefficients in both cases were found to depend mainly on the formation and the amount of h-BN phase. Elemental analysis by energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) revealed that oxygen participated in the wear behavior by reacting with films to form the debris comprised of various types of Ti oxide including TiO, TiO2 and Ti2O3 ,which increased wear resistance.

  2. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    Directory of Open Access Journals (Sweden)

    Soliman Abdalla

    2016-02-01

    Full Text Available Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of four highly pure amorphous polymer films: polymethyl methacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher breakdown performance is a character of polyimide (PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  3. Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: Structure and composition effects

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@ktu.lt; Čiegis, A.; Vasiliauskas, A.; Šlapikas, K.; Tamulevičius, T.; Tamulevičienė, A.; Tamulevičius, S.

    2015-04-30

    In the present study chemical composition, structure and optical properties of hydrogenated diamond like carbon films containing copper (DLC:Cu films) deposited by reactive magnetron sputtering were studied. Different modes of deposition — direct current (DC) sputtering and high power pulsed magnetron sputtering (HIPIMS) as well as two configurations of the magnetron magnetic field (balanced and unbalanced) were applied. X-ray diffractometry, Raman scattering spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscopy were used to study the structure and composition of the films. It was shown that by using HIPIMS mode contamination of the cathode during the deposition of DLC:Cu films can be suppressed. In all cases oxygen atomic concentration in the films was in 5–10 at.% range and it increased with the copper atomic concentration. The highest oxygen content was observed in the films deposited employing low ion/neutral ratio balanced DC magnetron sputtering process. According to the analysis of the parameters of Raman scattering spectra, sp{sup 3}/sp{sup 2} bond ratio decreased with the increase of Cu atomic concentration in the DLC films. Clear dependence of the extinction, absorbance and reflectance spectra on copper atomic concentration in the films was observed independently of the method of deposition. Surface plasmon resonance effect was observed only when Cu atomic concentration in DLC:Cu film was at least 15 at.%. The maximum of the surface plasmon resonance peak of the absorbance spectra of DLC:Cu films was in 600–700 nm range and redshifted with the increase of Cu amount. The ratio between the intensities of the plasmonic peak and hydrogenated amorphous carbon related peak at ~ 220 nm both in the extinction and absorbance spectra as well as peak to background ratio of DLC:Cu films increased linearly with Cu amount in the investigated 0–40 at.% range. Reflectance of the plasmonic DLC:Cu films was in 30–50% range that could be

  4. Improved piezoelectricity of PVDF-HFP/carbon black composite films

    Science.gov (United States)

    Wu, Liangke; Yuan, Weifeng; Hu, Ning; Wang, Zhongchang; Chen, Chunlin; Qiu, Jianhui; Ying, Ji; Li, Yuan

    2014-04-01

    We report a substantial improvement of piezoelectricity for poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer films by introducing carbon black (CB) into the PVDF-HFP to form PVDF-HFP/CB composite films. The optimized output voltage of the composite film at an optimal CB content of 0.5 wt% is found to be 204% of the pristine PVDF-HFP film. Its harvested electrical power density is 464% and 561% of the pristine PVDF-HFP film by using ac and dc circuits, respectively. Through Fourier transform infrared spectroscopy analysis, differential scanning calorimetry analysis, and polarized optical microscopy observations, we clarify the enhancement mechanism of piezoelectricity for the PVDF-HFP/CB composite films. We find that the added CB acts as nucleating agent during the initial formation of crystals, but imposes an insignificant effect on the α-β phase transformation during stretching. We also demonstrate that the addition of optimal CB reduces crystal size yet increases the number of crystals in the composite films. This is beneficial for the formation of elongated, oriented and fibrillar crystalline morphology during stretching and consequently results in a highly efficient poling process. The addition of overdosed CB leads to the formation of undersized crystals, lowered crystallinity, and hence reduced piezoelectric performance of the PVDF-HFP/CB composite films.

  5. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films.

    Science.gov (United States)

    Lukach, Ariella; Thérien-Aubin, Héloïse; Querejeta-Fernández, Ana; Pitch, Natalie; Chauve, Grégory; Méthot, Myriam; Bouchard, Jean; Kumacheva, Eugenia

    2015-05-12

    Coassembly of nanoparticles with different size-, shape-, and composition-dependent properties is a promising approach to the design and fabrication of functional materials and devices. This paper reports the results of a detailed investigation of the formation and properties of free-stranding composite films formed by the coassembly of cellulose nanocrystals and shape-isotropic plasmonic gold nanoparticles. The effect of gold nanoparticle size, surface charge, and concentration on the structural and optical properties of the composite films has been studied. The composite films retained photonic crystal and chiroptical activity properties. The size and surface charge of gold nanoparticles had a minor effect on the structure and properties of the composite films, while the concentration of gold nanoparticles in the composite material played a more significant role and can be used to fine-tune the optical properties of materials derived from cellulose nanocrystals. These findings significantly broaden the range of nanoparticles that can be used for producing nanocomposite materials based on cellulose nanocrystals. The simplicity of film preparation, the abundance of cellulose nanocrystals, and the robust, free-standing nature of the composite films offer highly advantageous features and pave the way for the generation of functional materials with coupled optical properties.

  6. Giant magnetoimpedance effect in Fe75.5Cu1Nb3Si13.5B7 ribbon/FeGa film composite

    Science.gov (United States)

    Zhang, Yi; Gan, Tao; Wang, Tao; Wang, Feifei; Shi, Wangzhou

    2016-11-01

    Optimized giant magnetoimpedance effect of Fe75.5Cu1Nb3Si13.5B7 amorphous ribbon/Fe80Ga20 film composites has been investigated. FeCuNbSiB amorphous ribbons as the substrates are commercially available, magnetostrictive FeGa films are deposited on one or both sides of the ribbons by ion-beam sputtering. Compared with the GMI curves without FeGa layer, the GMI effect of FeCuNbSiB amorphous ribbon has been obviously improved with FeGa film covered (from 4% to 16%). Moreover, the details exhibit an interesting phenomenon: at a certain frequency, when the FeGa film covered on one side of the ribbon, the GMI ratio decreases with the thickness of the FeGa film; however, when the FeGa films covered on both sides of the ribbon, the GMI ratio increases with the thickness of the FeGa film. We mainly attribute the reason to strain-induced anisotropy, which is induced by magnetostrictive effect under a longitudinal applied magnetic field.

  7. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    Science.gov (United States)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  8. Growth of Ni and Ni-Cr alloy thin films on MgO(001): Effect of alloy composition on surface morphology

    Science.gov (United States)

    Ramalingam, Gopalakrishnan; Reinke, Petra

    2016-12-01

    The effects of substrate treatment, growth temperature, and composition on the surface morphology of Ni-Cr thin films grown on MgO(001) are studied by scanning tunneling microscopy and atomic force microscopy. We demonstrate that a combination of acid-etched substrates and high temperature deposition (400 °C) will result in smooth films with well-defined terraces (up to 30 nm wide) that are suitable for the study of progression of chemical reactions on the surface. Two different treatments are used to prepare the MgO substrates for deposition and they introduce characteristic differences in film surface morphology. Thin films that are grown on the phosphoric acid-treated substrates present reduced nucleation density during the initial stages of film growth which results in long and wide terraces. Due to the ≈16% lattice mismatch in the Ni(001)/MgO(001) system, film growth at 400 °C yields discontinuous films and a two-step growth process is necessary to obtain a continuous layer. Ni films are deposited at 100 °C and subjected to a post-growth annealing at 300 °C for 2 h to obtain a smoother surface. The addition of just 5 wt. % Cr drastically changes the film growth processes and yields continuous films at 400 °C without de-wetting in contrast to pure Ni films. With increasing Cr content, the films become progressively smoother with wider terraces. Ni5Cr alloy thin films have an rms surface roughness of 3.63 ± 0.75 nm, while Ni33Cr thin film is smoother with an rms roughness of only 0.29 ± 0.13 nm. The changes in film growth initiated by alloying with Cr are due to changes in the interfacial chemistry which favorably alters the initial adsorption of the metal atoms on MgO surface and suggests a reduction of the Ehrlich-Schwoebel barrier. The growth of smooth Ni-Cr thin films with a well-defined surface structure opens up a new pathway for a wide range of surface science studies related to alloy performance.

  9. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    Science.gov (United States)

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials.

  10. Effect of POLYURETHANE/NANO-SiO2 Composites Coating on Thermo-Mechanical Properties of Polyethylene Film

    Science.gov (United States)

    Ching, Yern Chee; Yaacob, Iskandar Idris

    2011-06-01

    Polyethylene (PE) film was coated with polyurethane/nanosilica composite layer using rod Mayer process. The polyurethane/nanosilica system was prepared by dispersing nanosilica powder into solvent borne polyurethane (PU) binder under vigorous stirring. The silica nanoparticle used has an average diameter of 16 nm, and their weight fraction were varied from 0 % to 14 %. Two different thicknesses of the PU/nanosilica coating layer were fabricated which were about 4 μm and 8 μm. The structure and thermal mechanical features of the nanocomposite coated PE film were characterized by scanning electron microscope (SEM), dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA) as well as tensile tests. The results showed that thin layer coating of the PU/nanosilica composite reduced tensile strength of PE substrate slightly. However, the nanocomposite coating of up to 8 μm reduced the elongation % of PE substrate significantly. PU/nanosilica composite coating layer increased the tensile modulus and stiffness of PE substrate. There was no influence of the PU/nanosilica composite coating to the thermal degradation rate of PE film.

  11. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  12. Effect of nanoclay on optical properties of PLA/clay composite films

    CSIR Research Space (South Africa)

    Cele, HM

    2014-06-01

    Full Text Available function of the clay loading. The optical properties of the PLA/OMMT composites were studied using variable angle spectroscopic ellipsometry (VASE) and ultra-violet (UV-Vis) spectroscopy. VASE revealed that the refractive index and extinction coefficient (n...

  13. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  14. Effect of polymer/clay composition on processability of polylactide nanocomposites by film blowing

    Science.gov (United States)

    Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The blown extrusion of poly(lactic acid) presents several challenges mainly due to its poor elongation properties. This work deals on the possibility to enhance the processabiliy of PLA by film blowing by functionalizing the polymer with nanosilicates. In particular, two types of polylactic acid (PLA 4032D and PLA 4042D) and different types of filler, selected from montmorillonites (Cloisite 30B) and bentonites (Nanofil SE3010) families, were used to prepare the hybrid systems by using a twin-screw extruder. The interaction between the polymer and the clay was evaluated by FTIR analysis and correlated to the structure of the obtained nanocomposites in terms of clay dispersion. All the samples were then submitted to rheological measurements both in shear and elongational mode.

  15. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    KAUST Repository

    Blinova, Natalia V.

    2012-04-21

    Composite membranes combining polyaniline as an active layer with a polypropylene support have been prepared using an in situ deposition technique. The protonated polyaniline layer with a thickness in the range of 90-200 nm was prepared using precipitation, dispersion, or emulsion polymerization of aniline with simultaneous deposition on top of the porous polypropylene support, which was immersed in the reaction mixture. Variables such as temperature, concentration of reagents, presence of steric stabilizers, surfactants, and heteropolyacid were found to control both the formation and the quality of the polyaniline layers. Both morphology and thickness of the layers were characterized using scanning electron microscopy. Selective separation of carbon dioxide from its mixture with methane is used to illustrate potential application of these composite membranes. © 2012 Wiley Periodicals, Inc.

  16. Effectively Improved SiO2-TiO2 Composite Films Applied in Commercial Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Yang

    2013-01-01

    Full Text Available Composite silicon dioxide-titanium dioxide (SiO2-TiO2 films are deposited on a large area of 15.6 × 15.6 cm2 textured multicrystalline silicon solar cells to increase the incident light trapped within the device. For further improvement of the antireflective coatings (ARCs quality, dimethylformamide (DMF solution is added to the original SiO2-TiO2 solutions. DMF solution solves the cracking problem, thus effectively decreasing reflectance as well as surface recombination. The ARCs prepared by sol-gel process and plasma-enhanced chemical vapor deposition (PECVD on multicrystalline silicon substrate are compared. The average efficiency of the devices with improved sol-gel ARCs is 16.3%, only 0.5% lower than that of devices with PECVD ARCs (16.8%. However, from equipment depreciation point of view (the expiration date of equipment is generally considered as 5 years, the running cost (USD/watt of sol-gel technique is 80% lower than that of PECVD method for the first five years and 66% lower than that of PECVD method from the start of the sixth year. This result proves that sol-gel-deposited ARCs process has potential applications in manufacturing low-cost, large-area solar cells.

  17. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water.

    Science.gov (United States)

    Stathatos, E; Papoulis, D; Aggelopoulos, C A; Panagiotaras, D; Nikolopoulou, A

    2012-04-15

    Microfibrous palygorskite clay mineral and nanocrystalline TiO(2) are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 500°C. The synthesis involves a simple chemical method employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without direct addition of water molecules. Drying and thermal treatment of composite films lead to the elimination of organic material while ensure the formation of TiO(2) nanoparticles homogeneously distributed on the surface of the palygorskite microfibers. TiO(2) nanocomposite films without cracks consisted of small crystallites in size (12-16 nm) and anatase crystal phase was found to cover palygorskite microfibers. The composite films were characterized by microscopy techniques, UV-vis, IR spectroscopy, and porosimetry methods in order to examine their structural properties. Palygorskite/TiO(2) composite films with variable quantities of palygorskite (0-2 w/w ratio) were tested as new photocatalysts in the photo-discoloration of Basic Blue 41 azo-dye in water. These nanocomposite films proved to be very promising photocatalysts and highly effective to dye's discoloration in spite of the small amount of immobilized palygorskite/TiO(2) catalyst onto glass substrates. 3:2 palygorskite/TiO(2) weight ratio was finally the most efficient photocatalyst while reproducible discoloration results of the dye were obtained after three cycles with same catalyst. It was also found that palygorskite showed a positive synergistic effect to the TiO(2) photocatalysis.

  18. Effect of small changes in composition on the electrical and structural properties of YBa sub 2 Cu sub 3 O sub 7 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chew, N.G.; Goodyear, S.W.; Edwards, J.A.; Satchell, J.S.; Blenkinsop, S.E.; Humphreys, R.G. (Royal Signals and Radar Establishment, Malvern, Worcestershire (United Kingdom))

    1990-11-05

    Epitaxial thin films of YBa{sub 2}Cu{sub 3}O{sub 7} have been grown {ital in} {ital situ} by evaporation onto (001) MgO substrates. The composition was varied systematically to investigate the effects of changes in Cu content and Ba/Y ratio on the film properties. The results demonstrate that deviations from stoichiometry at the limit of resolution of most analytic techniques can have a large effect on structural and transport properties, as well as causing marked changes in surface morphology. The best properties ({ital J}{sub {ital c}}{gt}3{times}10{sup 6} A/cm{sup 2} at 77 K) are only found for a narrow range of compositions, which can be readily identified from the surface morphology.

  19. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    Science.gov (United States)

    Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.

    2017-10-01

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.

  20. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  1. Mg-composition induced effects on the physical behavior of sprayed Zn{sub 1-x}Mg{sub x}O films

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K.T. Ramakrishna, E-mail: ktrkreddy@gmail.co [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India); Prathap, P.; Revathi, N.; Reddy, A.S.N. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India); Miles, R.W. [School of Engineering and Computing, Northumbria University, Newcastle NE1 8ST (United Kingdom)

    2009-12-15

    Thin films of Zn{sub 1-x}Mg{sub x}O, with Mg compositions in the range, 0 < x < 0.4, have been deposited onto soda-lime glass substrates using chemical spray pyrolysis. The effects of altering the alloy composition on the chemical and physical properties of the layers were investigated using X-ray photoelectron spectroscopy, atomic force microscopy, Raman, optical and electrical measurements. The data shows systematic shifts in the properties of the layers with Mg-content. In particular, the optical absorption data showed that the influence of Mg-content on the energy gap of Zn{sub 1-x}Mg{sub x}O films is significant. Layers with x = 0.24 had an optical energy band gap, E{sub g} = 3.87 eV. The best layers produced had properties appropriate for application as Cd-free buffer layers in copper indium gallium selenide (CIGS) solar cells.

  2. Preparation and properties of cellulose nanocrystals reinforced collagen composite films.

    Science.gov (United States)

    Li, Weichang; Guo, Rui; Lan, Yong; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2014-04-01

    Collagen films have been widely used in the field of biomedical engineering. However, the poor mechanical properties of collagen have limited its application. Here, rod-like cellulose nanocrystals (CNCs) were fabricated and used to reinforce collagen films. A series of collagen/CNCs films were prepared by collagen solution with CNCs suspensions homogeneously dispersed at CNCs: collagen weight ratios of 1, 3, 5, 7, and 10. The morphology of the resulting films was analyzed by scanning electron microscopy (SEM), the enhancement of the thermomechanical properties of the collagen/CNCs composites were demonstrated by thermal gravimetric analysis (TGA) and mechanical testing. Among the CNCs contents used, a loading of 7 wt % led to the maximum mechanical properties for the collagen/CNCs composite films. In addition, in vitro cell culture studies revealed that the CNCs have no negative effect on the cell morphology, viability, and proliferation and possess good biocompatibility. We conclude that the incorporation of CNCs is a simple and promising way to reinforce collagen films without impairing biocompatibility. This study demonstrates that the composite films show good potential for use in the field of skin tissue engineering.

  3. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    Science.gov (United States)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  4. Effects of Surface Chemical Composition on the Early Growth Stages of α-Sexithienyl Films on Silicon Oxide Substrates

    NARCIS (Netherlands)

    Dinelli, Franco; Moulin, Jean-François; Loi, Maria Antonietta; Como, Enrico Da; Massi, Massimiliano; Murgia, Mauro; Muccini, Michele; Biscarini, Fabio; Wie, Jiang; Kingshott, Peter

    2006-01-01

    In organic field effect transistors, charge transport is confined to a narrow region next to the organic/dielectric interface. It is thus extremely important to determine the morphology and the molecular arrangement of the organic films at their early growth stages. On a substrate of technological i

  5. Electromagnetic interference shielding effectiveness of composite carbon nanotube macro-film at a high frequency range of 40 GHz to 60 GHz

    Directory of Open Access Journals (Sweden)

    Zi Ping Wu

    2015-06-01

    Full Text Available The electromagnetic interference (EMI shielding effectiveness (SE of carbon nanotube (CNT macro-film that is adhered to common cloth to maintain the light weight, silk-like quality, and smooth surface of the material for EMI shielding is investigated. The results show that a high and stable EMI SE of 48 dB to 57 dB at 40 GHz to 60 GHz was obtained by the macro-film with a thickness of only ∼4 μm. The composite CNT macro-film is easily manipulated, and its EMI property is significantly different from that of traditional electromagnetic shielding materials that show a lower EMI SE with increasing frequency. For example, the EMI SE of Cu foils decrease from 75 dB to 35 dB as frequency increases from 25 GHz to 60 GHz. Considering their stable and outstanding EMI SE and easy manipulation, the composite CNT macro-films are expected to have potential applications in shielding against millimeter waves.

  6. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly.

  7. Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: Effect of poly(DL-lactic-co-glycolic acid)

    Indian Academy of Sciences (India)

    Zhigang Ma; Na Zhao; Chengdong Xiong

    2012-08-01

    The in vitro degradation behaviour of poly(glycolic acid) (PGA) and its composite films containing poly(DL-lactic acid) (PDLLA) and poly(DL-lactic-co-glycolic acid) (PDLGA) were investigated via mass loss, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). All the films were prepared by solution casting, using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. Since the degradation rate of PDLLA is lower than that of PGA, those of the PDLLA/PGA composite films decreased. As a compatibilizer, PDLGA improved the compatibility and hydrolytic stability of PDLLA/PGA composite films. Changes in the composite films indicate that this kind of PGA-based composite biomaterial may be applicable to device design for clinical application in the future.

  8. Thermal Conductivity of Carbon Nanotube Composite Films

    Science.gov (United States)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  9. Effect of Blend Composition and Additives on the Morphology of PCPDTBT:PC71BM Thin Films for Organic Photovoltaics.

    Science.gov (United States)

    Schaffer, Christoph J; Schlipf, Johannes; Dwi Indari, Efi; Su, Bo; Bernstorff, Sigrid; Müller-Buschbaum, Peter

    2015-09-30

    The use of solvent additives in the fabrication of bulk heterojunction polymer:fullerene solar cells allows to boost efficiencies in several low bandgap polymeric systems. It is known that solvent additives tune the nanometer scale morphology of the bulk heterojunction. The full mechanism of efficiency improvement is, however, not completely understood. In this work, we investigate the influences of blend composition and the addition of 3 vol % 1,8-octanedithiol (ODT) as solvent additive on polymer crystallization and both, vertical and lateral morphologies of poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] and [6,6]-phenyl C71-butyric acid methyl ester (PCPDTBT:PC71BM) blend thin films processed from chlorobenzene-based solutions. The nanoscale morphology is probed with grazing incidence small- and wide-angle X-ray scattering as well as X-ray reflectivity and complemented with UV/vis spectroscopy. In PCPDTBT:PC71BM films the use of ODT is found to lower the solubility of fullerene in the polymer matrix and to promote polymer crystallization, both vertical and lateral microphase separation with morphological coarsening, and formation of a fullerene-rich topping layer. The enhanced photovoltaic performance is explained by these findings.

  10. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  11. Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition

    Indian Academy of Sciences (India)

    Zahra Saroukhani; Nemat Tahmasebi; Seyed Mohammad Mahdavi; Ali Nemati

    2015-10-01

    Barium strontium titanate (BST, Ba1−SrTiO3) thin films have been extensively used in many dielectric devices such as dynamic random access memories (DRAMs). To optimize its characteristics, a microstructural control is essential. In this paper, Ba0.6Sr0.4TiO3 thin film has been deposited on the SiO2/Si substrate by the pulsed laser deposition (PLD) technique at three different oxygen working pressures of 100, 220 and 350 mTorr. Then the deposited thin films at 100 mTorr oxygen pressure were annealed for 50 min in oxygen ambient at three different temperatures: 650, 720 and 800°C. The effect of oxygen working pressure during laser ablation and thermal treatment on the films was investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis methods. X-ray photoelectron spectroscopy analysis was used to determine the surface chemical composition of the samples. The results indicate that the deposited BST film at low working pressure (100 mTorr) in PLD chamber shows a lower surface roughness than other working pressures (220 and 350 mTorr). The as-deposited films show an amorphous structure and would turn into polycrystalline structure at annealing temperature above 650°C. Increase of temperature would cause the formation of cubic and per-ovskite phases, improvement in crystalline peaks and also result in the decomposition of BST at high temperature (above 800°C). In addition, rising of temperature leads to the increase in size of grains and clusters. Therefore more roughness was found at higher temperatures as a result of a more heterogeneous growth and less tensions.

  12. Adsorption of HSA, IgG and laminin-1 on model titania surfaces--effects of glow discharge treatment on competitively adsorbed film composition.

    Science.gov (United States)

    Santos, Olga; Svendsen, Ida E; Lindh, Liselott; Arnebrant, Thomas

    2011-10-01

    This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA Film elutability showed that 30 min of SDS interaction resulted in almost complete removal of adsorbed films. No difference in the total adsorbed amounts of individual proteins, or from the mixture, was observed between untreated and glow discharge treated titania surfaces. However, the composition of the adsorbed films from the mixture differed between the untreated and glow discharge treated substrata. On glow discharge-treated titania the fraction of HSA increased, the fraction of laminin-1 decreased and the fraction of IgG was unchanged compared to the adsorption on the untreated titania, which was attributed to protein-protein interactions and competitive/associative adsorption behaviour.

  13. Nonlinear optical properties of Au/PVP composite thin films

    Institute of Scientific and Technical Information of China (English)

    Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen

    2005-01-01

    Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.

  14. Effect of Polysaccharides on the Properties of Wheat Gluten Films and Wheat Gluten-lipid Composite Films%多糖类物质对谷朊粉蛋白膜性能的影响

    Institute of Scientific and Technical Information of China (English)

    佟颖; 张春红; 常南; 李新华

    2012-01-01

    Researched the effect ofpolysaccharides on the properties of wheat gluten films. Polysaccharides can improve the transmittance, water resistance, mechanical strength and oxygen barrier performance of the wheat gluten films. The suitable dosage of polysaccharide substance is 0.03 g/g WG - 0.05g/g WG. Both fructose and chitosan have great influence on the properties of wheat gluten films. Fructose decreased the water vapor transmission rate by 12.75%; it increased oxygen permeability, tensile strength and elongation at break by 18.54%, 20.31% and 30.63% respectively. The cross-linking degree between carrageen and gluten is relatively small; the performance of the wheat gluten films did not improve significantly. The effects of polysaccharide on gluten-lipid composite film and wheat gluten film were similar. Fructose improved the mechanical properties and oxygen barrier performance of the WG-lipid composite films, the water resistance was better than that of WG-lipid composite films, but far below the wheat gluten films. Infrared spectrum analysis showed fructose can improved the performance of composite films, fructose and gluten molecules has a good bonding, the hydrogen bonding interaction strengthened.%研究了多糖类物质对谷朊粉蛋白膜及其脂类复合膜性能的影响。结论表明,添加多糖类物质能提高谷朊粉蛋白膜的透光率、阻水性、机械性和阻氧性,多糖物质的适宜添加量为0.03g/gWG~0.05g/gWG。果胶和壳聚糖对谷朊粉蛋白膜性能的影响较大。添加果胶可使膜的水蒸气透过率下降12.75%,阻氧性、抗拉强度和断裂伸长率分别提高18.54%,20.31%和30.63%;卡拉胶与谷朊粉交联程度相对较小,膜的性能提高不显著。添加多糖类物质对谷朊粉一脂类复合膜的改性与其对谷朊粉蛋白膜具有相似的变化趋势,添加果胶改善了WG-脂类复合膜的机械性能和阻氧性,阻水性虽比WG-脂类复合

  15. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Pradip Kumar

    2017-01-01

    Full Text Available Here, we study the self-aligned asymmetric electrically conductive composite thin film prepared via casting of graphene oxide (GO/poly (vinylidene-hexafluoropropylene (PVDF-HFP dispersion, followed by low temperature hydriodic acid reduction. The results showed that composite thin film revealed the high orientation of graphene sheets along the direction of film surface. However, graphene sheets are asymmetrically distributed along the film thickness direction in the composite film. Both sides of as prepared composite film showed different surface characteristics. The asymmetric surface properties of composite film induced distinction of surface resistivity response; top surface resistivity (21 Ohm is ∼ 4 times higher than bottom surface resistivity (5 Ohm. This asymmetric highly electrically conducting composite film revealed efficient electromagnetic interference (EMI shielding effectiveness of ∼ 30 dB. This study could be crucial for achieving aligned asymmetric composite thin film for high-performance EMI shielding radiation.

  16. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  17. Preparation and characterisation of compositionally graded SmCo films

    Science.gov (United States)

    Dias, Andre; Gomez, Gabriel; Givord, Dominique; Bonfim, Marlio; Dempsey, Nora M.

    2017-05-01

    A compositionally graded SmCo film has been prepared by magnetron sputtering using a Co target partially covered by a Sm foil. The film was deposited onto a 100 mm thermally oxidised Si substrate and then annealed ex-situ. The SmCo film has been used as a test sample to validate an in-house developed scanning MOKE (Magneto-Optic Kerr effect) system incorporating a pulsed magnetic field source capable of producing fields as high as 10 T. A 2D array of hysteresis loops was measured across the entire wafer. The evolution in coercivity measured along a selected 1D strip of the sample is correlated with changes in composition and crystallographic structures measured using Energy Dispersive Spectroscopy and X-ray diffraction. The high field Scanning MOKE system holds much potential for optimizing the extrinsic properties of known hard magnetic phases as well as in the search for new hard magnetic phases.

  18. ELECTROCHEMICAL STUDIES ON CONDUCTING COMPOSITE FILMS FROM POLYURETHANE AND POLYPYRROLE

    Institute of Scientific and Technical Information of China (English)

    BI Xiantong; PEI Qibing; LI Yongfang

    1988-01-01

    A study on the electrooxidative polymerization of pyrrole onto polyurethane-coated platinum electrodes and the electrochemical properties of the composite polyurethane/polypyrrole films (PU/PPy) as-prepared is presented. It is found that polypyrrole grows layer by layer from the polyurethane/platinum interface through the polyurethane matrix, and ca. 20 wt.% of polypyrrole will fill up the matrix. Cyclic voltammograms show that the composite films are porous, and the reduction-reoxidation (redox) rate of the composite films is limited by the diffusion ofcounteranions through the films. Larger anion size leads to slower diffusion process.The composite films can also act as modified electrodes.

  19. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  20. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films.

  1. Investigation of tribological properties of composite C60-LB films

    Institute of Scientific and Technical Information of China (English)

    YANG Guanghong; ZHANG Xingtang; XUN Jun; JIANG Xiaohong; ZHANG Pingyu; DU Zuliang

    2006-01-01

    Composite C60-LB films were fabricated by the Langmuir-Blodgett (LB) technique, their micro- structures, micro- and macro-tribological properties were investigated using atomic force microscope/ friction force microscope (AFM/FFM). The results showed that in the confined C60-LB films there were two kinds of structures for the special C60 assembly: grain diameters of one kind were in the range of 150-230 nm; the other was smaller than 20 nm. Mi-cro-tribological studies showed that topographical images of tiny C60 aggregates (<20 nm) were con-sistent with their frictional ones very well, namely, low friction occurred on tiny C60 aggregates compared with fatty chains LB monolayer, and 'Micro-rolling effect' was apparent; but for big large ones frictional forces were relatively high and 'ratchet mechanism' was seen apparently. Macro-tribological data proved large C60 aggregates had wear resistance and load-carrying capacities and anti-wear lives for com- posite C60-LB films were prolonged greatly with dis-persibility of C60 improved and its grain diameter re-duced. Tiny C60 aggregates were mainly the lubricating agents. Friction coefficients of composite C60-LB films gradually reduced with loads increasing having the same friction coefficient-load relations with boundary lubrication films.

  2. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    Science.gov (United States)

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of

  3. Effects of graphene oxide (GO) on GO-Cu2O composite films grown by using electrochemical deposition for a PEC photoelectrode

    Science.gov (United States)

    Kim, Tae Gyoum; Ryu, Hyukhyun; Lee, Won-Jae; Yoon, Jang-Hee

    2015-05-01

    In this study, GO-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates with various amounts of GO by using an electrochemical deposition. We investigated the effects of the GO content on the morphological, structural, optical, and photoelectrochemical (PEC) properties of the GO-Cu2O composite film and on its XPS spectrum. The highest XRD (111) peak intensity was obtained for the 10-wt% sample, which had an optical energy band gap of 2.15 eV. However, the highest photocurrent density was -4.74 mA/cm2 for the 1-wt% sample, which had an optical energy band gap of 1.94 eV. The photocurrent density for the 1-wt% sample was approximately 1.75 times greater than that for the 0-wt% sample. From the XPS measurements, we observed that the oxygen concentration for the sample with 1-wt% GO was higher than it was for the 0-wt% GO, which may have improved the photocurrent density of the sample with 1-wt% GO.

  4. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films

    Institute of Scientific and Technical Information of China (English)

    Xue-tong ZHANG; Wen-hui SONG

    2009-01-01

    Polypyirole/multiwalled carbon nanotube (MWNT) composite fihns were electrochemically depos-ited in the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), acting as both supporting electrolyte and dispersant. The effects of the surfactant and the MWNT concentrations on the structure at the resulting composite films were investigated. The electrochemical behavior of the resulting polypyrrole/MWNT composite film was investigated aS well bv cyclic voltammogram. The effect of the additional alternating electric field applied during the constant direct potential electrochemical deposition on the morphology and electrochemical behavior of the resulting composite film was also investigated in this study.

  5. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating.

  6. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity

    DEFF Research Database (Denmark)

    Wadsäter, Maria Helena; Barker, Robert; Mortensen, Kell;

    2013-01-01

    the ability to determine the average structure of the film along an axis perpendicular to the interface as measured by neutron reflectivity. The nanodisc film was optimized in terms of nanodisc coverage, reduced film roughness, and stability for time-consuming studies. This was achieved by a systematic...... variation of the lipid phase, charge, and length of lipid tails. Herein, we show that, although all studied nanodiscs align with their lipid bilayer parallel to the interface, gel-phase DMPC nanodiscs form the most suitable film for future membrane protein studies since they yield a dense irreversibly...

  7. Preparation and Characterization of Chitosan-Agarose Composite Films.

    Science.gov (United States)

    Hu, Zhang; Hong, Pengzhi; Liao, Mingneng; Kong, Songzhi; Huang, Na; Ou, Chunyan; Li, Sidong

    2016-09-30

    Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS) and agarose (AG) in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS), elongation-at-break (EB), water vapor transmission rate (WVTR), swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film's tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR) analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM). The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  8. Filmes compostos de gelatina, triacetina, ácido esteárico ou capróico: efeito do pH e da adição de surfactantes sobre a funcionalidade dos filmes Composite films made with gelatin, tracetin, stearic and caproic acids: effect of pH and surfactants addition on the functionality of films

    Directory of Open Access Journals (Sweden)

    Taciana Davanço

    2007-06-01

    Full Text Available O desenvolvimento de biofilmes tem crescido devido à possibilidade de substituição parcial de materiais plásticos não biodegradáveis. Proteínas e polissacarídeos têm sido utilizados para a produção de filmes com boas propriedades mecânicas. Porém, filmes a partir desses materiais apresentam alta permeabilidade ao vapor de água. Uma alternativa usada para diminuir a permeabilidade ao vapor de água dos filmes é a incorporação de substâncias hidrofóbicas na composição da solução filmogênica, porém essa incorporação não ocorre de maneira homogênea. Com o objetivo de melhorar a incorporação das substâncias hidrofóbicas (ácido esteárico e ácido capróico na matriz protéica (gelatina do filme foram adicionados os surfactantes (SDS e Tween 80, que são substâncias capazes de interagir com a proteína e com o ácido graxo, tornando a matriz filmogênica menos heterogênea. O efeito do pH também foi estudado, com a finalidade de observar se este exerce influência na homogeneidade da matriz filmogênica. A adição do ácido esteárico aos filmes de gelatina foi mais eficiente na redução da permeabilidade ao vapor de água do que o ácido capróico. A adição do surfactante SDS reduziu a permeabilidade ao vapor de água dos filmes contendo ácido esteárico, ou ácido capróico. O ajuste de pH nos filmes sem adição de surfactantes também produziu matrizes mais homogêneas.The development of biofilms has grown considering the possibility of partial substitution of plastic materials which are not biodegradable. Proteins and polysaccharides have been used to produce films with good mechanical properties. However, films produced with these materials present a high permeability in water vapor. An alternative to improve the water vapor barrier of films is to incorporate hydrophobic substances (stearic and caproic fatty acids in the composition of the filmogenic solution, however this incorporation does not occur

  9. Electrical domain morphologies in compositionally graded ferroelectric films.

    Science.gov (United States)

    Okatan, M B; Roytburd, A L; Nagarajan, V; Alpay, S P

    2012-01-18

    We present a nonlinear thermodynamic formalism coupled with an electrostatic analysis of uniaxial n-layered compositionally graded heteroepitaxial ferroelectric films and extend this formalism to continuously graded ferroelectric films. We show that the domain morphology and its subsequent evolution in the presence of an electric field are determined by the spontaneous polarisation of the film induced through the compositional grading. The results for compositionally graded epitaxial (001) (Ba,Sr)TiO(3) and (001) Pb(Zr,Ti)O(3) films on (001)SrTiO(3) demonstrate that, while the domain morphologies in these two films are different in appearance, the dielectric displacement and the dielectric permittivity of such graded ferroelectric films exhibit a strong nonlinear behaviour which results in a high dielectric tunability. These findings indicate that it is possible to design specific domain structures that will yield desirable dielectric properties by controlling the strength of the compositional grading in the films.

  10. Effect of boric acid composition on the properties of ZnO thin film nanotubes and the performance of dye-sensitized solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.Y.A., E-mail: mohd.yusri@ukm.edu.my; Roza, L.; Umar, A.A., E-mail: akrajas@ukm.edu.my; Salleh, M.M.

    2015-11-05

    The effect of boric acid (H{sub 3}BO{sub 3}) composition at constant concentration of hexamethylenetetramine (HMT) and zinc nitrate (Zn(NO{sub 3}){sub 2}) on the morphology, thickness, elemental composition, optical absorption, structure, photoluminescence of ZnO nanotubes has been investigated. The performance of the DSSC utilizing the ZnO samples has also been studied. It was found that the structure, thickness, elemental composition, optical absorption and morphology of ZnO nanostructure are significantly affected by the concentration of H{sub 3}BO{sub 3}. The diameter and thickness of ZnO nanotubes decreases as the composition of H{sub 3}BO{sub 3} increases. The DSSC utilizing ZnO nanotubes synthesized at 2 wt. % H{sub 3}BO{sub 3} performs the highest J{sub SC} and η of 2.67 mA cm{sup −2} and 0.29%, respectively. The highest performance of the device is due to the highest optical absorption of ZnO nanotubes sample and lowest charge interfacial resistance. - Graphical abstract: Nyquist plots of the DSSCs utilizing ZnO nanotubes prepared at various boric acid compositions. - Highlights: • Boron was doped into ZnO films by adding H{sub 3}BO{sub 3} into the growth solution. • Diameter and thickness of ZnO nanotubes decreases with the composition of H{sub 3}BO{sub 3}. • The DSSC performs the highest J{sub SC} and η of 2.67 mA cm{sup −2} and 0.29%, respectively. • This is due to high specific surface area and low charge interfacial resistance.

  11. Facile Preparation and Characterization of Poly (3-hexylthiophene)/Multiwalled Carbon Nanotube Thermoelectric Composite Films

    Science.gov (United States)

    Du, Y.; Shen, S. Z.; Yang, W. D.; Chen, S.; Qin, Z.; Cai, K. F.; Casey, P. S.

    2012-06-01

    This paper reports a novel, cost-effective, scalable, and simple method for preparing poly(3-hexylthiophene)/multiwalled carbon nanotube (P3HT/MWCNT) nanocomposite films. The P3HT/MWCNT films were prepared by oxidative polymerization of 3-hexylthiophene in chloroform solution containing dispersed MWCNT. The phase composition and microstructure of the composite films were analyzed by x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and field-emission scanning electron microscopy. The composite films were smooth, dense, and uniform. The thermoelectric properties of the composite films were measured at room temperature. The electrical conductivity and Seebeck coefficient of the films with MWCNT content of 5 wt.% were ~1.3 × 10-3 S/cm and 131.0 μV/K, respectively.

  12. Effects of Zn amount on the properties of Zn-Zu2O composite films grown for PEC photoelectrodes by using electrochemical deposition

    Science.gov (United States)

    Kim, Tae Gyoum; Lee, Hu Joong; Ryu, Hyukhyun; Lee, Won-Jae

    2015-10-01

    In this study, Zn-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates by using the electrochemical deposition method. Various amounts of Zinc (Zn) were added to grow the Zn-Cu2O composite films. We analyzed the morphological, structural, optical energy band gap and photocurrent density properties of the Zn-Cu2O composite films by using various measurements such as field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometry and potentiostat/galvanostat measurements, respectively. As a result, the highest photocurrent density value of -4.04 mA/cm2 was obtained for the 30-wt% sample, which had the lowest Cu2O (111)/ ZnO (101) XRD peak intensity ratio. The highest photocurrent density value from the 30-wt% sample was approximately 2.35 times higher than that from the non-composite Cu2O film (0-wt% sample). From this study, we found that adding Zn could improve the photocurrent values of Zn-Cu2O composite films.

  13. EFFECT OF THE PHASE STRUCTURE EVOLUTION ON THE PROPERTIES OF FILMS FORMED FROM PBA/P(ST-CO-MMA)COMPOSITE LATEX

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA))were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(Tg)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/P(St-co-MMA)latex at room temperature and annealed at 383 K above Tg of the polymers.In addition,the changes of the surface of the film formed from the composite latex with time at 383 K were observed by AFM.The evidence illustrated that the film formed from the core-shell latex particles was metastable.The rearrangement of the phases could occur under proper conditions.

  14. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  15. Preparation and Characterization of Chitosan—Agarose Composite Films

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2016-09-01

    Full Text Available Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS and agarose (AG in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS, elongation-at-break (EB, water vapor transmission rate (WVTR, swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film’s tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM. The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  16. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  17. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  18. Composite Films Based on Hydroxyapatite and Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    O.N. Musskaya

    2015-03-01

    Full Text Available Composite films based on hydroxyapatite (HA gel and polyvinyl alcohol (PVA were obtained. Light scattering of composite films in the PVA film is increased with growth of HA content from 0.5 to 33.0 %. The introduction of HA in PVA film leads to the inhibition of thermal degradation of the polymer without changing the position of the main spectral bands in UV-Vis absorption spectra. The introduction of HA into the PVA film promotes their hydrophobicity, while UV light leads to the significant increase in the hydrophilicity, especially after its heating at 180 °C.

  19. The effect of cores and coating dispersion composition on the mechanical and adhesion properties of hydroxypropyl methylcellulose films.

    Science.gov (United States)

    Banovec, M; Planinsek, O; Vrecer, F

    2014-08-01

    The influence of different additives on the mechanical properties of hydroxypropyl methylcellulose (HPMC) free films was studied using tensile testing. Free films were prepared using the cast method and sliced into bands, and their tensile strength and maximal elongation at break was measured. The results showed that the addition of PEG 400 and polysorbate 80 into the coating formulation had the most influence on the films' mechanical properties compared to the HPMC film used as a control. Tablet cores composed of microcrystalline cellulose and lactose with and without Mg stearate and compressed at three different compression forces were tested for wettability with coating formulations containing PEG 400 and polysorbate 80. For formulations with no Mg stearate added, the contact angle decreased with increasing core hardness and it also coincided with greater adhesion force of the coating. The addition of Mg stearate in the core led to reduced adhesion of the film coating with PEG 400, whereas the influence on the adhesion force of the film coating containing polysorbate 80 was negligible. The results also show that the adhesion force, regardless of the tablet core formulation, is highest at medium core hardness.

  20. Synthesis of Photochromic AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2012-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 solution, and a liquid-state urethane resin as starting materials. The obtained composite films showed a photochromic property. The rate of darkening of the composite film increased after mixing with CuCl2. The AgCl particle size in the film without heat treatment was 6–20 nm, and that of the heat-treated film was 25–80 nm; these results were confirmed using TEM observations. The fading rate of the film without heat treatment was higher than that of the heat-treated films.

  1. Electrochemical Formation of Polypyrrole-carboxymethylcellulose Conducting Polymer Composite Films

    Institute of Scientific and Technical Information of China (English)

    H.N.M. Ekramul Mahmud; Anuar Kassim; Zulkarnain Zainal; Wan Mahmood Mat Yunus

    2005-01-01

    The electrochemical preparation of polypyrrole-carboxymethylcellulose (PPY-CMC) conducting polymer composite films on indium tin oxide (ITO) glass electrode from an aqueous solution containing pyrrole monomer, ptoluenesulfonate electrolyte and carboxymethylcellulose insulating polymer is reported. The characterization by Fourier transform infrared spectroscopy (FT-IR) shows that carboxymethylcellulose (CMC) has been successfully incorporated into polypyrrole structure forming PPY-CMC polymer composite films. The conductivity of the prepared composite films was found to increase with increaseing CMC concentration in pyrrole solution. The optical microscopic results show the influence of CMC concentration in the pyrrole solution over the morphological changes of the prepared films. The dynamic mechanical analysis (DMA) on the prepared PPY-CMC film reveals the higher plastic property of the PPY-CMC composite film.

  2. America on Film: A Humanities Composition Course.

    Science.gov (United States)

    Recchia, Edward

    This paper argues that film courses are useful because they sensitize students both to the artistic qualities of film expression and to equivalent qualities in other forms of expression. The objectives of a film course at Michigan State University are: to develop the students' knowledge of the film medium and through that knowledge develop a…

  3. Effects of lithium (Li) on lithium-cuprous-oxide (Li-Cu2O) composite films grown by using electrochemical deposition for a PEC photoelectrode

    Science.gov (United States)

    Kim, Tae Gyoum; Ryu, Hyukhyun; Lee, Won-Jae

    2016-01-01

    In this study, Li-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates by using the electrochemical deposition method. Various amounts of lithium (Li) were added to grow the Li-Cu2O composite films. We analyzed the morphology, structure, photocurrent density and photo-stability of the Li-Cu2O composite films by using various measurements such as field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and potentiostat/galvanostat measurements, respectively. As a result, the highest XRD Cu2O (111)/ LiO (011) peak intensity ratio was obtained for the 10-wt% sample, which also had the highest photocurrent density value of -5.00 mA/cm2. The highest photocurrent density value for the 10-wt% sample was approximately 5 times greater than that of the 0-wt% sample. As shown by this result, we found that adding Li could improve the photocurrent values of Li-Cu2O composite films.

  4. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.

    Science.gov (United States)

    Hwang, Hyun-Jun; Joo, Sung-Jun; Kim, Hak-Sung

    2015-11-18

    In this work, multiwalled carbon nanotubes (MWNTs) were employed to improve the conductivity and fatigue resistance of flash light sintered copper nanoparticle (NP) ink films. The effect of CNT weight fraction on the flash light sintering and the fatigue characteristics of Cu NP/CNT composite films were investigated. The effect of carbon nanotube length was also studied with regard to enhancing the conductivity and fatigue resistance of flash light sintered Cu NP/CNT composite films. The flash light irradiation energy was optimized to obtain high conductivity Cu NP/CNT composite films. Cu NP/CNT composite films fabricated via optimized flash light irradiation had the lowest resistivity (7.86 μΩ·cm), which was only 4.6 times higher than that of bulk Cu films (1.68 μΩ·cm). It was also demonstrated that Cu NP/CNT composite films had better durability and environmental stability than those of Cu NPs only.

  5. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  6. PREPARATION,CHARACTERIZATION AND ELECTROCHEMICAL PROPERTIES OF POLYPYRROLE-POLYSTYRENE SULFONIC ACID COMPOSITE FILM

    Institute of Scientific and Technical Information of China (English)

    Liang-ti Qu; Gao-quan Shi; Chen Liu; Jin-ying Yuan; Wen-bin Qian

    2005-01-01

    Polypyrrole-polystyrene sulfonic acid (PPy-PSSA) composite films have been electrosynthesized in an aqueous solution of PSSA. The electro-active films exhibit cation exchange during the redox process. Infrared, Raman and energydispersive spectroscopic results demonstrated that the polyanion of PSS- is co-deposited into the PPy matrix and couldn't be stripped from the film extensively by dedoping. The doping level together with dipolaron content of the PPy-PSSA composite film increases during electrochemical polymerization process. SEM images revealed that the composite film has smooth and compact morphology and AFM pictures suggested that PPy chains are possibly grown perpendicular to the electrode surface. TGA tests indicated that the composite films has much better thermal stability than that of pure PPy.Furthermore, electrochemical studies showed that the relaxation process at certain holding potential has great effect on the shape of the cyclic voltammetric curves of PPy-PSSA composite film. The composite film exhibits cation and anion exchange during the redox process after undergoing the relaxation step. It is more difficult for divalent anion to enter the polymer matrix than a univalent ion, and a large cation such as (CH3CH2CH2CH2)4N+ cannot be involved in the ion exchange process.

  7. Application of the Maxwell-Wagner-Hanai effective medium theory to the analysis of the interfacial polarization relaxations in conducting composite films

    Energy Technology Data Exchange (ETDEWEB)

    Adohi, B J-P [UFR-SSMT, Universite de Cocody, 22 BP 582 Abidjan 22, Ivory Coast (Cote d' Ivoire); Bouanga, C Vanga; Fatyeyeva, K; Tabellout, M [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France)], E-mail: mohamed.tabellout@univ-lemans.fr

    2009-01-07

    A new approach to explain the interfacial polarization phenomenon in conducting composite films is proposed. HCl-doped poly(ethylene terephthalate) (PET) and polyamide-6 (PA-6) matrices with embedded polyaniline (PANI) particles as filler were investigated and analysed, combining dielectric spectroscopy and AFM electrical images with the effective medium theory analysis. Up to three relaxation peaks attributed to the interfacial polarization phenomena were detected in the studied frequency range (0.1 Hz-1 MHz). The AFM electrical images revealed that the doped PA-6/PANI composite can be modelled as a single-type particle medium and the PET/PANI one as a two-type particle medium. A simple dielectric loss expression was derived from the Maxwell-Wagner-Hanai mixture equation and was applied to the experimental data to identify the interfaces involved in each of the relaxation peaks. The parameter values (permittivity, conductivity, volume fraction of the PANI particles) were found to agree well with the measured one, hence validating the models.

  8. Effect of Plasticizers on Physical and Mechanical Properties of Potato Starch- based Composite Films%增塑剂对马铃薯淀粉基复合膜物理机械性能的影响

    Institute of Scientific and Technical Information of China (English)

    贾超; 王利强; 卢立新; 赵艺程

    2012-01-01

    Potato starch based composite films were prepared by casting using potato starch, pullulan, gelatin as film forming material, calcium chloride as cross-linking agent, and glycerol, sorbitol, and polyethylene glycol as plasticizer. The effects of three kinds of plasticizers on physical and mechanical properties of composite films were studied. The results showed that tensile strength and Young's modulus of the composite films decrease significantly with plasticizer contents; elongation increases significantly with glycerol and sorbitol contents; effect of polyethylene glycol on elongation is not obvious; water vapor permeability and water solubility of composite films increase with plasticizer contents; polyethylene glycol can reduce the light transmission rate of the composite films significantly.%以马铃薯淀粉、普鲁兰多糖、明胶为成膜物质,氯化钙为交联剂,甘油、山梨醇、聚乙二醇为增塑剂,采用流延法制备了马铃薯淀粉基复合膜,研究了3种增塑剂对复合膜物理机械性能的影响。结果表明:复合膜的抗拉强度和弹性模量均随增塑剂含量的增加而显著减小,断裂伸长率随甘油和山梨醇含量的增加而显著增加,聚乙二醇对其影响不显著;复合膜的水蒸气透过率和水溶性均随增塑剂含量的增加而增加;聚乙二醇能够显著降低复合膜的透光率。

  9. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    OpenAIRE

    Takatsugu Wakahara; Kun’ichi Miyazawa; Osamu Ito; Nobutaka Tanigaki

    2016-01-01

    Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT), with C60 nanowhiskers (C60NWs) were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer) composite films, result...

  10. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    OpenAIRE

    Takatsugu Wakahara; Kun’ichi Miyazawa; Osamu Ito; Nobutaka Tanigaki

    2016-01-01

    Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and poly(3-hexylthiophene) (P3HT), with C60 nanowhiskers (C60NWs) were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer) composite films, result...

  11. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  12. Effects of cation compositions on the electronic properties and optical dispersion of indium zinc tin oxide thin films by electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Seo, Soonjoo [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Lee, Kangil; Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Heo, Sung; Chung, Jae Gwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of); Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M. (Denmark)

    2015-02-15

    Highlights: • REELS analysis can provide optical dispersion and electronic properties of oxide materials. • The band gap varied with In/Zn/Sn compositions and increased after annealing. • The optical properties were examined using REELS in conjunction with the Tougaard–Yubero model. • The dispersion parameters were determined by a single-oscillator Wemple–DiDomenico model. • The Zn and Sn contents play a crucial role in determining the single-oscillator constant and dispersion energy of IZTO thin films. - Abstract: The electronic properties and optical dispersion of indium zinc tin oxide (IZTO) films with different cation compositions were investigated by reflection electron energy loss spectroscopy (REELS). The REELS spectra of IZTO films revealed that the band gap varied with different Sn/Zn ratios and In content. The optical properties were examined with REELS data using Tougaard–Yubero model and the results were compared with the envelope of the transmission spectra obtained using a UV-spectrometer. The dispersion behavior of the refractive index from REELS results was studied in terms of the single-oscillator Wemple–DiDomenico model. The results showed that the different compositions of In/Zn/Sn caused a change in the dispersion parameters of IZTO thin films in contrast to the static values of refractive indices and dielectric constant which remained the same. Our work demonstrated that REELS is an efficient tool to study the optical properties of a material by obtaining the optical parameters.

  13. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    Science.gov (United States)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  14. 阿魏酸对马铃薯淀粉基复合膜性能的影响%Effect of ferulic acid on properties of potato starch-based composite films

    Institute of Scientific and Technical Information of China (English)

    贾超; 王利强; 卢立新; 谢甲有

    2013-01-01

    以马铃薯淀粉、普鲁兰多糖、明胶为成膜物质,甘油为增塑剂,阿魏酸为交联剂,采用流延法制备马铃薯淀粉基复合膜,研究了阿魏酸含量对复合膜物理机械性能的影响.结果表明:阿魏酸能够改善复合膜的机械性能和阻湿性能,减小复合膜的水溶性,但会显著降低复合膜的透光率,且使复合膜的颜色发黄.其中,添加1%阿魏酸的复合膜性能较好,其抗拉强度为14.33MPa,断裂伸长率为9.36%,水蒸气透过率为4.52g· mm·m-2·d-1·kPa-1,水溶性为28.46%,透光率为77.37%.%Potato starch-based composite films were obtained by casting using potato starch, pullulan, gelatin as film-forming material,glycerol as plasticizer,ferulic acid as cross-linking agent.The effect of the contents of ferulic acid on physical and mechanical properties of composite films were investigated.The results showed that ferulic acid improved the mechanical properties and moisture barrier properties of the composite films, reduced the water-solubility of the composite films. However, it reduced the light transmission rate of the composite films significantly,and made the color of the composite films yellow.The properties of composite films containing 1% ferulic acid were better, the tensile strength was 14.33MPa, elongation at break was 9.36%, water vapor permeability was 4.52g·mm·m-2·d-1·kPa-1, water- solubility was 28.46%, light transmission rate was 77.37%.

  15. Preparation and characterization of keratin and chicken egg white-templated luminescent Au cluster composite film

    Science.gov (United States)

    Xing, Yao; Liu, Hongling; Yu, Weidong

    2016-02-01

    The characterization of keratin-chicken egg white-templated luminescent Au cluster composite films were studied using fourier-transform infrared spectroscopy (FTIR) to demonstrate and quantify the secondary transformation of composite films. The results showed that the secondary structure of treated films was transformed from disordered structure to ordered conformation including α-helix conformation and β-pleated-sheet conformation due to the increase of protein-templated luminescent Au cluster. The absorption features of treated films were exhibited by the UV-vis spectra. The bule-shift and decreased intensity indicated the change of microenvironment due to the concentration of protein-templated luminescent Au cluster. The transmission electron microscopy images of composite films supported the aggregation resulting from microenvironment. The effect of protein-templated luminescent Au cluster was characterized by the laser scanning confocal microscope (LSCM) images which showed the gradually intensive luminescence with increasing Au cluster and the transformation from the whiskers to nanoparticle.

  16. Fabrication for multilayered composite thin films by dual-channel vacuum arc deposition.

    Science.gov (United States)

    Dai, Hua; Shen, Yao; Wang, Jing; Xu, Ming; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2008-06-01

    A flexible dual-channel curvilinear electromagnetic filter has been designed and constructed to fabricate multilayered composite films in vacuum arc ion plating. The filter possesses two guiding channels and one mixing unit. Multilayered TiN/AlN and TiAlN composite films can be produced by controlling the frequency or interval of the two cathodes. The x-ray photoelectron spectroscopy and low-angle x-ray diffraction results reveal the periodic Ti and Al structures in the TiN/AlN films. The TiAlN films exhibit a smooth surface morphology confirming effective filtering of macroparticles by the filter. High temperature oxidation conducted at 700 degrees C for an hour indicates that the weight increment in the TiAlN films produced by the dual filter is only half of that of the TiAlN films produced without a filter, thereby showing better resistance against surface oxidation.

  17. Fabrication for multilayered composite thin films by dual-channel vacuum arc deposition

    Science.gov (United States)

    Dai, Hua; Shen, Yao; Wang, Jing; Xu, Ming; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K.

    2008-06-01

    A flexible dual-channel curvilinear electromagnetic filter has been designed and constructed to fabricate multilayered composite films in vacuum arc ion plating. The filter possesses two guiding channels and one mixing unit. Multilayered TiN /AlN and TiAlN composite films can be produced by controlling the frequency or interval of the two cathodes. The x-ray photoelectron spectroscopy and low-angle x-ray diffraction results reveal the periodic Ti and Al structures in the TiN /AlN films. The TiAlN films exhibit a smooth surface morphology confirming effective filtering of macroparticles by the filter. High temperature oxidation conducted at 700°C for an hour indicates that the weight increment in the TiAlN films produced by the dual filter is only half of that of the TiAlN films produced without a filter, thereby showing better resistance against surface oxidation.

  18. Tribological performances of diamond film and graphite/diamond composite film with paraffin oil lubrication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the tribological performances of diamond film and graphite/diamond com-posite film were compared on an SRV wear testing machine with paraffin oil lubrication. The sur-face morphologies of specimens and wear tracks were observed by SEM. The wear volumes ofwear tracks were measured by profilometer. The influence of load on the tribological performancesof different specimens was studied. The wear mechanism under paraffin oil lubrication was ana-lyzed. The results showed that with paraffin oil lubrication, the friction coefficient and wear volumeof graphite/diamond composite film specimen are lower than diamond film. Under paraffin oil lu-brication, the wear mechanisms of both diamond film and graphite/diamond composite film weremainly sub-micro-fracture.

  19. Effect of Glycerol Addition on Properties of Gelatin-Pullulan Composite Films%甘油对明胶-普鲁兰多糖复合材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    高丹丹; 张超; 马越; 江连州; 赵晓燕

    2013-01-01

      研究甘油添加量对明胶-普鲁兰多糖复合材料抗拉强度、断裂延伸率、颜色、氧气透过率、水蒸气透过率、油脂透过率和溶水性的影响。结果显示添加甘油后,明胶-普鲁兰多糖复合材料的断裂延伸率显著提高,最高达到31倍;氧气阻隔能力提高,最高达到0.15 mL·m/(m2·d);溶水时间降低,最低达到15 s;但是,其抗拉强度和水蒸气阻隔能力降低。%  The effect of glycerol addition on tensile strengthen and elongation at break , color, water-vapor transmission ratio, oxygen permeability, lipid transmission ratio and water solubility of gelatin-pullulan composite film was evaluated. The results indicated that the glycerol additions improved the elongation at break of gelatin-pullulan composite films for 31 times. The tensile strength of composite film was also improved. The oxygen permeability , water vapor permeability , and water solubility of the composite film was decreased after the glycerol addition.

  20. Effects of hydrophilic solvent and oxidation resistance post surface treatment on molecular structure and forward osmosis performance of polyamide thin-film composite (TFC) membranes

    Science.gov (United States)

    Jia, Qibo; Xu, Yangyu; Shen, Jianquan; Yang, Haijun; Zhou, Lu

    2015-11-01

    In this article, novel hydrophilic solvents and antioxidants were used to post-treat aromatic polyamide thin-film composite (TFC) hollow fiber forward osmosis (FO) membranes. The effects of trimesoyl chloride (TMC) and oxalic acid on the structure of polyamide skin layer were investigated using ATR-FTIR and XPS analyses. Pure water flux and rejection of salts were detected using 2 M NaCl solution as draw solutions in FO processes. The results demonstrated that hydrophilic solvent N-methyl pyrrolidone (NMP) enhanced the water flux and kept a high salt retention of the TFC FO membrane. TMC and oxalic acid were both found to improve the oxidation resistance properties of the skin layer of TFC membrane because the electron-withdrawing carboxyl groups reduced the activity of polyamide molecular. The effects of the oxalic acid and carbodiimide on the molecular structures and the FO water flux of the polyamide TFC membranes were more marked than those of TMC. The novel TFC FO membrane treated by oxalic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) exhibited a high level of water flux (20.33 L m-2 h-1), and the rates of salt rejection and salt reverse rejection were higher by 50% and 83%, respectively.

  1. Giant magnetoimpedance effect in Fe{sub 75.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 7} ribbon/FeGa film composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi, E-mail: yzhang@shnu.edu.cn [Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, 200234 Shanghai (China); Mathematics & Science College, Shanghai Normal University, 200234 Shanghai (China); Gan, Tao; Wang, Tao [Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, 200234 Shanghai (China); Wang, Feifei [Mathematics & Science College, Shanghai Normal University, 200234 Shanghai (China); Shi, Wangzhou [Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, 200234 Shanghai (China); Mathematics & Science College, Shanghai Normal University, 200234 Shanghai (China)

    2016-11-01

    Optimized giant magnetoimpedance effect of Fe{sub 75.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 7} amorphous ribbon/Fe{sub 80}Ga{sub 20} film composites has been investigated. FeCuNbSiB amorphous ribbons as the substrates are commercially available, magnetostrictive FeGa films are deposited on one or both sides of the ribbons by ion-beam sputtering. Compared with the GMI curves without FeGa layer, the GMI effect of FeCuNbSiB amorphous ribbon has been obviously improved with FeGa film covered (from 4% to 16%). Moreover, the details exhibit an interesting phenomenon: at a certain frequency, when the FeGa film covered on one side of the ribbon, the GMI ratio decreases with the thickness of the FeGa film; however, when the FeGa films covered on both sides of the ribbon, the GMI ratio increases with the thickness of the FeGa film. We mainly attribute the reason to strain-induced anisotropy, which is induced by magnetostrictive effect under a longitudinal applied magnetic field. - Highlights: • Magnetostrictive FeGa film is applied to enhance the GMI effect of Fe{sub 75.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 7} amorphous ribbon. • GMI value of Fe{sub 75.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 7} amorphous ribbon/ FeGa film composite is improved from 4% to 16%. • Fe{sub 80}Ga{sub 20} films are deposited on one or both sides of the ribbons by ion-beam sputtering. • Different GMI properties can be observed when FeGa is deposited on one or both sides. • Strain-induced anisotropy of FeGa film could explain this phenomenon.

  2. Direct Electrochemistry of Myoglobin in DDAB-Clay Composite Films

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ordered films were made by casting a mixture of aqueous dispersions of didodecyldimethylammonium bromide (DDAB)-clay composite and myoglobin (Mb) solution on pyrolytic graphite (PG) electrodes.The Mb-DDAB-clay film electrodes showed stable and reversible cyclic voltammetric responses in buffers and can catalyze the reduction of trichloroacetic acid (TCA).

  3. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  4. Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein.

    Science.gov (United States)

    Lu, Yidong; Xu, Jingjing; Liu, Baohong; Kong, Jilie

    2007-02-15

    Photosynthetic reaction center (RC), a robust transmembrane pigment-protein complex, works as the crucial component participating the primary event of the photo-electrochemical conversion in bacteria. Sparked by the high photo-induced charge separation yield (ca. 100%) of RC, great interests have been aroused to fabricate versatile RC-functionalized nano-composite films for exploring the initial photosynthetic electron transfer (ET) of RC, and thus exploiting well-designed bio-photoelectric converters. In this review, we classify and summarize the current status about the concepts and methods of constructing RC-immobilized nano-composite films or devices for probing the photo-induced ET, and applying to novel bioelectronics if it is possible.

  5. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    Science.gov (United States)

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-02

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Properties of Diamond Film/Alumina Composites for Integrated Circuits with Ultra-High Speed and High Power

    Institute of Scientific and Technical Information of China (English)

    WANG Lin-Jun; XIA Yi-Ben; FANG Zhi-Jun; ZHANG Ming-Long; SHEN Hu-Jiang

    2004-01-01

    @@ We report the properties of the diamond film/alumina composites which were thought of as promising substrate materials for integrated circuits with ultra-high speed and high power. The measurement results of dielectric properties of diamond film/alumina composites show that the coating of CVD diamond films could effectively reduce the dielectric constant of the composite. Carbon ion implantation into alumina substrates prior to the diamond deposition can reduce the dielectric loss of the composite from 5 × 10-3 to 2 × 10-3, and can give the composite better frequency stability. The thermal conductivity of composites could be obviously increased by coating CVD diamond film. The composite has a dielectric constant of 6.5 and a thermal conductivity of 3.98 W/(cmK) when the thickness of diamond film is up to 100 μm.

  7. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  8. Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties.

    Science.gov (United States)

    Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K

    2013-04-01

    An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties.

  9. Film-Making and Teaching Composition.

    Science.gov (United States)

    Lycette, Ronald L.

    1970-01-01

    To stimulate students to learn through creative participation and to make literature a live experience, an experimental film making project was conducted with freshmen at Bimidji State College during the 1969-70 term. The first step was to introduce film-making to the students. This was accomplished through viewing and analyzing brief…

  10. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  11. Nanodiamond-polymer nanoparticle composites and their thin films

    Science.gov (United States)

    Attia, N. F.; Rao, J. P.; Geckeler, K. E.

    2014-04-01

    Nanodiamonds obtained from detonation processes have received a great deal of attention during the past decades because of their unique properties and applications. The dispersion of nanodiamond particles can be achieved by different methods including the use of polymer nanoparticles. Here, we describe the dispersion of nanodiamonds in conjunction with sonication using poly(vinylpyrrolidone) nanoparticles with a particle size range of 23.3-61.3 nm, providing a good, economic, and efficient method for the dispersion. The average particle size was found to be 37.5 nm, as confirmed by transmission electron microscopy. The interaction between the nanodiamonds and polymer nanoparticles was characterized by FTIR spectroscopy and the effect of the polymer nanoparticle concentration, sonication time, and frequency on the dispersion process of nanodiamonds is highlighted. In addition, we prepared thin films of nanodiamond-polymer composites with different nanodiamond contents that showed good nanodiamond dispersion. The thin film can act as a UV filter and is transparent in the visible region. The thin films of nanodiamond-poly(vinylpyrrolidone) nanoparticles were characterized by SEM and UV-Vis spectroscopy.

  12. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films.

    Science.gov (United States)

    Juncu, Gheorghe; Stoica-Guzun, Anicuta; Stroescu, Marta; Isopencu, Gabriela; Jinga, Sorin Ion

    2016-08-30

    Composite films of sodium carboxymethyl cellulose and bacterial cellulose (NaCMC-BC) cross-linked with citric acid (CA) were prepared by solution casting method. Ibuprofen sodium salt (IbuNa) has been used to study the mechanism of drug release from composite films. Surface morphology was investigated by scanning electron microscopy (SEM) and proved that the BC content influences the aspect of the films. Fourier transformed infrared spectroscopy (FTIR) revealed specific peaks in IR spectra of composite films which sustain that NaCMC was cross-linked with CA. Starting from swelling observations, the release kinetic of IbuNa was described using a model which neglects the volume expansion due to polymer swelling and which considers non-linear diffusion coefficients for drug and solvent. The IbuNa release is also influenced by BC content, the drug release rate was decreasing with the increase of BC content.

  13. Properties of composite film based on bigeye snapper surimi protein and lipids

    Directory of Open Access Journals (Sweden)

    Thummanoon Prodpran

    2005-12-01

    Full Text Available Lipids were incorporated into bigeye snapper surimi protein films through emulsification using Tween-20 as a surfactant to form protein/lipid composite films. The effects of lipid types (palm oil, butter or shortening and concentrations (0-100% glycerol substitution on film properties were investigated. Additionof lipids up to 75% glycerol substitution resulted in the improved water vapor barrier, lowered tensile strength (TS and increased elongation at break (EAB of the composite film (P<0.05. However, an increase in TS was observed with increasing lipid concentration, plausibly caused by increasing protein aggregation in film matrix. Transparency of films was decreased with increasing lipid concentrations used (P<0.05, especially for those added with solid lipids. Generally, the mechanical properties and water resistance of surimi protein films incorporated with palm oil were superior to those modified with butter or shortening. An increase in Tween-20, nonionic surfactant, might be associated with the decrease in non-disulfide covalent cross-links in the film. Scanning electron microscopic study revealed that dispersion of palm oil in the film was more uniform than that of butter and shortening. This might contribute to the varying properties of resulting films.

  14. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  15. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film.

    Science.gov (United States)

    He, Xin; Liu, A'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-25

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq(-1). A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  16. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    Science.gov (United States)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  17. Effect of pH on film structure and electrical property of PMMA–Au composite particles prepared by redox transmetalation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong-Mao; Lin, Kuan-Ju [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung [Chemical System Research Division, Chung-Shan Institute of Science and Technology, Long-Tan, Tao-Yuan 325, Taiwan (China); Lu, Fu-Hsing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Tseng, Wenjea J., E-mail: wenjea@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2014-01-15

    Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)–nickel (PMMA–Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl{sub 4}), in water to form predominately core-shell PMMA–Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core–shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10{sup −2} Ω cm.

  18. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  19. Thin Film Polymer Composite Scintillators for Thermal Neutron Detection

    Directory of Open Access Journals (Sweden)

    Andrew N. Mabe

    2013-01-01

    Full Text Available Thin film polystyrene composite scintillators containing LiF6 and organic fluors have been fabricated and tested as thermal neutron detectors. Varying fluorescence emission intensities for different compositions are interpreted in terms of the Beer-Lambert law and indicate that the sensitivity of fluorescent sensors can be improved by incorporating transparent particles with refractive index different than that of the polymer matrix. Compositions and thicknesses were varied to optimize the fluorescence and thermal neutron response and to reduce gamma-ray sensitivity. Neutron detection efficiency and neutron/gamma-ray discrimination are reported herein as functions of composition and thickness. Gamma-ray sensitivity is affected largely by changing thickness and unaffected by the amount of LiF6 in the film. The best neutron/gamma-ray discrimination characteristics are obtained for film thicknesses in the range 25–150 μm.

  20. Oscillations of composition near the external surface of Y-Ba-Cu-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bakunin, O. M.; Klotsman, S. M.; Matveev, S. A.; Stepanov, K. A.

    1989-07-03

    An Auger electron spectroscopy study has been made of the depth profiles of films of Y-Ba-Cu-O compounds. The films were produced by electron beam and ion plasma sputtering onto various substrate types. The specimens were annealed in air at temperatures ranging between 450 and 900 /degree/C. The effective diffusion coefficients for the film and substrate constituents have been estimated. The depth profiles of films annealed at 600 /degree/C reveal composition oscillations in the region adjacent to the surface. These composition oscillations are assumed to arise from the phase transformations that occur at 600 /degree/C in films of the Y-Ba-Cu-O system.

  1. Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics.

    Science.gov (United States)

    Li, Haolong; Pang, Shuping; Wu, Si; Feng, Xinliang; Müllen, Klaus; Bubeck, Christoph

    2011-06-22

    Graphene oxide (GO) nanosheets and polyoxometalate clusters, H(3)PW(12)O(40) (PW), were co-assembled into multilayer films via electrostatic layer-by-layer assembly. Under UV irradiation, a photoreduction reaction took place in the films which converted GO to reduced GO (rGO) due to the photocatalytic activity of PW clusters. By this means, uniform and large-area composite films based on rGO were fabricated with precisely controlled thickness on various substrates such as quartz, silicon, and plastic supports. We further fabricated field effect transistors based on the composite films, which exhibited typical ambipolar features and good transport properties for both holes and electrons. The on/off ratios and the charge carrier mobilities of the transistors depend on the number of deposited layers and can be controlled easily. Furthermore, we used photomasks to produce conductive patterns of rGO domains on the films, which served as efficient microelectrodes for photodetector devices.

  2. Effects of hydrophilic solvent and oxidation resistance post surface treatment on molecular structure and forward osmosis performance of polyamide thin-film composite (TFC) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qibo; Xu, Yangyu [School of Environment, Tsinghua University, Beijing 100084 (China); Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Haijun, E-mail: yanghj@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhou, Lu, E-mail: zhoulu@tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-30

    Graphical abstract: - Highlights: • NMP promotes swelling of polyamide, which enhances the TFC FO membrane water flux. • Electron-withdrawing carboxyl groups reduce the activity of polyamide molecules. • TMC and oxalic acid can improve the oxidation resistance properties of the FO membrane. • Oxalic acid and EDC improve the FO membrane separation performance significantly. - Abstract: In this article, novel hydrophilic solvents and antioxidants were used to post-treat aromatic polyamide thin-film composite (TFC) hollow fiber forward osmosis (FO) membranes. The effects of trimesoyl chloride (TMC) and oxalic acid on the structure of polyamide skin layer were investigated using ATR-FTIR and XPS analyses. Pure water flux and rejection of salts were detected using 2 M NaCl solution as draw solutions in FO processes. The results demonstrated that hydrophilic solvent N-methyl pyrrolidone (NMP) enhanced the water flux and kept a high salt retention of the TFC FO membrane. TMC and oxalic acid were both found to improve the oxidation resistance properties of the skin layer of TFC membrane because the electron-withdrawing carboxyl groups reduced the activity of polyamide molecular. The effects of the oxalic acid and carbodiimide on the molecular structures and the FO water flux of the polyamide TFC membranes were more marked than those of TMC. The novel TFC FO membrane treated by oxalic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) exhibited a high level of water flux (20.33 L m{sup −2} h{sup −1}), and the rates of salt rejection and salt reverse rejection were higher by 50% and 83%, respectively.

  3. Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite films.

    Science.gov (United States)

    Ruiz, Virginia; Nicholson, Patrick G; Jollands, Stuart; Thomas, Pamela A; Macpherson, Julie V; Unwin, Patrick R

    2005-10-20

    This paper reports the first comparison of the structure and electrical conductivity properties of spin cast (SC) and Langmuir-Schaeffer (LS) films of regioregular poly(3-hexylthiophene) (P3HT). In addition, the effect of incorporating highly monodisperse Au nanoparticles (NPs), with a core diameter of approximately 5 nm, into SC and LS P3HT films is described. A detailed picture of molecular organization in the films has been obtained using ultraviolet-visible absorption spectroscopy, atomic force microscopy, field-emission scanning electron microscopy, X-ray diffraction, and X-ray reflectivity. Film morphology was correlated with pseudo-two-dimensional conductivity measured using scanning electrochemical microscopy, with P3HT in the semiconducting regime. It was found that SC films, which were slightly thicker than those formed with the LS technique, exhibited greater organization. This resulted in an order of magnitude higher lateral conductivity for the SC films. Inclusion of Au NPs (50 wt %) into both SC and LS films resulted in the formation of uniform and relatively flat (rms roughness approximately 1 nm) composite films. Surprisingly, the addition of NPs did not disrupt the characteristic crystal structure found for the native P3HT films. The effect of Au NPs on film lateral conductivity was found to be determined by the distribution of Au NPs within the polymer, which varied significantly between SC and LS films. Whereas Au NPs aggregated into hexagonally packed clusters in SC films, NPs in LS films were predominantly uniformly distributed between the lamella bilayer. It was found that, while the inclusion of Au NPs caused the lateral conductivity to decrease in SC films, in LS films, the lateral conductivity increased by a factor of 2.

  4. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films

    Science.gov (United States)

    Son Hoang, Anh

    2011-06-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8-12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%.

  5. Effect of the Fish Oil Fortified Chitosan Edible Film on Microbiological, Chemical Composition and Sensory Properties of Göbek Kashar Cheese during Ripening Time.

    Science.gov (United States)

    Yangilar, Filiz

    2016-01-01

    Objective of the present study is to investigate the effect of coated edible films with chitosan solutions enriched with essential oil (EO) on the chemical, microbial and sensory properties of Kashar cheese during ripening time. Generally, no differences were found in total aerobic mesophilic bacteria, streptococci and lactoccocci counts among cheeses but these microorganism counts increased during 60 and 90 d storage especially in C1 (uncoated sample) as compared with coated samples. Antimicrobial effectiveness of the films against moulds was measured on 30, 60, and 90 d of storage. In addition of fish EO into chitosan edible films samples were showed to affect significantly decreased the moulds (poil (1% w/v) fortified chitosan film) on the 90(th) d, while in C1 as 3.89 Log CFU/g on the 90(th) d of ripening. Compared to other cheese samples, C2 (coated with chitosan film) and C4 coated cheese samples revealed higher levels of water-soluble nitrogen and ripening index at the end of storage. C2 coated cheese samples were preferred more by the panellists while C4 coated cheese samples received the lowest scores.

  6. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    Science.gov (United States)

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films.

  7. Digital Compositing Dalam Film Animasi 3 Dimensi

    Directory of Open Access Journals (Sweden)

    Cito Yasuki Yasuki Rahmad

    2016-01-01

    Full Text Available Animation is a technique mostly used in the film world. Nowadays it is growing intechnical animation creation. Animation has evolved from 2D animation to the nextstage in the new form, more realistic and interesting, that is the 3D animation. With thedevelopment of existing technology, the 3D animation is more amazing for the audience,especially 3D animation combined with real action (live action. With the digitalcompositing, the result of a combination of 3D and real action to make the film seemmore alive, because the animation is really close to the original in real life.

  8. Wearable near-field communication antennas with magnetic composite films

    Science.gov (United States)

    Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng

    2017-06-01

    The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  9. Flexible, thin films of graphene-polymer composites for EMI shielding

    Science.gov (United States)

    Jan, Rahim; Habib, Amir; Aftab Akram, Muhammad; Ahmad, Imtiaz; Shah, Attaullah; Sadiq, Muhammad; Hussain, Akhtar

    2017-03-01

    Liquid-phase-exfoliated, pristine graphene nanosheets (GNSs) are dispersed in thermoplastic polyurethane (TPU) to obtain free-standing conducting composite films. The composites are tested for electromagnetic interference (EMI) shielding applications in the X-band (8-12 GHz). A constant increase in the electromagnetic attenuation is observed as a function of GNS loading (0-0.12 V f). The EMI shielding effectiveness of about 1 dB for the neat polymer is enhanced to about 14 dB at 0.12 V f GNS as the electromagnetic energy is dissipated due to the GNS conducting network formed inside. Conducting behavior of GNS-TPU composites is confirmed by electrical conductivity measurements along with cyclic voltammetry as the band gap is reduced with a graphene increment. Scanning electron microscopy predicts a homogeneous dispersion of GNS inside composites. For such thin composite films (0.03-0.05 mm), the EMI shielding effectiveness is considerable.

  10. Electrochemical formation of a composite polymer-aluminum oxide film

    Science.gov (United States)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  11. Quantifying Local Thickness and Composition in Thin Films of Organic Photovoltaic Blends by Raman Scattering

    KAUST Repository

    Rodríguez-Martínez, Xabier

    2017-07-06

    We report a methodology based on Raman spectroscopy that enables the non-invasive and fast quantitative determination of local thickness and composition in thin films (from few monolayers to hundreds of nm) of one or more components. We apply our methodology to blends of organic conjugated materials relevant in the field of organic photovoltaics. As a first step, we exploit the transfer-matrix formalism to describe the Raman process in thin films including reabsorption and interference effects of the incoming and scattered electric fields. This allows determining the effective solid-state Raman cross-section of each material by studying the dependence of the Raman intensity on film thickness. These effective cross sections are then used to estimate the local thickness and composition in a series of polymer:fullerene blends. We find that the model is accurate within ±10 nm in thickness and ±5 vol% in composition provided that (i) the film thickness is kept below the thickness corresponding to the first maximum of the calculated Raman intensity oscillation; (ii) the materials making up the blend show close enough effective Raman cross-sections; and (iii) the degree of order attained by the conjugated polymer in the blend is similar to that achieved when cast alone. Our methodology opens the possibility to make quantitative maps of composition and thickness over large areas (from microns to centimetres squared) with diffraction-limited resolution and in any multi-component system based thin film technology.

  12. Finite element simulations of thin-film composite BAW resonators.

    Science.gov (United States)

    Makkonen, T; Holappa, A; Ellä, J; Salomaa, M M

    2001-09-01

    A finite element method (FEM) formulation is presented for the numerical solution of the electroelastic equations that govern the linear forced vibrations of piezoelectric media. A harmonic time dependence is assumed. Both of the approaches, that of solving the field problem (harmonic analysis) and that of solving the corresponding eigenvalue problem (modal analysis), are described. A FEM software package has been created from scratch. Important aspects central to the efficient implementation of FEM are explained, such as memory management and solving the generalized piezoelectric eigenvalue problem. Algorithms for reducing the required computer memory through optimization of the matrix profile, as well as Lanczos algorithm for the solution of the eigenvalue problem are linked into the software from external numerical libraries. Our FEM software is applied to detailed numerical modeling of thin-film bulk acoustic wave (BAW) composite resonators. Comparison of results from 2D and full 39 simulations of a resonator are presented. In particular, 3D simulations are used to investigate the effect of the top electrode shape on the resonator electrical response. The validity of the modeling technique is demonstrated by comparing the simulated and measured displacement profiles at several frequencies. The results show that useful information on the performance of the thin-film resonators can be obtained even with relatively coarse meshes and, consequently, moderate computational resources.

  13. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    Science.gov (United States)

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  14. Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization

    Science.gov (United States)

    Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing

    2017-02-01

    The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.

  15. Flexible composite film for printed circuit board

    Science.gov (United States)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  16. Evaluation of structure and mechanical properties of Ni-rich NiTi/Kapton composite film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); PouryazdanPanah, Mohsen; Hahn, Horst [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Joint Research Labaratory Nanomaterials, Technische Universität Darmstadt, Darmstadt (Germany)

    2016-06-21

    NiTi thin films are usually sputtered on silicon wafers by magnetron sputtering. But the systems composed of thin film on flexible polymeric substrate are used in many applications such as micro electro-mechanical systems (MEMS). Investigation on mechanical properties of thin films has attracted much attention due to their widespread applications. In this paper, the mechanical properties of 1 µm-thick crystallized Ni-49.2 at%Ti thin film alloy deposited by DC magnetron sputtering on Kapton substrate are investigated by using tensile test. The as-deposited thin films are in amorphous state, then for crystallization, the thin film was annealed at 450 °C for 30 min. Formation of the austenite phase after annealing was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The surface morphology of as deposited and crystallized thin films were examined by scanning electron microscopy (SEM). Stress-strain curves of the NiTi alloy thin film were obtained by subtracting of the stress-strain Kapton curves from the corresponding curves of the NiTi/Kapton composite. The XRD results revealed that the NiTi thin film deposited on the Kapton is austenitic and presents super-elastic effect at room temperature. This pseudo elastic effect leads to more recoverable strain in NiTi/Kapton composite film compared with Kapton foils on loading/unloading test. Furthermore, it was concluded that nanostructure of the NiTi thin film is responsible for remarkable improvement of ultimate tensile strength (1.4 GPa) at a strain of 30% compared with the bulk material.

  17. Friction and Wear Performance of Boron Doped, Undoped Microcrystalline and Fine Grained Composite Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xinchang; WANG Liang; SHEN Bin; SUN Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don’t have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  18. Friction and wear performance of boron doped, undoped microcrystalline and fine grained composite diamond films

    Science.gov (United States)

    Wang, Xinchang; Wang, Liang; Shen, Bin; Sun, Fanghong

    2015-01-01

    Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti

  19. Physical and mechanical properties of modified bacterial cellulose composite films

    Science.gov (United States)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  20. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    Science.gov (United States)

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  1. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    Science.gov (United States)

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  2. Wettability of Nafion and Nafion/Vulcan carbon composite films.

    Science.gov (United States)

    Li, Xiaoan; Feng, Fangxia; Zhang, Ke; Ye, Siyu; Kwok, Daniel Y; Birss, Viola

    2012-04-24

    The wettability of the Pt/carbon/Nafion catalyst layer in proton exchange membrane fuel cells is critical to their performance and durability, especially the cathode, as water is needed for the transport of protons to the active sites and is also involved in deleterious Pt nanoparticle dissolution and carbon corrosion. Therefore, the focus of this work has been on the first-time use of the water droplet impacting method to determine the wettability of 100% Nafion films, as a benchmark, and then of Vulcan carbon (VC)/Nafion composite films, both deposited by spin-coating in the Pt-free state. Pure Nafion films, shown by SEM analysis to have a nanochanneled structure, are initially hydrophobic but become hydrophilic as the water droplet spreads, likely due to reorientation of the sulfonic acid groups toward water. The wettability of VC/Nafion composite films depends significantly on the VC/Nafion mass ratios, even though Nafion is believed to be preferentially oriented (sulfonate groups toward VC) in all cases. At low VC contents, a significant water droplet contact angle hysteresis is seen, similar to pure Nafion films, while at higher VC contents (>30%), the films become hydrophobic, also exhibiting superhydrophobicity, with surface roughness playing a significant role. At >80% VC, the surfaces become wettable again as there is insufficient Nafion loading present to fully cover the carbon surface, allowing the calculation of the Nafion:carbon ratio required for a full coverage of carbon by Nafion.

  3. Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties

    Institute of Scientific and Technical Information of China (English)

    LONG Hua; YANG Guang; CHEN Ai-Ping; LI Yu-Hua; LU Pei-Xiang

    2008-01-01

    We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 59Onm.The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser(50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10 m/W and -2.95×10-17 m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.

  4. Reactive magnetron sputter deposited CN{sub {ital x}}: Effects of N{sub 2} pressure and growth temperature on film composition, bonding, and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, W.T.; Sjoestroem, H.; Ivanov, I.; Xing, K.Z.; Broitman, E.; Salaneck, W.R.; Greene, J.E.; Sundgren, J. [Department of Physics, Linkoeping University, S-581 83 Linkoeping (Sweden)

    1996-09-01

    Effects of growth processes on chemical bond structure, microstructure, and mechanical properties of carbon-nitride (CN{sub {ital x}}) thin films, deposited by reactive magnetron sputtering in a pure N{sub 2} discharge, are reported. The film deposition rate {ital R}{sub {ital D}} increases with increasing N{sub 2} pressure {ital P}{sub N{sub 2}} while N/C ratios remain constant. Maximum N concentration was {approximately}35 at.%. {ital R}{sub {ital D}} was found to be dependent upon the film growth temperature {ital T}{sub {ital s}}. For a given {ital P}{sub N{sub 2}}, {ital R}{sub {ital D}} decreased slightly as {ital T}{sub {ital s}} was increased from 100 to 600 C. The variations in {ital R}{sub {ital D}} with both {ital P}{sub N{sub 2}} and {ital T}{sub {ital s}} can be explained by ion-induced desorption of cyano radicals CN{sub {ital x}} from both the target and growth surfaces during deposition. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FTIR) analyses showed that N atoms in films grown at {ital T}{sub {ital s}}{approx_gt}350{degree}C with low nitrogen partial pressures {ital P}{sub N{sub 2}}, {approximately}2.5 mTorr, were bound to C atoms through hybridized {ital sp}{sup 2} and {ital sp}{sup 3} configurations. For low {ital T}{sub {ital s}}=100{degree}C and higher {ital P}{sub N{sub 2}}, 10 mTorr, triple-bonded C{equivalent_to}N was detected by FTIR. Two types of microstructures were observed by high-resolution transmission electron microscopy, depending on {ital T}{sub {ital s}}: an amorphous phase, containing crystalline clusters for films deposited at {ital T}{sub {ital s}}=100{degree}C, while a turbostraticlike or fullerenelike phase was observed for films deposited at {ital T}{sub {ital s}}{approx_gt}200{degree}C CN{sub {ital x}} films deposited a higher {ital T}{sub {ital s}} and lower {ital P}{sub N{sub 2}} were found to have higher hardness and elastic modulus. {copyright} {ital 1996 American Vacuum Society}

  5. Thin film composite nanofiltration membranes for extreme conditions

    NARCIS (Netherlands)

    Dalwani, Mayur Ramesh

    2011-01-01

    The research presented in this thesis focuses on development and performance evaluation of thin film composite (TFC) nanofiltration (NF) membranes, with special attention to extreme pH applications. In Chapter 2 a new method that allows molecular weight cut off (MWCO) characterization of NF membran

  6. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    Science.gov (United States)

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  7. TiN films fabricated by reactive gas pulse sputtering: A hybrid design of multilayered and compositionally graded structures

    Science.gov (United States)

    Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning

    2016-12-01

    Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.

  8. Action of colloidal silica films on different nano-composites

    Science.gov (United States)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  9. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    Science.gov (United States)

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications.

  10. Optical constants and their dispersion of Ag-MgF2 nanoparticle composite films

    Institute of Scientific and Technical Information of China (English)

    Zhaoqi Sun(孙兆奇); Daming Sun(孙大明)

    2004-01-01

    Ag-MgF2 composite films with different Ag fractions were prepared through a co-evaporation method.Microstructure analysis shows that the films are composed of amorphous MgF2 matrix and embedded fcc-Ag nanoparticles. The optical constants and their dispersion of the films, within the wavelength range of 250 - 650 nm, were measured by reflecting spectroscopic ellipsometry. The maximum of the imaginary part ε" of the complex dielectric permittivity attributing to the surface plasmon resonance polarization of the Ag nanoparticles in an Ag-MgF2 film, and the tangent of the phase-shift angle δ resulting from the dielectric loss of the film, occur at λ = 435 nm and λ = 420 nm, respectively. Based on Maxwell-Garnett effective medium theory, the experimentally observed dispersion spectra were reasonably described.

  11. Ternary carbon composite films for supercapacitor applications

    Science.gov (United States)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  12. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Takatsugu Wakahara

    2016-01-01

    Full Text Available Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV and poly(3-hexylthiophene (P3HT, with C60 nanowhiskers (C60NWs were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer composite films, resulting in a power conversion efficiency of ~0.01% for P3HT with short length thin C60NWs, which is higher than that previously reported for thick C60 nanorods. The present study gives new guidance on the selection of the type of C60NWs and the appropriate polymer for new photovoltaic devices.

  13. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances.

    Science.gov (United States)

    Xiang, Changsheng; Cox, Paris J; Kukovecz, Akos; Genorio, Bostjan; Hashim, Daniel P; Yan, Zheng; Peng, Zhiwei; Hwang, Chih-Chau; Ruan, Gedeng; Samuel, Errol L G; Sudeep, Parambath M; Konya, Zoltan; Vajtai, Robert; Ajayan, Pulickel M; Tour, James M

    2013-11-26

    A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.

  14. Effect of composition on optical properties of GeSe3–Sb2Se3–ZnSe thin films

    Indian Academy of Sciences (India)

    M R Balboul; H M Hosni; M A Soliman; S A Fayek

    2014-10-01

    Optical properties of the chalcogenides GeSe3, Sb2Se3, ZnSe, (GeSe3)80(Sb2Se3)20 and (GeSe3)70 (Sb2Se3)10(ZnSe)20 thin films are investigated. Incorporation of ZnSe into both GeSe3, Sb2Se3 results in amorphous (GeSe3)70(Sb2Se3)10(ZnSe)20 composition. The estimated optical energy gap, g, is found to decrease from 3.06 eV for ZnSe to 1.81 eV for (GeSe3)70(Sb2Se3)10(ZnSe)20. While, the band tail width, e, exhibits an opposite trend. The g behaviour is believed to be associated with cohesive energy, CE, as the incorporation of ZnSe lowers its value. The calculated number of the excess of Se–Se homopolar bonds is found to affect mainly the e values. The refractive index, , is discussed in terms of Wemple–DiDomenico single oscillator dispersion model in the normal dispersion region. The oscillator energy, o, and the dispersion energy, d, are determined for films under investigation.

  15. Tuning the optical bandgap of TiO2-TiN composite films as photocatalyst in the visible light

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    2013-06-01

    Full Text Available TiO2-TiN composite catalysts were prepared by oxidizing the TiN films in air at 350 °C. By adjusting the oxidation time to control the oxidation stage of TiN films, the optical band gap of the TiO2-TiN composites can be varied in a wide range from 1.68 eV to 3.23 eV. These composite films all showed red shift in photo-response towards the visible region, and depending on the optical band gap, some composite films exhibited good catalytic activity in the visible light region. This study provides a simple but effective method to prepare film photocatalyst working in visible light.

  16. Environmental Effects on TPB Films

    Science.gov (United States)

    Chiu, Christie

    2012-03-01

    The future neutrino detector MicroBooNE at Fermilab will rely on liquid argon scintillation of wavelength 128 nm for the trigger, as well as for determining the time and location of neutrino events. To better detect this light, we use Tetraphenyl Butadiene (TPB) embedded in polystyrene which shifts the light to a peak wavelength of 425 nm. Although we would like to store TPB films for several weeks at a time, we observed that they degraded significantly after only one day. We examined environmental effects on TPB degradation by tracking the performance of several plates placed in different conditions with varying light exposure and humidity levels. We also looked at the ability of desiccation to restore TPB films. This talk presents the study of the degradation between plates kept in each condition and discusses the effectiveness of desiccation to restore the films.

  17. Effect of heat treatment on the structure and the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin films and composites based on them

    Science.gov (United States)

    Kalinin, Yu. E.; Kashirin, M. A.; Makagonov, V. A.; Pankov, S. Yu.; Sitnikov, A. V.

    2017-01-01

    This work considers the effect of vacuum annealing on the thermoelectric properties of Sb0.9Bi1.1Te2.9Se0.1 thin film and Sb0.9Bi1.1Te2.9Se0.1-C composites with various carbon contents produced by ion-beam deposition in an argon atmosphere. The electrical resistivity and the thermopower of Sb0.9Bi1.1Te2.9Se0.1-C nanocomposites are found to be dependent on not only the carbon concentration but also the type and the concentration of intrinsic point defects of the Sb0.9Bi1.1Te2.9Se0.1 solid solution, which determine the type of conductivity of Sb0.9Bi1.1Te2.9Se0.1 granules. The power factors are estimated for films of Sb0.9Bi1.1Te2.9Se0.1 solid solution and films of Sb0.9Bi1.1Te2.9Se0.1-C composites and found to have values comparable with the values for nanostructured materials on the basis of (Bi,Sb)2(Te,Se)3 solid solutions.

  18. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  19. Open air plasma deposited antimicrobial SiOx/TiOx composite films for biomedical applications

    Directory of Open Access Journals (Sweden)

    Rapp Christin

    2016-09-01

    Full Text Available Open air atmospheric pressure plasma jet (APPJ enhanced chemical vapour deposition process was used to deposit biocompatible SiOx/TiOx composite coatings. The as deposited films are hydrophilic and show visible light induced photocatalytic effect, which is a consequence of the formation of defects in the TiOx structure due to the plasma process. This photocatalytic effect was verified by the demonstration of an antimicrobial effect under visible light on E. coli as well as by degradation of Rhodamine B. The films are non-cytotoxic as shown by the cytocompatibility tests. The films are conductive to cell growth and are stable in DMEM and isopropanol. The structural evaluation using SEM, EDS and XPS shows a dispersion of TiOx phase in a SiOxCyHz matrix. These analyses were used to correlate the structure-property relationship of the composite coating.

  20. Significant improvement in the thermoelectric properties of zwitterionic polysquaraine composite films

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mei-Chan [Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 30010, Taiwan R.O.C (China); Chao, Ching-Hsun [Dow Chemicals, Advanced Materials, Electronic Materials, No. 6, Kesi 2nd Road, Jhunan, Miaoli, Science-Based Industrial Park 35053, Taiwan R.O.C (China); Lo, An-Ya, E-mail: a.y.lo1125@gmail.com [Department of Materials Science and Engineering, Green Energy Development Center, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan R.O.C (China); Chen, Chun-Hua [Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 30010, Taiwan R.O.C (China); Wu, Ren-Jye [Industrial Technology Research Institute, Material and Chemical Research Laboratories, Rm 104, Bldg 67, 195, Sec. 4, Chung Hsing Road, Chutung, Hsinchu 31040, Taiwan R.O.C (China); Tsai, Mei-Hui [Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Road, Taiping, Taichung 41170, Taiwan R.O.C (China); Huang, Yi-Chia [Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 30010, Taiwan R.O.C (China); Whang, Wha-Tzong, E-mail: wtwhang@mail.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsin-Chu 30010, Taiwan R.O.C (China)

    2013-09-16

    In this study, the polysquaraine SQI{sub 0.1}, a zwitterionic π-conjugated polymer, was adopted as the matrix for the preparation of flexible and freestanding films; the low band gap of this semiconducting polymer made it a natural choice for use as a thermoelectric (TE) polymer. To enhance their TE applications, both single-walled carbon nanotubes (SWNTs) and mesoporous carbon (i.e., CMK-3) were integrated into the SQI{sub 0.1}-based films and the effects of doping with iodine were also investigated. Using scanning electron microscopy, the variations in morphology of these SQI{sub 0.1}-based films were examined. Raman spectroscopy was used to study the π–π interactions between iodine and the carbon materials (i.e., SWNT, CMK-3); X-ray diffraction and Raman spectroscopy to investigate the intercalation of the doped iodine in the composite films; and X-ray photoelectron spectroscopy to determine the valence state of the doped iodine. The TE properties of these materials were characterized in terms of the electrical conductivity (σ), thermal conductivity (κ), and Seebeck coefficient (S). The TE properties of the iodine-doped composite film prepared from SWNTs, CMK-3, and SQI{sub 0.1} included a notable value of ZT (Figure of Merit) of 4.563 × 10{sup −3}, which was 143% of that of the corresponding iodine-doped SQI{sub 0.1} film. - Graphical abstract: Display Omitted - Highlights: • Polysquaraine SQI{sub 0.1} blended with SWNTs and CMK-3 can develop freestanding film. • SWNTs well-dispersed in the SQI{sub 0.1} matrix and endowed the composite with flexibility. • The iodine-doped SQI{sub 0.1}-based films have potential for thermoelectric application. • Thermoelectric efficiency of composite can be promoted by SWNTs and CMK-3.

  1. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    Science.gov (United States)

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P packaging.

  2. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    Science.gov (United States)

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  3. REGULATED DEGRADABILITY OF COMPOSITE BIOBASED FILMS

    Directory of Open Access Journals (Sweden)

    Volodymyr M. Isaenko

    2008-02-01

    Full Text Available  Degradable biobased (derived from agriculture composites are emerging materials that offer benefits to the environment thus minimizing waste that would be otherwise deposited in landfills. Single-use primary packaging materials have been identified as suitable items to be replaced by biodegradable materials from renewable resources. Materials composed of starch, soy protein and polyvinylalcohol, modified by hydrophobic fatty acids, are evaluated in terms of water resistance as promising substitutes for packaging materials.

  4. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  5. Synthesis and optical properties of complex nanometal composite films

    Science.gov (United States)

    Sandrock, Marie Louise

    We have successfully prepared gold pair particles of various size, shape, and inter-particle spacing using a template synthesis method involving anodic aluminum oxide films as host templates. Both transmission electron microscopy and polarized linear spectroscopy were used to evaluate the sample quality. The nature of the synthesis is such that the rotational axes of the rod-like structures are oriented normal to the host film surface. This characteristic leads to plasmon resonance spectra with dichroic behavior. In general, we found that both the plasmon resonance maxima and intensity are dependent on the size, shape, orientation, and inter-particle spacing of the pair particle nanostructures. We have successfully prepared more complex pair particle structures, including both rod and rod-sphere pairs. Linear polarization spectroscopy indicates that the plasmon resonance maxima are sensitive to both pair-particle geometry and inter-particle spacing. Possible evidence for interaction between the two members of the rod-sphere structure is seen in the experimental spectra. Quasi-static limit models also only qualitatively describe the polarization spectra of the rod-containing systems. We have succeeded in discerning the processes that cause the second harmonic generation of light (SHG) in nanoparticle composite systems. Second harmonic generation (SHG) studies using an incident wavelength of 780 nm indicate that SHG intensities under s-polarization are low and independent of incidence angle (theta) for composites containing centrosymmetric and non-centrosymmetric gold nanostructures. However, in p-polarization, both composites show an increase in SHG counts with theta, with the non-centrosymmetric structures showing a higher SHG signal than their centrosymmetric counterparts. These results are consistent with local-field enhancements arising from long particle axis dipolar plasmon resonances. Thus, we determined that symmetry does indeed play a large role in small

  6. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    Science.gov (United States)

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming.

  7. Properties of dry film lubricants prepared by spray application of aqueous starch-oil composites

    Science.gov (United States)

    Aqueous dispersions of starch-soybean oil (SBO) and starch-jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by doctor blade. This application method necessitates long drying times, is wasteful, requ...

  8. Film-forming compositions to prevent milled peat being blown away during rail transport

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, A.M.

    1987-01-01

    Mixtures of pentaerythritol, a PVC adhesive and an emulsifier were used to form a protective film on the surface of milled peat in rail wagons. Depending on their formulation those compositions were effective over distances of 250-20,000 km.

  9. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    Science.gov (United States)

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  10. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  11. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Science.gov (United States)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  12. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m2-h-1, while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution. © 2010 American Chemical Society.

  13. Structural and biological properties of carbon nanotube composite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu; Berry, C.J. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States); Brigmon, R.L. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2005-11-20

    Carbon nanotube composite films have been developed that exhibit unusual structural and biological properties. These novel materials have been created by pulsed laser ablation of graphite and bombardment of nitrogen ions at temperatures between 600 and 700 deg. C. High-resolution transmission electron microscopy and radial distribution function analysis demonstrate that this material consists of sp{sup 2}-bonded concentric ribbons that are wrapped approximately 15 deg. normal to the silicon substrate. The interlayer order in this material extends to approximately 15-30 A. X-ray photoelectron spectroscopy and Raman spectroscopy data suggest that this material is predominantly trigonally coordinated. The carbon nanotube composite structure results from the use of energetic ions, which allow for non-equilibrium growth of graphitic planes. In vitro testing has revealed significant antimicrobial activity of carbon nanotube composite films against Staphylococcus aureus and Staphylococcus warneri colonization. Carbon nanotube composite films may be useful for inhibiting microorganism attachment and biofilm formation in hemodialysis catheters and other medical devices.

  14. Influence of the chemical composition and the surface structure imperfection of metal substrates on the zeolite film formation

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V.; Mintova, S. [Institute of Applied Mineralogy, Sofia (Bulgaria)

    1995-12-01

    There are several attractive features of zeolites that make-them useful in designing molecular thin films, coatings and membranes. Metal supports axe especially convenient for zeolite containing composite materials due to their high thermal stability, acid resistance and the possibility to form micropore modules of an arbitrary shape. There axe, however, no systematic studies on the effect of the substrate chemical composition and surface structure imperfections on the zeolite film formation. This study is concerned with: (1) the effect of the metal substrate and surface imperfections on the process of film formation; (2) the effect of the surface pretreatment.

  15. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    Science.gov (United States)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  16. Composition change and capacitance properties of ruthenium oxide thin film

    Institute of Scientific and Technical Information of China (English)

    刘泓; 甘卫平; 刘仲武; 郑峰

    2015-01-01

    RuO2·nH2O film was deposited on tantalum foils by electrodeposition and heat treatment using RuCl3·3H2O as precursor. Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·nH2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2 h, RuO2·nH2O electrode surface gains mass of 2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly 20%with voltage scan rate increasing from 5 to 250 mV/s.

  17. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Yogeswaran, Umasankar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, Shen-Ming [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)]. E-mail: smchen78@ms15.hinet.net

    2007-05-25

    A novel conductive composite film containing functionalized multi-walled carbon nanotubes (f-MWCNTs) with poly (neutral red) (PNR) was synthesized on glassy carbon electrodes (GC) by potentiostatic method. The composite film exhibited promising electrocatalytic oxidation of mixture of biochemical compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA) in pH 4.0 aqueous solutions. It was also produced on gold electrodes by using electrochemical quartz crystal microbalance technique, which revealed that the functional properties of composite film were enhanced because of the presence of both f-MWCNTs and PNR. The surface morphology of the polymer and composite film deposited on transparent semiconductor tin oxide electrodes were studied using scanning electron microscopy and atomic force microscopy. These two techniques showed that the PNR was fibrous and incorporated on f-MWCNTs. The electrocatalytic responses of neurotransmitters at composite films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These experiments revealed that the difference in f-MWCNTs loading present in the composite film affected the electrocatalysis in such a way, that higher the loading showed an enhanced electrocatalytic activity. From further electrocatalysis studies, well separated voltammetric peaks were obtained at the composite film modified GC for AA, DA and UA with the peak separation of 0.17 V between AA-DA and 0.15 V between DA-UA. The sensitivity of the composite film towards AA, DA and UA in DPV technique was found to be 0.028, 0.146 and 0.084 {mu}A {mu}M{sup -1}, respectively.

  18. Thin film composition with biological substance and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  19. Thin film composition with biological substance and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  20. The atomic structure and chemical composition of HfOx (x < 2) films prepared by ion-beam sputtering deposition

    Science.gov (United States)

    Aliev, V. S.; Gerasimova, A. K.; Kruchinin, V. N.; Gritsenko, V. A.; Prosvirin, I. P.; Badmaeva, I. A.

    2016-08-01

    Non-stoichiometric HfOx films of different chemical composition (x partial pressure in a chamber. An effect of chemical composition on the atomic structure of the films was studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy and field emission scanning electron microscopy methods. The films were found to be amorphous, consisting only of three components: Hf-metal clusters, Hf4O7 suboxide and stoichiometric HfO2. The relative concentration of these components varies with changing x. The surface of the films contains the increased oxygen content compared to the bulk. It was found that the Hf4O7 suboxide concentration is maximal at x = 1.8. The concept of hafnium oxide film growth by the IBSD method is proposed to explain the lack of suboxides variety in the films and the instability of HfO2, when annealed at high temperature.

  1. Molecular interactions in gelatin/chitosan composite films.

    Science.gov (United States)

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (Tg) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  3. Estimation of the composition parameter of electrochemically colored amorphous hydrogen tungsten oxide films

    Science.gov (United States)

    Kaneko, Hiroko; Miyake, Kiyoshi

    1989-07-01

    The electrical and optical steady state observed in electrochemical coloration has been studied using asymmetric cells consisting of evaporated amorphous tungsten oxide films with 350-6000 Å thickness. The counter electrode used is indium wire, steel wire, or antimony-tin oxide film, and the electrolyte is a 1-N H2SO4 aqueous solution containing 10 vol % glycerol. The current and optical transmittance of the cells decrease with increasing time during coloration, and simultaneously reach a steady state. The optical density (λ=0.5 μm) in the steady state is proportional to the thickness of the tungsten oxide film, and the absorption coefficient at λ=0.5 μm of the colored oxide film in the state is approximately 9.0×104 cm-1. The effective charges which contribute to the coloration of films calculated from the charge injected until the electro-optical steady state were found to be 1.03-1.20×103 C/cm3. Assuming that the evaporated tungsten oxide films used have a distorted ReO3 structure, and that a hydrogen tungsten bronze HxWO3 is formed by coloration, the composition parameter x calculated from the average value of the effective charge, is 0.36, which is comparable with that of hydrogen tungsten bronze H0.33WO3 obtained for the colored crystalline WO3 films.

  4. Effect of CO{sub 2}-laser irradiation on properties and performance of thin-film composite polyamide reverse osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jahangiri, Foad; Mousavi, Seyyed Abbas; Farhadi, Fathollah; Sabzi, Behnam; Chenari, Zeinab [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vatanpour, Vahid [Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of)

    2016-03-15

    CO{sub 2}-laser irradiation was used to modify the surface properties of thin-film composite (TFC) polyamide reverse osmosis (RO) membranes. These membranes were first synthesized via interfacial polymerization of m-phenylenediamine (MPD) monomers and trimesoyl chloride (TMC) over porous polysulfone ultrafiltration support, followed by a CO{sub 2}-irradiation. AFM, ATR-FTIR, SEM and contact angle measurements were used to characterize the surface properties of these membranes. The ATR-FTIR results indicated that CO{sub 2}-laser irradiation did not induce any functional groups on the membrane surface. However, it was found that the laser irradiation enhanced the NaCl salt rejection and slightly reduced the permeate flux. Moreover, the maintenance of the flux in modified membranes was much higher than untreated ones. Specially, after 180 min of filtration, the reduction in initial flux for the unmodified membranes was 22%. However, the reduction in initial flux for the modified membranes was less than 5%. Bovine serum albumin (BSA) filtration revealed an improvement in the antifouling properties of the modified membranes. The changes in the membrane surface morphology showed that the roughness of membrane surface is reduced significantly.

  5. Mechanical and barrier properties of guar gum based nano-composite films.

    Science.gov (United States)

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2015-06-25

    Guar gum based nano-composite films were prepared using organically modified (cloisite 20A) and unmodified (nanofil 116) nanoclays. Effect of nanoclay incorporation on mechanical strength, water vapor barrier property, chromatic characteristics and opacity of films was evaluated. Nano-composites were characterized using X-ray scattering, FTIR and scanning electron microscopy. A nanoclay concentration dependent increase in mechanical strength and reduction in water vapor transmission rate was observed. Films containing nanofil 116 (2.5% w/w guar gum) and closite 20A (10% w/w guar gum) demonstrated a 102% and 41% higher tensile strength, respectively, as compared to the control. Lower tensile strength of cloisite 20A films as compared to nanofil 116 films was due to its incompatibility with guar gum. X-ray scattering analysis revealed that interstitial spacing between nanofil 116 and cloisite 20A sheets increased due to intercalation by guar gum polymer. This resulted in improved mechanical and barrier properties of nano-composites compared to control.

  6. ZnO micro-nano composite hydrophobic film prepared by the three-step method

    Institute of Scientific and Technical Information of China (English)

    Ma Kai; Li Hua; Zhang Han; Xu Xiao-Liang; Gong Mao-Gang; Yang Zhou

    2009-01-01

    The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prcpared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the sol gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flower-like structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.

  7. ZnO micro-nano composite hydrophobic film prepared by the three-step method

    Science.gov (United States)

    Ma, Kai; Li, Hua; Zhang, Han; Xu, Xiao-Liang; Gong, Mao-Gang; Yang, Zhou

    2009-05-01

    The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the sol-gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flower-like structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.

  8. Nano-composite thermochromic thin films and their application in energy-efficient glazing

    Energy Technology Data Exchange (ETDEWEB)

    Saeli, Manfredi [Universita degli Studi di Palermo - Dipartimento di Progetto e Costruzione Edilizia (DPCE), Viale delle Scienze, 90128 Palermo (Italy); Piccirillo, Clara; Parkin, Ivan P.; Binions, Russell [University College London - Department of Chemistry - Christopher Ingold Laboratories, 20 Gordon Street, WC1H 0AJ London (United Kingdom); Ridley, Ian [Barlett School of Graduate Studies, University College London, Wates House, 22 Gordon Street, WC1H 0QB London (United Kingdom)

    2010-02-15

    A hybrid atmospheric pressure and aerosol-assisted chemical vapour deposition strategy is presented as a facile route for the production of vanadium dioxide nano-composite thin films. The effect of the inclusion of gold nanoparticles and the use of a surfactant molecule, tetraoctylammonium bromide, is discussed. The films were fully characterised using a wide variety of techniques, including scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV/vis/NIR spectroscopy. It is shown that micro-structural changes brought about by careful control of film growth conditions, and/or the use of surfactant, lead to an enhancement of thermochromic properties. Gold nanoparticle incorporation leads to a significant change in the colour of the films from a yellow-brown colour to a variety of greens and blues depending on the gold nanoparticle concentration. The films become more reflective in the infra-red with increased gold nanoparticle incorporation. Optical data are used in energy modelling studies to elucidate the film potential as an energy-saving coating in architectural glazing. The energy modelling results suggest that for warmer climates the thermochromic nano-composites investigated here lead to significant energy savings when compared with plain glass and other standard industry products. (author)

  9. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  10. Thick and hard anodized aluminum film with large pores for surface composites

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; WANG Hao-wei

    2004-01-01

    Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-based solution. The effects of additive containing organic carboxylic acid and Ce salt on the properties of the oxide film and mechanism were investigated in detail with SEM and EDAX analyses. The results show that the pore diameter is about 100 nm, the film thickness increases by 4 -5 times, and the Vickers hardness improves by about 50% through adding some amount of organic carboxylic acid and Ce salt. Such an improvement in properties is explained in terms of a lower film dissolving velocity and better film quality in compound solution.

  11. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  12. Composition and structure of Ti-C/DLC graded composite films

    Institute of Scientific and Technical Information of China (English)

    孙明仁; 夏立芳

    2002-01-01

    The Ti-C→DLC gradient composite films were characterized systematically.The elemental depth profile and elemental chemical state evolution were determined by X-ray photoelectron spectroscopy (XPS).The transmission electron microscope (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to study the structure of interfacial zone between DLC film and Ti-C layers.Results show that there are composition transition zone between DLC film and either Ti-C layer or steel substrate on condition that pre-deposited Ti layers on the steel substrate then plasma based bias deposited DLC films.In Ti-C graded layer,the chemical state of titanium and carbon are changed gradually.The structures of zone in Ti-C layer near the DLC film is consisted of random oriented nanocrystallines TiC dispersed in amorphous DLC matrix.The structure of the zone between DLC film and Ti-C graded layer is gradually changed too.

  13. Formation of Al-Si Composite Oxide Film by Hydrolysis Precipitation and Anodizing

    Institute of Scientific and Technical Information of China (English)

    Zhe-Sheng Feng; Ying-Jie Xia; Jia Ding; Jin-Ju Chen

    2007-01-01

    This paper presents a new technique in the high dielectric constant composite oxide film preparation.On the basis of nanocompsite high dielectric constant aluminum oxide film growth technology, a new idea of adulterating Si oxide species into the aluminum composite film was proposed. As a result, the specific capacitance and withstanding voltage of the composite oxide film formed at the anodizing voltage of 20V are enhanced, and the leakage current of the aluminum composite oxide film is reduced through incorporation of Si oxide species.

  14. A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bao-Yu; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Zhu, Jiadeng; Zhang, Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-01-12

    The photoacoustic effect has been broadly applied to generate high frequency and broadband acoustic waves using lasers. However, the efficient conversion from laser energy to acoustic power is required to generate acoustic waves with high intensity acoustic pressure (>10 MPa). In this study, we demonstrated laser generated high intensity acoustic waves using carbon nanofibers–polydimethylsiloxane (CNFs-PDMS) thin films. The average diameter of the CNFs is 132.7 ± 11.2 nm. The thickness of the CNFs film and the CNFs-PDMS composite film is 24.4 ± 1.43 μm and 57.9 ± 2.80 μm, respectively. The maximum acoustic pressure is 12.15 ± 1.35 MPa using a 4.2 mJ, 532 nm Nd:YAG pulsed laser. The maximum acoustic pressure using the CNFs-PDMS composite was found to be 7.6-fold (17.62 dB) higher than using carbon black PDMS films. Furthermore, the calculated optoacoustic energy conversion efficiency K of the prepared CNFs-PDMS composite thin films is 15.6 × 10{sup −3 }Pa/(W/m{sup 2}), which is significantly higher than carbon black-PDMS thin films and other reported carbon nanomaterials, carbon nanostructures, and metal thin films. The demonstrated laser generated high intensity ultrasound source can be useful in ultrasound imaging and therapy.

  15. Enhanced luminescence properties of hybrid Alq{sub 3}/ZnO (organic/inorganic) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, M.; Muralidharan, G., E-mail: muraligru@gmail.com

    2014-12-15

    Pristine tris-(8-hydroxyquionoline)aluminum(Alq{sub 3}) and (Alq{sub 3}/ZnO hybrid) composites containing different weight percentages (5 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt%) of ZnO in Alq{sub 3} were synthesized and coated on to a glass substrate using the dip coating method. The optimum concentration of ZnO in Alq{sub 3} films to get the best luminescence yield has been identified. XRD pattern reveals the amorphous nature of pure Alq{sub 3} film. The Alq{sub 3} films containing different weight percentages of ZnO show the presence of crystalline ZnO in Alq{sub 3}/ZnO composite films. The FTIR spectrum confirms the formation of quinoline with absorption in the region 600−800 cm{sup −1}. The hybrid Alq{sub 3}/ZnO composite films indicate the presence of Zn−O vibration band along with the corresponding Alq{sub 3} band. The band gap (HOMO–LUMO) of Alq{sub 3} film was calculated using absorption spectra and it is 2.87 eV for pristine films while it is 3.26 eV, 3.21 eV, 3.14 eV, 3.10 eV, 3.13 eV and 3.20 eV for the composite films containing 5–50 wt% of ZnO. The photoluminescence (PL) spectra of Alq{sub 3} films show a maximum PL intensity at 514 nm when excited at 390 nm. The ZnO incorporated composite films (Alq{sub 3}/ZnO) exhibit an emission in 485 nm and 514 nm. The composite films containing 30 wt% of ZnO exhibit maximum luminescence yield. - Highlights: • The pure Alq{sub 3} and Alq{sub 3}/ZnO composite were synthesized and coated on to a glass substrate using dip coating method. • Alq{sub 3}/ZnO composite film containing 30 wt% of ZnO exhibits two fold increases in luminescence intensity. • The shielding effect of ZnO on the Alq{sub 3} material suppresses the interactions among the host molecules in the excited state. • This leads to enhance the luminescence intensity in composite films.

  16. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Science.gov (United States)

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  17. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  18. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States); Planar Energy Inc., 653 W. Michigan St., Orlando, Florida 32805 (United States)

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  19. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy.

    Science.gov (United States)

    Gu, Guang Qin; Han, Chang Bao; Tian, Jing Jing; Lu, Cun Xin; He, Chuan; Jiang, Tao; Li, Zhou; Wang, Zhong Lin

    2017-04-05

    As a green and eco-friendly technology, triboelectric nanogenerator (TENG) can harvest energy from human motion to generate electricity, so TENGs have been widely applied in wearable electronic devices to replace traditional batteries. However, the surface of these TENGs is easily contaminated and breeds bacteria, which is a threat to human health. Here, we report an antibacterial composite film-based triboelectric nanogenerator (ACF-TENG) that uses Ag-exchanged zeolite (Ag-zeolite) and polypropylene (PP) composite film as the triboelectric layer. Adding a small amount of Ag-zeolite with excellent antibacterial properties can increase the dielectric permittivity and improve the surface charge density of composite films, which enhances the output performance of the ACF-TENG. The open-circuit voltage (VOC), short-circuit current (ISC), and transferred charge (QTr) of the ACF-TENG are about 193.3, 225.4, and 233.3% of those of a pure PP film-based TENG, respectively. Because of the silver in the Ag-zeolite, the ACF-TENG can effectively kill Escherichia coli and fungi. When used in insoles, the ACF-TENG can resist the athlete's foot fungus effectively and work as a power source to light up light-emitting diodes and charge capacitors. The ACF-TENG has wide application prospects in self-powered medical and healthcare electronics.

  20. Exchange bias and anisotropy analysis of nano-composite Co{sub 84}Zr{sub 16}N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in [CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research, Chennai 600113 (India); Taube, William Ringal [CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research, Chennai 600113 (India); Ansari, Akhtar Saleem [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Gupta, Sanjeev Kumar [Academy of Scientific and Innovative Research, Chennai 600113 (India); Kulriya, Pawan Kumar [Inter-University Accelerator Centre, New Delhi 110067 (India); Akhtar, Jamil [CSIR-Central Electronics Engineering Research Institute, Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research, Chennai 600113 (India)

    2015-03-15

    Nano-composite Co{sub 84}Zr{sub 16}N (CZN) films were prepared by reactive co-sputter deposition. As-deposited CZN films have not shown any exchange bias effect. But annealed (390 K) and field cooled samples have shown exchange bias phenomena. The observed exchange bias is attributed to inter-cluster exchange coupling between ferromagnetic and antiferromagnetic nano-composite phase. High resolution transmission electron microscope study reveals that, the CZN films are composed of ordered and crystalline ferromagnetic Cobalt nano-clusters embedded in an antiferromagnetic matrix. X-ray diffraction confirms the poly-crystalline growth of the CZN films with a preferred fcc (622) phase formation. In-plane anisotropy of the exchange biased films was investigated by rotational magnetization curve, and the analysis shows that the magnetization reversal behaves according to the coherent rotation of the magnetic moment vector. Effectively, exchange bias effect in such single layer films could be attributed to co-existing antiferromagnetic and ferromagnetic phase within the single layer. Such single layer nano-composite films can be a possible alternative to the bilayer combination of antiferromagnetic/ferromagnetic exchange biased films and are ideally suited for spintronics and tunnel junction applications. - Highlights: • Exchange bias effect observed in 390 K annealed and field cooled single layer nanocomposite Co{sub 84}Zr{sub 16}N (CZN) thin films. • CZN films are composed of ordered and crystalline ferromagnetic Cobalt nano-clusters embedded in antiferromagnetic matrix. • Uniaxial magnetic anisotropy investigated by rotational magnetization curve, and magnetization reversal behaves according to coherent rotation of magnetic moment vector. • Co-existing FM and AF phases in composite matrix are lead to extraordinary EB behavior.

  1. Cu-In-O composite thin films deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ye Fan [School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technologies, Shenzhen University, Shenzhen 518060 (China); Cai Xingmin, E-mail: caixm@szu.edu.c [School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technologies, Shenzhen University, Shenzhen 518060 (China); Dai Fuping [Department of Applied Physics, Northwestern Polytechnic University, Xian 710072 (China); Jing Shouyong [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China); Zhang Dongping; Fan Ping; Liu Lijun [School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technologies, Shenzhen University, Shenzhen 518060 (China)

    2011-02-01

    Cu-In-O composite thin films were deposited by reactive DC magnetron sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/vis spectrophotometer, four-probe measurement and Seebeck effect measurement, etc. The samples contain Cu, In and O. The ratios of Cu to In and O to In increase with increase in O{sub 2} flow rates. The ratio of Cu to In is over 1 and this suggests that Cu is in excess. The obtained Cu-In-O thin films are very possibly made of rhombohedral In{sub 2}O{sub 3} and monoclinic CuO. Transmittance of the films decreases with increase in O{sub 2} flow rate. The decrease in transmittance results from increase in Cu content in the films. The optical band gap of all the samples is estimated to be 4.1-4.4 eV, which is larger than those of In{sub 2}O{sub 3} and CuO. The sheet resistance of the films decreases with increase in O{sub 2} flow rate. Conductivity of the films is a little low, due to the addition of Cu and the poor crystalline quality of the film. The conduction behavior of the films is similar to that of In{sub 2}O{sub 3} and the conduction mechanism of Cu-In-O thin films is through O vacancy. -- Research Highlights: {yields}Cu-In-O composite thin films were fabricated by DC sputtering at room temperature. {yields}The films are made of rhombohedral In{sub 2}O{sub 3} and monoclinic CuO. {yields}The transmittance depends on the Cu content in the film. {yields}The direct optical band gap is around 4.1-4.4eV. {yields}The conducting mechanism is due to oxygen vacancy.

  2. Photoactive composite films prepared from mixtures of polystyrene microgel dispersions and poly(3-hexylthiophene) solutions.

    Science.gov (United States)

    Chen, Mu; Cui, Zhengxing; Edmondson, Steve; Hodson, Nigel; Zhou, Mi; Yan, Junfeng; O'Brien, Paul; Saunders, Brian R

    2015-11-14

    Whilst polystyrene microgels belong to the oldest family of microgel particles, their behaviours when deposited onto substrates or prepared as composites have received little attention. Because polystyrene microgels are solvent-swellable, and inherently colloidally stable, they are well suited to form composites with conjugated polymers. Here, we investigate the morphology and light absorption properties of spin coated composite films prepared from mixed dispersions of polystyrene microgels and poly(3-hexylthiophene) (P3HT) for the first time. We compare the morphologies of the composite films to spin coated microgel films. The films were studied using optical microscopy, SEM, AFM, wide-angle X-ray diffraction and UV-visible spectroscopy. The films contained flattened microgel particles with an aspect ratio of ∼10. Microgel islands containing hexagonally close packed particles were evident for both the pure microgel and microgel/P3HT composite films. The latter were electrically conducting. The composite film morphology was dependent on the microgel and P3HT concentration used for film preparation and a morphology phase diagram was constructed. The P3HT phase acted as an electrically conducting cement and increased the robustness of the films to solvent washing. The composite films were photoactive due to the P3HT component. The absorbance for the films was tuneable and increased linearly with both microgel and P3HT concentration. The results of the study should apply to other organic swellable microgel/conjugated polymer combinations and may lead to new colloidal composites for future optoelectronic applications.

  3. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing.

    Science.gov (United States)

    Rezvanian, Masoud; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern

    2016-02-10

    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.

  4. Photoluminescence properties of ZnSe/SiO2 composite thin films prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-qing; CHE Jun; YAO Xi

    2006-01-01

    ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsometers were used to investigated the dependences of ellipsometric angle with wavelength of ZnSe/SiO2 composite thin films. The optical constant,thickness,porosity and the concentration of ZnSe of ZnSe/SiO2 thin composite films were fitted according to Maxwell-Garnett effective medium theory. The thickness of ZnSe/SiO2 composite thin thin films was also measured through surface profile. The photoluminescence properties of ZnSe/SiO2 thin composite thin films was investigated through fluorescence spectrometer. The photoluminescence results show that the emission peak at 487 nm (2.5 eV) is excited at 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal(2.58 eV). The strength free exciton emission and other emission peaks correlating to ZnSe lattice defect were also observed.

  5. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang; Li, Li; Li, Jing-Hong; Xu, Bo-Qing [Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2006-04-21

    Conducting polymer composite films comprised of polyaniline (PANI) and single wall carbon nanotubes (SWNT) was prepared by electrochemical codeposition during the electropolymerization in an aniline solution with suspending SWNT. The fabricated composite films are assessed with respect to their potential application as support materials in Pt electrocatalyst for electrochemical oxidation of methanol. The PANI/SWNT composite film incorporated with SWNT has a higher polymeric degree and lower defect density in PANI structure than PANI film. Furthermore, the incorporation of SWNT also leads to higher electrochemically accessible surface areas (S{sub a}), electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which make higher dispersion and utilization for deposited Pt. Therefore, the Pt particles electrodeposited on PANI/SWNT composite polymer film exhibits excellent catalytic activity and stability for the electrooxidation of methanol in comparison to Pt supported on PANI film, which reveals that the composite film is more promising for application in electrocatalyst as a support material. (author)

  6. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  7. Two kinds of composite films: Graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process

    Science.gov (United States)

    Zou, Li-feng; Ma, Nan; Sun, Mei; Ji, Tian-hao

    2014-11-01

    Two kinds of free-standing composite films, including graphene oxide and activated carbon film as well as graphene oxide and carbon nanotube film, were fabricated through a simple suspension mixing and then natural deposition process. The films were characterized by various measurement techniques in detail. The results show that the composite films without any treatment almost still remain the original properties of the corresponding precursors, and exhibit loose structure, which can be easily broken in water; whereas after treated at 200 °C in air, the films become relatively more dense, and even if immersed into concentrated strong alkali or acid for five days, they still keep the film-morphologies, but regretfully, they show obvious brittleness and slight hydrophilicity. As soon as the treated films are performed in high concentrated strong alkali for about one day, their brittleness and wettability can be improved and became good flexibility and complete hydrophilicity.

  8. Effect of annealing temperature on the optical loss and the optical constants of RF-magnetron sputtered carbon — nickel composite films

    Science.gov (United States)

    Dalouji, V.; Elahi, S. M.

    2014-03-01

    In this work, the optical properties of carbon — nickel films annealed at different temperatures (300-1000 °C) were investigated. The films were grown on quartz substrates by radio frequency magnetron co-sputtering at room temperature with a deposition time of 600 second. The optical transmittance spectra in the wavelength range 300-1000 nm were used to compute the refractive index by using the Swanepoel's method. The films annealed at 500 °C showed considerable optical loss due to optical absorption by nickel atoms and to scattering caused by surface roughness. However, the film annealed at 800 °C had a very small optical loss in spite of the high surface roughness. The dispersion curves of the refractive indices of the films had anomalous dispersion in the absorption region and normal dispersion in the transparent region. The dissipation rate of the electromagnetic wave at 500 °C was shown to have maximum value.

  9. Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misdan, Nurasyikin; Lau, Woei Jye; Ong, Chi Siang; Ismail, Ahmad Fauzi; Matsuura, Takeshi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    Three composite nanofiltration (NF) membranes made of different substrate materials--polysulfone (PSf), polyethersulfone (PES) and polyetherimide (PEI)--were successfully prepared by interfacial polymerization technique. Prior to filtration tests, the composite NF membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS). It was observed that the surface properties of composite NF membranes were obviously altered with the use of different substrate materials. The separation performance of the prepared composite NF membranes was further evaluated by varying operating conditions, which included feed salt concentration and operating temperature. Experimental results showed that the water flux of all TFC membranes tended to decrease with increasing Na{sub 2}SO{sub 4} concentration in feed solution, due to the increase in feed osmotic pressure. Of the three TFC membranes studied, PSf-based membrane demonstrated the highest salt rejection but lowest water flux owing to its highest degree of polyamide cross-linking as shown in XPS data. With respect to thermal stability, PEI-based TFC membrane outperformed the rest, overcoming the trade-off effect between permeability and rejection when the feed solution temperature was gradually increased from 30 .deg. C to 80 .deg. C. In addition, the relatively smoother surface of hydrophilic PEI-based membrane when compared with PSf-based membrane was found to be less susceptible to BSA foulants, leading to lower flux decline. This is because smoother surface of polyamide layer would have minimum 'valley clogging,' which improves membrane anti-fouling resistance.

  10. Effect of geometry on hydrodynamic film thickness

    Science.gov (United States)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  11. Electrical Characterization of Cu Composition Effects in CdS/CdTe Thin-Film Solar Cells with a ZnTe:Cu Back Contact: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. V.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Dhere, R. G.; Young, M. R.; Levi, D. H.

    2012-07-01

    We study the effects of Cu composition on the CdTe/ZnTe:Cu back contact and the bulk CdTe. For the back contact, its potential barrier decreases with Cu concentration while its saturation current density increases. For the bulk CdTe, the hole density increases with Cu concentration. We identify a Cu-related deep level at {approx}0.55 eV whose concentration is significant when the Cu concentration is high. The device performance, which initially increases with Cu concentration then decreases, reflects the interplay between the positive influences and negative influences (increasing deep levels in CdTe) of Cu.

  12. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  13. Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly(3-hydroxybutyrate-co-3-hydroxyvalerate composite films

    Directory of Open Access Journals (Sweden)

    M. F. Zhu

    2013-09-01

    Full Text Available Full biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV composite films were prepared with 5~40 wt% green tea polyphenol (TP as toughener. The effects of mixing TP on mechanical properties, thermal properties and hydrophilic-hydrophobic properties of composite films were investigated. Tension test results show that the incorporation of TP in the PHBV matrix can enhance the toughness of the composite films. Differential scanning calorimetric (DSC studies show that there is a single glass transition temperature and the lower melting point temperature. Fourier transform infrared (FT-IR results confirm that the intermolecular hydrogen bonding interactions in composite films. Contact angle measurements show that the hydrophilicity of TP/PHBV composite films can be controlled through adjusting the composition of TP.

  14. Eco-nano composite films containing copper as potential antimicrobial active packaging

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose, E-mail: julio.bruna@usach.cl [Center for the Development of Nanoscience and Nanotechnology, Packaging Laboratory, University of Santiago de Chile. Santiago (Chile)

    2011-07-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  15. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  16. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  17. Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, 04510 D. F. (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, D. F. (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Cheang-Wong, J.C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Mexico, D.F. 01000 (Mexico); Terrones, M. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas, 4a. seccion, San Luis Potosi, 78216 (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, D. F. (Mexico); Olvera, M. de la L [Depto. de Ing. Electrica, CINVESTAV IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico)]. E-mail: molvera@cinvestav.mx

    2007-03-01

    Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature.

  18. 界面缺陷对压电薄层复合结构中Love波的影响%Effect of interfacial defect on Love waves in composite structures with piezoelectric thin film

    Institute of Scientific and Technical Information of China (English)

    王惠明; 赵志城

    2012-01-01

    基于剪切弹簧模型,建立考虑界面缺陷情形的弹性基底上覆盖压电薄层的复合结构中Love波的频散方程,并研究界面缺陷对Love波传播特性的影响,给出铝基底上覆盖PZT4压电薄层复合结构中Love波的频散曲线.数值结果表明:(1)对于长波情形,不同缺陷程度复合结构的Love波一阶模态的相速度均趋于弹性基底层的剪切波波速,而对于短波情形,则趋于压电薄层的Bleustein-Gulyaev(B-G)波波速;(2)界面缺陷的存在总是降低该复合结构内Love波的相速度,在一些特殊频率范围,Love波的相速度对界面缺陷非常敏感;(3)界面缺陷对压电层内的机械位移模态和电势模态有显著影响,且影响最大区域出现在界面附近.%Based on the shear spring model, the dispersion equation was established for Love waves propagating in a composite structure with interfacial defect. The composite structure consists of an elastic substrate covered by a piezoelectric thin film. The effect of the interfacial defect on the propagation properties of Love waves was investigated. The dispersion curves were presented for Love waves propagating in an aluminum substrate covered by a PZT4 piezoelectric thin film. Numerical results show that; (1) For different interfacial defects, the phase velocities of Love waves of the first mode at long wavelength region approach to the velocities of shear waves in elastic substrate, while those at short wavelength region approach to the velocities of Bleustein-Gulyaev (B-G) waves in piezoelectric thin film; (2) The existence of the interfacial defect always decreases the phase velocities of Love waves. At some special frequency ranges, the phase velocities of Love waves are more sensitive to the interfacial defect; (3) The interfacial defect has significant effect on the mode shapes of the mechanical displacement and the electric potential in the piezoelectric thin film, and the most susceptive region appears near

  19. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials.

  20. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    Science.gov (United States)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  1. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    OpenAIRE

    Rackel Reis; Dumée, Ludovic F.; Tardy, Blaise L.; Raymond Dagastine; John D. Orbell; Jürg A. Schutz; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membra...

  2. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    Science.gov (United States)

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  3. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    Science.gov (United States)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a "step-composition gradient channel." We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (-3.7 V) and good instability characteristics with a reduced threshold voltage shift ( Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm2/V s. We presented a unique active layer of the "step-composition gradient channel" in the oxide TFTs and explained the mechanism of adequate channel design.

  4. Polyaniline/polysulfone composite film electrode for simultaneous determination of hydroquinone and catechol

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaojuan, E-mail: fengxiaojuan820@yahoo.cn [Chemistry Department of HeXi University, Zhangye 734000 (China); Shi Yanlong [Chemistry Department of HeXi University, Zhangye 734000 (China); Hu Zhongai [Key Laboratory of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We prepared a composite film which has bi-layers with asymmetric microstructure and relatively rich porosity which provides larger surface area for electrochemical reaction. Black-Right-Pointing-Pointer The outer polysulfone layer is propitious for the organic molecules to enrich on the composite film, which brings great enhancement in electron transfer kinetics. Black-Right-Pointing-Pointer The composite film electrode can be used to detect qualitatively or quantitatively hydroquinone and catechol in the single solute or mixed systems. - Abstract: Polyaniline (PAN)/polysulfone (PSF) composite film electrodes were successfully prepared by electropolymerization using cyclic votammetry technique. The composite film electrodes show a great enhancement in electron transfer kinetics, and the separation between oxidation and reduction peaks ({Delta}E{sub p}) decreases from 200 to 35 mV for hydroquinone (H{sub 2}Q) and from 275 to 42 mV for catechol (CC) at bare Pt and composite film electrodes respectively. In their mixed systems, the redox peak of H{sub 2}Q and two pairs of redox peaks of CC on this composite film electrode could be obviously distinguished which indicates the composite film electrodes have excellent electrocatalytic activity and reversibility towards the oxidation of two diphenols (hydroquinone and catechol). The linear relationships between the peak current and concentration are observed for single solute and mixed systems within the certain concentration range, implying that the composite film electrodes have potential application in the qualitative or quantitative analysis of diphenol.

  5. The Effects of plasticizers and palmitic acid toward the properties of the carrageenan Film

    Science.gov (United States)

    Heru Wibowo, Atmanto; Listiyawati, Oktaviana; Purnawan, Candra

    2016-02-01

    Varied plasticizers and palmitic acid additive have been added in the carrageenan film. The film was made by mixing of the carrageenan and plasticizers (glycerol, polyethylene glycol, polyvinyl alcohol) with composition of 92:3, 90:6, 87:9, 84:12, 81:15(%w/w) and in the presence of palmitic acid as additive with 1%, 2%, 3%, 4%, 5% of total weight. Casting method was used for the film molding and drying at 60oC with the oven for 12 hours. To investigate the effects of plasticizers and additive, some mechanical tests on film were performed. The test result concludes that plasticizers in the film decreased the tensile strength and increased the elongation break of the carrageenan film. The additive of palmitic acid decreased the tensile strength of the carrageenan film and also decreased the-the water absorbance of the film. The highest tensile strength of films made was with the formulation of carrageenan: PEG with composition of 92:3 (% w/w). The highest elongation break of the film was for carrageenan:PVA with the composition of 81: 15 (%w/w) and carrageenan:palmitic acid:PEG with the composition of 92: 3: 1 (%w/w). The lowest water absorption of the film was achieved for carrageenan:PVA:palmitic acid with the composition of 87: 3: 5 (%w/w).

  6. 酸溶剂对葛根淀粉/壳聚糖复合可食膜性能的影响%Effects of acid solvents on properties of kudzu starch/chitosan composite edible films

    Institute of Scientific and Technical Information of China (English)

    钟宇; 李云飞

    2012-01-01

    In order to evaluate the effects of acid solvents on antibacterial, physical and mechanical properties of composite edible films, the kudzu starch-chitosan composite film-forming solutions were prepared by tape casting with mass fraction 1% of acetic acid, lactic acid and malic acid as solvents. For the film, 0.5g/L of ascorbic acid as the active additive, 0.6g/L of glycerol as the plasticizer and 0.1 g/L of Tween 20 as the surfactant were added into the solutions. It was found that there was certain surface activity for film-forming solution, and acid solvent had no obvious impact on the surface tension of each solution. The types of acid solvents had obvious impact on the performance of composite films, in which the film with acetic-acid solvent had best mechanic strength, the mean tensile strength and puncture strength were 5.73 MPa and 8.63 N, respectively, and its solubility was the smallest, which was about 34%. The film made from lactic acid solution displayed the greatest flexible property, which mean elongation and puncture distance were 71.5% and 6.05 mm, respectively. The composite film using malic acid as solvent showed the best antibacterial activity against escherichia coli and staphylococcus aureus, which were 98.9% and 81.2%, respectively, and its water-tightness was best, which the water vapor permibility was 4.82×10-11 g/(m·s·Pa). So different acid solvents can be selected to prepare films according to different requirements. The study results can provide theoretical references for the application of edible films.%为了考察壳聚糖酸溶剂对葛根淀粉/壳聚糖复合可食膜抗菌、物理和机械性能的影响,该文选择质量分数为1%的乙酸、乳酸、苹果酸为溶剂,配制质量体积比2g/L的葛根淀粉-壳聚糖复合膜液,以0.5g/L的抗坏血酸为活性添加剂,0.6g/L的丙三醇为增塑剂,0.1g/L的吐温20为表面活性剂,采用流延法制备可食性复合膜.结果表明:复合膜液具有一定的表

  7. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Science.gov (United States)

    Gautam, Subodh K.; Chettah, Abdelhak; Singh, R. G.; Ojha, Sunil; Singh, Fouran

    2016-07-01

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO2 composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb2O5) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb2O5 phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO2 and Nb2O5 phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO2 phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  8. Surface morphology and composition studies in InGaN/GaN film grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    Tao Tao; Han Ping; Shi Yi; Zheng Youdou; Zhang Zhao; Liu Lian; Su Hui; Xie Zili; Zhang Rong; Liu Bin; Xiu Xiangqian; Li Yi

    2011-01-01

    InGaN filmsweredepositedon(0001)sapphiresubstrates with GaN buffer layers under different growth temperatures by metalorganic chemical vapor deposition.The In-composition of InGaN film was approximately controlled by changing the growth temperature.The connection between the growth temperature,In content,surface morphology and defect formation was obtained by X-ray diffraction,scanning electron microscopy (SEM) and atomic force microscopy (AFM).Meanwhile,by comparing the SEM and AFM surface morphology images,we proposed several models of three different defects and discussed the mechanism of formation.The prominent effect of higher growth temperature on the quality of the InGaN films and defect control were found by studying InGaN films at various growth temperatures.

  9. The role of film composition and nanostructuration on the polyphenol sensor performance

    Directory of Open Access Journals (Sweden)

    Cibely Silva Martin

    2016-12-01

    Full Text Available The recent advances in the supramolecular control in nanostructured films have improved the performance of organic-based devices. However, the effect of different supramolecular arrangement on the sensor or biosensor performance is poorly studied yet. In this paper, we show the role of the composition and nanostructuration of the films on the impedance and voltammetric-based sensor performance to catechol detection. The films here studied were composed by a perylene derivative (PTCD-NH2 and a metallic phthalocyanine (FePc, using Langmuir-Blodgett (LB and physical vapor deposition (PVD techniques. The deposition technique and intrinsic properties of compounds showed influence on electrical and electrocatalytic responses. The PVD PTCD-NH2 shows the best sensor performance to the detection of catechol. Quantification of catechol contents in mate tea samples was also evaluated, and the results showed good agreement compared with Folin-Ciocalteu standard method for polyphenol detection.

  10. Preparation and Characterization of InAs/Si Composite Film

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; LI Guang-Hai; ZHENG Mao-Jun; ZHANG Li-De

    2000-01-01

    Composite thin films consisting of nanosized InAs particles embedded in amorphous Si matrices were prepared by radio frequency co-sputtering of InAs and Si. X-ray diffraction spectra show that the particle size of InAs increases with the increasing annealing temperature, while the particle sizes of In and As reach their maximum values at the temperature of 200℃, and decrease with the further increase of the annealing temperature. In and As can not exist in the 500℃ sample due to the sublimation of In and As and the reaction In+As→InAs. The composition of the film in different levels was analyzed. We found that only in the deep level, the mole contents of As and In conform to the stoichiometric ratio and the oxidation occurs only a few nanometers from the surface. We believe that the scarcity of In and As near the surface is due to the sublimation of In and the oxide of As.

  11. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  12. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  13. Characterization of whey protein-carboxymethylated chitosan composite films with and without transglutaminase treatment.

    Science.gov (United States)

    Jiang, Shu-Juan; Zhang, Xuan; Ma, Ying; Tuo, Yanfeng; Qian, Fang; Fu, Wenjia; Mu, Guangqing

    2016-11-20

    Edible composite packaging has the advantage of complementary functional properties over its each bio-components. However, reports on whey protein concentrates (WPC)-carboxymethylated chitosan (CMC) composite films have not yet been released. To investigate the preparation of WPC-CMC composite films and its functional properties, four types of WPC-CMC composite films were prepared with and without Transglutaminase (TGase) treatment by mixing WPC aqueous solutions (10%, w/v) with CMC aqueous solutions (3%, w/v) at WPC to CMC volume ratios of (100:0), (75:25), (50:50), and (25:75). SDS-PAGE confirmed that TGase catalyzed crosslinking of whey protein. Results revealed that CMC incorporation conferred a smooth and even surface microstructure on the films and markedly improved the transparency, water barrier properties, mechanical properties and solubility of the composite film. Furthermore, TGase resulted in an improvement in the water vapor barrier properties and mechanical properties of WPC-CMC (75:25 and 50:50, v/v) composite films, and there was no impairment of thermal stability of composite films. Therefore, TGase successfully facilitated the formation of WPC-CMC composite films with some improved functional properties. This offers potential applications as an alternative approach to the preparation of edible packaging films.

  14. Fabrication and Electrical Characteristics of Graphite/Carbon Nanotube/Polyvinyl Butyral Composite Film via Tape-Casting and Heat-Treatment.

    Science.gov (United States)

    Kim, Min-Young; Choi, Seung-Woo; Boo, Seong Jae; Lee, Jong-Ho; Noh, Hee Sook; Kim, Ho-Sung

    2015-10-01

    Composite stacking films, which can be applied as the bipolar plates of redox flow batteries, were fabricated via a tape-casting process that used slurry of graphite, CNT, and resin materials. The slurry was made of 25~45 wt% conductive filler (graphite, CNT) and 55~75 wt% polyvinyl butyral (PVB) binder solution (binder, dispersant, plasticizer, and solvent). The sheet thickness of the composite films was controlled to 70~150 μm, and composite films of about 1 mm in thickness were also fabricated by stacking and laminating the sheet film, including the conductive filler of above 85 wt%. The effects of the shape and physical properties of the graphite were investigated with regard to the dispersion behavior and flow of the slurry on the carrier film of the tape-casting device. As a result, the acicular graphite showed a good dispersion property with the resin of the PVB binder, as compared to spherical graphite. The composite film with acicular graphite showed a lower resistivity than that of a film with spherical graphite. Furthermore, the effects of adding a small amount of CNT and the heat-treatment to the composite stacking film were also studied. Finally, the composite film showed an electrical characteristic of below 50 mΩ·cm and a high bending strength of above 20 MPa.

  15. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  16. Synovial fluid lubrication of artificial joints: protein film formation and composition.

    Science.gov (United States)

    Fan, Jingyun; Myant, Connor; Underwood, Richard; Cann, Philippa

    2012-01-01

    Despite design improvements, wear of artificial implants remains a serious health issue particularly for Metal-on-Metal (MoM) hips where the formation of metallic wear debris has been linked to adverse tissue response. Clearly it is important to understand the fundamental lubrication mechanisms which control the wear process. It is usually assumed that MoM hips operate in the ElastoHydrodynamic Lubrication (EHL) regime where film formation is governed by the bulk fluid viscosity; however there is little experimental evidence of this. The current paper critically examines synovial fluid lubrication mechanisms and the effect of synovial fluid chemistry. Two composition parameters were chosen; protein content and pH, both of which are known to change in diseased or post-operative synovial fluid. Film thickness and wear tests were carried out for a series of model synovial fluid solutions. Two distinct film formation mechanisms were identified; an adsorbed surface film and a high-viscosity gel. The entrainment of this gel controls film formation particularly at low speeds. However wear of the femoral head still occurs and this is thought to be due primarily to a tribo-corrosion mechanisms. The implications of this new lubrication mechanism and the effect of different synovial fluid chemistries are examined. One important conclusion is that patient synovial fluid chemistry plays an important role in determining implant wear and the likelihood of failure.

  17. Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode

    Science.gov (United States)

    Tai, Zhixin; Yan, Xingbin; Xue, Qunji

    2012-09-01

    In this paper, a graphene/shape-memory polyurethane (PU) composite film, used for a supercapacitor electrode, is fabricated by a simple bonding method. In the composite, formerly prepared graphene paper is closely bonded on the surface of the PU slice, forming a bi-layered composite film. Based on the good flexibility of graphene paper and the outstanding shape holding capacity of PU phase, the resulting composite film can be changed into various shapes. Also, the composite film shows excellent shape recovery ability. The graphene/PU composite film used as the electrode maintains a satisfactory electrochemical capacitance of graphene material and there is no decay in the specific capacitance after long-cycle testing, making it attractive for novel supercapacitors with special shapes and shape-memory ability.

  18. Fabrication and Properties of 3D Graphene Oxide Nanoribbons-carbon Nanotubes/TPU Composite Films

    Directory of Open Access Journals (Sweden)

    ZHENG Hui-dong

    2016-06-01

    Full Text Available A solution method for modifying thermoplastic polyurethane (TPU by the introduction of 3D functionalized nanohybrids composed of two-dimensional GONRs and one-dimensional CNTs was applied. FTIR, XRD, XPS and TEM were employed to characterize the structure and properties of GONRs-CNTs hybrids before and after modification. The functionalized GONRs-CNTs (pGONRs-CNTs/TPU composite films were subsequently prepared by solution coating method on a coating machine. Furthermore, by means of oxygen transmission rate test, tensile test and the observation of surface morphology, the synergetic effect between GONRs and CNTs and the effect of different pGONRs-CNTs content on the barrier and tensile properties of TPU composite films were also studied. The results show that a unique three-dimensional (3D crosslinked nanostructure is successfully obtained, in which GONRs are bridged by CNTs. We also find that the as-prepared pGONRs-CNTs with neat shape and low defect are evenly dispersed in TPU matrix and form strong interfacial adhesion with the matrix, while the existing of CNTs play the role of supporting frame to prevent GONRs from sliding and aggregation; modified by phenyl isocyanate, the lipophilicity of pGONRs-CNTs composite is obviously improved, while, by the introduction of huge isocyanate, the interlayer spacing is further improved, which is good for uniform dispersion in the polymer matrix. As a result, when the mass fraction of pGONRs-CNTs is 0.5%, the barrier and tensile properties of pGONRs-CNTs/TPU composite films reach to the optimal values:the oxygen transmission rate decreases by 63.08% and the tensile strength increases by 46.55%, compared with those of the neat TPU, which will lead to great benefit for the barrier and mechanical properties of TPU films.

  19. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  20. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    Science.gov (United States)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  1. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Science.gov (United States)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  2. Polymer−metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, S.; Gravesteijn, Dirk J; Soccol, D.; Kapteijn, F.; Sudhölter, E.J.R.; Gascon, J.; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer. Sensing

  3. Piezoresistive effect in carbon nanotube films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The piezoresistive effect of the pristine carbon nanotube (CNT) films has been studied. Carbon nanotubes were synthesized by hot filament chemical vapor deposition. The piezoresistive effect in the pristine CNT films was studied by a three-point bending test. The gauge factor for the pristine CNT films under 500 microstrains was found to be at least 65 at room temperature, and increased with temperature, exceeding that of polycrystalline silicon (30) at 35℃. The origin of the piezoresistivity in CNT films may be ascribed to a pressure-induced change in the band gap and the defects.

  4. Layered TiO2: PVK nano-composite thin films for photovoltaic applications. TiO2: PVK nano-composite thin films.

    Science.gov (United States)

    Kaune, G; Wang, W; Metwalli, E; Ruderer, M; Rossner, R; Roth, S V; Müller-Buschbaum, P

    2008-01-01

    The influence of the solvent used for spin-coating on the homogeneity of poly(N-vinylcarbazole) (PVK) films is investigated. Homogenous films are obtained only by the use of toluene, solution in tetrahydrofuran (THF) and chloroform results in radially oriented inhomogeneities and films prepared by use of N-methylpyrrolidone and dimethylacetamide show particle formation during spin-coating. Layered nano-composite thin films are prepared by spin-coating a PVK film on top of a nano-structured titanium dioxide ( TiO2) layer. The TiO2 thin films are prepared by a sol-gel process using an amphiphilic copolymer as structure-directing agent. Structural characterisation of the TiO2 :PVK nano-composite films is done by field emission scanning electron microscopy (FESEM) and grazing-incidence small-angle scattering (GISAXS). Bare TiO2 films are probed for comparison. Light is basically only absorbed in the ultraviolet regime and absorption slightly increases upon addition of PVK, which makes the layered TiO2 :PVK nano-composite thin films good candidates for UV photovoltaic devices. Furthermore, absorption remains stable over a period of several days.

  5. Composition, XRD and morphology study of laser prepared LiNbO3 films

    Science.gov (United States)

    Jelínek, M.; Havránek, V.; Remsa, J.; Kocourek, T.; Vincze, A.; Bruncko, J.; Studnička, V.; Rubešová, K.

    2013-03-01

    LiNbO3 films were deposited by PLD from LiNbO3 crystalline or from three different stoichiometric or Li-enriched LiNbO3 targets. Polycrystalline films were prepared on SiO2/Si or sapphire substrates at temperatures T S ˜650-750 °C. Main attention was paid to the influence of targets preparation and the deposition conditions on films composition, morphology and crystallinity. The thin-film morphology was determined by SEM microscopy. The composition was measured by SIMS, RBS, PIXE and PIGE methods. Highly oriented, smooth and stoichiometric LiNbO3 films were synthesized.

  6. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    Science.gov (United States)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  7. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  8. Effect of the oxygen flow rate on the structure and the properties of Ag-Cu-O sputtered films deposited using a Ag/Cu target with eutectic composition

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, J.F. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS 14234, 54042 Nancy Cedex (France)], E-mail: jean-francois.pierson@mines.inpl-nancy.fr; Rolin, E.; Clement-Gendarme, C.; Petitjean, C.; Horwat, D. [Laboratoire de Science et Genie des Surfaces (UMR CNRS 7570), Ecole des Mines, Parc de Saurupt, CS 14234, 54042 Nancy Cedex (France)

    2008-08-15

    Ag-Cu-O films were deposited on glass substrates by reactive sputtering of a composite Ag{sub 60}Cu{sub 40} target in various Ar-O{sub 2} mixtures. The films were characterised by energy dispersive X-ray analysis, X-ray diffraction, UV-visible spectroscopy and using the four point probe method. The structure of the films is strongly dependent on the oxygen flow rate introduced in the deposition chamber. The variation of the oxygen flow rate allows the deposition of the following structures: Ag-Cu-(O) solid solution, nc-Ag + nc-Cu{sub 2}O, nc-Ag + nc-(Ag,Cu){sub 2}O and finally X-ray amorphous. UV-visible reflectance measurements confirm the occurrence of metallic silver into the deposited films. The increase of the oxygen flow rate induces a continuous increase of the film oxygen concentration that can be correlated to the evolution of the film reflectance and the film electrical resistivity. Finally, the structural changes vs. the oxygen content are discussed in terms of reactivity of sputtered atoms with oxygen.

  9. Characterization of bamboo cellulose-based green composite film by NMMO technology

    Institute of Scientific and Technical Information of China (English)

    Hongxia FANG; Jinyu SUN; Lei ZHANG

    2008-01-01

    Bamboo cellulose, lignin and starch have been molecularly blended to form homogeneous composite films by NMMO-technology. The structural properties of the films were investigated with FTIR, WAXD and AFM technologies, respectively. The results show that bamboo cellulose, lignin and starch have been molecularly blended through NMMO-technology. There was a two-phase system consisting of ternary composite components as one phase and pores as the other on the surface of the composite film. Because of the existence of homogeneous phase structure formed by the rearrangement of the nat-ural polymer molecules, the film shows good properties originating from the mutual supplement of different nat-ural components.

  10. Magnetic and Optical Properties of the TiO2-Co-TiO2 Composite Films Grown by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    LIU Fa-min; DING Peng; SHI Wei-mei; WANG Tian-min

    2007-01-01

    The TiO2-Co-TiO2 sandwich films were successfully grown on glass and silicon substrata making alternate use of radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and properties of these films were identified with X-ray diffraction (XRD), Raman spectra and X-ray photoemission spectra (XPS). It is shown that the sandwich film consists of two anatase TiO2 films with an embedded Co nano-film. The fact that, when the Co nano-film thickens, varied red shifts appear in optical absorption spectra may well be explained by the quantum confinement and tunnel effects. As for magnetic properties, the saturation magnetization, remnant magnetic induction and coercivity vary with the thickness of the Co nano-films. Moreover, the Co nano-film has a critical thickness of about 8.6 nm, which makes the coercivity of the composite film reach the maximum of about 1413 Oe.

  11. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    Science.gov (United States)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  12. Preparation and properties of biodegradable films from Sterculia urens short fiber/celluose green composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2013-04-01

    Full Text Available of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has...

  13. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Science.gov (United States)

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  14. Anisotropic conductance of the multiwall carbon nanotube array/silicone elastomer composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yuan; Liu Changhong; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)

    2006-09-14

    Multiwall carbon nanotube array/silicone elastomer composite films have been fabricated with an in situ injection modelling method. The transverse conductivity of the composite films is larger than the lateral conductivity because the aligned carbon nanotube array is embedded into the polymer matrix. The nonlinear I-V curve has been analysed and the temperature-dependent transport behaviour has been investigated.

  15. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering

    Science.gov (United States)

    Xia, Changlei; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cheng, Jiangtao; Cai, Liping; Chen, Kathleen; Tan, Hwa-Shen

    2016-01-01

    To fabricate kenaf fiber composites with electromagnetic interference (EMI) shielding function, the technique of vacuum-assisted resin transfer molding (VARTM) and Cu film magnetron sputtering were employed. The EMI shielding effectiveness (SE) and composite surface characteristics were examined with PNA Network Analyzer, Quanta 200 environmental scanning electron microscope and OCA20 contact angle meter. After being Cu-sputter coated for 0.5 h, 1 h, 2 h, and 3 h, the EMI SE values were increased to be 23.8 dB, 32.5 dB, 43.3 dB, and 48.3 dB, which denoted 99.5799%, 99.9437%, 99.9953%, or 99.9985% incident signal was blocked, respectively. The SEM observations revealed that the smoother surface of the composites was obtained by longer time sputtering, resulting in the SE improvement. The contact angle increased from 49.6° to 129.5° after 0.5 h sputtering, which indicated that the coated Cu film dramatically improved the hydrophobic property of composite. When the coating time increased to 3 h, the contact angle decreased to 51.0° because the composite surface roughness decreased with the increase in coating time.

  16. Compositional Dependence of Structural Properties of Prepared PbS1− Alloys and Films

    Directory of Open Access Journals (Sweden)

    M. F. A. Alias

    2011-01-01

    Full Text Available Results of a study of PbS1− alloys and films with various Pb content have been reported and discussed. Films of PbS1− of thickness 1.5 μm have been deposited on glass substrates by flash thermal evaporation method at room temperature, under vacuum at constant deposition rate. These films were annealed under vacuum around 10−6 Torr at different temperatures up to 523 K. The composition of the elements in PbS1− alloys was determined by standard surfaces techniques such as atomic absorption spectroscopy (AAS and X-ray fluorescence (XRF, and the results were found of high accuracy and in very good agreement with the theoretical values. The structure for alloys and films is determined by using X-ray diffraction. This measurement reveals that the structure is polycrystalline with cubic structure and there are strong peaks at the direction (200 and (111. The effect of heat treatment on the crystalline orientation, relative intensity, and grain size of PbS1− films is presented.

  17. Perpendicular magnetic anisotropy of CoPt-AlN composite film with nano-fiber structure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.C.; Toyoshima, H.; Hashimoto, M. [University of Electro-Communications, Department of Applied Physics and Chemistry, Tokyo (Japan); Shi, J.; Nakamura, Y. [Tokyo Institute of Technology, Department of Metallurgy and Ceramics Science, Tokyo (Japan)

    2005-06-01

    Co-Pt-AlN films were prepared by sputtering a Co-Pt-Al composite target in Ar+N{sub 2} atmosphere. Upon thermal annealing at elevated temperatures, fcc CoPt and a-AlN are formed in the films as phases separated from one other. Both phases develop as fiber-like columnar grains vertical to the substrate and with their lateral size less than 10 nm. Because of the shape anisotropy of the magnetic fiber grains the CoPt-AlN film shows a perpendicular magnetic anisotropy at a thickness equal to or larger than about 25 nm while the Co-TiN and CoPt-TiO{sub 2} films do not unless their thicknesses reach 50 and 100 nm, respectively. This suggests that both the shape anisotropy of the CoPt magnetic fiber grains and their mutual separation in an a-AlN medium work more effectively in the formation with the perpendicular magnetic anisotropy. Such a perpendicular magnetic anisotropy of the CoPt-AlN film associated with the nano-scale feature makes it a very promising candidate for future recording media with ultra-high area density. (orig.)

  18. Mechanical and microstructural properties of "wet" alginate and composite films containing various carbohydrates.

    Science.gov (United States)

    Harper, B Allison; Barbut, Shai; Smith, Alexandra; Marcone, Massimo F

    2015-01-01

    Composite "wet" alginate films were manufactured from alginate-carbohydrate solutions containing 5% alginate and 0.25% pectin, carrageenan (kappa or iota), potato starch (modified or unmodified), gellan gum, or cellulose (extracted or commercial). The "wet" alginate films were used as a model to understand co-extruded alginate sausage casings that are currently being used by several sausage manufacturers. The mechanical, optical, and microstructural properties of the calcium cross-linked composite films were explored. In addition, the water holding capacity and textural profile analysis properties of the alginate-carbohydrate gels were studied. The results indicate that the mechanical properties of "wet" alginate films/casings can be modified by adding various carbohydrates to them. Alginate films with pectin, carrageenan, and modified potato starch had significantly (P alginate films. The alginate-pectin films also had greater (P alginate films. Alginate films with extracted cellulose, commercial cellulose, and modified potato starch had lower (P alginate control films. Transmission electron microscopy images showed a very uniform alginate network in the control films. Several large cellulose fibers were visible in the films with extracted cellulose, while the cellulose fibers in the films with commercial cellulose were difficult to distinguish. Despite these apparent differences in cellulose fiber length, the 2 cellulose films had similar puncture and tensile properties.

  19. STUDY ON COMPOSITION, MICROSTRUCTURE AND HARDNESS OF DLC FILMS BY VCAD

    Institute of Scientific and Technical Information of China (English)

    L. Chen; Z.Y. Liu; D.C. Zeng; W.Q. Qiu; Z.H. Yuan; S.S. Lin; H.J. Hou

    2003-01-01

    DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition(VCAD). The composition, microstructure and micro-hardness of the films have been studied in this paper. The results indicate that hardness of the DLC films is different on the different substrates. Hardness of the films increases with decreasing in surface roughness of the films. The maximum value of micro-hardness belongs to the DLC films deposited under the hydrogen pressure of 0.35Pa and the negative bias of 100V.

  20. Photocatalytic Activity of Vis-Responsive Ag-Nanoparticles/TiO2 Composite Thin Films Fabricated by Molecular Precursor Method (MPM

    Directory of Open Access Journals (Sweden)

    Mitsunobu Sato

    2013-07-01

    Full Text Available The Ag-nanoparticles (Ag-NP/TiO2 composite thin films with various amounts of Ag (10 mol% ≤ n ≤ 80 mol% were examined as a potential photocatalyst by decoloration reaction of methylene blue (MB in an aqueous solution. These composite thin films of ca. 100 nm thickness were fabricated by the MPM at 600 °C in air. The decoloration rates monitored by the absorption intensity of the MB solution indicated that the composite thin films of Ag with an amount less than 40 mol% are not effective under vis-irradiation, though they can work as a photocatalyst under UV-irradiation. Further, the UV-sensitivity of the composite thin films gradually decreased to almost half the level of that of the TiO2 thin film fabricated under the identical conditions when the Ag amount increased from 10 to 40 mol%. Contrarily, the composite thin films of Ag content larger than 50 mol% showed the vis-responsive activity, whose level was slightly lower than the decreased UV-sensitivity. Diffuse reflectance spectra suggested that the vis-responsive activity of the composite thin films is due to the conductivity, localized surface plasmon resonance and surface plasmon resonance of Ag-NP. It was also elucidated that the vis-responsive level of the composite thin films corresponds to their electrical conductivity that depends on the Ag content.

  1. Transparent Conductive Films Fabricated from Polythiophene Nanofibers Composited with Conventional Polymers

    Directory of Open Access Journals (Sweden)

    Borjigin Aronggaowa

    2013-11-01

    Full Text Available Transparent, conductive films were prepared by compositing poly(3-hexylthiophene (P3HT nanofibers with poly(methyl methacrylate (PMMA. The transparency, conductivity, atmospheric stability, and mechanical strength of the resulting nanofiber composite films when doped with AuCl3 were evaluated and compared with those of P3HT nanofiber mats. The conductivity of the nanofiber composite films was 4.1 S∙cm−1, which is about seven times less than that which was previously reported for a nanofiber mat with the same optical transmittance (~80% reported by Aronggaowa et al. The time dependence of the transmittance, however, showed that the doping state of the nanofiber composite films in air was more stable than that of the nanofiber mats. The fracture stress of the nanofiber composite film was determined to be 12.3 MPa at 3.8% strain.

  2. Formation of magnetically anisotropic composite films at low magnetic fields

    Science.gov (United States)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina

    2017-04-01

    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20–40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  3. Effect of Composition on Electrical and Optical Properties of Thin Films of Amorphous GaxSe100−x Nanorods

    Directory of Open Access Journals (Sweden)

    Abdallah El-Hamidy SM

    2010-01-01

    Full Text Available Abstract We report the electrical and optical studies of thin films of a-GaxSe100−x nanorods (x = 3, 6, 9 and 12. Thin films of a-GaxSe100−x nanorods have been synthesized thermal evaporation technique. DC electrical conductivity of deposited thin films of a-GaxSe100−x nanorods is measured as a function of temperature range from 298 to 383 K. An exponential increase in the dc conductivity is observed with the increase in temperature, suggesting thereby a semiconducting behavior. The estimated value of activation energy decreases on incorporation of dopant (Ga content in the Se system. The calculated value of pre-exponential factor (σ0 is of the order of 101 Ω−1 cm−1, which suggests that the conduction takes place in the band tails of localized states. It is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. On the basis of the optical absorption measurements, an indirect optical band gap is observed in this system, and the value of optical band gap decreases on increasing Ga concentration.

  4. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  5. Photocatalytic degradation of methyl orange over ITO/Cds/ZnO interface composite films.

    Science.gov (United States)

    Wei, Shouqiang; Shao, Zhongcai; Lu, Xudong; Liu, Ying; Cao, Linlin; He, Yan

    2009-01-01

    ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photocatalytic activity of ITO/CdS/ZnO composite films were investigated using methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including initial concentration of MO, pH value of solution, and inorganic anion species over the composite films were examined. A blue shift of absorption threshold was observed for the ITO/CdS/ZnO film in comparison with ITO/ZnO film. ITO/CdS/ZnO composite films prepared under specific conditions showed a higher photocatalytic activity than that of ITO/ZnO films. It was also found that the photocatalytic degradation of MO on the composite films followed pseudo-first order kinetics.

  6. Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Changlei [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Ren, Han [Department of Electrical Engineering, University of North Texas, Denton, TX 76203 (United States); Shi, Sheldon Q., E-mail: Sheldon.Shi@unt.edu [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Zhang, Hualiang [Department of Electrical Engineering, University of North Texas, Denton, TX 76203 (United States); Cheng, Jiangtao [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Cai, Liping [Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203 (United States); Chen, Kathleen; Tan, Hwa-Shen [Texas Academy of Mathematics and Science, University of North Texas, Denton, TX 76203 (United States)

    2016-01-30

    Graphical abstract: - Highlights: • Natural-fiber-reinforced composites with electromagnetic shielding were fabricated. • Copper magnetron sputtering was applied on the composite surfaces. • The highest electromagnetic interference shielding effective reached 48.3 dB. • The water contact angle changed from 49.6° to 129.5° after 0.5-h sputtering. - Abstract: To fabricate kenaf fiber composites with electromagnetic interference (EMI) shielding function, the technique of vacuum-assisted resin transfer molding (VARTM) and Cu film magnetron sputtering were employed. The EMI shielding effectiveness (SE) and composite surface characteristics were examined with PNA Network Analyzer, Quanta 200 environmental scanning electron microscope and OCA20 contact angle meter. After being Cu-sputter coated for 0.5 h, 1 h, 2 h, and 3 h, the EMI SE values were increased to be 23.8 dB, 32.5 dB, 43.3 dB, and 48.3 dB, which denoted 99.5799%, 99.9437%, 99.9953%, or 99.9985% incident signal was blocked, respectively. The SEM observations revealed that the smoother surface of the composites was obtained by longer time sputtering, resulting in the SE improvement. The contact angle increased from 49.6° to 129.5° after 0.5 h sputtering, which indicated that the coated Cu film dramatically improved the hydrophobic property of composite. When the coating time increased to 3 h, the contact angle decreased to 51.0° because the composite surface roughness decreased with the increase in coating time.

  7. Preparation and optical properties of composite thin films with embedded InP nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InP nanoparticles embedded in SiO2 thin films were prepared by radio-frequency magnetron co-sputtering. We analyzed the structure and growth behavior of the composite films under different preparation conditions. X-ray diffraction and Raman spectroscopy analyses indicate that InP nanoparticles have a polycrystalline structure. The aver-age size of InP nanoparticles is in the range of 3-10 nm. The broadening and red shift of the Raman peaks were observed,which can be interpreted by the phonon confinement model. Optical transmission spectra indicate that the optical absorp-tion edges of the films can be modulated in the visible light range. The marked blue shift of the absorption edge with respect to that of bulk InP is explained by the quantum con-finement effect. The theoretical values of the blue shift pre-dicted by the effective mass approximation model are differ-ent from the experimental results for the InP-SiO2 system. Analyses indicate that the exciton effective mass of the InP nanoparticles is not constant and is inverse relative to the particles radius,which may be the main reason that results in the discrepancy between the theoretical and the experi-mental result. We discussed the possible transition of the direct band gap to the indirect band gap for InP nanoparti-cles embedded in SiO2 thin films.

  8. Structure and photochromic properties of molybdenumphosphoric acid/TiO2 composite films

    Institute of Scientific and Technical Information of China (English)

    QI He; LIU Yan; FENG Wei; ZHU YiMin

    2009-01-01

    TiO2 sol-gel composite films with dropping molybdenumphosphoric acid (PMoA) have been prepared by sol-gel method. The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and X-ray diffraction (XRD) patterns, respectively. The photochromic behavior and mechanism of composite thin films were inves-tigated with ultraviolet-visible spectra (UV-vis) and electron spin resonance (ESR). FT-IR results showed that the Keggin geometry of PMoA was still preserved inside PMoA/TiO2 composite thin films, and a charge transfer bridge was built at the interface of PMoA and TiO2 through the Mo-O-Ti bond. Surface topography of the composite film showed obvious changes before/after adding PMoA, and the surface topography of composite films showed obvious changes before/after irradiating as well. Composite thin film had reversible photochromic properties. Irradiated with UV light, transparent films changed from colorless to blue and they can bleach completely with ambient air in the dark. ESR re-sults showed that TiO2 were excitated by UV light to produce electrons, which deoxidized PMoA to produce heteropolyblues. The photochromic process of PMoA/TiO2 system was carried through elec-tron transfer mechanism.

  9. Structure and photochromic properties of molybdenumphosphoric acid/TiO2 composite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    TiO2 sol-gel composite films with dropping molybdenumphosphoric acid(PMoA) have been prepared by sol-gel method.The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy(FT-IR),atomic force microscopy(AFM),and X-ray diffraction(XRD) patterns,respectively.The photochromic behavior and mechanism of composite thin films were inves-tigated with ultraviolet-visible spectra(UV-vis) and electron spin resonance(ESR).FT-IR results showed that the Keggin geometry of PMoA was still preserved inside PMoA/TiO2 composite thin films,and a charge transfer bridge was built at the interface of PMoA and TiO2 through the Mo-O-Ti bond.Surface topography of the composite film showed obvious changes before/after adding PMoA,and the surface topography of composite films showed obvious changes before/after irradiating as well.Composite thin film had reversible photochromic properties.Irradiated with UV light,transparent films changed from colorless to blue and they can bleach completely with ambient air in the dark.ESR re-sults showed that TiO2 were excitated by UV light to produce electrons,which deoxidized PMoA to produce heteropolyblues.The photochromic process of PMoA/TiO2 system was carried through elec-tron transfer mechanism.

  10. Composite Film of Vanadium Dioxide Nanoparticles and Ionic Liquid-Nickel-Chlorine Complexes with Excellent Visible Thermochromic Performance.

    Science.gov (United States)

    Zhu, Jingting; Huang, Aibin; Ma, Haibin; Ma, Yining; Tong, Kun; Ji, Shidong; Bao, Shanhu; Cao, Xun; Jin, Ping

    2016-11-02

    Vanadium dioxide (VO2), as a typical thermochromic material used in smart windows, is always limited by its weaker solar regulation efficiency (ΔTsol) and lower luminous transmittance (Tlum). Except for common approaches such as doping, coating, and special structure, compositing is another effective method. The macroscopic thermochromic (from colorless to blue) ionic liquid-nickel-chlorine (IL-Ni-Cl) complexes are selected in this paper to be combined with VO2 nanoparticles forming a composite film. This novel scheme demonstrates outstanding optical properties: ΔTsol = 26.45% and Tlum,l = 66.44%, Tlum,h = 43.93%. Besides, the addition of the IL-Ni-Cl complexes endows the film with an obvious color change from light brown to dark green as temperature rises. This splendid visible thermochromic performance makes the composite film superior in function exhibiting and application of smart windows.

  11. Preparation and characterization of CoFe2O4/TiO2 magnetic composite films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on micro- structures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.

  12. Fluoropolymer/SiO2 composite films with switchable superoleophilicity and high oleophobicity for “on-off” oil permeation

    Science.gov (United States)

    Yang, Hao; Hu, Xiaojing; Chen, Rong; Liu, Shantang; Pi, Pihui; Yang, Zhuo-ru

    2013-09-01

    In this work, fluoropolymer/SiO2 composite films with switchable superoleophilicity and high oleophobicity have been successfully prepared on stainless steel mesh. Tunable wettability could be easily realized by merely reversing the feeding order of the perfluorinated monomer in the polymerization. The effects of surface roughness and chemical composition on the wettability of the films were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the distribution of low surface energy groups plays a crucial role in determining the surface oleophobicity or oleophilicity. The porous stainless steel mesh with fluoropolymer/SiO2 composite could construct dual-scale roughness, leading to less wetting of the solid. The stainless steel mesh coated with the proposed as-prepared polymer films may lead to an oil-water separation membrane. This work provides an interesting insight into the design of novel functional devices that are relevant to oil/water separation.

  13. Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics.

    Science.gov (United States)

    Péroval, Claudine; Debeaufort, Frédéric; Despré, Denis; Voilley, Andrée

    2002-07-01

    Arabinoxylans (AX) are natural fibers extracted from maize bran, an industrial byproduct. To promote this polymer as a food ingredient, development of edible coatings and films had been proposed. Indeed, composite arabinoxylan-based films were prepared by emulsifying a fat: palmitic acid, oleic acid, triolein, or a hydrogenated palm oil (OK35). Lipid effects on water vapor permeability (WVP), surface hydrophobicity (contact angles), lipid particle size, and mechanical properties were investigated. Results showed that OK35-AX emulsion films had the lowest WVP. Emulsified films presented a bimodal particle size distribution; however, the smallest particle mean diameter (0.54 microm) was observed in OK35-AX emulsion films. Contact angles of water comparable to those observed for LDPE films (>90 degrees ) are measured on the OK35-AX film surface. Finally, only triolein-AX emulsion films had elongation higher than films without lipid. These results suggest that OK35 enhances functional properties of AX-based films and should be retained for further research.

  14. Preparation of porous TiO{sub 2}/ZnO composite film and its photocathodic protection properties for 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongmei; Liu, Wei, E-mail: weiliu@ouc.edu.cn; Cao, Lixin; Su, Ge; Duan, Ruijing

    2014-05-01

    Highlights: • Porous TiO{sub 2}/ZnO composite films were prepared on the 304 stainless steel. • The preparation parameters of the composite films were optimized. • Porous TiO{sub 2}/ZnO composite films provide an effective photogenerated cathodic protection for 304 stainless steel. - Abstract: TiO{sub 2}/ZnO composite films with porous structure were prepared on the 304 stainless steel (304SS) by the sol-gel method and heating treatment. The crystalline phase and morphology of as-prepared TiO{sub 2}/ZnO composite films were characterized systematically by X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible (UV–vis) spectroscopy, respectively. The influences of Ti/Zn molar ratio and the annealing temperature on the photoelectric property of the samples have been investigated and their photocathodic protection performances for 304 stainless steel under dark and UV conditions have also been evaluated in 3.0% NaCl solution by the electrochemical measurements. The results indicate that porous TiO{sub 2}/ZnO composite film has a great enhancement of the light absorption and photoelectric property under UV illumination. This can be ascribed to the mutual effect of TiO{sub 2}/ZnO heterojunctions and the porous structures in the composite films, which provide a better photogenerated cathodic protection for 304SS.

  15. Pyroelectric composite film for X-ray intensity detection

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2012-04-01

    Full Text Available Composite material obtained with modified lead titanate (Pz34 ferroelectric ceramic and polyether-ether-ketone (PEEK polymer matrix was used as sensitive component to measure X-ray intensity in a novel detection system. The sensing element works as a thermal transducer, converting a non-quantified thermal flux into an output measurable quantity of electrical voltage. The samples were obtained up to 60 vol.% of ceramic, by hot pressing the mixture of Pz34 and PEEK powders at 368 °C and applying 12 MPa pressure for 2.0 hours. The sensor response varies from 2.70 to 0.80 V in the energy fluence rate range of 6.30 to 37.20 W.m-2. The absorbed incident energy was analyzed as a function of the ionizing energy. Furthermore, by measuring the pyroelectric activity of the composite film it was observed that there is no degradation of the sensor after the irradiation.

  16. Broadband epsilon-near-zero metamaterials based on metal-polymer composite thin films

    Science.gov (United States)

    Pinchuk, Pavlo; Jiang, Ke

    2015-10-01

    Epsilon-near-zero (ENZ) metamaterials are designed to exhibit a near-zero response for the real part of the dielectric permittivity at a given frequency or in a specific frequency range. Typically, this frequency range is relatively small. In this paper, we present an approach to broaden this range by controlling the size of the nanoparticles embedded in a thin film. Noble metal nanoparticles exhibit an external size effect that redshifts the Surface Plasmon Resonance frequency with an increase of the size of the particles. The absorption spectrum of a material can be directly related to its dielectric permittivity via the Kramers-Kronig relations. We use the Kramers-Kronig relations to retrieve the complex effective dielectric permittivity of a composite film, which is designed to exhibit ENZ behavior over a broad frequency range. We synthesize a composite thin film embedded with metal nanoparticles of a broad size distribution. Such a material exhibits a broad SPR, and, in turn, broadband ENZ behavior.

  17. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ruslinda, A. Rahim, E-mail: ruslindarahim@gmail.com [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)

    2015-02-15

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  18. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  19. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  20. THE PREPARATION AND STUDY ON THE NANO-TiO2/SILK FIBROIN COMPOSITE FILMS BY THE SOL-GEL METHOD

    Institute of Scientific and Technical Information of China (English)

    FENG Xinxing; CHEN Jianyong; YU Chunhua

    2006-01-01

    Based on the sol-gel technique using butyl titanate as oxide precursor, the regenerated SF (silk fibroin)/nano-TiO2 composite films were synthesized. Different amounts of butyl titanate to SF were used to verify this effect on the characteristics of the formed materials. Samples were characterized by thermogravimetric analysis, X-ray diffractometry, UV, AFM and FT-IR spectroscopy.The experimental results reveal that, compared to the pure silk fibroin films, the mechanical strength of these regenerated SF/nano-TiO2 composite films were increased and the dissolubility in water of SF/nano-TiO2 composite films in aqueous solution were decreased. The diameter of nano-TiO2 particle films was about 80nm through UV and AFM. The nano-TiO2 particles were well dispersed in the regenerated silk fibroin. It was found that the crystal structures of the composite films were transited from typical Silk Ⅰ to typical Silk Ⅱ by the XRD and FTIR. Furthermore, the crystallinity of the composite films was obviously improved. Through the TGA, it was demonstrated that the heat transition temperature of composite films was also enhanced.

  1. Electron-Induced Secondary Electron Emission Properties of MgO/Au Composite Thin Film Prepared by Magnetron Sputtering

    Science.gov (United States)

    Li, Jie; Hu, Wenbo; Wei, Qiang; Wu, Shengli; Hua, Xing; Zhang, Jintao

    2016-12-01

    As a type of electron-induced secondary electron emitter, MgO/Au composite thin film was prepared by reactive magnetron sputtering of individual Mg target and Au target, and the effects of key process parameters on its surface morphology and secondary electron emission (SEE) properties were investigated. It is found that to deposit a NiO buffer layer on the substrate is conducive to the subsequent growth of MgO grains owing to the lattice matching. The gold addition can raise the electrical conductivity of MgO film and further suppress the surface charging. However, the gold deposition would interfere with the MgO crystallization and increase the surface roughness of MgO/Au film. Therefore, MgO/Au composite thin film with a NiO buffer layer and proper deposition times of MgO and Au can achieve superior SEE properties due to good MgO crystallization, low surface roughness and reasonable electrical conductivity. The optimized MgO/Au composite thin film has a higher SEE coefficient and a lower 1-h SEE degradation rate under electron beam bombardment in comparison with MgO film.

  2. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-08

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications.

  3. KNN/BNT Composite Lead-Free Films for High-Frequency Ultrasonic Transducer Applications

    Science.gov (United States)

    Lau, Sien Ting; Ji, Hong Fen; Li, Xiang; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2011-01-01

    Lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) films have been fabricated by a composite sol-gel technique. Crystalline KNN fine powder was dispersed in the BNT precursor solution to form a composite slurry which was then spin-coated onto a platinum-buffered Si substrate. Repeated layering and vacuum infiltration were applied to produce 5-μm-thick dense composite film. By optimizing the sintering temperature, the films exhibited good dielectric and ferroelectric properties comparable to PZT films. A 193-MHz high-frequency ultrasonic transducer fabricated from this composite film showed a −6-dB bandwidth of approximately 34%. A tungsten wire phantom was imaged to demonstrate the capability of the transducer. PMID:21244994

  4. Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films

    Institute of Scientific and Technical Information of China (English)

    WEI Shouqiang; SHAO Zhongcai; LU Xudong; LIU Ying; CAO Linlin; HE Yan

    2009-01-01

    ITO/CdS/ZnO interface composite films were successfully prepared by subsequent electrodeposition of CdS and ZnO onto indium tin oxide (ITO) glass substrates. The obtained ITO/CdS/ZnO composite films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The photocatalytic activity of ITO/CdS/ZnO composite films were investigated using methyl orange (MO) as a model organic compound under UV light irradiation. The influence of operating parameters on MO degradation including initial concentration of MO, pH value of solution, and inorganic anion species over the composite films were examined. A blue shift of absorption threshold was observed for the ITO/CdS/ZnO film in comparison with ITO/ZnO film. ITO/CdS/ZnO composite films prepared under specific conditions showed a higher photocatalytic activity than that of ITO/ZnO films. It was also found that the photocatalytic degradation of MO on the composite filing followed pseudo-first order kinetics.

  5. Spray Layer-by-Layer Assembled Clay Composite Thin Films as Selective Layers in Reverse Osmosis Membranes.

    Science.gov (United States)

    Kovacs, Jason R; Liu, Chaoyang; Hammond, Paula T

    2015-06-24

    Spray layer-by-layer assembled thin films containing laponite (LAP) clay exhibit effective salt barrier and water permeability properties when applied as selective layers in reverse osmosis (RO) membranes. Negatively charged LAP platelets were layered with poly(diallyldimethylammonium) (PDAC), poly(allylamine) (PAH), and poly(acrylic acid) (PAA) in bilayer and tetralayer film architectures to generate uniform films on the order of 100 nm thick that bridge a porous poly(ether sulfone) support to form novel RO membranes. Nanostructures were formed of clay layers intercalated in a polymeric matrix that introduced size-exclusion transport mechanisms into the selective layer. Thermal cross-linking of the polymeric matrix was used to increase the mechanical stability of the films and improve salt rejection by constraining swelling during operation. Maximum salt rejection of 89% was observed for the tetralayer film architecture, with an order of magnitude increase in water permeability compared to commercially available TFC-HR membranes. These clay composite thin films could serve as a high-flux alternative to current polymeric RO membranes for wastewater and brackish water treatment as well as potentially for forward osmosis applications. In general, we illustrate that by investigating the composite systems accessed using alternating layer-by-layer assembly in conjunction with complementary covalent cross-linking, it is possible to design thin film membranes with tunable transport properties for water purification applications.

  6. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films.

    Science.gov (United States)

    Alves, J S; dos Reis, K C; Menezes, E G T; Pereira, F V; Pereira, J

    2015-01-22

    Cellulose at the nanoparticle scale has been studied as a reinforcement for biodegradable matrices to improve film properties. The goal has been to investigate the properties of starch/gelatin/cellulose nanocrystals (CNC) films. Eleven treatments were considered using RCCD (rotatable central composite design), in addition to four control treatments. For each assay, the following dependent variables were measured: water vapor permeability (WVP), thickness, opacity and mechanical properties. The microstructure and thermal properties of the films were also assessed. Increases in gelatin and CNC concentrations lead to increases in film thickness, strength and elongation at break. The films containing only gelatin in their matrix displayed better results than the starch films, and the addition of CNC had a positive effect on the assessed response variables. The films exhibited homogeneous and cohesive structures, indicating strong interactions between the filler and matrix. Films with low levels of gelatin and CNC presented the maximum degradation temperature.

  7. Influence of Negative Bias Voltage on the Mechanical and Tribological Properties of MoS2/Zr Composite Films

    Institute of Scientific and Technical Information of China (English)

    SONG Wenlong; DENG Jianxin; YAN Pei; WU Ze; ZHANG Hui; ZHAO dun; AI Xing

    2011-01-01

    MoS2/Zr composite films were deposited on the cemented carbide YT 14 (WC+14%TiC+6%Co)by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques. The influence of negative bias voltage on the composite film properties, including adhesion strength, micro-hardness, thickness and tribological properties were investigated. The results showed that proper negative bias voltage could significantly improve the mechanical and tribological properties of composite films. The effects of negative bias voltage on film properties were also put forward. The optimal negative bias voltage was -200 V under this experiment conditions. The obtained composite films were dense, the adhesion strength was about 60 N, the thickness was about 2.4 μm, and the micro-hardness was about 9.0 GPa. The friction coefficient and wear rate was 0.12 and 2. 1 x 10-7 cm/3N·m respectively after 60 m sliding operation against hardened steel under a load of 20 N and a sliding speed of 200 rev · min 1.

  8. Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets.

    Science.gov (United States)

    Su, Qi; Liang, Yanyu; Feng, Xinliang; Müllen, Klaus

    2010-11-21

    A novel approach towards highly conductive free-standing chemically reduced graphene/carbon nanotube composite films via an in situ thermolysis of functionalized graphene/organic cobalt complexes was developed. By combining 1D-CNT and 2D-graphene, a synergistic effect of conductivity was established.

  9. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    Science.gov (United States)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  10. Two-step preparation of laser-textured Ni/FTO bilayer composite films with high photoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd, Taixing 225400 (China)

    2015-08-15

    Highlights: • A two-step strategy was proposed to prepare laser-textured Ni/FTO composite films. • Ni/FTO film with a 10-nm-thick Ni layer (Ni{sub 10}/FTO film) had the best performance. • The Ni{sub 10}/FTO film underwent magnetic-field-assisted and -free laser irradiations. • All the magnetic laser-irradiated (MLI-NF) films were textured and annealed. • The MLI-NF film using a fluence of 1.0 J/cm{sup 2} showed the highest figure of merit. - Abstract: A two-step strategy, i.e. sputtering Ni layers on FTO glass combined with magnetic-field-assisted laser irradiation, was proposed to prepare laser-textured Ni/FTO bilayer composite films. By analyzing surface morphology, crystal structure and photoelectric properties of Ni/FTO films with different Ni layer thicknesses, the Ni/FTO film with a 10-nm-thick Ni layer (Ni{sub 10}/FTO film), which had the best overall photoelectric property, was chosen to undergo magnetic-field-assisted laser irradiation with different laser fluences. Magnetic-field-free laser irradiation of the Ni{sub 10}/FTO film was also carried out for comparison purpose. It was found that magnetic-field-assisted laser irradiation using a fluence of 1.0 J/cm{sup 2} was more effective for simultaneously achieving texturing and annealing, resulting in formation of ideal grating textures and significantly increased grain size. The corresponding film (MLI-NF1.0 film) showed the highest figure of merit of 22.8 × 10{sup −3} Ω{sup −1} compared to 13.1 × 10{sup −3} Ω{sup −1} of the FTO glass and 1.4 × 10{sup −3} Ω{sup −1} of the Ni{sub 10}/FTO film, suggesting that the two-step strategy is excellent for preparing textured Ni/FTO films with high photoelectric properties.

  11. Effect of annealing temperature on properties of RF sputtered Cu(In,Ga)Se2 thin films

    Science.gov (United States)

    Yu, Zhou; Yan, Chuanpeng; Yan, Yong; Zhang, Yanxia; Huang, Tao; Huang, Wen; Li, Shasha; Liu, Lian; Zhang, Yong; Zhao, Yong

    2012-09-01

    Cu(In,Ga)Se2 (CIGSe) thin films were prepared by radio frequency (RF) magnetron sputtering at room temperature, following vacuum annealing at different temperatures. We have investigated the effect of annealing temperature (150-550 °C) on the phase transformation process of the CIGSe films. The as-deposited precursor films show a near stoichiometry composition and amorphous structure. Composition loss of the films mainly occur in the annealing temperature range of 150-300 °C. Comparing with samples annealed at 300 °C, films annealed at 350 °C or higher temperatures exhibit almost similar composition and polycrystalline chalcopyrite structure. Crystal quality of the films improves with increasing annealing temperature. Reflectance spectra of the annealed films show interference fringe pattern. The calculated refractive indexes of the films are in the range of 2.4-2.5.

  12. EFFECT OF ZnFe2O4 DOPING ON THE OPTICALPROPERTIES OF TiO2 THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    李广海; 吴玉程; 张立德

    2001-01-01

    Amorphous TiO2 thin films and ZnFe2O4-doped TiO2 composite films were deposited by radio frequency magnetron sputtering. The effect of ZnFe2O4 doping on the optical properties of TiO2 thin films was reported. Our results show that the absorption edge of TiO2 thin films and composite films exhibits a blueshift with decreasing annealing temperature. The absorption edge of composite films has moved to a visible spectrum range, and a very large redshift occurs in comparison with TiO2 thin films. An enhanced photoluminescence was observed in ZnFe2O4-doped anatase TiO2 thin films at room temperature.

  13. Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, Mihai E.; Bernhardt, Thorsten M. [Institute of Surface Chemistry and Catalysis, University of Ulm (Germany); Barth, Clemens [CINAM-CNRS, Marseille (France); Esch, Friedrich; Heiz, Ueli [Department of Chemistry, Technical University of Munich, Garching (Germany); Landman, Uzi [School of Physics, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-05-15

    Ultrathin metal oxide films have attracted considerable interest in recent years as versatile substrate for the design of nanocatalytic model systems. In particular, it has been proposed theoretically and confirmed experimentally that the electronic structure of adsorbates can be influenced by the layer thickness and the stoichiometry, i.e., the type and number of defects, of the oxide film. This has important consequences on the chemical reactivity of the oxide surface itself and of oxide supported metal clusters. It also opens new possibilities to influence and to control chemical reactions occurring at the surface of these systems. The present feature focuses on very recent experiments that illustrate the effects of a proper adjustment of layer thickness and composition of ultrathin MgO(100) films on chemical transformations. On the magnesia surface itself, the photodissociation dynamics of methyl iodide molecules is investigated via femtosecond-laser pump-probe mass spectrometry. Furthermore, the catalytic oxidation of carbon monoxide at mass-selected Au{sub 20} clusters deposited on magnesia is explored through temperature programmed reaction measurements. In the latter case, detailed first principles calculations are able to correlate the experimentally observed reactivity with structural dimensionality changes that are induced by the changing thickness and composition of the magnesia support. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Multilayered gold-nanoparticle/polyimide composite thin film through layer-by-layer assembly.

    Science.gov (United States)

    Zhang, Fengxiang; Srinivasan, M P

    2007-09-25

    A novel type of composite thin film consisting of gold nanoparticles (AuNPs) and polymide (PI) was fabricated through layer-by-layer (LBL) assembly. To fabricate such films, bare AuNPs and a poly (amic acid) bearing pendant amine groups, namely, amino poly (amic acid) or APAA, were synthesized and assembled in an LBL fashion. Without any organic encapsulation layer on their surface, AuNPs were bound directly to APAA chains at the amine sites; X-ray photoelectron spectroscopy study suggested that the binding was based on a combined effect of metal-ligand coordination and electrostatic interaction, with the former dominating over the latter. An approximately linear growth of the film started from the second layer of AuNP as revealed by the UV-vis spectroscopy, and the degree of particle aggregation was higher in the first AuNP layer than in the subsequent layers due to the differences in the density of binding sites. The resultant assembly was heated to imidize the APAA, thereby creating a robust composite structure.

  15. EFFECT OF ANNEALING ON THE PROPERTIES OF VANADIUM PENTOXIDE FILMS PREPARED BY SOL–GEL METHOD

    OpenAIRE

    YAQIANG LIU; XUELIAN DU; XUEQIN LIU

    2014-01-01

    The vanadium pentoxide (V2O5) films were obtained by using sol–gel procedure and then were annealed at different temperature in air. The effect of different annealing temperatures on the composition, the microstructure, the surface morphology and the optical properties of the films were characterized by methods such as by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and spectral transmittance. The results revealed that the film annealed at 150°C has amorphous structure ...

  16. EFFECT OF ANNEALING ON THE PROPERTIES OF VANADIUM PENTOXIDE FILMS PREPARED BY SOL–GEL METHOD

    OpenAIRE

    YAQIANG LIU; XUELIAN DU; XUEQIN LIU

    2014-01-01

    The vanadium pentoxide (V2O5) films were obtained by using sol–gel procedure and then were annealed at different temperature in air. The effect of different annealing temperatures on the composition, the microstructure, the surface morphology and the optical properties of the films were characterized by methods such as by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and spectral transmittance. The results revealed that the film annealed at 150°C has amorphous structure ...

  17. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application.

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-18

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag(0) state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm(-2) and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  18. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    Science.gov (United States)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  19. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  20. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  1. One-step synthesis of PbSe-ZnSe composite thin film

    OpenAIRE

    2011-01-01

    Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin...

  2. Laser deposition and optical investigation of thin Ga(x)In(1-x)As(y)Sb(1-y) films of different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Avdzhian, K.E.; Aleksanian, A.G.; Kazarian, R.K.; Matevosian, L.A.; Mirzabekian, G.E.

    1988-01-01

    Films of GaInAsSb solid solutions, obtained by the laser mixing method, are investigated. The lattice parameters and film compositions are determined, and the corresponding forbidden zone widths are found to be in good agreement with the values obtained in an optical study. The spectral dependence of the quantum well effect observed for a 29-nm-thick film is consistent with the analytical expression proposed here. 5 references.

  3. Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials

    Directory of Open Access Journals (Sweden)

    Vincent Ball

    2017-07-01

    Full Text Available Polydopamine (PDA is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials.

  4. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters

    Directory of Open Access Journals (Sweden)

    Xin He

    2017-02-01

    Full Text Available A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS and silver nanowires (Ag NWs using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  5. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanni; Liu, Jianjun, E-mail: jjliu717@aliyun.com; Yu, Yingchun; Zuo, Shengli

    2015-10-25

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λ{sub em} of incorporated CdTe QDs.

  6. Theoretical analyses of In incorporation and compositional instability in coherently grown InGaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yayama, Tomoe [Department of Aeronautics and Astronautics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kangawa, Yoshihiro; Kakimoto, Koichi [Department of Aeronautics and Astronautics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Koukitu, Akinori [Division of Applied Chemistry, Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 184-8588, Koganei (Japan)

    2010-07-15

    We performed thermodynamic analyses to calculate the relationship between the input indium molar ratio and solid composition of a coherently grown InGaN thin film that is subjected compressive or tensile stress. The theoretical approach incorporates energy loss of a thin film system due to lattice constraint from the substrate. The results show that the indium composition x of coherently grown InGaN is lower than that of stress-free InGaN. This represents the composition pulling effect. We also studied stable growth modes under various growth conditions. The results suggest the importance of control of partial pressure of NH{sub 3} to optimize growth conditions of InGaN with a unique composition. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Electrochemical properties of polyaniline/carboxydextran (PANI/carDEX) composite films for biofuel cells in neutral aqueous solutions.

    Science.gov (United States)

    Lee, Sunmook; Choi, Bokkyu; Tsutsumi, Atsushi

    2009-06-01

    Electrochemical properties of composite films consisting of polyaniline/carboxydextran (PANI/carDEX) as a biofuel cell electrode platform were investigated. These composite films were formed on a planar gold surface through electropolymerization after a simple chemical modification of dextran with carboxyl groups. Cyclic voltammetry indicated that the composite films retained a redox activity in neutral pH environment. The PANI/carDEX composite films showed an electrocatalytic activity for the oxidation of ascorbic acid. The PANI/carDEX composite films also demonstrated an excellent electron-transfer mediating capability for the bioelectrocatalytic activation of glucose oxidase (GOx) toward the oxidation of glucose.

  8. The fabrication and photoelectrocatalytic study of composite ZnSe/Au/TiO2 nanotube films

    Science.gov (United States)

    Zhang, Guowei; Miao, Hui; Wang, Yongbo; Zhang, Dekai; Fan, Jun; Han, Tongxin; Mu, Jianglong; Hu, Xiaoyun

    2017-05-01

    In this paper, anatase TiO2 nanotube (NT) film photoelectrodes are successfully fabricated by a simple and effective hydrothermal method. Subsequently, an aqueous-phase processing technique is adopted to construct highly dispersed ZnSe quantum dots (QDs) on Au/TiO2 NT films prepared by microwave-assisted chemical reduction, which formed composite ZnSe/Au/TiO2 NT film systems (ZATs) with excellent performance in photoelectrocatalytic (PEC) applications. The morphology and performance of as-obtained ZATs were investigated based on various characterizations. The investigation revealed that as-obtained ZATs not only greatly extend spatial separation of charges and restrain the recombination rate of photogenerated electron-hole pairs, but also improve the efficiency to use visible light and display a wide and strong absorption in the visible light region ranging from 400 nm to 800 nm. Moreover, we observe a larger fluorescence quenching of ZATs compared with that of pure TiO2 NT films and binary composites. Experimental results indicate that the photocurrent densities of pure TiO2, 0.8 Au/TiO2, 60 min ZnSe/TiO2, and ZATs are 0.020 mA cm-2, 0.032 mA cm-2, 0.037 mA cm-2 and 0.070 mA cm-2, respectively, which is approximately 2-3.5 times higher than that of pure TiO2 NT films and binary compound photoelectrodes. Additionally, experimental results suggest that the as-prepared ZATs photoelectrode has exhibited considerable stability and significantly increased PEC activity for the degradation of methylene blue (MB) in distilled water under 100 mW cm-2 xenon lamp irradiation. The degradation efficiency on MB of 45 min ZnSe/0.8 Au/TiO2 NT films approaches 91%; however, the counterpart of TiO2 NT films is less than 10%. Eventually, the mechanism for the improvement of the PEC performance of ZATs is discussed to point out that ZATs display prominent charges transport performance, and a stepwise band alignment structure is built up in its photoelectrode, which indicates

  9. Research of effect of sodium alginate on the properties of edible composite films%海藻酸钠对可食性复合膜性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    陈桂云; 雷桥

    2011-01-01

    Effects of sodium alginate on the properties of edible composite protein films which obtained by uniform design method were investigated. The results suggested that mechanical properties and water solubility increased with moderate concentration and proportion of sodium alginate,while the transparency and barred resistant were lower to some extent.%在均匀实验设计方法得到乳清分离蛋白-酪蛋白酸钠复合蛋白膜的工艺参数的基础上,采用乳清分离蛋白、酪蛋白酸钠、海藻酸钠共混法制备可食性复合膜,研究海藻酸钠对复合膜的性能的影响。结果表明,适当浓度和比例的海藻酸钠能提高膜的机械性能和水溶性,但也降低了膜的透明度和阻隔性能。

  10. Digital Compositing for Photorealism and Lighting in Chroma key film studio

    OpenAIRE

    Andrijasevic, Neda; Johansson, Mirjam

    2012-01-01

    Photorealism is what visual effects are all about most of the time. This report entails digital compositing and studio lighting, in relation to Chroma key film material, aimed to give a photorealistic impression.    One of the identified problems in this report is that compositors may get Chroma key footage where the lighting is done poorly, which means a lot of extra work for the compositors and it might even make it impossible to create the desired end result.    Another problem recognized ...

  11. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  12. The nanoindentation applied to predict the interface delamination for the C/amorphous Si composite film

    Science.gov (United States)

    Han, Chang-Fu; Huang, Chao-Yu; Wu, Bo-Hsiung; Lin, Jen-Fin

    2009-10-01

    In the present study, the indentation depth corresponding to the pop-in arising in the loading process is found to be quite close to the C/amorphous Si composite film thickness, regardless of the C-film thickness. This load-depth behavior gives a clue that the occurrence of pop-in is perhaps related to the buckling of the composite film, which had already delaminated from the silicon substrate. This indentation depth of buckling predicted by the present model is quite close to the pop-in depth obtained from experimental results, regardless of the change in the C-film thickness. This characteristic reveals that the present model is developed successfully to predict the pop-in depth of a specimen, and the pop-in is indeed created due to the buckling of the composite film under a compression stress.

  13. Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release.

    Science.gov (United States)

    Pavaloiu, Ramona-Daniela; Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Dobre, Tanase

    2014-07-01

    Mono and multilayer composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose (PVA/chitosan/BC) have been prepared to achieve controlled release of ibuprofen sodium salt (IbuNa) as model drug. The composite films have been characterized by Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Surface morphology was investigated by scanning electron microscopy (SEM). Equilibrium swelling was measured in water at two different pH values and in vitro release of IbuNa in pH 1.2 and pH 7.4 media was studied. The release experiments revealed that drug release is pH sensitive. The release kinetics of IbuNa could be described by the Fickian model of diffusion with a good agreement. The IbuNa release rate was decreasing for all the films as the BC concentration was increased in the films composition, the decrease being higher for the multilayer films.

  14. Tailoring the Composition and Properties of Sprayed CuSbS2 Thin Films by Using Polymeric Additives

    Directory of Open Access Journals (Sweden)

    Ionut Popovici

    2012-01-01

    Full Text Available CuSbS2 thin films were obtained by spray pyrolysis deposition, using polymeric additives for controlling the surface properties and film’s composition. Ternary crystalline chalcostibite compounds have been obtained without any postdeposition treatments. XRD spectra and IR spectroscopy were used to characterize films composition and interactions between components. Films morphology and surface energy were investigated using AFM microscopy and contact angle measurements. Hydrophobic and hydrophilic polymers strongly influence the composition and film morphology.

  15. Fabrication of high conductivity dual multi-porous poly (L-lactic acid)/polypyrrole composite micro/nanofiber film

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qiaozhen, E-mail: w2003yqz@126.com [Faculty of Materials and Textiles, Jiaxing Key Lab of Modern Textile and Garment, Jiaxing University, Jiaxing, Zhejiang 314001 (China); Dai Zhengwei; Lan Ping [Faculty of Materials and Textiles, Jiaxing Key Lab of Modern Textile and Garment, Jiaxing University, Jiaxing, Zhejiang 314001 (China)

    2011-07-25

    Highlights: > PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fibers dual multi-pore membranes with high conductivity were fabricated by combining electrospinning with in situ polymerization.These composite fibers have a core-shell structure, the PPy is the core and the PLLA/PPy is the shell. > The size and shape of the pores in this PPy composite fiber membrane can be tuned by polymerization parameters. The largest size of the pores is about 250 {mu}m. > The conductivity of this composite fiber membrane can be adjusted by polymerization parameters. The highest conductivity is 179.0 S cm{sup -1}. The PLLA fibers act as the template in the pyrrole polymerization process and contributed to the increase of the conductivity. - Abstract: Dual multi-porous PLLA (poly(L-lactic acid))/H{sub 2}SO{sub 4}-doped PPy (polypyrrole) composite micro/nano fiber films were fabricated by combining electrospinning with in situ polymerization. The morphologies and structures of the resulting samples were analyzed by scanning electron microscopy (SEM). It was found that the composite micro/nano fibers exhibited a core-shell structure and the composite fiber film had a dual multi-pore structure composed of pores both in the fibers and among the fibers. Semiconductor parameter analyzer was used to characterize the electrical properties of the samples. It was interesting to find that all the PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fiber films had higher conductivity than H{sub 2}SO{sub 4}-doped PPy particles when the polymerization time up to 180 min. Effects of the pyrrole synthesis conditions on the pore size and the conductivity of PLLA/PPy composite fiber film were assessed. By optimizing the polymerization conditions, the max conductivity of this composite fiber film was about 179.0 S cm{sup -1} with a pore size of about 250 {mu}m. The possible mechanism of PLLA/H{sub 2}SO{sub 4}-doped PPy composite micro/nano fiber films had much higher conductivity than H{sub 2

  16. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU

    2008-01-01

    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  17. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    Science.gov (United States)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  18. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  19. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    Science.gov (United States)

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  20. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Marsal, A. [Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya, Barcelona (Spain); Carreras, P. [Dept Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R. [Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya, Barcelona (Spain); Bertomeu, J. [Dept Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Antony, A. [Dept Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Indian Institute of Technology, Bombay (India)

    2014-03-31

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band.

  1. 掺杂纳米TiO2对小麦蛋白膜力学性能的影响及表征%Effect of Doping Nano-Titania on Mechanical Properties of Wheat Gluten Films and the Characterization of the Composite Films

    Institute of Scientific and Technical Information of China (English)

    宋贤良; 叶盛英; 钟明军; 周家华; 黄苇

    2011-01-01

    采用高效分散剂和超声波分散技术将不同掺杂比的纳米TiO2引入小麦蛋白成膜液中,用流延法制得分散均匀的纳米复合膜.研究了纳米TiO2用量对小麦蛋白纳米复合膜的力学性能、透湿性、透氧性的影响规律,通过红外光谱(IR)、扫描电镜(SEM)、原子力显微镜(AFM)和透射电镜(TEM)表征其结构.结果表明:随着纳米TiO2用量的增加,复合膜的抗拉强度和断裂伸长率先增大后减小,透湿性和透氧性则按先减小后增大的趋势变化.当纳米TiO2用量为1∶200时,复合膜的断裂伸长率最大,比小麦蛋白膜提高了64%,而透湿率和透氧系数则最低,分别比小麦蛋白膜降低了26.6%和59%;IR分析表明纳米TiO2在复合膜中并非简单的物理固定,而是与小麦蛋白分子之间产生一定的相互作用,纳米粒较均匀地镶嵌在连续的蛋白质基体中,破坏了蛋白质分子原有的纹理结构.TEM观察表明适量纳米TiO2粒子掺入到蛋白质基体中能达到初级粒径分散状态,且颗粒分散均匀.%Nano-titania (TiO2)were dispersed into wheat gluten solution in different mass ratios by efficient dispersant and ultrasonic treatment to achieve an evenly distributed nano-composite films through casting technique. The effect of TiO2 dosage on the mechanical property, water vapour permeability and oxygen permeability of composite films were studied. Composite films were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM), respertively. The results indicate that, with the increasing of TiO2 dosage the tensile strength and breaking extension ratio increase firstly and then decrease, the water vapour permeability and oxygen permeability decline firstly and rise later. When the mass ratio of TiO2 and wheat gluten is 1:200, the breaking extension ratio achieves its maximal value, which shows a 64% increase compared

  2. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  3. Polyethylene/silver-nanofiber composites: A material for antibacterial films.

    Science.gov (United States)

    Zapata, Paula A; Larrea, Maialen; Tamayo, Laura; Rabagliati, Franco M; Azócar, M Ignacio; Páez, Maritza

    2016-12-01

    Silver nanofibers (Ag-Nfbs)~80nm in diameter were synthesized by hydrothermal treatment. The nanofibers (3 and 5wt%) were added in the initial feed together with the catalytic system. Polymerizations in an ethylene atmosphere were performed, yielding PE nanocomposites in situ with 3 and 5wt% content of Ag-Nfbs. The antibacterial effect of the silver-nanofiber composites was evaluated after incubation of Escherichia coli ATCC 25923 for 8h on their surface. Bacterial viability tests showed that the silver-nanofiber composites inhibited the growth of Escherichia coli ATCC 25923 by 88 and 56%. This behavior is attributed to increased silver ions release from the nanocomposite. TEM analysis showed that the antibacterial effect is associated with membrane disruption but not with changes in shape.

  4. Electrical and Dielectric Properties of Exfoliated Graphite/Polyimide Composite Films with Low Percolation Threshold

    Science.gov (United States)

    Yu, Li; Zhang, Yi-He; Shang, Jiwu; Ke, Shan-Ming; Tong, Wang-shu; Shen, Bo; Huang, Hai-Tao

    2012-09-01

    Exfoliated graphite/polyimide composite films were synthesized by in situ polymerization. The electrical and dielectric properties of composite films with different volume fraction of exfoliated graphite were investigated over the frequency range from 103 Hz to 3 × 106 Hz. The dielectric behavior of the composite films was investigated by percolation theory and a microcapacitor model. A low percolation threshold f c ≈ 3.1 vol.% was obtained due to the high aspect ratio of the exfoliated graphite. Both the dielectric constant and alternating-current (AC) conductivity showed an abrupt increase in the vicinity of the percolation threshold. The ultralarge enhancement of the dielectric constant near and beyond the percolation threshold was due to Maxwell-Wagner-Sillars (MWS) interfacial polarization between the exfoliated graphite and polyimide and interface polarization between the composite film and electrode.

  5. One-step synthesis of PbSe-ZnSe composite thin film

    Science.gov (United States)

    2011-01-01

    This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package. PMID:21711822

  6. One-step synthesis of PbSe-ZnSe composite thin film

    Directory of Open Access Journals (Sweden)

    Abe Seishi

    2011-01-01

    Full Text Available Abstract This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package.

  7. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  8. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Science.gov (United States)

    Xia, Zhenjun; He, Jun; Ou, Xiulong; Wang, Yu; He, Shuli; Zhao, Dongliang; Yu, Guanghua

    2016-05-01

    Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  9. Poly(lactic acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films

    Science.gov (United States)

    Osage orange wood(OO)was combined with poly(lactic acid)(PLA)to form a polymer composite intended for use as an agricultural mulch film. The PLA-OO mechanical properties were comparable to existing mulch film products and had the advantage of being completely biodegradable through a single growing ...

  10. Photoconductivity of Polymer Composite Films Containing an Mn(III)/Cu(II) Complex

    Science.gov (United States)

    Davidenko, N. A.; Kokozay, V. N.; Petrusenko, S. R.; Stetsyuk, O. N.; Studzinsky, S. L.; Davidenko, I. I.

    2013-11-01

    We have studied the optical, photoelectric and dielectric properties of polymer composite films based on polyvinyl butyral with additives of a mixed-metal Mn(III)/Cu(II) complex. We observed high photoconductivity of the films obtained in the region of absorption by the complex. The slow photocurrent rise and relaxation kinetics are connected with the low mobility of the photogenerated charge carriers.

  11. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    Science.gov (United States)

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-09-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Voltammetric determination of theophylline at a Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode

    Indian Academy of Sciences (India)

    Suling Yang; Ran Yang; Gang Li; Jianjun Li; Lingbo Qu

    2010-11-01

    A Nafion/multi-wall carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied to the sensitive and convenient determination of theophylline (TP). Multi-wall carbon nanotubes (MWNTs) were easily dispersed homogeneously into 0.1% Nafion methanol solution by sonication. Appropriate amount of Nafion/MWNTs suspension was coated on a glassy carbon electrode. After evaporating methanol, a Nafion/MWNTs composite film-modified electrode was achieved. TP could effectively accumulate at Nafion/MWNTs composite film-modified electrode and cause a sensitive anodic peak at around 1180 mV (vs SCE) in 0.01 mol/L H2SO4 medium (pH 1.8). In contrast with the bare glassy carbon electrode, Nafion film-modified electrode, Nafion/MWNTs film-modified electrode could remarkably increase the anodic peak current and decreased the overpotential of TP oxidation. Under the optimized conditions, the anodic peak current was proportional to TP concentration in the range of 8.0 × 10-8-6.0 × 10-5 mol/L, with a detection limit of 2.0 × 10-8 mol/L. This newly developed method was used to determine TP in drug samples with good percentage of recoveries.

  13. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films.

    Science.gov (United States)

    Cheng, Yongmei; Lu, Jinting; Liu, Shilin; Zhao, Peng; Lu, Guozhong; Chen, Jinghua

    2014-07-17

    Porous structured regenerated cellulose films were oxidized by periodate oxidation to obtain 2,3-dialdehyde cellulose (DARC) films, which were then reacted with collagen to obtain DARC/Col composite films. The subsequent FT-IR spectra indicated that collagen was immobilized on the DARC matrix via the Schiff base reaction between NH2 in collagen and CHO in DARC backbone. Scanning electron microscopy revealed that DARC/Col exhibited a refined 3D network structure and its porosity and pore size decreased with increasing of collagen concentration. The composite films demonstrated a good equilibrium-swelling ratio, air permeability and water retention properties. The composite films also showed excellent mechanical properties, which was vital for practical application. Finally, the cytotoxicity of the composite film was evaluated using NIH3T3 mice fibroblast cells, the results revealed that DARC/Col composite films have good biocompatibility for use as scaffold material in tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiao-Miao; Li, Rui-Mei; Ma, Yan-Wen; Chen, Run-Feng; Shi, Nai-En; Fan, Qu-Li; Huang, Wei [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China)

    2011-08-09

    This work describes a new one-step large-scale electrochemical synthesis of graphene/polyaniline (PANI) composite films using graphite oxide (GO) and aniline as the starting materials. The size of the film could be controlled by the area of indium tin oxide (ITO). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible absorption spectrum (UV-vis) results demonstrated that the graphene/PANI composite film was successfully synthesized. The obtained graphene/PANI composite film showed large specific area, high conductivity, good biocompatibility, and fast redox properties and had perfect layered and encapsulated structures. Electrochemical experiments indicated that the composite film had high performances and could be widely used in applied electrochemical fields. As a model, horseradish peroxidase (HRP) was entrapped onto the film-modified glassy carbon electrode (GCE) and used to construct a biosensor. The immobilized HRP showed a pair of well-defined redox peaks and high catalytic activity for the reduction of H{sub 2}O{sub 2}. Furthermore, the graphene/PANI composite film could be directly used as the supercapacitor electrode. The supercapacitor showed a high specific capacitance of 640 F g{sup -1} with a retention life of 90% after 1000 charge/discharge cycles. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  16. Preparation and Properties of Functional Graphene/Thermoplastic Polyurethane Composite Film

    OpenAIRE

    ZHENG Hui-dong; OU Zhong-xing; ZHENG Yu-ying; XIAO Dong-sheng; CAO Ning-ning

    2016-01-01

    The modified graphene oxide(DD-GO) was reacted by the Didodecyldimethylammonium bromide (DDAB) and graphene oxide,and then reduced via L-ascorbic acid to obtain functional graphene(DD-RGO). Functional graphene (DD-RGO)/thermoplastic polyurethane (TPU) composite films were prepared by solution on the coating machine. The morphology and properties of DD-RGO/TPU composite films were investigated by FTIR, XRD, FE-SEM, oxygen transmission rate tester and high resistance meter. The results show tha...

  17. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    Science.gov (United States)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  18. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  19. Development and Characterization of Biodegradable Composite Films Based on Gelatin Derived from Beef, Pork and Fish Sources

    Directory of Open Access Journals (Sweden)

    Zainal A. Nur Hanani

    2013-01-01

    Full Text Available The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO incorporation (55.18% and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05 in the tensile strength (TS and puncture strength (PS of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05 when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO.

  20. Fabrication of Poly-(DL-Lactic Acid)--Wollastonite Composite Films with Surface Modified {beta}-CaSiO3 Particles.

    Science.gov (United States)

    Lingzhi Ye; Jiang Chang; Congqin Ning; Kaili Lin

    2008-03-01

    Bioactive poly-(DL-lactic acid) (PDLLA)-wollastonite composite films are successfully fabricated using surface modified wollastonite (m beta-CaSiO 3) particles through solvent casting-evaporation method. The surface modification of beta-CaSiO3 particles are conducted by reaction of the ceramic particles with dodecyl alcohol. Surface morphology, tensile strength, and bioactivity of the composite films are investigated. The results show that the particle distribution and tensile strength of the composite films with modified beta-CaSiO3 particles are significantly improved while the bioactivity is retained. As a result, the maximum tensile strength is enhanced 52.2% when compared with the PDLLA-beta-CaSiO3 composite films prepared using unmodified beta-CaSiO3 particles when the inorganic filler content is 15 wt%. Scanning electron microscopy (SEM) observation suggests that the modified m beta-CaSiO3 particles are homogeneously dispersed in the PDLLA matrix. The bioactivity of the composite films is evaluated by soaking in a simulated body fluid (SBF) and the result suggests that the modified composite film is still bioactive and can induce the formation of HAp on its surface after the immersion in SBF, despite the bonded dodecyl alkyl on the surface of the inorganic particles. All these results imply that the surface modification of beta-CaSiO3 with dodecyl alcohol is an effective approach to prepare PDLLA-beta-CaSiO3 composite with improved properties.

  1. Composition and size dependence of magnetic properties of FePt/Fe exchange-spring films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu; Zhang, Zhe; Duan, Nian; Wang, Jiawei; Chen, Yuang; Tong, Bei; Yang, Xiaofei; Zhang, Yue, E-mail: yue-zhang@mail.hust.edu.cn

    2014-12-15

    The composition and size dependence of the magnetic properties of FePt/Fe exchange-spring bilayer films was studied using micromagnetic simulation. Based on the simulated hysteresis loops for composite layers with an identical thickness of 20 nm and different composition ratios, it can be observed that when the thickness ratio of Fe is 10%, an exchange-spring effect with a negative nucleation field appears; the switching field is greatly reduced compared to the rigid magnetic FePt, and the squareness ratio reaches its maximum value. When the thickness ratio of Fe is 25% and more, the nucleation fields become positive; meanwhile, the coercivity is smaller than the switching field, and the squareness ratio decreases because of the increase in the thickness of the Fe film. In addition, at a fixed thickness ratio and total volume, the switching field of the FePt/Fe bilayer films is further reduced, accompanied by a decrease in the squareness ratio due to an increase in the thickness of the Fe layer. - Highlights: • Exchange-spring behavior of FePt/Fe multi-layers was studied via micro-magnetic simulation. • As total thickness is 20 nm, optimal magnetic property is shown when the thickness ratio of Fe is 10%. • As total thickness is 20 nm, nucleation fields are positive when the thickness ratio of Fe is 25% and larger. • As total thickness is 20 nm, coercivity is greatly reduced when the thickness ratio of Fe is 25% and larger. • Under fixed volume and the thickness ratio of Fe (10%), switching field can be reduced by reducing the bottom size.

  2. Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.).

    Science.gov (United States)

    Song, Jianqiang; Shellie, Krista C; Wang, Hua; Qian, Michael C

    2012-09-15

    The effect of deficit irrigation and a kaolin-based, foliar reflectant particle film (PF) on grape composition and volatile compounds in Merlot grapes was investigated over two growing seasons in semi-arid, south-western Idaho. Vines were provided with differential amounts of water based on their estimated crop evapotranspiration (ET(c)) throughout berry development, and particle film was applied to half of the vines in each irrigation main plot. Free and bound volatile compounds in grapes were analyzed using stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS). The concentrations of free C(6) compounds (hexanal, trans-2-hexenal, and 1-hexanol) decreased, and bound terpene alcohols (nerol and geraniol) and C(13)-norisoprenoids (β-damascenone, 3-hydroxy-β-damascenone, 1,1,6-trimethyl-1,2-dihydronaphthalene, and 3-oxo-α-ionol) increased in berries each year in response to severity of vine water stress. Concentrations of C(13)-norisoprenoids and bound forms of nerol and geraniol were positively correlated with their concentrations in the corresponding wines. Particle film application had minimum effect on free and bound volatile composition in the grapes, and there was no interactive effect between particle film and deficit irrigation. However, particle film application enhanced the total amount of berry anthocyanins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  4. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  5. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  6. Optical Properties of Semiconductor-Metal Composite Thin Films in the Infrared Region

    Science.gov (United States)

    Nagendra, C. L.; Lamb, James L.

    1993-01-01

    Germanium:Silver (Ge:Ag) composite thin films having different concentrations of Ag, ranging from 7% to 40% have been prepared by dc co-sputtering of Ge an Ag and the films' surface morphology and optical properties have been characterized using transmission electron microscopy (TEM) and infrared spectrophotometry. It is seen that while the films containing lower concentrations of Ag have island-like morphology (i.e. Ag particles distributed in a Ge matrix), the higher metallic concentration films tend to have symmetric distribution of Ag and Ge.

  7. PREPARATION AND CORROSION RESISTANCE OF NiP/TiO2 COMPOSITE FILM ON CARBON STEEL IN SULFURIC ACID SOLUTION

    Institute of Scientific and Technical Information of China (English)

    L.Z. Song; S.Z. Song; J. Zhao

    2006-01-01

    A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy)and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.

  8. Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti-Ni-Y

    Science.gov (United States)

    König, D.; Frowein, P.; Wieczorek, A.; Frenzel, J.; Hamann, S.; Eggeler, G.; Ludwig, A.

    2017-01-01

    Advanced engineering applications require new and improved shape memory alloys in bulk and thin-film form. While many Ti-Ni-based systems have been studied so far, the Ti-Ni-Y materials system was not studied in detail concerning its bulk and thin-film shape memory properties. For this reason, a Ti-Ni-Y thin-film materials library focussing on compositions close to Ni50Ti50 was fabricated by combinatorial magnetron sputtering. This library was characterized by high-throughput methods and the compositional range where phase transformations occur was identified. Ti-Ni-Y thin films exhibit a very narrow hysteresis width ∆T and allow to precisely adjust ∆T. Based on the promising results of Ti-Ni-Y thin films, which can be directly applied in microsystems, bulk alloys were fabricated in order to explore how thin-film and bulk properties of different Ti-Ni-Y compositions correlate. It turned out that Ti-Ni-Y bulk materials show different phase transformation properties compared to thin films, most importantly higher ∆T. The differences between thin-film and bulk material are discussed.

  9. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications.

  10. Composite Films from Sodium Alginate and High Methoxyl Pectin - Physicochemical Properties and Biodegradation in Soil

    Directory of Open Access Journals (Sweden)

    Ayten O. Solak

    2014-12-01

    Full Text Available The increased public attention on the waste pollution and the awareness of the hard environmental problems is the reason for the need of new materials which are susceptible to degradation in nature for a short period of time. The biopolymer films and coatings based on renewable natural sources are suitable for obtaining of biodegradable packaging. The newly developed composite films based on sodium alginate and apple high methoxyl pectin were studied for total soluble matter, swelling in water, water vapors transmission rate and biodegradation in soil. The analysis of their behavior in water medium showed a considerably higher rate and degree of dissolution of the pectin monocomponent film compared to the composite and alginate films. The composite alginate-pectin films showed lower water vapors transmission rate even under extreme conditions (38ºC, RH 90 % compared to the monocomponent films. All investigated films degraded in soil up to 80 days. The good barrier properties to water vapors and the complete biodegradation in soil make the films based on sodium alginate and high methoxyl pectin potential ecological materials for packing and coating of foods and pharmaceutical products.

  11. Composition, Constitution and Phase Transformation Behavior in Thin-Film and Bulk Ti-Ni-Y

    Science.gov (United States)

    König, D.; Frowein, P.; Wieczorek, A.; Frenzel, J.; Hamann, S.; Eggeler, G.; Ludwig, A.

    2017-03-01

    Advanced engineering applications require new and improved shape memory alloys in bulk and thin-film form. While many Ti-Ni-based systems have been studied so far, the Ti-Ni-Y materials system was not studied in detail concerning its bulk and thin-film shape memory properties. For this reason, a Ti-Ni-Y thin-film materials library focussing on compositions close to Ni50Ti50 was fabricated by combinatorial magnetron sputtering. This library was characterized by high-throughput methods and the compositional range where phase transformations occur was identified. Ti-Ni-Y thin films exhibit a very narrow hysteresis width ∆ T and allow to precisely adjust ∆ T. Based on the promising results of Ti-Ni-Y thin films, which can be directly applied in microsystems, bulk alloys were fabricated in order to explore how thin-film and bulk properties of different Ti-Ni-Y compositions correlate. It turned out that Ti-Ni-Y bulk materials show different phase transformation properties compared to thin films, most importantly higher ∆ T. The differences between thin-film and bulk material are discussed.

  12. Mechanical, tribological and corrosion performance of WBN composite films deposited by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lihua; Zhao, Hongjian; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2014-10-01

    Highlights: • WBN composite films were deposited by reactive magnetron sputtering. • The WBN film which exhibited the highest hardness had best wear resistance at room and elevated temperature. • The corrosion resistance of the substrate which coated with W{sub 2}N films or WBN films was superior to the uncoated substrate. • The corrosion resistance of the substrate which coated with W{sub 2}N films was improved slightly by doping some boron content and the corrosion mechanism was discussed in the view of structure. - Abstract: WBN composite films with various boron contents ranging from 25.1 at.% to 46.5 at.% were deposited by a multi-target magnetron sputtering system. The microstructure, mechanical, tribological and corrosion behavior of films were studied using XRD, SEM, FTIR, HRTEM, nano-indentation, Ball-on-disc dry sliding wear tester, Bruker 3D Profiler and compared to W{sub 2}N. All the films exhibited face-centred cubic (fcc) structure W{sub 2}N; bcc α-W phases appeared as the B content was 25.1 at.% and amorphous BN appeared as the B content was 31.9 at.%. The hardness and compressive stress of WBN films first increased and then decreased with increasing the B content. As the B content was 38.1 at.%, they reached the maximum values of 36.1 GPa and 2.6 GPa, respectively. The best wear resistance at room and elevated temperature was found for the film which was shown to exhibit the highest hardness and compressive stress. The corrosion resistance of the substrate which coated with W{sub 2}N films or WBN films was superior to the uncoated substrate. The corrosion resistance of the substrate which coated with W{sub 2}N films was improved slightly by doping some boron content.

  13. Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia; Zhang, Quan [The Civil Engineering College of Hunan University, Changsha (China); Lai, Alvin C.K. [Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon (China); Zeng, Liping [Department of Building Engineering of Hunan Institute of Engineering, Xiangtan (China)

    2016-12-15

    In order to degrade in-car formaldehyde gas, graphene oxide (GO), cerium (Ce), and TiO{sub 2} were organically combined by one-step sol-gel method. Then the mixed collosol was coated onto the surface of inorganic glass substrates to form Ce-GO-TiO{sub 2} composite film by way of immersion, coating, and calcinations. The morphology and crystal structure of as-prepared Ce-GO-TiO{sub 2} film were studied by a series of detection techniques. The photocatalytic performance of this film was analyzed by the degradation effect of formaldehyde under simulated sunlight. The results showed that the Ce-GO-TiO{sub 2} film had the inbuilt mesoporous structure in the lamellar stacking with particles. When the doping amount of Ce and GO were 0.4 and 0.2% (mass ratio), the composite film can improve effectively the response to the visible light and its degradation rate for low concentration of formaldehyde was up to 83.8% in simulated sunlight for 7 h, which could be attributed to the co-function of Ce and GO. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Composition, XRD and morphology study of laser prepared LiNbO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M.; Remsa, J.; Kocourek, T. [Institute of Physics ASCR v.v.i., Prague 8 (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Sitna, Kladno (Czech Republic); Havranek, V. [Nuclear Physics Institute ASCR, Rez near Prague (Czech Republic); Vincze, A.; Bruncko, J. [International Laser Centre, Bratislava 4 (Slovakia); Studnicka, V. [Institute of Physics ASCR v.v.i., Prague 8 (Czech Republic); Rubesova, K. [Institute of Chemical Technology, Prague 6 (Czech Republic)

    2013-03-15

    LiNbO{sub 3} films were deposited by PLD from LiNbO{sub 3} crystalline or from three different stoichiometric or Li-enriched LiNbO{sub 3} targets. Polycrystalline films were prepared on SiO{sub 2}/Si or sapphire substrates at temperatures T{sub S} {proportional_to}650-750 C. Main attention was paid to the influence of targets preparation and the deposition conditions on films composition, morphology and crystallinity. The thin-film morphology was determined by SEM microscopy. The composition was measured by SIMS, RBS, PIXE and PIGE methods. Highly oriented, smooth and stoichiometric LiNbO{sub 3} films were synthesized. (orig.)

  15. Luminescent, freestanding composite films of Au15 for specific metal ion sensing.

    Science.gov (United States)

    George, Anu; Shibu, E S; Maliyekkal, Shihabudheen M; Bootharaju, M S; Pradeep, T

    2012-02-01

    A highly luminescent freestanding film composed of the quantum cluster, Au(15), was prepared. We studied the utility of the material for specific metal ion detection. The sensitivity of the red emission of the cluster in the composite to Cu(2+) has been used to make a freestanding metal ion sensor, similar to pH paper. The luminescence of the film was stable when exposed to several other metal ions such as Hg(2+), As(3+), and As(5+). The composite film exhibited visual sensitivity to Cu(2+) up to 1 ppm, which is below the permissible limit (1.3 ppm) in drinking water set by the U.S. environmental protection agency (EPA). The specificity of the film for Cu(2+) sensing may be due to the reduction of Cu(2+) to Cu(1+)/Cu(0) by the glutathione ligand or the Au(15) core. Extended stability of the luminescence of the film makes it useful for practical applications.

  16. Characterization of multilayered and composite edible films from chitosan and beeswax.

    Science.gov (United States)

    Velickova, Elena; Winkelhausen, Eleonora; Kuzmanova, Slobodanka; Moldão-Martins, Margarida; Alves, Vitor D

    2015-03-01

    Chitosan-based edible films were prepared and subjected to cross-linking reactions using sodium tripolyphosphate and/or to beeswax coating on both films interfaces. In addition, chitosan-beeswax emulsion-based films were produced. The goal of these modifications of the chitosan films was the improvement of their barrier to water vapor and to decrease their affinity to liquid water maintaining or improving the mechanical and optical properties of the original chitosan films. The cross-linking with tripolyphosphate decreased both the water vapor permeability and the water absorption capacity to about 55% and 50% of that of the original chitosan films, respectively. However, there was an increase in the films stiffness, revealed by the increased Young modulus from 42 kPa up to 336 kPa. The multilayered wax-chitosan-wax films exhibited a similar improvement of the barrier properties to water vapor, with the advantage of maintaining the mechanical properties of the original chitosan films. However, these wax-coated films showed a higher water absorption capacity, which is believed to be a consequence of water entry into small pores between the film and the wax layers. Regarding the film samples subjected to cross-linking and further coating with beeswax, a similar behavior as the uncoated cross-linked films was observed. The emulsion-based composite films were characterized by a substantial decrease of the water vapor permeability (40%), along with a decrease in their stiffness. Regarding the optical properties, all films presented a yellowish color with similar values of lightness, chroma, and hue. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. More on effective composite metrics

    Science.gov (United States)

    Heisenberg, Lavinia

    2015-07-01

    In this work we study different classes of effective composite metrics proposed in the context of one-loop quantum corrections in bimetric gravity. For this purpose we consider contributions of the matter loops in the form of cosmological constants and potential terms yielding two types of effective composite metrics. This guarantees a nice behavior at the quantum level. However, the theoretical consistency at the classical level needs to be ensured additionally. It turns out that among all these possible couplings, only one unique effective metric survives these criteria at the classical level.

  18. More on effective composite metrics

    CERN Document Server

    Heisenberg, Lavinia

    2015-01-01

    In this work we study different classes of effective composite metrics proposed in the context of one-loop quantum corrections in bimetric gravity. For this purpose we consider contributions of the matter loops in form of cosmological constants and potential terms yielding two types of effective composite metrics. This guarantees a nice behaviour at the quantum level. However, the theoretical consistency at the classical level needs to be ensured additionally. It turns out that among all these possible couplings only one unique effective metric survives this criteria at the classical level.

  19. Influence of Bath Composition on Magnetic Properties of Electrodeposited Co-Pt-W Thin Films

    Institute of Scientific and Technical Information of China (English)

    GE Hong-liang; WEI Guo-ying; WU Qiong; ZHOU Qiao-ying; WANG Xin-yan

    2007-01-01

    Effect of bath composition ([Co2+]/[PtⅣ] and [WO2-4], [cit-]) and pH on the magnetic properties of electrodeposited Co-Pt-W thin films has been investigated. Electrodeposited Co-Pt-W thin films exhibited strong perpendicular magnetic anisotropy when the ratio of [Co2+] to [PtⅣ] was 10; cathode current efficiency and perpendicular magnetic anisotropy showed little variations when [WO2-4] was lower than 0.1 mol/L, but perpendicular magnetic anisotropy had strengthened when [WO2-4] was over 0.1 mol/L, which could be explained by the fact that the hydrogen evolution could produce pores as magnetic domain pinnings; citrate as complexing reagent can promote the polarization of [Co2+] and [PtⅣ]. As a result, the equilibrium electrode potentials of cobalt and platinum moved to negative direction, which led to the co-deposition of Co, Pt, and W. It was also found out that the as-deposited Co-Pt-W hard magnetic thin films were very homogeneous, smooth, and had the maximum coercivity for the bath pH 8.5 and the concentration of citrate 0.26 mol/L.

  20. Synthesis and Antibacterial Effect Against Escherichia coli of TiO2: C Composite Film Deposited on Titanium%纳米TiO2:C薄膜涂层的构建及对大肠杆菌的抗菌性能研究

    Institute of Scientific and Technical Information of China (English)

    麦理想; 张晟; 王春阳; 谢永建; 王大为; 张志光

    2011-01-01

    利用溶胶-凝胶法在纯钛片表面沉积纳米TiO2:C薄膜涂层,采用X射线光电子能谱分析纳米TiO2:C薄膜的化学成分.根据qbt2591 - 2003国家工业标准测试纳米TiO2:C薄膜对大肠杆菌的抗菌性能,同时通过透射电子显微镜观察细菌被杀灭的超微结构变化过程,分析其抗菌机理.结果表明,在TiO2:C薄膜中C进入锐钛矿型TiO2晶格内并取代Ti或O的位置从而形成O-Ti-C键合,进而抑制TiO2相变.试样对大肠杆菌20 min可见光催化抗菌率均达到90%以上,具有良好的抗菌效果.其杀灭细菌的超微结构变化表明其主要作用于细菌的细胞壁,引起胞壁穿孔,细胞胀大,细胞内容物外溢,直至细菌完全解体.%Undoped and C-doped TiO2 films have been prepared by sol-gel process. The chemical components of the TiO2: C composite thin film were characterized using X-ray Photoelectron Spectroscopy ( XPS). The antibacterial efficacy of the TiO2: C composite film was tested by film applicator coating method. Antibacterial mechanism of TiO2: C composite film was discussed by transmission electron microscope (TEM). It has been observed that C dopants retard the transformation from anatase to rutile phase. Namely, C doping effect is attributed to the anatase phase stabilization. More than 90% of bacterium were killed within 20 minutes which confirm fine antibacterial effect of the film. When studying the ultrastructure changes as the antibacterial material of TiO2 : C,hin film against Escherichia coli, the work indicated that the antibacterial particles of TiO2; C,hin film may produce active oxides which contact the Escherichia coli cell and damage even penetrate the cells wall and plasmolemma to enter into the core to make cytoplasm agglomerate and thus cause the cells dead.

  1. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU Yue; LI Meicheng; CHU Lihua; YU Hakki; Wodtke A M; ZHAO Yan; ZHANG Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of gra-phene-based organic solar cells (OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film . Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited gra-phene/PEDOT:PSS film on graphene-based OSCs.

  2. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU; Yue; LI; Meicheng; CHU; Lihua; YU; Hakki; Wodtke; A.M.; ZHAO; Yan; ZHANG; Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of graphene-based organic solar cells(OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film. Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited graphene/PEDOT:PSS film on graphene-based OSCs.

  3. Dielectric properties: A gateway to antibacterial assay-A case study of low-density polyethylene/chitosan composite films.

    Digital Repository Service at National Institute of Oceanography (India)

    Sunilkumar, M.; Gafoor, A.A; Anas, A; Haseena, A; Sujith, A

    The dielectric properties of low-density polyethylene–chitosan composite films were correlated with their antibacterial properties in this work. Films were designed on the molecular level using palm oil as a plasticizer in an internal mixer. Maleic...

  4. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    Science.gov (United States)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  5. Electronic transport in heavily doped Ag/n-Si composite films

    Directory of Open Access Journals (Sweden)

    Clayton W. Bates Jr.

    2013-10-01

    Full Text Available Hall measurements characterized Ag/n-Si composite films 1 micron thick produced by magnetron co-sputtering onto high resistivity Si (111 substrates at 550°C. The targets were Ag and n-type Si doped with 3 × 1019/cm3 of antimony. Films were prepared with 13, 16 and 22 at. % Ag and measured over a temperature range 77–500°K. Conduction takes place at low temperatures by variable rang hopping in localized states at the Fermi level and by thermal activation over grain boundaries at higher temperatures. The Log Resistivity vs 1/kT curves for the three Ag concentrations vary in a similar manner, but decrease in magnitude with increasing Ag due to the smaller number of grain boundaries between Ag nanoparticles occurring with increasing Ag concentration. At low temperatures Hall mobilities are essentially independent of temperature as the carrier densities for the three Ag concentrations are constant from 77 to slightly under 300°K with resistivities varying by small amounts. The mobilities at all Ag concentrations increase with temperature and approach each other as the effects of grain boundaries become less important. This work presents for the first time the effects of metal particles embedded in a semiconductor on the transport properties of carriers in the semiconductor. Though these effects are for a given average particle size most of the results are expected to hold over a range of particle sizes. Free electrons produced in films containing 13 and 16 at. % Ag result in concentrations of 1.5 × 1019/cm3, one half the antimony doping, while those with 22 at. % Ag, the carrier concentrations are three orders of magnitude higher. These constant carrier concentrations are due to the metal-insulator transition that occurs in doped crystalline and polycrystalline silicon for carrier densities nc >3.9 × 1018/cm3. The three orders of magnitude higher carrier concentration produced in films with 22 at. % Ag is argued to be due to doping of the Si

  6. Preparation and optical properties of GaSb nanoparticles embedded in SiO2 composite films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The composite films of GaSb nanoparticles embedded in SiO2 matrices were fabricated by radio-frequency magnetron co-sputtering. Transmission electron microscope and X-ray diffraction pattern indicate that the GaSb nanoparticles were uniformly dispersed in SiO2 matrices. Room temperature transmission spectra exhibit a blue shift of about 2.73 eV. The blue shift increases with decreasing size of GaSb nanoparticles, suggesting the existence of quantum size effects. Room temperature Raman spectra show that there is a larger Raman peak red shift and broadening of the composite films than that of bulk GaSb. This phenomenon is explained by photon confinement effect and tensile stress effect.

  7. Composition dependence of magnetic and magnetotransport properties in C60-Co granular thin films

    Science.gov (United States)

    Sugai, Isamu; Sakai, Seiji; Matsumoto, Yoshihiro; Naramoto, Hiroshi; Mitani, Seiji; Takanashi, Koki; Maeda, Yoshihito

    2010-09-01

    Composition dependence of magnetic and magnetotransport properties in C60Cox thin films exhibiting large magnetoresistance (MR) effect was investigated in the Co composition range of x =8-20, where x denotes the number of Co atoms per C60 molecule. From the superparamagnetic magnetization curves observed, the average diameter (dave) of Co nanoparticles dispersed in the matrix phase was evaluated to be approximately 1 nm for the sample of x =8, and increased with the Co composition, x. By analyzing the temperature (T) dependence of resistivity based on the model by Abeles et al. [Adv. Phys. 24, 407 (1975)], the average charging energies (⟨ÊC⟩) of Co nanoparticles were evaluated to be 2-9 meV for the samples of x =8-17 while the considerably weak temperature dependence suggested much smaller values of ⟨ÊC⟩ for the samples of x >17. The composition dependence of dave and ⟨ÊC⟩ revealed a structural transition from well-defined granular structures in the range of x =8-17 to magnetically and electronically coupled states of Co nanoparticles over x ˜17. As a result of the structural change, the MR behavior became different between the two composition regions separated at x ˜17. In particular, for the samples of x =8-17, the bias-voltage (V) dependence of the MR ratio in the low-V region fits well with an unusual exponential form of MR=MR0 exp(-V/Vc) at T proportion to ⟨ÊC⟩ and also that the fitting parameter Vc is closely correlated with ⟨ÊC⟩. These results indicate that the charging effect of Co nanoparticles plays an important role in the anomalously large MR effect of C60-Co granular films. In addition, the power-law dependence of MR on T (MR∝T-α,α˜2) was also observed at relatively high temperature range T ≥10 K in the wide range of the composition.

  8. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure.

    Science.gov (United States)

    Shen, Heng; Guo, Jing; Wang, Hao; Zhao, Ning; Xu, Jian

    2015-03-18

    With the development of microelectronic technology, the demand of insulating electronic encapsulation materials with high thermal conductivity is ever growing and much attractive. Surface modification of chemical inert h-BN is yet a distressing issue which hinders its applications in thermal conductive composites. Here, dopamine chemistry has been used to achieve the facile surface modification of h-BN microplatelets by forming a polydopamine (PDA) shell on its surface. The successful and effective preparation of h-BN@PDA microplatelets has been confirmed by SEM, EDS, TEM, Raman spectroscopy, and TGA investigations. The PDA coating increases the dispersibility of the filler and enhances its interaction with PVA matrix as well. Based on the combination of surface modification and doctor blading, composite films with aligned h-BN@PDA are fabricated. The oriented fillers result in much higher in-plane thermal conductivities than the films with disordered structures produced by casting or using the pristine h-BN. The thermal conductivity is as high as 5.4 W m(-1) K(-1) at 10 vol % h-BN@PDA loading. The procedure is eco-friendly, easy handling, and suitable for the practical application in large scale.

  9. Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells.

    Science.gov (United States)

    Qin, Mohan; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-15

    Osmotic microbial fuel cells (OsMFCs) take advantages of synergy between forward osmosis (FO) and microbial fuel cells (MFCs) to accomplish wastewater treatment, current generation, and high-quality water extraction. As an FO based technology, OsMFCs also encounter reverse salt flux (RSF) that is the backward transport of salt ions across the FO membrane into the treated wastewater. This RSF can reduce water flux, contaminate the treated wastewater, and increase the operational expense, and thus must be properly addressed before any possible applications. In this study, we aimed to understand the effects of current generation and electrolyte pH on RSF in an OsMFC. It was found that electricity generation could greatly inhibit RSF, which decreased from 16.3 ± 2.8 to 3.9 ± 0.7 gMH when the total Coulomb production increased from 0 to 311 C. The OsMFC exhibited 45.9 ± 28.4% lower RSF at the catholyte pH of 3 than that at pH 11 when 40 Ω external resistance was connected. The amount of sodium ions transported across the FO membrane was 18.3-40.7% more than that of chloride ions. Ion transport was accomplished via diffusion and electrically-driven migration, and the theoretical analysis showed that the inhibited electrically-driven migration should be responsible for the reduced RSF. These findings are potentially important to control and reduce RSF in OsMFCs or other osmotic-driven processes.

  10. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    Science.gov (United States)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-08-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  11. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-05-01

    Full Text Available A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF and polypropylene (PP were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf, and void content (Vc, were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS, impact property, and scanning electron microscopy (SEM were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  12. Study of composite thin films for applications in high density data storage

    Science.gov (United States)

    Yuan, Hua

    ---oxide volume fraction and sputtering pressure. The latter affects grain size and grain segregation through surface-diffusion modification and the self-shadowing effect. The composite Ru + oxide interlayers were found to have various microstructures under various sputtering conditions. Four characteristic microstructure zones can be identified as a function of oxide volume fraction and sputtering pressure---"percolated" (A), "maze" (T), "granular" (B) and "embedded" (C), based on which, a new structural zone model (SZM) is established for composite thin films. The granular microstructure of zone B is of particular interest for recording media application. The grain size of interlayers is a strong function of pressure, oxide species and oxide volume fraction. Magnetic layers grown on top of these interlayers were found to be significantly affected by the interlayer microstructure. One-to-one grain epitaxial growth is very difficult to achieve when the grain size is too small. As a result, the magnetic properties of smaller grain size magnetic layers deteriorate due to poor growth. This presents a huge challenge to high areal density magnetic recording media. A novel approach of Ar-ion etched Ru seedlayer, which can improve epitaxy between interlayer and magnetic layer is proposed. This method produces interlayer thin films of: (1) smaller grain size and higher nucleation density due to both a rougher seedlayer surface and an oxide addition in the interlayer; (2) good (00.2) texture due to the growth on top of the low pressure deposited Ru seedlayer; (3) dome-shape grain morphology due to the high pressure deposition. Therefore, a significant Ru grain size reduction with enhanced granular morphology and improved grain-to-grain epitaxy with the magnetic layer was achieved. High resolution transmission electron microscopy (TEM) techniques, such as, electron energy loss spectroscopy (EELS), energy-filtered TEM (EFTEM), energy-dispersive X-ray spectroscopy (EDS) and mapping, and high

  13. Effect of Layer and Film Thickness and Temperature on the Mechanical Property of Micro- and Nano-Layered PC/PMMA Films Subjected to Thermal Aging

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-Mohti

    2015-04-01

    Full Text Available Multilayered polymer films with biomimicking, layered structures have unique microstructures and many potential applications. However, a major limitation of polymer films is the deterioration of mechanical properties in working environments. To facilitate the design and development of multilayered polymer films, the impact of thermal aging on the mechanical behavior of micro- and nano-layered polymer films has been investigated experimentally. The composition of the polymer films that have been studied is 50 vol% polycarbonate (PC and 50 vol% poly(methyl methacrylate (PMMA. The current study focuses on the effect of film and layer thickness and temperature on the mechanical properties of the materials subjected to thermal aging. To study the effect of film and layer thickness, films with the same thickness, but various layer thicknesses, and films with the same layer thickness, but various film thicknesses, were thermally aged at 100 °C in a constant temperature oven for up to six weeks. The results show that as the layer thickness decreases to 31 nm, the film has a higher stiffness and strength, and the trend of the mechanical properties is relatively stable over aging. The ductility of all of the films decreases with aging time. To study the effect of temperature, the films with 4,096 layers (31 nm thick for each layer were aged at 100 °C, 115 °C and 125 °C for up to four weeks. While the 100 °C aging results in a slight increase of the stiffness and strength of the films, the higher aging temperature caused a decrease of the stiffness and strength of the films. The ductility decreases with the aging time for all of the temperatures. The films become more brittle for higher aging temperatures.

  14. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Fan, Ting-Fang; Roy, S. [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1996-12-31

    The primary objective of this project was to prepare and characterize a hydrogen permselective palladium-ceramic composite membrane for high temperature gas separations and catalytic membrane reactors. Electroless plating method was used to deposit a thin palladium film on microporous ceramic substrate. The objective of this paper is to discuss the preparation and characterization of a thin-film palladium-ceramic composite membrane for selective separation of hydrogen at elevated temperatures and pressures. In this paper, we also present a model to describe the hydrogen transport through the palladium-ceramic composite membrane in a cocurrent flow configuration.

  15. Chitosan-based films composites for wound healing purposes; Filmes compositos de quitosana para aplicacao no revestimento de ferimentos

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Natali de O.; Silva, Gabriela T. da; Schulz, Gracelie A.S.; Fajardo, Andre R., E-mail: natalioliveiraalves@gmail.com [Universidade Federal de Pelotas (LaCoPol/UFPel), Pelotas, RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos. Lab. de Tecnologia e Desenvolvimento de Compositos e Materiais Polimericos

    2015-07-01

    Chitosan has been extensively applied in the developing of biomaterials due to its desirable good physico-chemical and biological properties. According to this, here films composite of chitosan, poly(vinyl alcohol) and bovine bone powder were prepared by casting willing to be applied in wound healing purposes. Moreover, the first step was the developing of a suitable method to obtain bovine bone powder, which was utilized here as filler. All the materials and films were fully characterized by FTIR, DRX and thermal analysis. Water uptake capacity was measured by swelling assays. (author)

  16. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films

    Science.gov (United States)

    Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke, A.; Klimova, S.; Waske, A.; Elerman, Y.; Hütten, A.

    2015-05-01

    The structural, magnetic, and magnetocaloric properties of epitaxial Ni-Co-Mn-Al thin films with different compositions have been studied. The films were deposited on MgO(001) substrates by co-sputtering on heated substrates. All films show a martensitic transformation, where the transformation temperatures are strongly dependent on the composition. The structure of the martensite phase is shown to be 14 M . The metamagnetic martensitic transformation occurs from strongly ferromagnetic austenite to weakly magnetic martensite. The structural properties of the films were investigated by atomic force microscopy and temperature dependent x-ray diffraction. Magnetic and magnetocaloric properties were analyzed using temperature dependent and isothermal magnetization measurements. We find that Ni41Co10.4Mn34.8Al13.8 films show giant inverse magnetocaloric effects with magnetic entropy change of 17.5 J kg-1K-1 for μ0Δ H =5 T.

  17. Effects of mineral tourmaline particles on the photocatalytic activity of TiO2 thin films.

    Science.gov (United States)

    Meng, Junping; Liang, Jinsheng; Ou, Xiuqin; Ding, Yan; Liang, Guangchuan

    2008-03-01

    Titania composite thin films (T/TiO2) containing tourmaline particles were prepared by a sol-gel method, using alkoxide solutions as precursor. The tourmaline particles and thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and so on. The effects of tourmaline on the photocatalytic activity of TiO2 were measured with methyl orange as an objective photodegradation substance. The results showed that the photocatalytic degradation of methyl orange conformed to the first-order kinetic equation and the composite thin films had better photocatalytic activity due to the cooperation of polarity and the far infrared emission of tourmaline. The T/TiO2 thin films including 0.5 wt% tourmaline exhibited better photocatalytic activity when heat-treated at 250 degrees C for 3 h, than pure TiO2 thin films under the ultraviolet irradiation.

  18. Photoactivity and hydrophilic property of SiO2 and SnO2 co-doped TiO2 nano-composite thin films

    Directory of Open Access Journals (Sweden)

    Lek Sikong

    2010-08-01

    Full Text Available SiO2 and SnO2 co-doped TiO2 nano-composite thin films were prepared by sol-gel method. The effects of film thicknessand amount of SiO2 and SnO2 co-doping into TiO2 nano-composite films on phase presence, crystallite size, photocatalyticreaction and hydrophilicity were investigated. Thickness of 3-coating layers (238 nm seems to provide the highest photocatalyticactivity. The crystallinity of anatase phases, crystallite sizes and photocatalytic reactions of SiO2 and SnO2 co-dopedTiO2 films decrease with an increase in SiO2 content. It was found that more amount of SiO2 addition seems to inhibit graingrowth and the formation of anatase phase; especially when it was synthesized at temperature less than 600°C. The photocatalyticreaction seems to decrease with an increase in SiO2 doping when the concentrations of SnO2 in the composite films are fixed. It was apparent that 1SiO2/1SnO2/TiO2 composite film exhibits the highest photoactivity. Suitable amounts of SiO2and SnO2 doping into the TiO2 composite films tend to enhance the hydrophilic property of the films. It was also apparentthat the 3SiO2/3SnO2/TiO2, 5SiO2/5SnO2/TiO2 and 10SiO2/3SnO2/TiO2 composite films exhibit super hydrophilic characteristicsunder UV irradiation for 30 min.

  19. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    Energy Technology Data Exchange (ETDEWEB)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  20. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements.

    Science.gov (United States)

    Jeong, Young Gyu; Jeon, Gil Woo

    2013-07-24

    We report microstructure of thermomechanically stable multiwalled carbon nanotube (MWCNT)/poly(m-phenylene isophthalamide) (m-aramid) composite films containing 0.0-10.0 wt % MWCNTs and their performance as electric heating elements. FE-SEM images show that the MWCNTs are well dispersed in the composite films and are wrapped with m-aramid chains and that the interfacial thickness of m-aramid wrapped MWCNTs decreases with the MWCNT content. The electrical resistivity of films varies from ∼10(13) Ω cm for the neat m-aramid to ∼10(0) Ω cm of the film with 10.0 wt % MWCNT owing to the formation of a conductive three-dimensional network of MWCNTs. Accordingly, the performance of MWCNT/m-aramid films as electric heating elements is strongly dependent on MWCNT content as well as applied voltage. For the composite film with 10.0 wt % MWCNT, a maximum temperature of ∼176 °C is attained even at a low applied voltage of 10 V. The excellent performance such as rapid temperature response and high electric power efficiency at given applied voltages is found to be related with the microstructural features of the MWCNT/m-aramid films.

  2. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    Science.gov (United States)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  3. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueAo; WU WenJian; MAN YaHui; TIAN Tian; TIAN XiaoZhou; WANG JianFang

    2007-01-01

    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD),high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR)spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(Ⅵ, Ⅴ), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  4. Preparation and photochromism of Keggin-type molybdphosphoric acid/silica mesoporous composite thin films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(VI, V), and the bleaching process of composite thin films is closely related to the presence of oxygen.

  5. Preparation of the flexible ZrO{sub 2}/C composite nanofibrous film via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xin; Song, Lixin; Xie, Xueyao; Zhou, Yangyang; Guan, Yingli; Xiong, Jie [Zhejiang Sci-Tech University, College of Materials and Textiles, Hangzhou (China); Zhejiang Sci-Tech University, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Hangzhou (China)

    2016-07-15

    The flexible ZrO{sub 2}/C composite nanofibrous film was fabricated by electrospinning and thermal treatment. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffractometer, and Fourier transform infrared spectra were used to characterize the morphology and microstructure of the ZrO{sub 2}/C composite nanofibrous film. The ZrO{sub 2}/C nanofibers exhibited rough surface and had the average diameter of about 230 ± 35 nm. And the ZrO{sub 2} nanoparticles were incorporated in carbon matrix and in tetragonal and monoclinic. The flexural property of the ZrO{sub 2}/C composite nanofibrous film was investigated in detail. The results showed that the flexural property of the nanofibrous film was greatly improved with addition of the ZrO{sub 2} nanoparticles. Besides, with the increase of the contents of ZrO{sub 2} nanoparticles, the flexural modulus of the nanofibrous film decreased, reached a lowest value, and then increased. The lowest flexural modulus of the ZrO{sub 2}/C composite nanofibrous film in precursor concentration of 7.0 wt% was 8.55 ± 0.06 MPa. (orig.)

  6. Dye-polyoxometalate composite films: self-assembly, thermal and photochemical properties.

    Science.gov (United States)

    Gao, Shuiying; Cao, Rong; Yang, Chunpeng

    2008-08-01

    A series of dye-polyoxometalate composite films were prepared by alternately depositing cationic dye molecules and anionic polyoxometalates such as Keggin-type [BW(12)O(40)](5-) and the sandwich complex [Co(4)(H(2)O)(2)(PW(9)O(34))(2)](10-)via layer-by-layer (LbL) self-assembly method. These cationic dye molecules (MB, AA, TH, BB3, BCB and NB) are heterocyclic planar and rigid phenothiazine and phenoxazine dye molecules with different substituting groups in the side chains. The self-assembly of the films was studied by UV-vis and IR spectra. The results show that the substituting groups of dye molecules such as NH(2) and CH(2)CH(3) have influence on the self-assembly properties. The continuous and regular growth of the films was also dependent upon hydrogen bonding (NHO) formed between the amino groups of dye molecules and oxygen atoms of POMs as well as electrostatic interactions. The investigation of thermal and photochemical treatments of the composite films is also presented. The thermal stability experiments indicate that the composite films of TH with two NH(2) substitute groups and NB with more pi-conjugated system exhibit high thermal stability, whereas the sunlight irradiation results indicate that the composite films of TH have good photochemical stability.

  7. Photoconducting Properties of Film Composites Based on Polyvinyl Butyral and Heterometallic Cu/Mo Complexes

    Science.gov (United States)

    Davidenko, N. A.; Kokozay, V. N.; Davidenko, I. I.; Buvailo, H. I.; Makhankova, V. G.; Studzinsky, S. L.

    2016-11-01

    We have synthesized and studied novel photosensitive polymer film composites based on non-photoconducting polyvinyl butyral doped with heterometallic Cu/Mo complexes. We have established that these composites have photoconducting and photovoltaic properties and are characterized by hole-type photoconductivity. The photocurrent and the photo-EMF are higher for composites in which complexes are used that have a shorter distance between nearest-neighbor metallic copper centers, which is explained by better conditions for transport of nonequilibrium holes.

  8. Anisoptropic Bruggeman Effective Medium Approaches for Slanted Columnar Thin Films

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Two different formalisms for the homogenization of composite materials containing ellipsoidal inclusions based on Bruggeman's original formula for spherical inclusions can be found in the literature. Both approximations determine the effective macroscopic permittivity of such an idealized composite assuming randomly distributed dielectric particles of equal shape and differ only in the definition of the depolarization factors. The two approaches are applied to analyze ellipsometric Mueller matrix spectra acquired in the visible and near-infrared spectral region from metal and semiconductor slanted columnar thin films. Furthermore, the effective dielectric function tensor generated by the two Bruggeman formalisms is compared to effective major axes dielectric functions individually determined with a homogeneous biaxial layer approach. Best-match model parameters of all three model approaches are discussed and compared to estimates from scanning electron microscope images. The structural parameters obtained fro...

  9. Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The composite films, XW11O39n-/SiO2, (X refers to Si, Ge or P, respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore, the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250~350 nm. Aqueous formic acid (FA) (0-20 mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.

  10. Biocidal Silver and Silver/Titania Composite Films Grown by Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    D. W. Sheel

    2008-01-01

    Full Text Available This paper describes the growth and testing of highly active biocidal films based on photocatalytically active films of TiO2, grown by thermal CVD, functionally and structurally modified by deposition of nanostructured silver via a novel flame assisted combination CVD process. The resulting composite films are shown to be highly durable, highly photocatalytically active and are also shown to possess strong antibacterial behaviour. The deposition control, arising from the described approach, offers the potential to control the film nanostructure, which is proposed to be crucial in determining the photo and bioactivity of the combined film structure, and the transparency of the composite films. Furthermore, we show that the resultant films are active to a range of organisms, including Gram-negative and Gram-positive bacteria, and viruses. The very high-biocidal activity is above that expected from the concentrations of silver present, and this is discussed in terms of nanostructure of the titania/silver surface. These properties are especially significant when combined with the well-known durability of CVD deposited thin films, offering new opportunities for enhanced application in areas where biocidal surface functionality is sought.

  11. Bauschinger effect in unpassivated freestanding thin films

    NARCIS (Netherlands)

    Shishvan, S.S.; Nicola, L.; Van der Giessen, E.

    2010-01-01

    Two-dimensional (2D) discrete dislocation plasticity simulations are carried out to investigate the Bauschinger effect (BE) in freestanding thin films. The BE in plastic flow of polycrystalline materials is generally understood to be caused by inhomogeneous deformation during loading, leading to res

  12. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films.

    Science.gov (United States)

    Savadekar, N R; Mhaske, S T

    2012-06-01

    Starch based films limit their application due to highly hydrophilic nature and poor mechanical properties. This problem was sought to be overcome by forming a nanocomposite of Thermoplastic starch (TPS) and Nano-Cellulose fibers (NCF). NCF was successfully synthesised from short stable cotton fibres by a chemo-mechanical process. TPS/NCF composite films were prepared by solution casting method, and their characterizations were done in terms of differential scanning calorimeter (DSC), morphology (SEM), water vapor permeability (WVTR), oxygen transmission rate (OTR), X-ray diffractograms, light transmittance and tensile properties. At very low concentration of NCF filled TPS composite film showed improvement in properties. The 0.4 t% NCF loaded TPS films showed 46.10% improved tensile strength than by base polymer film, beyond that 0.5 t% concentration tensile strength starts to deteriorate. WVTR and OTR results showed improved water vapor barrier property of TPS matrix. The DSC thermograms of TPS and composite films did not show any significant effect on the melting point of composite film to the base polymer TPS.

  13. The Release of Egg White Lysozyme Containing EDTA from Composite Edible Film Based on Whey Protein, Konjac Flour and Lipid

    Directory of Open Access Journals (Sweden)

    Mulia W. Apriliyani

    2014-01-01

    Full Text Available The objectives of this research were to find out the effect of EDTA addition on antibacterial spectrum broadening of lysozyme on Gram negative bacteria and the release of lysozyme from composite edible film made of whey protein, konjac glucomannan and several lipids type and content. The research were conducted with 2 steps. Step I: The addition of EDTA on lysozyme aquaeous (Lysozyme (mg/mL: EDTA (mg/mL = 11.14:8.14; 11.14:11.14 and 11.14:14.14 using Randomyzed Block Design, the variables were, antibacterial of lysozyme on Micrococcus lysodeikticus and Escherichia coli. Step II: Lipid content (5 and 10% and kind of lipid (butter, margarine, palm oil and beeswax using nested Randomyzed Block Design, the variables were lysozyme release, Water Vapor Permeability (WVP, protein solublity and microstructure of composite edible film. The results were, step I: the treatment didn’t gave significantly effect (p>0.05 on lysozyme activity. EDTA decrease cell membrane stabilization and lysozyme made lysis of cell membrane. EDTA chelate Ca2+ and Mg2+ salts as bridge between Lypopolysachcharide (LPS in outer membrane so LPS released from cell wall of Gram negative bacteria. Step II: The treatment didn’t gave significantly effect (p>0.05 on release of lysozyme and water vapour permeability, but gave significantly effect (p<0.05 on protein solubility. The release of lysozyme from composite edible film gave the best lysozyme release from beeswax 10% addition.

  14. Morphology, composition and electrical properties of SnO{sub 2}:Cl thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Wen, Chia-Hui; Hsu, Ching-Ming [Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China)

    2016-01-15

    Chlorine doped SnO{sub 2} thin films were prepared using atomic layer deposition at temperatures between 300 and 450 °C using SnCl{sub 4} and H{sub 2}O as the reactants. Composition, structure, surface morphology, and electrical properties of the as-deposited films were examined. Results showed that the as-deposited SnO{sub 2} films all exhibited rutile structure with [O]/[Sn] ratios between 1.35 and 1.40. The electrical conductivity was found independent on [O]/[Sn] ratio but dependent on chlorine doping concentration, grain size, and surface morphology. The 300 °C-deposited film performed a higher electrical conductivity of 315 S/cm due to its higher chlorine doping level, larger grain size, and smoother film surface. The existence of Sn{sup 2+} oxidation state was demonstrated to minimize the effects of chlorine on raising the electrical conductivity of films.

  15. First Orange Fluorescence Composite Film Based on Sm-Substituted Tungstophosphate and Its Electrofluorochromic Performance.

    Science.gov (United States)

    Gao, Wenmei; Yu, Tian; Du, Yu; Wang, Ruiqiang; Wu, Lixin; Bi, Lihua

    2016-05-11

    We chose a Sm-containing sandwich-type tungstophosphate K3Cs8[Sm(PW11O39)2]·10H2O (SmPW11) as a molecular dyad, which contains photoluminescence and electrochromism components in a skeletal structure, and investigated its electrofluorochromic performance both in solution and in composite films. First, the electrochemical activity and luminescence property of SmPW11 were studied in different pH solutions to determine the optimal pH solution medium; and then, the electrofluorochromic performance of SmPW11 was investigated under the optimized pH solution medium. Subsequently, the composite films containing SmPW11 were prepared on quartz substrates and conductive ITO substrates through a layer-by-layer (LbL) assembly method, using PDDA and PEI as molecular linkers. Characterization methods of the composite films include UV-vis spectra, fluorescence spectroscopy, cyclic voltammetry (CV), bulk electrolysis with coulometry, chronoamperometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Finally, in situ UV-vis and fluorescence spectroelectrochemical systems were used to research electrofluorochromic properties for the composite films under electrochemical modulation. The results indicate that the composite films display not only orange luminescence emission but also reversible orange luminescence switching behaviors manipulated by the redox process of tungstophosphate species PW11 via the energy transfer between the orange luminescence component Sm and electroreduced species of tungstophosphate PW11.

  16. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    Science.gov (United States)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  17. Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance.

    Science.gov (United States)

    Lee, Tae-Won; Jeong, Young Gyu

    2015-11-20

    We have manufactured regenerated cellulose-based composite films reinforced with pristine multiwalled carbon nanotube (MWCNT) by a facile casting of cellulose/DMAc/LiCl solutions containing 0.2-10.0wt% MWCNT and have investigated their application as electric heating materials by examining microstructure, thermal stability, and electrical properties. TEM images showed that the pristine MWCNT was dispersed well in the regenerated cellulose matrix. The composite films were found to be stable thermally up to ∼275°C. The electrical resistivity of the regenerated cellulose/MWCNT composite films decreased significantly from ∼10(9)Ωcm to ∼10(1)Ωcm with increasing the MWCNT loading, particularly at a certain MWCNT content between 2.0 and 3.0wt%. Accordingly, the composite films with 5.0-10.0wt% MWCNT contents, which possessed low electrical resistivity of ∼10(2)-10(1)Ωcm, exhibited excellent electric heating performance in aspects of temperature responsiveness, steady-state maximum temperature, and electrical energy efficiency at constant applied voltages. For instance, the composite film with 10.0wt% MWCNT had well-controlled steady-state maximum temperatures of 40-189°C at 20-80V, characteristic temperature growth constant of ∼1s, and electric power efficiency of ∼5.4mW/°C, which performance remained unchanged under repeated experiments for several hours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Immobilization and Bioelectrochemistry of Hemoglobin Based on Carrageenan and Room Temperature Ionic Liquid Composite Film

    Institute of Scientific and Technical Information of China (English)

    盛春; 张洋; 王璐; 贾能勤

    2012-01-01

    A novel biopolymer/room-temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL-carrageenan composite film on the surface of glassy carbon electrode (GCE) were investigated. UV-vis spectroscopy demonstrated that Hb in the IL-carrageenan composite film could retain its native secondary structure. A pair of well-defined redox peaks of Hb was obtained at the Hb-IL-carrageenan composite film modified electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s 1, indicating great facilitation of the electron transfer between Hb and IL-carrageenan composite film modified electrode. The modified electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0 × 10-6 to 1.5 ×10-4 mol/L and the detection limit was 2.12 ×10 7 mol/L (S/N= 3). The apparent Michaelis-Menten constant KM^app for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high affinity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.

  19. Implantation and annealing effects in molecular organic films

    CERN Document Server

    Pakhomov, G L; Shashkin, V I; Tura, J M; Ribo, J M; Ottaviano, L

    2002-01-01

    Ion implantation and annealing effects on the surface of phthalocyanine thin films have been studied by means of atomic force microscopy and electron spectroscopy for chemical analysis. Both the topology and the chemical composition of the surface are affected by irradiation. The influence of the irradiation dose is shown. The chemical degradation of the layer results mainly in the decrease of atomic concentration of nitrogen and chlorine, and in the increase of atomic concentration of oxygen. At highest dose, carbonization becomes important. Furthermore, N 1s, C 1s and Cl 2p core levels testify that the formation of new chemical species occurs in implanted pthalocyanine films. All these processes are modified by subsequent heat treatment in different ways, depending on the applied implantation fluence.

  20. Damping properties of epoxy-based composite embedded with sol–gel-derived Pb(Zr0.53Ti0.47)O3 thin film with different thicknesses

    Indian Academy of Sciences (India)

    Guo Dongyun; Mao Wei; Qin Yan; Huang Zhixiong; Wang Chuanbin; Shen Qiang; Zhang Lianmeng

    2012-06-01

    Pb(Zr0.53Ti0.47)O3 (PZT) thin films were prepared on Pt/Ti/SiO2/Si substrate by sol–gel method. The effect of film thickness on microstructure, ferroelectric and dielectric properties was investigated. The single-phase PZT films were obtained with different thicknesses. PZT films with a thickness of 190–440 nm had better dielectric and ferroelectric properties. The epoxy/PZT film/epoxy sandwiched composites were prepared. The thickness of PZT films influenced their damping properties of the composites, and the epoxy-based composites embedded with 310 nm-thick PZT films had the largest damping loss factor of 0.915.

  1. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition

    Energy Technology Data Exchange (ETDEWEB)

    Bernoulli, D. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland); Müller, U. [EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Schwarzenberger, M. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland); Hauert, R. [EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Spolenak, R. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland)

    2013-12-02

    Tantalum (Ta) and tantalum nitride thin films are highly important as diffusion barriers and adhesion layers in microelectronics and hard coatings for cutting tools. In this study, the effect of the underlying substrate on the phase formation of Ta and the influence of a changing N{sub 2}/Ar flow ratio on hardness, phase and composition of reactively formed tantalum nitride have been investigated. Ta is DC sputter deposited and forms β-Ta on amorphous diamond-like carbon and on the amorphous natural oxide layers of Ti and Si(100) while a 15 nm TaN seed layer results in the formation of α-Ta. The chemical composition of the topmost layers of a substrate influences the formation of α- and β-Ta. With increasing N{sub 2}/Ar flow ratios a transition from amorphous Ta-rich tantalum nitride over face-centered cubic tantalum nitride (fcc-TaN) to (100) textured fcc-TaN at flow ratios above 45% is observed. The hardness of the tantalum nitride thin film reaches a maximum at a flow ratio of 45%, followed by a decrease in hardness for higher N{sub 2}/Ar flow ratios. The increase in hardness is associated with a decrease in grain size and shows a stronger correlation for a Meyers and Ashworth relationship than for a Hall–Petch relationship. - Highlights: • Chemical composition of the substrate influences the phase of deposited Ta. • FCC-TaN seed layer leads to α-Ta on the natural oxide layers of Ti and Si(100). • Meyers and Ashworth relationship correlates stronger than Hall–Petch relationship.

  2. Characterization of LiFePO4/C Composite Thin Films Using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Bajars, G.; Kucinskis, G.; Smits, J.; Kleperis, J.; Lusis, A.

    2012-08-01

    The composite LiFePO4/C thin films were prepared on steel substrate by radio frequency (RF) magnetron sputtering. Electrochemical properties of the obtained thin films were investigated by cyclic voltammetry charge-discharge measurements and electrochemical impedance spectroscopy (EIS). The films annealed at 550 °C exhibited a couple of redox peaks at 3.45 V vs. Li/Li+ characteristic for the electrochemical lithium insertion/extraction in LiFePO4. At low current rate such composite thin film showed a discharge capacity of over 110 mAh g-1. The dependence of charge transfer resistance, double layer capacitance and lithium diffusion coefficients on applied electrode potential were calculated from EIS data. Determined values of lithium diffusion coefficient were in the range from 8.3-10-13 cm2 s1 to 1.2-10-13 cm2 s-1 at 3.4 V and 3.7 V, respectively.

  3. Thin film magnetoelectric composites near spin reorientation transition

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, N. [Joint European Laboratory LEMAC: IEMN CNRS 8520-Ecole Centrale de Lille, Villeneuve d' Ascq 59652 (France)], E-mail: Nicolas.Tiercelin@iemn.univ-lille1.fr; Preobrazhensky, V. [Joint European Laboratory LEMAC: IEMN CNRS 8520-Ecole Centrale de Lille, Villeneuve d' Ascq 59652 (France); Joint European Laboratory LEMAC: WRC-GPI-RAS 117454, Vernadsky prosp. 78, Moscow (Russian Federation); Mortet, V. [Institute for Materials Research (IMO), Hasselt University, IMEC vzw, Division IMOMEC, B-3590 Diepenbeek (Belgium); Talbi, A. [Joint European Laboratory LEMAC: IEMN CNRS 8520-Ecole Centrale de Lille, Villeneuve d' Ascq 59652 (France); Soltani, A. [IEMN CNRS 8520, Bd Poincare, Villeneuve d' Ascq 59651 (France); Haenen, K. [Institute for Materials Research (IMO), Hasselt University, IMEC vzw, Division IMOMEC, B-3590 Diepenbeek (Belgium); Pernod, P. [Joint European Laboratory LEMAC: IEMN CNRS 8520-Ecole Centrale de Lille, Villeneuve d' Ascq 59652 (France)

    2009-06-15

    We report the use of a magnetic instability of the spin reorientation transition type to enhance the magnetoelectric sensitivity in magnetostrictive-piezoelectric structures. We present the theoretical study of a clamped beam resonant actuator composed of a piezoelectric element on a passive substrate actuated by a magnetostrictive nanostructured layer. The experiments were made on a polished 150 {mu}m thick 18x3 mm{sup 2} lead zirconate titanate (PZT) plate glued to a 50 {mu}m thick silicon plate and coated with a giant magnetostrictive nanostructured Nx(TbCo{sub 25nm}/FeCo{sub 5nm}) layer. A second set of experiments was done with magnetostrictive layer deposited on PZT plate. Finally, a film/film structure using magnetostrictive and aluminium nitride films on silicon substrate was realized, and showed ME amplitudes reaching 30 V Oe{sup -1} cm{sup -1}. Results agree with analytical theory.

  4. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hye-Mi; Um, Sukkee, E-mail: sukkeeum@hanyang.ac.kr

    2016-05-01

    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO{sub 2} and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO{sub x}) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO{sub x} composite semiconducting films, which have an sp{sup 3}/sp{sup 2} bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO{sub x} composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO{sub x}-graphene oxide composite (G/VO{sub x}) films were fabricated by sol–gel process. • The G/VO{sub x} films mainly consisted of Magnéli-phase VO{sub 2} and reduced graphene sheets. • The G/VO{sub x} films exhibited multi-lamellar textures with planar VO{sub x} nanowire arrays. • The G/VO{sub x} films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO{sub x} films were discussed.

  5. A facile fabrication of light diffusing film with LDP/polyacrylates composites coating for anti-glare LED application

    Science.gov (United States)

    Song, Shisen; Sun, Yaojie; Lin, Yandan; You, Bo

    2013-05-01

    In this paper, we present a facile coating technique to fabricate the light diffusing film with hemispherical surface convex micro-structure. The coating was prepared by different ratio of light-diffusing particles (LDP)/polyacrylates composites via in situ radical polymerization, with the H2SO4 and vinyl triethoxysilane (A-151) pretreatment made the LDP better dispersed and incorporated with polyacrylate polymer chains. When the mass ratio (LDP/polyacrylate) was 0.5, the film obtained the highest light-diffusing effect and more than 90% transmittance due to the formation of hemispherical surface convex micro-structure. The light diffusing films have excellent anti-glare property if applied to LED light system.

  6. Shark skin effect in creeping films

    CERN Document Server

    Scholle, M

    2006-01-01

    If a body in a stream is provided with small ridges aligned in the local flow direction, a remarkable drag reduction can be reached under turbulent flow conditions. This surprising phenomenon is called the 'shark skin effect'. We demonstrate, that a reduction of resistance can also be reached in creeping flows if the ridges are aligned perpendicular to the flow direction. We especially consider in gravity-driven film flows the effect of the bottom topography on the mean transport velocity.

  7. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J. (Lakewood, CO); Miedaner, Alexander (Boulder, CO); van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David S. (Evergreen, CO); Leisch, Jennifer (Denver, CO); Taylor, Matthew (West Simsbury, CT); Stanbery, Billy J. (Austin, TX)

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  8. Nano-mechanical properties of nano-gold/DLC composite thin films

    Science.gov (United States)

    Paul, Rajib; Bhadra, Nilanjana; Mukhopadhyay, Anup Kumar; Bhar, Radhaballav; Pal, Arun Kumar

    2014-11-01

    Diamond-like-Carbon composite films, with embedded gold nanoparticles, were deposited onto glass substrates by using capacitively coupled plasma chemical vapour deposition (CCP-CVD) technique. The volume fraction of the metal nanoparticles in the films as well as the size of the nanoparticles was varied by varying the percentage of argon in the methane + argon mixture during the deposition. Bonding environments in these films were obtained from Raman and GIXRD. The nanomechanical and nanotribological properties of the Au-DLC nanocomposite films were evaluated. In situ SPM imaging was utilized to depict deformation characteristics developed during the static and dynamic contact events. Influence of metal incorporation on the extent of sp2/sp3 hybridization and thereby on the nanomechanical and nanotribological properties of the DLC films was studied.

  9. A novel composite coating mesh film for oil-water separation

    Institute of Scientific and Technical Information of China (English)

    Futao QIN; Zhijia YU; Xinhui FANG; Xinghua LIU; Xiangyu SUN

    2009-01-01

    Polytetrafluoroethylene-polyphenylene sulfide composite coating mesh film was successfully prepared by a simple layered transitional spray-plasticizing method on a stainless steel mesh. It shows super-hydrophobic and super-oleophilic properties. The contact angle of this mesh film is 156.3° for water, and close to 0° for diesel oil and kerosene. The contact angle hysteresis of water on the mesh film is 4.3°. The adhesive force between the film and substrate is grade 0, the flexibility is 1 mm and the pencil hardness is 4H. An oil-water separation test was car-fled out for oil-contaminated water in a six-stage super-hydrophobic film separator. The oil removal rate can reach about 99%.

  10. Composition and Microstructure of Magnetron Sputtering Deposited Ti-containing Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that carbon films contain Ti 18 at pct; after Ti incorporation, the films consist of titanium carbide; C1s peak appears at 283.4 eV and it could be divided into 283.29 and 284.55 eV, representing sp2 and sp3, respectively, and sp2 is superior to sp3. This Ti-containing film with dominating sp2 bonds is nanocomposites with nanocrystalline TiC clusters embedded in an amorphous carbon matrix, which could be proved by XRD and TEM.

  11. Polydopamine / Cobalt Hexacyanoferrate Composite Films and Their Electrochemical Behavior in the Presence of Dpamine

    Directory of Open Access Journals (Sweden)

    Zhang Hanshuang

    2016-01-01

    Full Text Available Polydopamine/cobalt hexacyanoferrate (PDA-CoHCF composite films on a glassy carbon electrode (GCE have been electropolymerized by using cyclic voltammetry. The composite films were electrochemically activated in a potassium hydroxide solution and were characterized by scanning electron microscope (SEM measurements. The electrochemical activation could cause some changes of composite membrane interface structure and improve the electrochemical performance of the corresponding modified electrode in a phosphate buffer solution containing dopamine. The PDA-CoHCF film modified glassy carbon electrode could response dopamine sensitively in cyclic voltammetry measurements for electrochemical oxidation and reduction. The linear response slope and regression coefficient is 1.546 μA/μM and 0.985, respectively, in the concentration range from 2.0 μM to 10 μM dopamine.

  12. Synthesis of TiO2-doped SiO2 composite films and its applications

    Indian Academy of Sciences (India)

    Xiaojun Zhang; Huagui Zheng

    2008-10-01

    The TiO2-doped SiO2 composite films were prepared by two-step sol–gel method and then it was applied in the degradation of methylene red (MR) as photocatalysts. In XRD, FT–IR, and TEM investigations of these TiO2-doped SiO2 composite films, the titanium oxide species are highly dispersed in the SiO2 matrixes and exist in a tetrahedral form. And special attention has been focused on the relationship between the local structure of the titanium oxide species in the TiO2-doped SiO2 composite films and the photocatalytic reactivity in order to provide vital information for the design and application of such highly efficient photocatalytic systems in the degradation of toxic compounds diluted in a liquid phase.

  13. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  14. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

    Science.gov (United States)

    Zhao, Xiaojia; Peng, Guirong; Zhan, Zaiji

    2016-09-01

    Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

  15. A study on photocatalytic activity of micro-arc oxidation TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, N. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Song, R.G., E-mail: songrg@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Xiang, B.; Li, H.; Wang, Z.X.; Wang, C. [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-08-30

    Highlights: • The optimum voltage and concentration of micro-arc oxidation (MAO) for photocatalytic activity have been studied. • The most superior treatment time and concentration for Ag{sup +} impregnation have been discussed under the optimum MAO condition above. • Mechanism of influence on impregnation time for Ag+MAO-TiO{sub 2} composite films have been well investigated. • MAO-TiO{sub 2} films and Ag+MAO-TiO{sub 2} composite films were compared each other on photocatalytic efficiency. - Abstract: First, micro-arc oxidation (MAO) TiO{sub 2} films have been prepared on pure titanium in a phosphate-based electrolyte, and then the Ag{sup +}/MAO-TiO{sub 2} composite films have been fabricated by Ag{sup +} impregnation in this paper. The microstructure and composition of MAO-TiO{sub 2} films and Ag{sup +}/MAO-TiO{sub 2} composite films have been studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The photocatalytic activity of both films was evaluated by photocatalytic decolorization of methylene blue (MB) in aqueous solution as a model pollutant under sunlight irradiation simulation with homemade ultraviolet–visible spectroscopy (UV–vis). The results showed that the photocatalytic activity of MAO-TiO{sub 2} films increased with increasing the applied voltage and concentration in a certain scope. The morphology of Ag{sup +}/MAO-TiO{sub 2} composite films were of significantly difference and superior photocatalytic activity compared to the MAO-TiO{sub 2} film. Also, Ag{sup +} impregnation was able to enhance the photocatalytic efficiency of MAO-TiO{sub 2} film.

  16. Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films

    Science.gov (United States)

    Stramel, A. A.; Gupta, M. C.; Lee, H. R.; Yu, J.; Edwards, W. C.

    2010-12-01

    In this work, we report on the fabrication of carbon nanotube thin films via pulsed laser deposition using a pulsed, diode pumped, Tm:Ho:LuLF laser with 2 μm wavelength. The thin films were deposited on silicon substrates using pure carbon nanotube targets and polystyrene-carbon nanotube composite targets. Raman spectra, scanning electron micrographs, and transmission electron micrographs show that carbon nanotubes are present in the deposited thin films, and that the pulsed laser deposition process causes minimal degradation to the quality of the nanotubes when using pure carbon nanotube targets.

  17. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  18. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Preparation and photocatalytic activity of PANI/TiO2 composite film

    Institute of Scientific and Technical Information of China (English)

    GAO Jinzhang; LI Shengying; YANG Wu; ZHAO Guohu; BO Lili; SONG Li

    2007-01-01

    A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method.The film was characterized using XRD, AFM,and UV.The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles.The average grain size of TiO2 in the film was approximately 20 nm.After coating with PANI,the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter.UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2.The band gap of the PANI/TiO2 film was 3.18 eV.The photocatalytic property of the film was evaluated by the degradation of rhodamine-B.It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite film as photocatalyst.

  20. Off-Resonant Third-Order Optical Nonlinearity of an Ag:TiO2 Composite Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Feng; YOU Guan-Jun; DONG Zhi-Wei; LIU Ye; MA Guo-Hong; QIAN Shi-Xiong

    2005-01-01

    @@ Using the femtosecond time-resolved optical Kerr effect technique, we investigate the off-resonant nonlinear optical response of an Ag:TiO2 composite film prepared by a vacuum magnetron sputtering method. The third-order nonlinear optical susceptibility of the composite film with silver nanoparticle size of about 30 nm is estimated to be 1.9×10-10 esu at the incident laser wavelength of 800nm. When the photon energy of the incident beam is lower than that for surface plasmon or the interband transition of silver nanoparticles, the observed third-order optical nonlinearity is attributed to the intraband transition of the free electrons. Based on the linear limit of the electric field within micro-spherical model, we assign this large optical nonlinearity to the local field enhancement of the third-order nonlinearity.

  1. Dispersive Stabilization of Liquid Crystal-in-Water with Acrylamide Copolymer/Surfactant Mixture: Nematic Curvilinear Aligned Phase Composite Film.

    Science.gov (United States)

    Park; Lee

    1999-11-01

    The effect of nonionic surfactant, (H(OCH(2)-CH(2))(8)-OC(6)H(4)-C(9)H(19)), on the dispersion stabilization of liquid crystal (LC)-in-water with acrylamide copolymer containing the related nonylphenyl groups was studied. It was observed that the addition of nonionic surfactant increases the stability of LC dispersions and improves the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. On the basis of the surface tension, reduced viscosity, cloud point, and coalescence time measurements, it was proposed that formation of an integrated structure induced by interactions between hydrophobic groups in the polymer chains is probably important to fabrication of a polymer composite film made of LC and polymer matrix. Copyright 1999 Academic Press.

  2. OPTICAL BAND GAP AND CONDUCTIVITY MEASUREMENTS OF POLYPYRROLE-CHITOSAN COMPOSITE THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Mahnaz M.Abdi; H.N.M.Ekramul Mahmud; Luqman Chuah Abdullah; Anuar Kassim; Mohamad Zaki Ab.Rahman; Josephine Liew Ying Chyi

    2012-01-01

    Electrical conductivity and optical properties of polypyrrole-chitosan (PPy-CHI) conducting polymer composites have been investigated to determine the optical transition characteristics and energy band gap of composite films.The two electrode method and Ⅰ-Ⅴ characteristic technique were used to measure the conductivity of the PPy-CHI thin films,and the optical band gap was obtained from their ultraviolet absorption edges.Depending upon experimental parameter,the optical band gap (Eg) was found within 1.30-2.32 eV as estimated from optical absorption data.The band gap of the composite films decreased as the CHI content increased.The room temperature electrical conductivity of PPy-CHI thin films was found in the range of 5.84 × 10-7-15.25 × 10-7 S.cm-1 depending on the chitosan content.The thermogravimetry analysis (TGA)showed that the CHI can improve the thermal stability of PPy-CHI composite films.

  3. Preparation and Properties of Functional Graphene/Thermoplastic Polyurethane Composite Film

    Directory of Open Access Journals (Sweden)

    ZHENG Hui-dong

    2016-11-01

    Full Text Available The modified graphene oxide(DD-GO was reacted by the Didodecyldimethylammonium bromide (DDAB and graphene oxide,and then reduced via L-ascorbic acid to obtain functional graphene(DD-RGO. Functional graphene (DD-RGO/thermoplastic polyurethane (TPU composite films were prepared by solution on the coating machine. The morphology and properties of DD-RGO/TPU composite films were investigated by FTIR, XRD, FE-SEM, oxygen transmission rate tester and high resistance meter. The results show that DD-RGO with fold layer structure is evenly dispersed in TPU matrix, and the thermal stability, barrier properties and antistatic properties of TPU composite film have been significantly improved. When the mass fraction of DD-RGO is 2%, compared with the pure TPU film, the oxygen transmission rate has been reduced by 50% and the volume resistivity has been increased by 7 orders of magnitude. The barrier properties and antistatic properties of composite films have been improved significantly.

  4. Thermally stimulated discharge conductivity in polymer composite thin films

    Indian Academy of Sciences (India)

    V S Sangawar; P S Chikhalikar; R J Dhokne; A U Ubale; S D Meshram

    2006-08-01

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated charcoal and polyvinyl chloride chains.

  5. Potentiometric study of polyaniline film synthesized with various dopants and composite-dopant: A comparative study

    Indian Academy of Sciences (India)

    P D Gaikwad; D J Shirale; V K Gade; P A Savale; K P Kakde; H J Kharat; M D Shirsat

    2006-08-01

    The potentiometric study of polyaniline (PANI) film synthesized with dopants viz. polyvinyl sulfonic acid (PVS), -toluene sulfonic acid (TS), dodecyl benzene sulfonic acid (DBS) and composite-dopants viz. PVS–TS and PVS–DBS, has been carried out. The synthesized PANI films were characterized by electrochemical technique, UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and conductivity measurement. It was found that the PANI doped with PVS gives good electrochemical properties, conductivity as well as surface morphology as compared to TS and DBS, whereas in composite dopants the PANI doped with PVS–TS gives good polymer matrix as compared to PVS–DBS.

  6. Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film

    Science.gov (United States)

    He, Jiangling; He, Youling; Zhuang, Jianle; Zhang, Haoran; Lei, Bingfu; Liu, Yingliang

    2016-12-01

    In this work, blue-light-emitting carbon dots (CDs) were composited with red-light-emitting europium ions (Eu3+) solutions under the synergistic reaction of polyvinyl alcohol (PVA) to prepare the light conversion film. The formation mechanism of Eu3+/CDs/PVA film was detailedly discussed. It is the first report that this composite was synthesized through direct recombination of CDs and Eu3+ solutions instead of traditional methods based on Eu3+ coordination compound. Furthermore, tunable photoluminescence property can be successfully achieved by controlling the ratio of CDs to doped Eu3+, this property can meet the variable light component requirements for different species of plants.

  7. Enhanced Transverse Magnetoresistive Effect in Semiconducting Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Wan-Lu; LIAO Ke-Jun; WANG Bi-Ben

    2000-01-01

    A very large magnetoresistive effect in both homoepitaxial and heteroepitaxial semiconducting diamond films by chemical vapor deposition has been observed. The changes in the resistance of the films strongly depend on both magnetic field intensity and geometric form of the samples. The effect of disk structure is greater than that of stripe type samples, also variation in the resistance of homoepitaxial diamond films is greater than that of eteroepitaxial diamond films. The resistance of homoepitaxial diamond films with the disk structure is increased y a factor of 2.1 at room temperature under magnetic field intensity of 5 T, but only 0.80 for heteroepitaxial diamond films.

  8. Investigation on multiferroic, optical and photoluminescence properties of CoFe2O4/(Pb1-xSrx)TiO3 nanostructured composite thin films

    Science.gov (United States)

    Bala, Kanchan; Sharma, Pankaj; Negi, N. S.

    2016-11-01

    Multiferroic nanostructured composite thin films consisting of CoFe2O4 (CFO) and Pb1-xSrxTiO3 (PST; x = 0.1, 0.2, 0.3, 0.4 and 0.5) layers have been deposited on Pt/TiO2/SiO2/Si and quartz substrates by using metallo-organic decomposition process and spin coating. The effect of Sr content on the multiferroic and optical properties have been investigated. The phase purity such as spinel structure of CFO and perovskite structure of PST has been verified by X-ray diffraction. Cross-sectional scanning electron microscopy images revealed clear interface between CFO and PST layers without any noticeable diffusion. The multiferroic properties of CFO/PST composite films have been confirmed by magnetic and ferroelectric hysteresis loops with low leakage current density. The residual strain sensitivity of multiferroic and optical properties has been observed in the composite films. The decrease in saturation magnetization and saturation polarization with increase in Sr content has been observed which could be attributed to the decrease in residual strain of CFO/PST composite films. The magnetic phase transition temperature of the CFO/PST composite films is also reduced. The optical refractive index decreases with increase of amount of Sr content. The photoluminescence spectra of the CFO/PST composite films possess a blue shift which can be attributed to the Pb and oxygen vacancies as localized sensitizing centers. We show that the multiferroic and optical properties of the CFO/PST composite films are highly sensitive to the heterostructure strains which can be controlled by Sr content.

  9. Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters.

    Science.gov (United States)

    Bowland, Christopher C; Malakooti, Mohammad H; Sodano, Henry A

    2017-02-01

    Energy harvesting utilizing piezoelectric materials has become an attractive approach for converting mechanical energy into electrical power for low-power electronics. Structural composites are ideally suited for energy scavenging due to the large amount of mechanical energy they are subjected to. Here, a multifunctional composite with embedded sensing and energy harvesting is developed by integrating an active interface into carbon fiber reinforced polymer composites. By modifying the composite matrix, both rigid and flexible multifunctional composites are fabricated. Through electromechanical testing of a cantilever beam of the rigid composite, it reveals a power density of 217 pW/cc from only 1 g root-mean-square acceleration when excited at its resonant frequency of 47 Hz. Electromechanical sensor testing of the flexible multifunctional composite reveals an average voltage generation of 23.5 mV/g at its resonant frequency of 96 Hz. This research introduces a route for integrating nonstructural functionality into structural fiber composites by utilizing BaTiO3 coated woven carbon fiber fabrics with power scavenging and passive sensing capabilities.

  10. Fabrication of titania thin film with composite nanostructure and its ability to photodegrade rhodamine B in water

    Institute of Scientific and Technical Information of China (English)

    Gaojie ZHANG; Jinming WU; Shaoguang LIU; Mi YAN

    2008-01-01

    A titania nanorod film was synthesized by direct oxidation of metallic Ti with hydrogen peroxide solution under a low temperature. Titania nanoparticles were then filled into the gaps among the nanorods through an infiltration sol-gel procedure to form a composite titania film with an ordered nanostructure. X-ray diffraction spectra indicate that the composite film was a mixture of anatase and rutile while the titania film obtained by only using a sol-gel procedure was pure anatase. Field emission scanning electron microscopy observations show that titania nanoparticles were embedded into the titania nanorod film. Photoluminescence spectra suggest the enhanced separation of electron and hole pairs for the obtained composite titania film over the corresponding titania nanorod film. The composite titania film exhibited improved ability to photodegrade rhodamine B in water compared with the titania nanorod film. The apparent photodegradation rate constant, fitting a pseudo-first-order, was 3 times of that obtained by the sol-gel derived titania film at the same weight. The improved photocata-lytic activity for the composite titania film could be attributed to the enhanced separation of electron and hole pairs due to the embedding of the titania nanoparticles within the titania nanorods.

  11. Effect of W content on microstructure and friction properties of ZrWN composite films%W含量对ZrWN复合膜的微结构与摩擦性能的影响

    Institute of Scientific and Technical Information of China (English)

    喻利花; 赵强; 马冰洋; 许俊华

    2013-01-01

    Zr1-xWxN(x=0.17, 0.28, 0.36, 0.44, 0.49) composite films with different W contents were fabricated on wafers of silicon (100) and stainless steel by reactive magnetron sputtering technique. The microstructure, mechanical properties and friction properties were investigated by SEM-EDS analysis, X-ray diffraction, nano-indentation and high-temperature ball-on-disc tribo-meter. Tribological mechanism of ZrWN films was discussed. The results show that when x is no more than 0.28 in the film, the films exhibit fcc (Zr, W)N structure. When x is between 0.36 and 0.44, the films have a structure comprising fcc (Zr, W) N and fcc W2N. When x is 0.49, pureβ-W appears. The hardness of the Zr1-xWxN films increases and then decreases with increasing x. The maximum value is 36.0 GPa when x is 0.44. At room temperature, the friction coefficient of the Zr1-xWxN films shows down-up curve with increasing x. Oxide WO3 plays an important role in the friction process.%采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合膜的摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fcc W2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fcc W2N结构和β-W单质。Zr1-xWxN复合膜的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0 GPa。随x增加, Zr1-xWxN复合膜的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。

  12. Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaojuan, E-mail: cherry-820@163.com; Shi, Yanlong; Jin, Shuping

    2015-10-30

    The three-dimensional microporous polypyrrole/polysulfone (PPY/PSF) composite film was fabricated via a simple polymerization method. The morphology structure and chemical composition of the composite film were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The electrochemical properties of the composite film electrode were evaluated by cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The material exhibits excellent capacitance performance including high capacitance of 500 F g{sup −1} at 0.3 A g{sup −1} current density, good cycle stability in 800 continuous cycles (only 4.5% decay after 800 cycles at 0.3 A g{sup −1}), and low inter resistance. The good property of the PPY/PSF electrode should be attributed to its structural features, including two-layer microporous structure which facilitates the penetration of electrolytes into the inner surface, high surface area which provides more active sites. These results show that the composite film is a promising candidate for high energy electrochemical capacitors.

  13. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films

    Directory of Open Access Journals (Sweden)

    N. B. Rithin Kumar

    2014-01-01

    Full Text Available Polymer composites of ZnO and WO3 nanoparticles doped polyvinyl alcohol (PVA matrix have been prepared using solvent casting method. The microstructural properties of prepared films were studied using FTIR, XRD, SEM, and EDAX techniques. In the doped PVA, many irregular shifts in the FTIR spectra have been observed and these shifts in bands can be understood on the basis of intra/intermolecular hydrogen bonding with the adjacent OH group of PVA. The chemical composition, phase homogeneity, and morphology of the polymer composites of the polymer film were studied using EDAX and SEM. These data indicate that the distribution of nanosized ZnO and WO3 dopants is uniform and confirm the presence of ZnO and WO3 in the film. The crystal structure and crystallinity of polymer composites were studied by XRD. It was found that the change in structural repositioning and crystallinity of the composites takes place due to the interaction of dopants and also due to complex formation. The mechanical studies of doped polymer films were carried out using universal testing machine (UTM at room temperature, indicating that the addition of the ZnO and WO3 with weight percentage concentration equal to 14% increases the tensile strength and Young’s modulus.

  14. Three-dimensional microporous polypyrrole/polysulfone composite film electrode for supercapacitance performance

    Science.gov (United States)

    Feng, Xiaojuan; Shi, Yanlong; Jin, Shuping

    2015-10-01

    The three-dimensional microporous polypyrrole/polysulfone (PPY/PSF) composite film was fabricated via a simple polymerization method. The morphology structure and chemical composition of the composite film were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The electrochemical properties of the composite film electrode were evaluated by cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The material exhibits excellent capacitance performance including high capacitance of 500 F g-1 at 0.3 A g-1 current density, good cycle stability in 800 continuous cycles (only 4.5% decay after 800 cycles at 0.3 A g-1), and low inter resistance. The good property of the PPY/PSF electrode should be attributed to its structural features, including two-layer microporous structure which facilitates the penetration of electrolytes into the inner surface, high surface area which provides more active sites. These results show that the composite film is a promising candidate for high energy electrochemical capacitors.

  15. Tuning cationic composition of La:EuTiO3-δ films

    Science.gov (United States)

    Shkabko, Andrey; Xu, Chencheng; Meuffels, Paul; Gunkel, Felix; Dittmann, Regina; Weidenkaff, Anke; Waser, Rainer

    2013-11-01

    Eu1-xLaxTiO3-δ (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H2(4%)) = 4 × 10-4 mbar atmosphere on (LaAlO3)0.3-(Sr2AlTaO6)0.7 vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm2 independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the films are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu3+ rich for films deposited at low laser fluence.

  16. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    Science.gov (United States)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  17. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.

    Science.gov (United States)

    Genchi, Giada Graziana; Ceseracciu, Luca; Marino, Attilio; Labardi, Massimiliano; Marras, Sergio; Pignatelli, Francesca; Bruschini, Luca; Mattoli, Virgilio; Ciofani, Gianni

    2016-07-01

    Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoe