WorldWideScience

Sample records for composite deck panels

  1. Experimental studies on multicellular GFRP bridge deck panels ...

    Indian Academy of Sciences (India)

    M P MUTHURAJ

    2017-11-20

    Nov 20, 2017 ... design of a new bridge deck panel made of GFRP. .... cient manufacturing processes with minimal wastage. But re-use of the remaining FRP elements during manufacture ... Energy consumption for production of different.

  2. Structural improvement of strengthened deck panels with externally bonded plates

    International Nuclear Information System (INIS)

    Sim, Jongsung; Oh, Hongseob

    2005-01-01

    Concrete bridge decks require eventual replacement and rehabilitation due to decreasing load-carrying capacity. This paper compares different strengthening design procedures that improve the usability and structural performance of bridge decks. The failure characteristics of bridge decks strengthened with various materials such as carbon fiber sheet, glass fiber sheet, steel plate, and grid CFRP and GFRP are analyzed, and the theoretical load-carrying capacities are evaluated using traditional beam and yield line theory, and punching shear analysis. The strengthening materials increase the punching shear strength of the deck and change the failure mode of the strengthened panel

  3. Optimization of wood plastic composite decks

    Science.gov (United States)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  4. Experimental Test for Benchmark 1--Deck Lid Inner Panel

    International Nuclear Information System (INIS)

    Xu Siguang; Lanker, Terry; Zhang, Jimmy; Wang Chuantao

    2005-01-01

    The Benchmark 1 deck lid inner is designed for both aluminum and steel based on a General Motor Corporation's current vehicle product. The die is constructed with a soft tool material. The die successfully produced aluminum and steel panels without splits and wrinkles. Detailed surface strains and thickness measurement were made at selected sections to include a wide range of deformation patterns from uniaxial tension mode to bi-axial tension mode. The springback measurements were done by using CMM machine along the part's hem edge which is critical to correct dimensional accuracy. It is expected that the data obtained will provide a useful source for forming and springback study on future automotive panels

  5. Recommendations for Longitudinal Post-Tensioning in Full-Depth Precast Concrete Bridge Deck Panels

    OpenAIRE

    Bowers, Susan Elizabeth

    2007-01-01

    Full-depth precast concrete panels offer an efficient alternative to traditional cast-in-place concrete for replacement or new construction of bridge decks. Research has shown that longitudinal post-tensioning helps keep the precast bridge deck in compression and avoid problems such as leaking, cracking, spalling, and subsequent rusting on the beams at the transverse panel joints. Current design recommendations suggest levels of initial compression for precast concrete decks in a very limit...

  6. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  7. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    International Nuclear Information System (INIS)

    Alan E. Bland; Jesse Newcomer

    2007-01-01

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production

  8. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  9. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2017-01-01

    Full Text Available The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper, depending on the experimental investigations of FRP to steel girder system, the Finite Element (FE models on experiments were developed and analyzed. Comparison between experiments and FE results indicated that the FE models were much stiffer for in-plane shear stiffness of the FRP deck panel. To modify the FE models, rotational spring elements were added between webs and flanges of FRP decks, to simulate the semirigid connections. Numerical analyses were also conducted on four-point bending experiments of FRP-steel composite girders. Good agreement between experimental results and FE analysis was achieved by comparing the load-deflection curves at midspan and contribution of composite action from FRP decks. With the validated FE models, the parametric studies were conducted on adhesively bonded connection between FRP decks and steel girders, which indicated that the loading transfer capacity of adhesive connection was not simply dependent on the shear modulus or thickness of adhesive layer but dominated by the in-plane shear stiffness K.

  10. Rational Design of Composite Panels

    DEFF Research Database (Denmark)

    Riber, Hans Jørgen

    1996-01-01

    A non-linear structural model for composite panels is presented. The non-linear terms in the lateral displacements are modelled as an additional set of lateral loads acting on the panel. Hence the solution is reduced to that of an equivalent panel with small displacements In order to treat sandwich...... Norske Veritas', DNV, building rules concerning high-speed light craft, in which the panel scantlings are often restricted by a maximum lateral deflection connected with the panel span....

  11. Composite panel development at JPL

    Science.gov (United States)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  12. Numisheet2005 Benchmark Analysis on Forming of an Automotive Deck Lid Inner Panel: Benchmark 1

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    Numerical simulations in sheet metal forming processes have been a very challenging topic in industry. There are many computer codes and modeling techniques existing today. However, there are many unknowns affecting the prediction accuracy. Systematic benchmark tests are needed to accelerate the future implementations and to provide as a reference. This report presents an international cooperative benchmark effort for an automotive deck lid inner panel. Predictions from simulations are analyzed and discussed against the corresponding experimental results. The correlations between accuracy of each parameter of interest are discussed in this report

  13. Profiled Deck Composite Slab Strength Verification: A Review

    Directory of Open Access Journals (Sweden)

    K. Mohammed

    2017-12-01

    Full Text Available The purpose of this article is to present an overview on alternate profiled deck composite slab (PDCS strength verification devoid of the expensive and complex laboratory procedures in establishing its longitudinal shear capacity. Despite the several deterministic research findings leading to the development of proposals and modifications on the complex shear characteristics of PDCS that defines its strength behaviour, the laboratory performance testing stands to be the only accurate means for the PDCS strength assessment. The issue is critical and warrants much further thoughts from different perspective other than the deterministic approach that are rather expensive and time consuming. Hence, the development of a rational-based numerical test load function from longitudinal shear capacity consideration is a necessity in augmenting the previous futile attempts for strength determination of PDCS devoid of the costlier and expensive laboratory procedure.

  14. Delamination tolerance studies in laminated composite panels

    Indian Academy of Sciences (India)

    Abstract. Determination of levels of tolerance in delaminated composite panels is an important issue in composite structures technology. The primary intention is to analyse delaminated composite panels and estimate Strain. Energy Release Rate (SERR) parameters at the delamination front to feed into acceptability criteria.

  15. Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Science.gov (United States)

    2011-07-01

    In this study, new and integrated Smart honeycomb Fiber-Reinforced Polymer (S-FRP) : sandwich materials for various transportation construction applications, with particular emphasis : on highway bridge decks in cold regions, were developed and teste...

  16. Graphite Composite Panel Polishing Fixture

    Science.gov (United States)

    Hagopian, John; Strojny, Carl; Budinoff, Jason

    2011-01-01

    The use of high-strength, lightweight composites for the fixture is the novel feature of this innovation. The main advantage is the light weight and high stiffness-to-mass ratio relative to aluminum. Meter-class optics require support during the grinding/polishing process with large tools. The use of aluminum as a polishing fixture is standard, with pitch providing a compliant layer to allow support without deformation. Unfortunately, with meter-scale optics, a meter-scale fixture weighs over 120 lb (.55 kg) and may distort the optics being fabricated by loading the mirror and/or tool used in fabrication. The use of composite structures that are lightweight yet stiff allows standard techniques to be used while providing for a decrease in fixture weight by almost 70 percent. Mounts classically used to support large mirrors during fabrication are especially heavy and difficult to handle. The mount must be especially stiff to avoid deformation during the optical fabrication process, where a very large and heavy lap often can distort the mount and optic being fabricated. If the optic is placed on top of the lapping tool, the weight of the optic and the fixture can distort the lap. Fixtures to support the mirror during fabrication are often very large plates of aluminum, often 2 in. (.5 cm) or more in thickness and weight upwards of 150 lb (68 kg). With the addition of a backing material such as pitch and the mirror itself, the assembly can often weigh over 250 lb (.113 kg) for a meter-class optic. This innovation is the use of a lightweight graphite panel with an aluminum honeycomb core for use as the polishing fixture. These materials have been used in the aerospace industry as structural members due to their light weight and high stiffness. The grinding polishing fixture consists of the graphite composite panel, fittings, and fixtures to allow interface to the polishing machine, and introduction of pitch buttons to support the optic under fabrication. In its

  17. Effects of Adhesive Connection on Composite Action between FRP Bridge Deck and Steel Girder

    NARCIS (Netherlands)

    Jiang, X.; Luo, Chengwei; Qiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    The FRP-steel girder composite bridge system is increasingly used in new constructions of bridges as well as rehabilitation of old bridges. However, the understanding of composite action between FRP decks and steel girders is limited and needs to be systematically investigated. In this paper,

  18. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  19. Sound transmission loss of composite sandwich panels

    Science.gov (United States)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  20. Fatigue analysis and life prediction of composite highway bridge decks under traffic loading

    Directory of Open Access Journals (Sweden)

    Fernando N. Leitão

    Full Text Available Steel and composite (steel-concrete highway bridges are currently subjected to dynamic actions of variable magnitude due to convoy of vehicles crossing on the deck pavement. These dynamic actions can generate the nucleation of fractures or even their propagation on the bridge deck structure. Proper consideration of all of the aspects mentioned pointed our team to develop an analysis methodology with emphasis to evaluate the stresses through a dynamic analysis of highway bridge decks including the action of vehicles. The design codes recommend the application of the curves S-N associated to the Miner's damage rule to evaluate the fatigue and service life of steel and composite (steel-concrete bridges. In this work, the developed computational model adopted the usual mesh refinement techniques present in finite element method simulations implemented in the ANSYS program. The investigated highway bridge is constituted by four longitudinal composite girders and a concrete deck, spanning 40.0m by 13.5m. The analysis methodology and procedures presented in the design codes were applied to evaluate the fatigue of the bridge determining the service life of the structure. The main conclusions of this investigation focused on alerting structural engineers to the possible distortions, associated to the steel and composite bridge's service life when subjected to vehicle's dynamic actions.

  1. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    Science.gov (United States)

    2015-07-02

    3.2.4 Band-Gap/Phononic Crystal Structure-borne Sound Barriers 43 3.2.5 Split Panel Concept for Airborne Sound Transmission Reduction 69 3.3 Final...radiated by the transmission housing also impacts the ceiling panels acoustically, which transmit a portion of that sound into the interior. Composite...3.2.4 Band-Gap/Phononic Crystal Structure-borne Sound Barriers Phononic crystals , or arrays of structural discontinuities, can mitigate structure-borne

  2. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  3. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    Science.gov (United States)

    Hambric, Stephen; Shepherd, Micah; Koudela, Kevin; Wess, Denis; Snider, Royce; May, Carl; Kendrick, Phil; Lee, Edward; Cai, Liang-Wu

    2015-01-01

    A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for frequencies between 1 and 4 kHz where gear meshing noise from the transmission has the most impact on speech intelligibility. The roof section, framed by a grid of ribs, was originally constructed of a single honeycomb core/composite face sheet panel. The original panel has coincidence frequencies near 700 Hz, leading to poor TL across the frequency range of 1 to 4 kHz. To quiet the panel, the cross section was split into two thinner sandwich subpanels separated by an air gap. The air gap was sized to target the fundamental mass-spring-mass resonance of the double panel system to less than 500 Hz. The panels were designed to withstand structural loading from normal rotorcraft operation, as well as 'man-on-the-roof' static loads experienced during maintenance operations. Thin layers of VHB 9469 viscoelastomer from 3M were also included in the face sheet ply layups, increasing panel damping loss factors from about 0.01 to 0.05. Measurements in the NASA SALT facility show the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory simulates the measured performance quite well. Detailed finite element/boundary element modeling of the baseline panel simulates TL slightly more accurately, and also simulates structure-borne sound well.

  4. Composite Action in Prestressed NU I-Girder Bridge Deck Systems Constructed with Bond Breakers to Facilitate Deck Removal : Technical Summary

    Science.gov (United States)

    2017-11-01

    Results are reported from tests of small-scale push-off and large-scale composite NU I-girder specimens conducted to establish an interface connection detail that (1) Facilitates in-situ removal of the bridge deck without damaging prestressed girders...

  5. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  6. Long-term behaviour of a steel-concrete composite railway bridge deck

    OpenAIRE

    STAQUET, S; TAILHAN, JL; ESPION, B

    2005-01-01

    A prefabricated, composite and prestressed railway bridge deck has been instrumented in June 2000 with strain gages and vibrating wire extensometers. The purpose of this paper is to report on the comparison between strains recorded in situ up to four years with values computed within the framework of an original time-dependent analysis base on the evolution of the degree of hydration and the internal relative humidity in concrete. These fundamental parameters used in the proposed model to com...

  7. Fabrication and testing of fire resistant graphite composite panels

    Science.gov (United States)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  8. Composite fuselage crown panel manufacturing technology

    Science.gov (United States)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  9. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  10. Impact damage in aircraft composite sandwich panels

    Science.gov (United States)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  11. Semiempirical Methodology for Estimating the Service Life of Concrete Deck Panels Strengthened with Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Eon-Kyoung Kim

    2014-01-01

    Full Text Available Deterioration of concrete bridge decks affects their durability, safety, and function. It is therefore necessary to conduct structural rehabilitation of damaged concrete decks by strengthening them with fiber-reinforced polymer. Of the recent studies on the strengthened structures, most have focused on static behavior; only a few studies have investigated fatigue behavior. Accurate analysis of fatigue in concrete deck performance requires a more realistic simulated moving load. This study developed a theoretical live-load model to reflect the effect of moving vehicle loads, based on a statistical approach to the measurement of real traffic loads over various time periods in Korea. It assessed the fatigue life and strengthening effect of bridge decks strengthened with either carbon fiber sheets or grid carbon fiber polymer plastic using probabilistic and reliability analyses. It used extrapolations and simulations to derive maximum load effects for time periods ranging from 1 day to 75 years. Limited fatigue tests were conducted and probabilistic and reliability analyses were carried out on the strengthened concrete bridge deck specimens to predict the extended fatigue life. Analysis results indicated that strengthened concrete decks provide sufficient resistance against increasing truck loads during the service life of a bridge.

  12. Skateboard deck materials selection

    Science.gov (United States)

    Liu, Haoyu; Coote, Tasha; Aiolos; Charlie

    2018-03-01

    The goal of this project was to identify the ideal material for a skateboard deck under 200 in price, minimizing the weight. The material must have a fracture toughness of 5 MPa/m2, have a minimum lifetime of 10, 000 cycles and must not experience brittle fracture. Both single material and hybrid solutions were explored. When further selecting to minimize weight, woods were found to be the best material. Titanium alloy-wood composites were explored to determine the optimal percentage composition of each material.A sandwich panel hybrid of 50% titanium alloy and 50% wood (Ti-Wood) was found to be the optimum material, performing better than the currently used plywood.

  13. ABC deck panel testing.

    Science.gov (United States)

    2013-09-01

    Accelerated Bridge Construction techniques have resulted in innovative options that : save time and money during the construction of bridges. One such group of techniques : that has generated considerable interest is the usage of individual precast c...

  14. Research of the punch interaction with composite protective panel

    OpenAIRE

    Kulakov, N.; Lyubin, A.

    2008-01-01

    The work examines the structure of a protection composite panel consisting of a crushing layer (ceramic discrete elements of a cylindrical shape) and a restraining layer below (metallic leaf). This protection panel can be used for an armour-piercing bullet protection of the car. Here is the strength calculation of ceramic elements and metallic protective layer dynamic interaction under bullet impact. The problem was solved under a variety of protection panel parameters in order to define thei...

  15. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  16. Deciphering the composition of section 79- assessment panels in ...

    African Journals Online (AJOL)

    This contribution explores the clarifying provisions of the Amendment Act regarding the composition of assessment panels. Keywords: Criminal Procedure Amendment Act 4 of 2017, assessment panels, psychiatrists, clinical psychologists, section 79 of the Criminal Procedure Act, fitness to stand trial, criminal capacity, S v ...

  17. Damage identification in composite panels using guided waves

    NARCIS (Netherlands)

    Loendersloot, R.; Moix-Bonet, M.

    2015-01-01

    A methodology for the identification of barely visible impact damage using guided waves on a typical aircraft composite structure is implemented. Delaminations and debondings have been introduced in two stiffened panels by means of impact loads.

  18. Optimization of composite sandwich cover panels subjected to compressive loadings

    Science.gov (United States)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  19. X-joints in composite sandwich panels

    NARCIS (Netherlands)

    Vredeveldt, A.W.; Janssen, G.Th.M.

    1998-01-01

    The small structural weight of fast large ships such as fast mono hulls or catamaran type of ships is of extreme importance to their success. One possible light weight structural solution is the sandwich panel with fibre reinforced laminates and a balsa, honeycomb or foam core. A severe obstacle for

  20. Demonstration and Validation of a Composite Grid Reinforcement System for Bridge Decks

    Science.gov (United States)

    2016-09-01

    presence of chlorides from road salts that can pene- trate into the concrete deck and cause corrosion of standard steel reinforcement. Installation of the... Corrosion of Metal and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation.” Geneva, Switzerland: International Standards...one year), an atmospheric corrosion test rack, (equipped with sensors to monitor corrosion and chlorides were in- serted in the bridge deck), and

  1. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  2. Optimum design of composite panel with photovoltaic-thermo module. Absorbing effect of cooling panel; Hikari netsu fukugo panel no saiteki sekkei. Reikyaku panel no kyunetsu koka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Kikuchi, S; Tani, T [Science University of Tokyo, Tokyo (Japan); Kadotani, K; Imaizumi, H [Komatsu Ltd., Tokyo (Japan)

    1996-10-27

    The composite panel with photovoltaic-thermo module becomes higher in energy-saving than the conventional air-conditioning system by the independent radiational heating and cooling effect obtained when the generating panel using a solar cell module is combined with the heating and cooling panel using a thermo-element module. The output of a solar cell module can be directly used because the solar cell module operates in AC. This paper reports the relation between the absorbed value and power consumption of the cooling panel, while paying attention to the cooling panel. The performance coefficient of the maximum absorbed value from an non-absorbing substance to a cooling panel is 2 to 3. Assume that the cooling panel during non-adiabatic operation is operated using a solar cell module of 800 W/m{sup 2} in solar intensity and 15% in conversion efficiency. The cooling-surface temperature difference is 12.12 K, and the maximum absorbed value of a non-absorbing substance to a cooling panel is 39.12 W/m{sup 2}. The absorbed value of the outer temperature to the cooling panel is 74.4 W/m{sup 2}, and each performance coefficient is 3.26 and 0.62. The absorbed value must be calculated for evaluation from the cooling-surface temperature difference measured directly from the cooling panel. 4 refs., 8 figs., 1 tab.

  3. Application of Engineered Cementitious Composites (ECC) in modular floor panels

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2008-01-01

    This paper describes the design, manufacturing, and structural behavior of a prefabricated floor panel consisting of a modular assembly of a thin-walled ECC slab and steel truss girders. The features of this composite structure include light weight, the modular manufacturing process...... concept introduced in this paper aims at improvements in the manufacturing process of the panels by casting the ECC slab separately and subsequently joining it with the steel trusses. The focus of this paper is on design and manufacturing of a prototype modular panel and on its structural behavior under...

  4. Fiber reinforced polymer bridge decks.

    Science.gov (United States)

    2011-01-01

    The overarching goal of this study was to perform a comprehensive evaluation of various issues related to the strength and serviceability : of the FRP deck panels that are available in the industry. Specific objectives were to establish critical limi...

  5. Composite steel panels for tornado missile barrier walls. Topical report

    International Nuclear Information System (INIS)

    1975-10-01

    A composite steel panel wall system is defined as a wall system with concrete fill sandwiched between two steel layers such that no concrete surface is exposed on the interior or the exterior wall surface. Three full scale missile tests were conducted on two specific composite wall systems. The results of the full scale tests were in good agreement with the finalized theory. The theory is presented, and the acceptance of the theory for design calculations is discussed

  6. Composite Behaviour of Steel Frames with Precast Concrete Infill Panels

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; B. Hoffmeister, xx; O. Hechler, xx

    2005-01-01

    This paper presents preliminary experimental and numerical results of an investigation into the composite behaviour of a steel frame with a precast concrete infill panel (S-PCP) subject to a lateral load. The steel-concrete connections consist of two plates connected with two bolts which are loaded

  7. Performance of patch repaired composite panels under fatigue loads

    International Nuclear Information System (INIS)

    Darwish, Feras H.; Hamoush, S.; Shivakumar, K.

    2006-01-01

    This paper evaluates the performance of bonded patch-scarf repairs of full scale laminated composite panels under cyclic load conditions. Nondestructive testing to characterize the quality of repairs and destructive testing to evaluate the performance of repaired panels were used in this study. Carbon/Epoxy prepreg material used was used to lay up six-ply (12 in. x 27 in. /305x686mm) (-60/60/0) s quasi-isotropic laminates. 7-ply scarf repair with a gradient of 0.5 inch (12.7mm) per layer was used to perform the repair of a damaged zone. The patch consisted of 7.5 inches (190mm) diameter adhesive film, 1 inch (25.4mm) diameter filler ply at 90fiber orientation, and six plies (2-7 inches (51-178mm) diameter) to match the lay-up of the parent material. The study was extended to include defective repairs. The defect was engineered by inserting a 1 inch (25.4 mm) circular Teflon flaw between the fifth and sixth layers of the patch. A total of 28 panels were prepared and divided into five categories: (1) three pristine panels (undamaged parental materials); (2) three damaged panels (1-inch-centered-hole); (3) two repaired panels with wrong fiber orientation; (4) nine good repaired panels, and (5) eleven defective repair panels (1 inch flaw). A nondestructive evaluation to check the conditions of the repairs was performed on most of the tested panels that include the pulse-echo C-scan and pseudo through transmission air coupled and water coupled C-scan. Based on the results of the experimental evaluation of this study, good repair restored 95% of the tensile strength while defective repair restored 90% of the tensile strength of the pristine panels. Under fatigue loading, panels repaired with a 1 inch delamination flaw within the patch layers showed a major reduction in fatigue life compared to the good repair panels under similar loading conditions. (author)

  8. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  9. 34 CFR 350.52 - What is the composition of a peer review panel?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What is the composition of a peer review panel? 350.52... composition of a peer review panel? (a) The Secretary selects as members of a peer review panel scientists and... information, or conferences, must be reviewed by a peer review panel that consists of a majority of non...

  10. Behavior of Frame-Stiffened Composite Panels with Damage

    Science.gov (United States)

    Jegley, Dawn C.

    2013-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.

  11. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    Science.gov (United States)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  12. Energy absorption capabilities of composite sandwich panels under blast loads

    Science.gov (United States)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  13. Combined-load buckling behavior of metal-matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.

  14. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  15. Precision hole punching on composite fiber reinforced polymer panels

    Science.gov (United States)

    Abdullah, A. B.; Zain, M. S. M.; Chan, H. Y.; Samad, Z.

    2017-12-01

    Structural materials, such as composite panels, can only be assembled, and in most cases through the use of fasteners, which are fitted into the drilled holes. However, drilling is costly and time consuming, thus affecting productivity. This research aims to develop an alternative method to drilling. In this paper, the precision of the holes was measured and the effects of the die clearance to the areas around the holes were evaluated. Measurement and evaluation were performed based on the profile of the holes constructed using Alicona IFM, a 3D surface measurement technique. Results showed that punching is a potential alternative to drilling but still requires improvements.

  16. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    Science.gov (United States)

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  18. Behavior of composite sandwich panels with several core designs at different impact velocities

    Science.gov (United States)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  19. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  20. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  1. Cone calorimeter tests of wood-based decking materials

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger; Nicole M. Stark

    2007-01-01

    New technologies in building materials have resulted in the use of a wide variety of materials in decks. As part of our effort to address fire concerns in the wildland-urban interface, the Forest Products Laboratory has been examining the fire performance of decking products. In addition to preservative-treated wood, decking products include wood-plastic composites and...

  2. Finite element simulation of a novel composite light-weight microporous cladding panel

    Science.gov (United States)

    Tian, Lida; Wang, Dongyan

    2018-04-01

    A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.

  3. Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis

    International Nuclear Information System (INIS)

    Phadnis, V A; Roy, A; Silberschmidt, V V; Kumar, P; Shukla, A

    2013-01-01

    Experimental and numerical studies were conducted to understand the effect of plate curvature on blast response of carbon/epoxy composite panels. A shock-tube system was utilized to impart controlled shock loading to quasi-isotropic composite panels with differing range of radii of curvatures. A 3D Digital Image Correlation (DIC) technique coupled with high-speed photography was used to obtain out-of-plane deflection and velocity, as well as in-plane strain on the back face of the panels. Macroscopic post-mortem analysis was performed to compare yielding and deformation in these panels. A dynamic computational simulation that integrates fluid-structure interaction was conducted to evaluate the panel response in general purpose finite-element software ABAQUS/Explicit. The obtained numerical results were compared to the experimental data and showed a good correlation

  4. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dodd, Amanda B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  5. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    Science.gov (United States)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  6. Compressive Behavior of Frame-Stiffened Composite Panels

    Science.gov (United States)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  7. Deck41 Surficial Seafloor Sediment Description Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deck41 is a digital summary of surficial sediment composition for 36,401 seafloor samples worldwide. Data include collecting source, ship, cruise, sample id,...

  8. Characterisation of fluid-structure interaction for water impact of composite panels

    Directory of Open Access Journals (Sweden)

    M Battley

    2016-09-01

    Full Text Available Hydrodynamic loads can be very significant for high performance marine vessels. Water impact of panels, known as "slamming", typically generates high magnitude short duration pressure pulses that move across the structure. In the case of compliant panels there can be significant coupling between the pressures and the structural responses. While there has been significant development of numerical methods to simulate this type of fluid-structure interaction there is only very limited experimental data available for validation of the simulation approaches. This paper describes an experimental study of sandwich composite panels subjected to water slamming impacts. The results demonstrate that compliant panels subjected to water slamming impacts experience different pressures than rigid panels, and have different structural responses than predicted by traditional uniform pressure based analysis approaches. The study also characterizes the significant effects that the dimensions of pressure transducers and data acquisition sampling rates have on the measured pressures.

  9. Environmental Effects on Flutter Characteristics of Laminated Composite Rectangular and Skew Panels

    Directory of Open Access Journals (Sweden)

    T.V.R. Chowdary

    1996-01-01

    Full Text Available A finite element method is presented for predicting the flutter response of laminated composite panels subjected to moisture concentration and temperature. The analysis accounts for material properties at elevated temperature and moisture concentration. The analysis is based on the first-order approximation to the linear piston theory and laminated plate theory that includes shear deformation. Both rectangular and skew panels are considered. Stability boundaries at moisture concentrations and temperatures for various lamination schemes and boundary conditions are discussed.

  10. Buckling and postbuckling of composite panels with cutouts subjected to combined edge shear and temperature change

    Science.gov (United States)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.

  11. Strengthening masonry infill panels using engineered cementitious composites

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Fischer, Gregor; Nateghi Alahi, Fariborz

    2015-01-01

    for ECC in order to assess its distinctive mechanical properties such as tensile stress–strain behavior and multiple cracking. To investigate the influence of a thin layer of ECC on plain masonry in terms of changes in stiffness, strength, and deformability, small scale tests have been conducted...... and strength properties, including the post-peak softening behavior in view of seismic applications. The obtained resultsindicate that the proposed ECC-strengthening technique can effectively increase the shear capacity of masonry panels, improve their deformability, enhance their energy absorption capacity......, and prevent the brittle failure mode. Furthermore, the superior deformability of ECC is clearly reflected by cracks development in the ECC layer, which was monitored by a high resolution camera and was analyzed using Digital Image Correlation (DIC) technique....

  12. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure

    DEFF Research Database (Denmark)

    Lárusson, Lárus H.; Fischer, Gregor; Jönsson, Jeppe

    2013-01-01

    This paper reports on a study on prefabricated composite and modular floor deck panels composed of relatively thin fiber reinforced concrete slabs connected to steel substructures. The study focuses on the design, manufacturing, structural improvements and behavior of the floor systems during...

  13. The Rhetoric of the Paneled Page: Comics and Composition Pedagogy

    Science.gov (United States)

    Sealey-Morris, Gabriel

    2015-01-01

    While comics have received widespread acceptance as a literary genre, instructors and scholars in Rhetoric and Composition have been slower to adopt comics, largely because of a lingering difficulty understanding how the characteristics of the form relate to our work in the classroom. Using as guides the "WPA Outcomes Statement for First-Year…

  14. Mechanical Characterization of In and Out-of-Autoclave Cured Composite Panels for Large Launch Vehicles

    Science.gov (United States)

    Kellas, Sotiris; Lerch, Bradley A.; Wilmoth, Nathan

    2012-01-01

    Two manufacturing demonstration panels (1/16th-arc-segments of 10 m diameter cylinder) were fabricated under the composites part of the Lightweight Space Structures and Materials program. Both panels were of sandwich construction with aluminum core and 8-ply quasi-isotropic graphite/epoxy facesheets. One of the panels was constructed with in-autoclave curable unidirectional prepreg (IM7/977-3) and the second with out-of-autoclave unidirectional prepreg (T40-800B/5320-1). Following NDE inspection, each panel was divided into a number of small specimens for material property characterization and a large (0.914 m wide by 1.524 m long) panel for a buckling study. Results from the small specimen tests were used to (a) assess the fabrication quality of each 1/16th arc segment panel and (b) to develop and/or verify basic material property inputs to Finite Element analysis models. The mechanical performance of the two material systems is assessed at the coupon level by comparing average measured properties such as flatwise tension, edgewise compression, and facesheet tension. The buckling response of the 0.914 m wide by 1.524 m long panel provided a comparison between the in- and out-of autoclave systems at a larger scale.

  15. Strength of normal sections of NPP composite monolithic constructions with ribbed reinforced panels

    International Nuclear Information System (INIS)

    Klyashitskij, V.I.; Kirillov, A.P.

    1980-01-01

    Strength characteristics and recommendations on designing composite-monolytic structures of NPP with ribbed reinforced panels are considered. Ribbed reinforced panel consists of a system of cross ribs joined with a comparatively thin (25 mm thick) plate. The investigations were carried on using models representing columns symmetrically reinforced with reinforced panels with a low percent of reinforcing. The monolithic structures consisting of ribbed reinforced panels and cast concrete for making monoliths as well as monolithic having analogous strength characteristics of extended and compressed zones have similar strengths. It is shown that calculation of supporting power of composite-monolithic structures is performed according to techniques developed for monolithic structures. Necessity of structural transverse fittings no longer arises in case of corresponding calculational substitution of stability of compressed parts of fittings. Supporting power of a structure decreases not more than by 10% in the presence of cracks in the reinforced panels of the compressed zone. Application of composite-monolithic structures during the construction of the Kursk, Smolensk and Chernobylskaya NPPs permitted to decrease labour content and reduce periods of accomplishment of these works which saves over 6 million roubles

  16. Passive Impact Damage Detection of Fiber Glass Composite Panels

    Science.gov (United States)

    2013-12-19

    Another important reason to chose sensor embedding is that the composite layers prevent the electromechanical fatigue degradation of the PZT (Sung...15 Figure 3-1 PZT sensor used on this work. .................................................................................... 28 Figure 3-3 PZT ...are used to hold the PZT sensor. ........................ 29 Figure 3-5 A small amount of solder is applied to the sensor to connect the wire leads

  17. Eco-Casting of Aeolian Blades and Solar Panels With Composites ...

    African Journals Online (AJOL)

    The technique used for manufacturing composite wind turbine blades and solar panels must be sure of environment-friendly. In order to achieve this objective, the closed mould manufacturing process that takes into account environment preservation and health protection besides assurance quality will be the subject of this ...

  18. STS-37 Commander Nagel in commanders seat on OV-104's flight deck

    Science.gov (United States)

    1991-01-01

    STS-37 Commander Steven R. Nagel, wearing launch and entry suit (LES), sits at commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Surrounding Nagel are the seat headrest, control panels, checklists, forward flight deck windows, and three drinking water containers with straws attached to forward panel F2.

  19. Standard practice for infrared flash thermography of composite panels and repair patches used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes a procedure for detecting subsurface flaws in composite panels and repair patches using Flash Thermography (FT), in which an infrared (IR) camera is used to detect anomalous cooling behavior of a sample surface after it has been heated with a spatially uniform light pulse from a flash lamp array. 1.2 This practice describes established FT test methods that are currently used by industry, and have demonstrated utility in quality assurance of composite structures during post-manufacturing and in-service examinations. 1.3 This practice has utility for testing of polymer composite panels and repair patches containing, but not limited to, bismaleimide, epoxy, phenolic, poly(amide imide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricate...

  20. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  1. Structural acoustic response of a shape memory alloy hybrid composite panel (lessons learned)

    Science.gov (United States)

    Turner, Travis L.

    2002-07-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  2. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  3. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    International Nuclear Information System (INIS)

    Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony; Zhao Xinyue; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-01-01

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  4. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  5. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  6. Thermal and Mechanical Buckling and Postbuckling Responses of Selected Curved Composite Panels

    Science.gov (United States)

    Breivik, Nicole L.; Hyer, Michael W.; Starnes, James H., Jr.

    1998-01-01

    The results of an experimental and numerical study of the buckling and postbuckling responses of selected unstiffened curved composite panels subjected to mechanical end shortening and a uniform temperature increase are presented. The uniform temperature increase induces thermal stresses in the panel when the axial displacement is constrained. An apparatus for testing curved panels at elevated temperature is described, numerical results generated by using a geometrically nonlinear finite element analysis code are presented. Several analytical modeling refinements that provide more accurate representation of the actual experimental conditions, and the relative contribution of each refinement, are discussed. Experimental results and numerical predictions are presented and compared for three loading conditions including mechanical end shortening alone, heating the panels to 250 F followed by mechanical end shortening, and heating the panels to 400 F. Changes in the coefficients of thermal expansion were observed as temperature was increased above 330 F. The effects of these changes on the experimental results are discussed for temperatures up to 400 F.

  7. A novel adaptive sun tracker for spacecraft solar panel based on hybrid unsymmetric composite laminates

    Science.gov (United States)

    Wu, Zhangming; Li, Hao

    2017-11-01

    This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.

  8. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    Science.gov (United States)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  9. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    Science.gov (United States)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  10. Racial composition, unemployment, and crime: dealing with inconsistencies in panel designs.

    Science.gov (United States)

    Worrall, John L

    2008-09-01

    Racial composition and unemployment have appeared as either theoretically-relevant controls or variables of substantive interest in numerous studies of crime. While there is no clear consensus in the literature as to their statistical significance, the lack of consensus has been most apparent in panel analyses with unit fixed effects. One explanation for this is that racial composition and unemployment are fairly invariant, or slow-moving, which leads to collinearity with unit dummies. A number of pertinent studies are reviewed to illustrate how two slow-moving variables, percent black and percent unemployed, have behaved inconsistently. A fixed effects vector decomposition procedure [Plumper, V., Troeger, V. E., 2007. Efficient estimation of time-invariant and rarely changing variables in finite sample panel analyses with unit fixed effects. Political Analysis, 15, 124-139.] is used to illustrate how these variables' coefficients appear positive and significant when the slow-moving process is accounted for.

  11. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    International Nuclear Information System (INIS)

    Sahoo, Sarmila

    2016-01-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances. (paper)

  12. Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

    OpenAIRE

    Viriyavudh Sim; Jung Kyu Choi; Yong Ju Kwak; Oh Hyeon Jeon; Woo Young Jung

    2017-01-01

    In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In...

  13. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  14. Full-Scale Evaluation of DuraDeck (registered trademark) and MegaDeck (trademark) Matting Systems

    Science.gov (United States)

    2013-07-01

    plates studded with threaded bolts were placed ERDC/GSL TR-13-27 10 underneath two pre-drilled corners of the panel. The plates were positioned so...metal plates studded with threaded ERDC/GSL TR-13-27 4 Figure 1. DuraDeck® mat panel, top surface. Figure 2. DuraDeck® mat panel, bottom surface...ERDC/GSL TR-13-27 5 bolts , as shown in Figure 3, underneath the mat corners and then installing special connector nuts from the top surface

  15. Design of Experimental Suspended Footbridge with Deck Made of UHPC

    Directory of Open Access Journals (Sweden)

    Blank Marek

    2016-01-01

    Full Text Available This paper deals with the static and dynamic design of experimental footbridge for pedestrians and cyclists in the municipality Lužec nad Vltavou in Czech Republic, Europe. This work aims to familiarize the reader with calculations carried out and the results obtained, describing the static and dynamic properties of proposed footbridge. The construction of footbridge is designed as a suspended structure with prestressed bridge deck consisting of prefabricated UHPC panels and reversed “V” shaped steel pylon with height of approximately 40 meters. The deck is anchored using 24 steel hangers in one row in a steel pylon - 17 ropes in the main span and 7 cables on the other side. Range of the main span is 99.18 meters and the secondary span is 31.9 m. Deck width is 4.5 meters with 3.0 meters passing space. The bridge is designed for the possibility of passage of vehicles weighting up to 3.5 tons. Deck panels are made of UHPC with reinforcement. At the edge of the bridge on the side of the shorter span the bridge deck is firmly connected with abutment and on the other deck it is stored using a pair of sliding bearings. The utilization of the excellent properties of UHPC allows to design a very thin and lightweight construction of the deck, which could not be achieved with the use of normal concrete.

  16. Synthesis and Characterization of Functional Composite Carbon-Geopolymers for Precast Panel Application

    Directory of Open Access Journals (Sweden)

    Noor Afifah Kharisma

    2017-01-01

    Full Text Available The purpose of this study is to examine the influence of carbon (C particles as filler (aggregate in the production of geopolymers functional composite for possible precast panel application. Geopolymers was synthesized through alkali activation of metakaolin added with carbon particles relative to the mass of metakaolin. The mixture was cured at 70°C for 2 hours and the resulting composites were stored in open air for 28 days. The bulk density and the apparent porosity of the composites were measured by using Archimedes method. The thermal properties of the samples was examined by using thermal conductivity measurement and differential scanning calorimetry (DSC. The microstructure characterization of the samples were performed by using x-ray diffraction (XRD and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS.

  17. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    Science.gov (United States)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid

  18. Design and fabrication of composite wing panels containing a production splice

    Science.gov (United States)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  19. Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon

    Science.gov (United States)

    Sobek, M.; Baier, A.; Grabowski, Ł.; Majzner, M.

    2016-08-01

    In the XXI century transportation of goods plays a key role in the economy. Due to a good logistics the economy is able to grow fluently. Although land transportation is carried out mainly through trucks for the last several years there has been noted an increase in the percentage share of rail transport in the freight transport. The main goods transported by railways are mineral fuels, mining and quarrying products. They constitute the greater part of 70% of total transported goods. Transportation of material of such high weight, high hardness and with different shapes involves increased and accelerated wear and tear of the cargo space of the wagon. This process is also magnified by substances used to prevent overheating or goods theft. Usually they are in the form of chemical compounds powder, eg. Calcium. A very large impact on the wear of the freight wagons hull is made because of mechanical damage. Their source comes mostly from loading cargo with impetus and using heavy machines during unloading. A large number of cycles of loading and unloading during the working period causes abrasion of body and as a result after several years a wagon car qualifies for a major maintenance. Possibility of application composite panels in the process of renovating the wagons body could reduce the weight of whole train and prolong the service life between mandatory technical inspection. The Paper "Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon" presents the research process and the results of the endurance test of the composite panel samples fixed to a metal plate. As a fixing method a stainless steel rivet nut and a stainless steel button head socket screws were chosen. Cyclic and multiple load were applied to test samples using a pneumatic cylinder. Such a methodology simulated the forces resulting from loading and unloading of the wagon and movement of the cargo during transport. In the study a dedicated stand equipped with a

  20. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  1. Influence of Charge Shape and Orientation on the Response of Steel-Concrete Composite Panels

    Directory of Open Access Journals (Sweden)

    Abraham Christian

    2016-09-01

    Full Text Available Blast design codes usually generalize the shape of the charge as spherical or hemispherical. However, it was found that the blast overpressure of cylindrical charges differ greatly when compared with relevant analytical results generated with the charges assumed to be spherical. The objective is to use fully coupled 3D multi-material arbitrary Lagrangian Eulerian (MMALE modelling technique in LS Dyna software to simulate the cylindrical charge blast loading. Comparison of spherical and cylindrical charge blast simulation was carried out to show the influence on peak overpressure and total impulse. Two steel-concrete composite specimens were subjected to blast testing under cylinder charges for benchmarking against numerical results. It was found that top detonated, vertical cylinder charge could give much higher blast loading compared to horizontal cylinder charge. The MMALE simulation could generate the pressure loading of various charge shape and orientation to be used for predicting the response of the composite panel.

  2. The study of fix composite panel and steel plates on testing stand

    Science.gov (United States)

    Wróbel, A.; Płaczek, M.; Wachna, M.

    2016-08-01

    In this paper the practical possibilities of strength verification analysis of composite materials used in the manufacture of selected components of railway wagons are presented. Real laboratory stand for measurements in a scale controlled by PLC controller were made. The study of different types of connections of composite materials with sheet metal is presented. In one of the chapter of this paper principles construction of testing stand with pneumatic cylinder were presented. Mainly checking of displacements and stresses generated on the sheet as a result of pneumatic actuators load for composite boards was carried out. The use of the controller with operating panel allows to easy programming testing cycle. The user can define the force generated by the actuator by change of air pressure in cylinder. Additionally the location of acting cylinders and their jump can be changed by operator. The examination of the volume displacements was done by displacement sensor, and the tensile strain gauge. All parameters are written in CatmanEasy - data acquisition software. This article presents the study of stresses and displacements in the composite plates joined with sheet metal, in summary of this article, the authors compare the obtained results with the computer simulation results in the article: "Simulation of stresses in an innovative combination of composite with sheet".

  3. Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM

    International Nuclear Information System (INIS)

    Luo, Zigeng; Huang, Zhaowen; Xie, Ning; Gao, Xuenong; Xu, Tao; Fang, Yutang; Zhang, Zhengguo

    2017-01-01

    Highlights: • A passive cooling PV-PCM system was developed. • Form-stable paraffin/EG composite PCM with high thermal conductivity was utilized. • Numerical simulation on the temperature of PV-PCM panel was carried out. • Effects of density were studied under the given weather conditions. - Abstract: Performance of photovoltaic (PV) panels is greatly affected by its operating temperature. And traditional active and passive cooling methods usually suffer from the disadvantages of external energy consumption, uneven temperature distribution and low thermal conductivity of phase change materials (PCMs). In this work, a PV-PCM system was developed to control the temperature of a PV panel by applying high thermal conductive form-stable paraffin (ZDJN-28)/EG composite PCM. The temperature, output voltage and power of a conventional PV panel and the PV-PCM panel were measured and compared. A numerical simulation model established by CFD software FLUENT was used to simulate the temperature change process of the PV-PCM panel with different material densities under the same conditions as experiment. The experiment results showed that compared with the temperature of the conventional PV panel, the temperature of the PV-PCM panel is kept below 50 °C for 200 min extended by 146 min with output power averagely increased by 7.28% in heating process. Simulated temperatures were in good agreement with experimental temperatures and indicated that the higher the density of the PCM is, the better the temperature management performance the PV panel could achieve. Besides, the PCM with density of 900 kg/m 3 was found sufficient to achieve a good temperature management performance when the average ambient temperature below 25 °C with the highest solar irradiation of 901 w/m 2 . In summary, this work is of great importance in the design of a PV-PCM system for temperature management of PV panels.

  4. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  5. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  6. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi

    2015-03-01

    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  7. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    Science.gov (United States)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  8. Fatigue disbonding analysis of wide composite panels by means of Lamb waves

    Science.gov (United States)

    Michalcová, Lenka; Rechcígel, Lukáš; Bělský, Petr; Kucharský, Pavel

    2018-03-01

    Guided wave-based monitoring of composite structures plays an important role in the area of structural health monitoring (SHM) of aerospace structures. Adhesively bonded joints have not yet fulfilled current airworthiness requirements; hence, assemblies of carbon fibre-reinforced parts still require mechanical fasteners, and a verified SHM method with reliable disbonding/delamination detection and propagation assessment is needed. This study investigated the disbonding/delamination propagation in adhesively bonded panels using Lamb waves during fatigue tests. Analyses focused on the proper frequency and mode selection, sensor placement and selection of parameter sensitive to the growth of disbonding areas. Piezoelectric transducers placed across the bonded area were used as actuators and sensors. Lamb wave propagation was investigated considering the actual shape of the crack front and the mode of the crack propagation. The actual cracked area was determined by ultrasonic A-scans. A correlation between the crack propagation rate and the A0 mode velocity was found.

  9. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the essential composition of infant and follow-on formulae

    DEFF Research Database (Denmark)

    Tetens, Inge

    2014-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the essential composition of infant and follow-on formula. This opinion reviews the opinion provided by the Scientific Committee on Food...... in 2003 on the essential requirements of infant and follow-on formulae in light of more recent evidence and by considering the Panel’s opinion of October 2013 on nutrient requirements and dietary intakes of infants and young children in the European Union. The minimum content of a nutrient in formula...... proposed in this opinion is derived from the intake levels the Panel had considered adequate for the majority of infants in the first six months of life in its previous opinion and an average amount of formula consumed during this period. From a nutritional point of view, the minimum contents of nutrients...

  10. Delamination measurement of a laminates composite panel due to hole punching based on the focus variation technique

    Science.gov (United States)

    Abdullah, A. B.; Zain, M. S. M.; Abdullah, M. S.; Samad, Z.

    2017-07-01

    Structural materials, such as composite panels, must be assembled, and such panels are typically constructed via the insertion of a fastener through a drilled hole. The main problem encountered in drilling is delamination, which affects assembly strength. The cost of drilling is also high because of the severe wear on drill bits. The main goal of this research is to develop a new punching method as an alternative to drilling during hole preparation. In this study, the main objective is to investigate the effect of different puncher profiles on the quality of holes punched into carbon fiber reinforcement polymer (CFRP) composite panels. Six types of puncher profiles were fabricated with minimum die clearance (1%), and two quality aspects, namely, incomplete shearing and delamination factor, were measured. The conical puncher incurred the least defects in terms of delamination and yielded an acceptable amount of incomplete shearing in comparison with the other punchers.

  11. Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

  12. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    Science.gov (United States)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  13. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  14. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Directory of Open Access Journals (Sweden)

    Kroupa T.

    2007-10-01

    Full Text Available The article deals with experimental and numerical analysis of stress wave propagation in a thin long fiber carbon/epoxy composite material. Experiments were performed on in-plane loaded square composite panels with dimensions 501mm x 501mm x 2:2 mm. The panels have several fiber orientations (0°, 30°, 60° and 90° measured from the loaded edge. They were loaded by in-plane impact of steel sphere. The impact area was on the edge, exactly 150mm from top left corners corner of the panels. The loading force was approximated by atime dependent function. Its shape was obtained from three dimensional contact analysis, which was performed on smaller area of panel. The function was used in further plane stress analysis of the whole panels. The comparison of the numerical and experimental results was executed. An attempt at determination of velocity of propagation of Rayleigh waves on the loaded edge was performed and the results are discussed in the paper. Further directions of the research are proposed.

  15. Cooling characteristics of light and heat composite panel; Hikari{center_dot}netsu fukugo paneru no rekyakutokusei

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Satoshi [Science University of Tokyo, Tokyo (Japan)

    1999-07-31

    The Japan Solar Energy Soc. encouraging prize is really thank you this time receiving. Present winning prize is regarded as becoming large self-confidence and further encouragement in advancing the research in future. Duplicates and resources energy depletion problem and environmental problem, etc. will become serious more and more in respect of the twenty-first century just before. It is the threat even in the inside on the increase of the electric power demand by the popularization of air conditioner, etc., and peak shaving of the electric power, etc. must be urgently carried out. We heavily carry out the research of catching, width shot heating and cooling panel constituted by the thermo device module and light and heat composite panel which combined photovoltaic power generation panel in respect of this problem. The development of this panel was solved with the purpose this time, we produce the test equipment experimentally in outdoors, and the data was acquired. As the result, though it is possible to obtain the case in which it operated as air-cooling this panel, and temperature gradient of largest 6 degrees C, and it is the analysis, and it 4s, when it was used in July, It was possible to obtain 4.2 degrees C mean temperature difference. It is the place which has installed improved light and heat composite panel in which we suggested afterwards trial and error at present in the roof. And, it will become also reporting schedule on heating characteristics of this panel in future. Though it consists finally, everybody of Komatsu central laboratory, who received support, when this study was carried out, is asked for the slender face, the attention of thanks is shown. (translated by NEDO)

  16. Composite metal oxide semiconductor based photodiodes for solar panel tracking applications

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Ahmed A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Dere, A. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Tataroğlu, A. [Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey); Arif, Bilal [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Farooq, W.A. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh (Saudi Arabia)

    2015-11-25

    The Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method to fabricate photodiodes. The transparent metal oxide Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O thin films were grown on p-Si substrates by spin coating technique. Electrical characterization of the p-Si/AZO:Cu{sub 2}O photodiodes was performed by current–voltage and capacitance–conductance–voltage characteristics under dark and various illumination conditions. The transient photocurrent of the diodes increases with increase in illumination intensity. The photoconducting mechanism of the diodes is controlled by the continuous distribution of trap levels. The photocapacitance and photoconductivity of the diodes are decreased with increasing Cu{sub 2}O content. The series resistance–voltage behavior confirms the presence of the interface states in the interface of the diodes. The photoresponse properties of the diodes indicate that the p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used as a photosensor in solar panel tracking applications. - Highlights: • Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes were fabricated. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used in the optoelectronic applications.

  17. Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel

    Science.gov (United States)

    Przekop, Adam

    2012-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.

  18. Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations

    Science.gov (United States)

    Allen, Albert R.; Przekop, Adam

    2015-01-01

    An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field.

  19. Structural Health Monitoring of a Composite Panel Based on PZT Sensors and a Transfer Impedance Framework.

    Science.gov (United States)

    Dziendzikowski, Michal; Niedbala, Patryk; Kurnyta, Artur; Kowalczyk, Kamil; Dragan, Krzysztof

    2018-05-11

    One of the ideas for development of Structural Health Monitoring (SHM) systems is based on excitation of elastic waves by a network of PZT piezoelectric transducers integrated with the structure. In the paper, a variant of the so-called Transfer Impedance (TI) approach to SHM is followed. Signal characteristics, called the Damage Indices (DIs), were proposed for data presentation and analysis. The idea underlying the definition of DIs was to maintain most of the information carried by the voltage induced on PZT sensors by elastic waves. In particular, the DIs proposed in the paper should be sensitive to all types of damage which can influence the amplitude or the phase of the voltage induced on the sensor. Properties of the proposed DIs were investigated experimentally using a GFRP composite panel equipped with PZT networks attached to its surface and embedded into its internal structure. Repeatability and stability of DI indications under controlled conditions were verified in tests. Also, some performance indicators for surface-attached and structure-embedded sensors were obtained. The DIs' behavior was dependent mostly on the presence of a simulated damage in the structure. Anisotropy of mechanical properties of the specimen, geometrical properties of PZT network as well as, to some extent, the technology of sensor integration with the structure were irrelevant for damage indication. This property enables the method to be used for damage detection and classification.

  20. TAX COMPOSITION AND ECONOMIC GROWTH. A PANEL-MODEL APPROACH FOR EASTERN EUROPE

    Directory of Open Access Journals (Sweden)

    MURA PETRU-OVIDIU

    2015-03-01

    Full Text Available In this paper, we investigate the impact of tax composition on economic growth, based on a panel-model approach. The dataset includes six East-European countries and covers the period 1995-2012. Specifically, the study explores the relative impact of different components of tax revenue (direct and indirect tax revenue, as percentage of total tax revenue on economic growth. The paper adds marginally to the empirical literature, showing how the two types of tax revenue influence economic growth in Eastern Europe, under an extended set of economic and sociopolitical control variables. The most important empirical output, for the 6 investigated East-European countries during 1995-2012, suggests that direct taxes are significant and negatively correlated with economic growth, while indirect taxes exert a positive influence on the dependent variable, though insignificant. As for the control variables, it seems that only freedom from corruption and political stability have a significant impact on economic growth. The study suggests that the design of tax systems in Eastern European countries is in accordance with the Commission’s priorities regarding its growth-friendliness. As for policy implications, governments should continue shifting the tax burden away from labour on to tax bases linked to consumption, property, and combating pollution, with potential positive effects both for growth and for fighting against tax evasion.

  1. A decking for erecting an insulating connector

    Energy Technology Data Exchange (ETDEWEB)

    Chuprikov, A Ye; Lagutin, V I; Sklyarov, A A; Sukhanov, G V

    1983-01-01

    The decking includes a parachute like dome, made of a material impenetrable to air, an air penetrable hood, attachment elements and a branch pipe for supplying the filler. To improve the sealing of the insulating connector upon contact with the walls and the roof of the drift being isolated and to reduce the labor intensity of operations, it is equipped with a housing made in the form of a cylinder from a material impenetrable to water, an advancible vertical upright and a spring loaded panel. The housing is installed between the parachute like dome and the air penetrable hood. The extendible vertical upright is installed on the side of the air penetrable hood and by means of a movable rack mechanism is kinematically linked with the spring loaded panel, installed with the capability of interacting with the air penetrable hood. The spring loaded plate is made in the form of perforated plates which have a telescopic disengagement in the horizontal plane.

  2. Process and a device for manufacturing a composite building panel for use in a building structure cladding system

    Energy Technology Data Exchange (ETDEWEB)

    Tetu, B

    1991-06-11

    A process and device are disclosed for manufacturing a composite panel used for cladding a building. The panel comprises a facing layer made from a plurality of facing elements, such as brick slices, retained in a spaced-apart relationship, and magnetically attractible particulate material disposed between the facing elements to imitate mortar. A rigid backing layer is provided, spaced from the spacing layer, and the space between the facing and the backing layers is filled with an insulation/bonding layer, made of urethane foam. The device for manufacturing the panel comprises a facing element holder in the form of a structure with a plurality of recesses for receiving facing elements, also including spacers between the recesses in order to retain the facing elements in a spaced-apart relationship. Ceramic magnets are provided on the spacers for temporarily retaining the particulate material against gravity until the insulation/bonding layer is built which retains all the panel elements together. The invention enables manufacture of non-planar panels, such as those used on corners of buildings, thereby eliminating the need for a corner joint. 9 figs.

  3. Exodermic bridge deck performance evaluation.

    Science.gov (United States)

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  4. Impact damage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations

    International Nuclear Information System (INIS)

    Pieczonka, L; Ukowski, P; Klepka, A; Staszewski, W J; Uhl, T; Aymerich, F

    2014-01-01

    The nonlinear vibro-acoustic modulation technique is used for impact damage detection in light composite sandwich panels. The method utilizes piezo-based low-frequency vibration and high-frequency ultrasonic excitations. The work presented focuses on the analysis of modulation intensity. The results show that the method can be used for impact damage detection reliably separating damage-related from vibro-acoustic modulations from other intrinsic nonlinear modulations. (paper)

  5. Impact damage and residual strength analysis of composite panels with bonded stiffeners. [for primary aircraft structures

    Science.gov (United States)

    Madan, Ram C.; Shuart, Mark J.

    1990-01-01

    Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.

  6. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  7. Standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites. 1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information see Appendix X1. 1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring) and at periodic intervals during the life of a structure. 1.4 This pra...

  8. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  9. General stability of composite panels reinforced with flexible rods taking account of the side boundary conditions

    Science.gov (United States)

    Dudchenko, A. A.; Elpat'evskii, A. N.

    1995-07-01

    Reinforced panels are the basic load-bearing elements of various structures. Optimization of massive structures requires consideration of deformation of the panel cross-sections. This is particularly important in determining the bearing strength at buckling. The load scheme, conditions for fixation of the panel cross-section, and bend-torsional stiffness taking account of the deformation of the rod cross-section affect the buckling load in real structures. The stress distribution prior to buckling must be known to solve the buckling problem properly. The stress in the panel is proportional to the active load. The stress distribution is assumed to be known according to our previous method [1]. The load scheme and panel dimensions are shown in Fig. 1. The stress distribution in the panel prior to buckling can be found using Eqs. (1)-(3). A view of the cross-section is given in Fig. 1. The displacements in the panel at buckling for the boundary area are found using Eqs. (4)-(6), while the stresses in the skin and stiffness are found using Eq. (7). Roots k1 and k2 are those of the characteristic equation and β is a dimensionless coordinate. The problem was solved using variational theory. The potential energy is given by Eqs. (8) and (9) by orihogonalization of Eqs. (5). The basic equations are converted to Eqs. (10) by evaluation of the components in Eqs. (8) and (9). Its calculation (11) gives the compression load. Optimization of parameter α gives the critical strength P1 = 6.93 kN (without taking account of the boundary area) and P2 = 5.31 kN (taking account of the boundary area).

  10. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  11. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  12. Effect of Processing Parameters on Reliability of VARTM/SCRIMP Composite Panels - Phase 1

    National Research Council Canada - National Science Library

    Dagher, Habib J; Lopez-Anido, Roberto; Thompson, Larry; El-Chiti, Fadi; Fayad, Ghassan; Berube, Keith

    2007-01-01

    .... The structural risks associated with new FRP composite ship structures can be mitigated by characterizing the variability of composite material properties thus ensuring acceptable levels of safety...

  13. Statics and buckling problems of aircraft structurally-anisotropic composite panels with the influence of production technology

    Science.gov (United States)

    Gavva, L. M.; Endogur, A. I.

    2018-02-01

    The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.

  14. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  15. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  16. Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators: wires out by molded-in holes

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid

    2003-08-01

    This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.

  17. Damage tolerance modeling and validation of a wireless sensory composite panel for a structural health monitoring system

    Science.gov (United States)

    Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena

    2013-05-01

    The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons

  18. Concepts for improving the damage tolerance of composite compression panels. [aircraft structures

    Science.gov (United States)

    Rhodes, M. D.; Williams, J. G.

    1984-01-01

    The residual strength of specimens with damage and the sensitivity to damage while subjected to an applied inplane compression load were determined for flatplate specimens and blade-stiffened panels. The results suggest that matrix materials that fail by delamination have the lowest damage tolerance capability. Alternate matrix materials or laminates which are transversely reinforced suppress the delamination mode of failure and change the failure mode to transverse shear crippling which occurs at a higher strain value. Several damage-tolerant blade-stiffened panel design concepts are evaluated. Structural efficiency studies conducted show only small mass penalties may result from incorporating these damage-tolerant features in panel design. The implication of test results on the design of aircraft structures was examined with respect to FAR requirements.

  19. Longer Lasting Bridge Deck Overlays

    Science.gov (United States)

    2018-04-01

    The objective of this report is to determine the most effective method for bridge deck overlay construction and repair by assessing current practices; examining new products and technologies; and reviewing NCHRP (National Cooperative Highway Research...

  20. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels

    Science.gov (United States)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1995-01-01

    A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.

  1. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  2. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of); Choi, Man Yong; Kwon, Koo Ahn; Park, Jeong Hak; Choi, Won Jae [Safety measurement center, Korea research Institute of Standards and Science, Daejeon (Korea, Republic of); Jung, Hyun Chul [Dept. of Mechanical Engineering Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

  3. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels

    International Nuclear Information System (INIS)

    Park, Hee Sang; Choi, Man Yong; Kwon, Koo Ahn; Park, Jeong Hak; Choi, Won Jae; Jung, Hyun Chul

    2017-01-01

    Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object

  4. WORM: A general-purpose input deck specification language

    International Nuclear Information System (INIS)

    Jones, T.

    1999-01-01

    Using computer codes to perform criticality safety calculations has become common practice in the industry. The vast majority of these codes use simple text-based input decks to represent the geometry, materials, and other parameters that describe the problem. However, the data specified in input files are usually processed results themselves. For example, input decks tend to require the geometry specification in linear dimensions and materials in atom or weight fractions, while the parameter of interest might be mass or concentration. The calculations needed to convert from the item of interest to the required parameter in the input deck are usually performed separately and then incorporated into the input deck. This process of calculating, editing, and renaming files to perform a simple parameter study is tedious at best. In addition, most computer codes require dimensions to be specified in centimeters, while drawings or other materials used to create the input decks might be in other units. This also requires additional calculation or conversion prior to composition of the input deck. These additional calculations, while extremely simple, introduce a source for error in both the calculations and transcriptions. To overcome these difficulties, WORM (Write One, Run Many) was created. It is an easy-to-use programming language to describe input decks and can be used with any computer code that uses standard text files for input. WORM is available, via the Internet, at worm.lanl.gov. A user's guide, tutorials, example models, and other WORM-related materials are also available at this Web site. Questions regarding WORM should be directed to wormatlanl.gov

  5. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  6. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  7. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  8. An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels

    Science.gov (United States)

    Nettles, A. T.; Lance, D. G.; Hodge, A. J.

    1990-01-01

    An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.

  9. Performance evaluation of concrete bridge decks reinforced with MMFX and SSC rebars.

    Science.gov (United States)

    2006-01-01

    This report investigates the performance of bridge decks reinforced with stainless steel clad (SSC) and micro-composite multistructural formable steel (MMFX) rebars. The two-span Galloway Road Bridge on route CR5218 over North Elkhorn Creek in Scott ...

  10. Failure mode prediction for composite structural insulated panels with MgO board facings

    Science.gov (United States)

    Smakosz, Łukasz; Kreja, Ireneusz

    2018-01-01

    Sandwich panels are readily used in civil engineering due to their high strength to weight ratio and the ease and speed of assembly. The idea of a sandwich section is to combine thin and durable facings with a light-weight core and the choice of materials used allows obtaining the desired behaviour. Panels in consideration consist of MgO (magnesium oxide) board facings and expanded polystyrene core and are characterized by immunity to biological corrosion, a high thermal insulation and a relatively low impact on environment. Customizing the range of panels to meet market needs requires frequent size changes, leading to different failure modes, which are identified in a series of costly full-scale laboratory tests. A nonlinear numerical model was created with a use of a commercial ABAQUS code and a user-defined procedure, which is able to reproduce observed failure mechanisms; its parameters were established on the basis of small-scale tests and numerical experiments. The model was validated by a comparison with the results of the full-scale bending and compression tests. The results obtained were in satisfactory agreement with the test data.

  11. The Usage Of Nutshell In The Production of Polypropylene Based on Polymer Composite Panels

    Directory of Open Access Journals (Sweden)

    Selçuk Akbaş

    2013-04-01

    Full Text Available Natural fibers have been commonly utilized to reinforced materials for many years. Recently due to advantages of natural fibers such as low cost, high physical and mechanical resistance are produced plastic-composite materials by mixing various proportions. In addition, plastic composites are used natural fibers include agricultural wastes (wheat straw, rice straw, hemp fiber, shells of various dry fruits, etc.. In this study, polymer composites were manufactured using waste nutshell flour as filler and polypropylene (PP as polymer matrix. The nutshell-PP composites were manufactured via extrusion and compression methods. The final product tested to determine their tensile, flexural, impact strength properties as well as some physical features such as thickness swelling and water absorptions. The best results were obtained composites containing 30% nutshell flour. In addition, composites which were produced nutshell provided the values of ASTM D6662 standard. The data collected in our country which waste a large portion of nutshell allows for the evaluation of the production polymer composites. The incorporation of nutshell flour feasible to produce plastic composites when appropriate formulations were used. As a result hazelnut shell which was considered agricultural waste can be utilized in polymer composite production.

  12. Solar reflection panels

    Science.gov (United States)

    Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  13. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  14. Duality and the Deck effect

    CERN Document Server

    Törnqvist, N A

    1972-01-01

    As shown by Deck, the double-peripheral model for three-particle final states gives a substantial low-mass enhancement over phase space in two-body subchannels. With the advent of duality it was conjectured that the Deck effect and a true resonance are just different manifestations of the same phenomena. Thus the presence of a Deck enhancement could be interpreted as evidence for the existence of the A/sub 1/ resonance. The conjecture has been subject to criticism of two different kinds. These two points are clarified by constructing a counter example to the conjecture of Chew and Pignotti, using the five-point amplitude (B/sub 5/) of the generalized Veneziano model. (8 refs).

  15. Experimental Research upon the Quality of the Sanded Surfaces of Some Decorative Composite Panels

    Directory of Open Access Journals (Sweden)

    Luminita-Maria BRENCI

    2011-06-01

    Full Text Available The paper presents an experimental study uponthe quantitative assessment of the surface qualityafter sanding, in case of some lignocellulosecomposite panels with decorative structure, made oflamellas obtained from different wood species,randomly jointed and having as special characteristicthe surfaces with transversal structure. The analyzedpanels were built-up in two variants: poplar withspruce wood and cherry with walnut wood. Theconstituted lamellas were finger-jointed in length andedge-jointed in width. The sanding operation wasperformed using grit sizes of 50, 80, 120 and 150. Inorder to measure the roughness parameters Ra, Rz,Rk, Rpk and Rvk, a MicroProfFRT equipment (withlight beam was used. The results revealed that thevalues of the roughness parameters had a generaldecreasing tendency with grit size increasing. Theresulted values lead to the conclusion that the finalsanding grinding system applied on longitudinalsection of wood is not valid for the transversalsection of wood which is present on the surfaces ofthe studied panels. In this special case, whensurfaces have a transversal structure, an additionalsanding with a higher grit size is needed, in order toobtain a similar roughness value as for the surfaceswith longitudinal structure.

  16. 46 CFR 108.486 - Helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...

  17. STUDY OF BRIDGE DECK A REVIEW

    OpenAIRE

    MISS. KSHITIJA S. BALWAN , MR. V. G. KHURD , MR. S. S. CHOUGULE

    2018-01-01

    The objective of this study was to understand the meaning of bridge deck. To know the different forms of decks used in bridge design. To understand different methods used for analysis of deck and study of box girder and its evolution

  18. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  19. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  20. Effect of Processing Parameters on Reliability of VARTM/SCRIMP Composite Panels - Phase 1

    Science.gov (United States)

    2007-07-01

    Finite Element Modeling of Marine Grade Composites. Civil and Enviromental Engineering Department. Orono, University of Maine. Frangopol, D. M. and S...student t-test and a simple percent difference of the means calculation for future interpretations. Typically in engineering practice the practical...environmentally controlled test lab, at the Advanced Engineered Wood Composites (AEWC) Center, at the University of Maine. The rate of crosshead

  1. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    Science.gov (United States)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  2. Thermoelectrically induced nonlinear free vibration analysis of piezo laminated composite conical shell panel with random fiber orientation

    Directory of Open Access Journals (Sweden)

    Lal Achchhe

    2017-09-01

    Full Text Available This paper presents the free vibration response of piezo laminated composite geometrically nonlinear conical shell panel subjected to a thermo-electrical loading. The temperature field is assumed to be a uniform distribution over the shell surface and through the shell thickness and the electric field is assumed to be the transverse component E2 only. The material properties are assumed to be independent of the temperature and the electric field. The basic formulation is based on higher order shear deformation plate theory (HSDT with von-Karman nonlinearity. A C0 nonlinear finite element method based on direct iterative approach is outlined and applied to solve nonlinear generalized eigenvalue problem. Parametric studies are carried out to examine the effect of amplitude ratios, stacking sequences, cone angles, piezoelectric layers, applied voltages, circumferential length to thickness ratios, change in temperatures and support boundary conditions on the nonlinear natural frequency of laminated conical shell panels. The present outlined approach has been validated with those available results in the literature.

  3. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  4. Live load distribution on longitudinal glued-laminated timber deck bridges : final report : conclusions and recommendations

    Science.gov (United States)

    Fouad Fanous; Jeremy May; Terry Wipf; Michael Ritter

    2010-01-01

    Over the past few years the United States Department of Agriculture (USDA), Forest Products Laboratory (FPL), and the Federal Highway Administration (FHWA) have supported several research programs. This paper is a result of a study sponsored by FPL, with the objective of determining how truckloads are distributed to the deck panels of a longitudinal glued-laminated...

  5. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  6. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    Science.gov (United States)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  7. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Directory of Open Access Journals (Sweden)

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  8. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach.

    Science.gov (United States)

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed

    2015-02-17

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  9. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach

    Directory of Open Access Journals (Sweden)

    Dimitrios Chronopoulos

    2015-02-01

    Full Text Available The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  10. Reliability based impact localization in composite panels using Bayesian updating and the Kalman filter

    Science.gov (United States)

    Morse, Llewellyn; Sharif Khodaei, Zahra; Aliabadi, M. H.

    2018-01-01

    In this work, a reliability based impact detection strategy for a sensorized composite structure is proposed. Impacts are localized using Artificial Neural Networks (ANNs) with recorded guided waves due to impacts used as inputs. To account for variability in the recorded data under operational conditions, Bayesian updating and Kalman filter techniques are applied to improve the reliability of the detection algorithm. The possibility of having one or more faulty sensors is considered, and a decision fusion algorithm based on sub-networks of sensors is proposed to improve the application of the methodology to real structures. A strategy for reliably categorizing impacts into high energy impacts, which are probable to cause damage in the structure (true impacts), and low energy non-damaging impacts (false impacts), has also been proposed to reduce the false alarm rate. The proposed strategy involves employing classification ANNs with different features extracted from captured signals used as inputs. The proposed methodologies are validated by experimental results on a quasi-isotropic composite coupon impacted with a range of impact energies.

  11. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    International Nuclear Information System (INIS)

    Crump, D A; Dulieu-Barton, J M; Savage, J

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

  12. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  13. Utilisation of polyurethane composit with 50% composition of roystonea regia fiber as noise reduction panel on car hood

    Science.gov (United States)

    Ikhwansyah; Mulia; Gunawan, S.; Lubis, R. D. W.

    2018-02-01

    The objective is to get the characteristics of noise reduction, noise reduction level, variety of measurement spaces, and knowing the process in making acoustic material of natural fiber becomes noise reduction on a car hood. The process of making noise reduction material used casting method and pressed by using molded press. The composition of noise reduction material consist of 50% roystonea regia by 32 mesh and 50% combined by gypsum and polyurethane. The result shows that the average result of noise reduction at X1- side is 5,7% and X2- side is 3,9%, X1+ side is 0,9% and X2+ side is 6,2%, Z1- side is 8,9% and Z2- side is 10,1%, Z1+ side is 9,7% and Z2+ side is 10,01%. The main conclusion of the study shows that a noise reduction which made of roystonea regia with 32 mesh mixed by matrix of polyurethane and gypsum is appropriate for noise reduction on car hood.

  14. Influence of Pavement on Fatigue Performance of Urban Steel Box Girder Deck

    Directory of Open Access Journals (Sweden)

    Zheng Zhongyue

    2016-01-01

    Full Text Available Based on spatial finite element analysis method, the Influence of pavement on fatigue performance of orthotropic steel deck was analyzed in terms of pavement system, asphalt pavement stiffness. The result shows that compared with asphalt pavement system, RPC pavement system can not only obviously improve the stress condition of steel bridge deck, but also significantly extend the fatigue life of steel bridge panel; Increasing the stiffness of pavement layer can obviously reduce the stress amplitude of fatigue details, especially for direct contact with the pavement.

  15. Field implementation of fiber-reinforced polymer (FRP) deck panels.

    Science.gov (United States)

    2017-06-01

    Jeffery S. Volz, S.E., P.E., Ph.D., Kamal H. Khayat, PhD, P.Eng. http://orcid.org/0000-0003-1431-0715, Soo Duck Hwang, Ph.D. http://orcid.org/0000-0003-2178-1531, Hesham Tuwair, Ph.D., Jonathan T. Drury, Amy S. Crone : Although still in their infancy...

  16. High energy physics advisory panel's composite subpanel for the assessment of the status of accelerator physics and technology

    International Nuclear Information System (INIS)

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation's scientific research, and it has significantly enhanced the nation's biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE's OER programs and the DOE's predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation

  17. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  18. STS-27 crew poses for inflight portrait on forward flight deck with football

    Science.gov (United States)

    1988-01-01

    With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.

  19. Panel estimation for renewable and non-renewable energy consumption, economic growth, CO2 emissions, the composite trade intensity, and financial openness of the commonwealth of independent states.

    Science.gov (United States)

    Rasoulinezhad, Ehsan; Saboori, Behnaz

    2018-04-13

    This article investigates the long-run and causal linkages between economic growth, CO 2 emissions, renewable and non-renewable (fossil fuels) energy consumption, the Composite Trade Intensity (CTI) as a proxy for trade openness, and the Chinn-Ito index as a proxy for financial openness for a panel of the Commonwealth of Independent States (CIS) region including Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan over the period of 1992-2015. It is the first time that CTI and the Chinn-Ito indexes are used in an economic-pollution model. Employing three panel unit root tests, panel cointegration estimation methods (DOLS and FMOLS), and two panel causality tests, the main empirical results provided evidence for the bidirectional long-run relationship between all the variables in all 12 sampled countries except for economic growth-renewable energy use linkage. The findings of causality tests indicated that there is a unidirectional short-run panel causality running from economic growth, financial openness, and trade openness to CO 2 emissions and from fossil fuel energy consumption to renewable energy use.

  20. Composite action of steel frames and precast concrete infill panels with corner connections – Part 2 : finite element analysis

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Hofmeyer, H.; Snijder, H.H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  1. Composite action of steel frames and precast concrete infill panels with corner connections – Part 1 : experiments

    NARCIS (Netherlands)

    Hoenderkamp, J.C.D.; Snijder, H.H.; Hofmeyer, H.; Liew, J.Y.R.; Lee, S.C.

    2012-01-01

    When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on

  2. Hydrodynamic forces on inundated bridge decks

    Science.gov (United States)

    2009-05-01

    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  3. The Effect of Slamming Impact on Out-of-Autoclave Cured Prepregs of GFRP Composite Panels for Hulls

    OpenAIRE

    Suárez, J.C.; Townsend, P.; Sanz, E.; Ulzurrum, I. Diez de; Pinilla, P.

    2016-01-01

    This paper proposes a methodology that employs an experimental apparatus that reproduces, in pre-impregnated and cured out-of-autoclave Glass Fiber Reinforced Polymer (GFRP) panels, the phenomenon of slamming or impact on the bottom of a high-speed boat during planing. The pressure limits in the simulation are defined by employing a finite element model (FEM) that evaluates the forces applied by the cam that hits the panels in the apparatus via microdeformations obtained in the simulation. Th...

  4. Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks

    Directory of Open Access Journals (Sweden)

    Abdullah Fettahoglu

    2016-12-01

    Full Text Available Orthotropic decks are composed of deck plate, ribs, and cross-beams and are frequently used in industry to span long distances, due to their light structures and load carrying capacities. Trapezoidal ribs are broadly preferred as longitudinal stiffeners in design of orthotropic decks. They supply the required stiffness to the orthotropic deck in traffic direction. Trapezoidal ribs are chosen in industrial applications because of their high torsional and buckling rigidity, less material and welding needs. Rib width, height, spacing, thickness of deck plate are important parameters for designing of orthotropic decks. In the scope of this study, rib width to height and rib spacing to deck plate thickness ratios are assessed by means of the stresses developed under different ratios of these parameters. For this purpose a FE-model of orthotropic bridge is generated, which encompasses the entire bridge geometry and conforms to recommendations given in Eurocode 3 Part 2. Afterwards necessary FE-analyses are performed to reveal the stresses developed under different rib width to height and rib spacing to deck plate thickness ratios. Based on the results obtained in this study, recommendations regarding these ratios are provided for orthotropic steel decks occupying trapezoidal ribs.

  5. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  6. Is deck B a disadvantageous deck in the Iowa Gambling Task?

    Directory of Open Access Journals (Sweden)

    Chiu Yao-Chu

    2007-03-01

    Full Text Available Abstract Background The Iowa gambling task is a popular test for examining monetary decision behavior under uncertainty. According to Dunn et al. review article, the difficult-to-explain phenomenon of "prominent deck B" was revealed, namely that normal decision makers prefer bad final-outcome deck B to good final-outcome decks C or D. This phenomenon was demonstrated especially clearly by Wilder et al. and Toplak et al. The "prominent deck B" phenomenon is inconsistent with the basic assumption in the IGT; however, most IGT-related studies utilized the "summation" of bad decks A and B when presenting their data, thereby avoiding the problems associated with deck B. Methods To verify the "prominent deck B" phenomenon, this study launched a two-stage simple version IGT, namely, an AACC and BBDD version, which possesses a balanced gain-loss structure between advantageous and disadvantageous decks and facilitates monitoring of participant preferences after the first 100 trials. Results The experimental results suggested that the "prominent deck B" phenomenon exists in the IGT. Moreover, participants cannot suppress their preference for deck B under the uncertain condition, even during the second stage of the game. Although this result is incongruent with the basic assumption in IGT, an increasing number of studies are finding similar results. The results of the AACC and BBDD versions can be congruent with the decision literatures in terms of gain-loss frequency. Conclusion Based on the experimental findings, participants can apply the "gain-stay, loss-shift" strategy to overcome situations involving uncertainty. This investigation found that the largest loss in the IGT did not inspire decision makers to avoid choosing bad deck B.

  7. Computer program for stresses and buckling of heated composite-stiffened panels and other structures (BUCLASP 3)

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1974-01-01

    General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.

  8. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  9. BUCLASP 2: A computer program for instability analysis of biaxially loaded composite stiffened panels and other structures

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP2 is described. The program is intended for linear instability analyses of structures such as unidirectionally stiffened panels. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plant strip elements can be analyzed. The loadings considered are combinations of axial compressive loads and in-plane transverse loads. The two parallel ends of the panel must be simply supported and arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. This manual consists of instructions for use of the program with sample problems, including input and output information. The theoretical basis of BUCLASP2 and correlations of calculated results with known solutions, are presented.

  10. Investigation of early timber–concrete composite bridges in the United States

    Science.gov (United States)

    James P. Wacker; Alfredo Dias; Travis K. Hosteng

    2017-01-01

    The use of timber–concrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...

  11. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  12. Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel

    Science.gov (United States)

    Juliyana, M.; Santhana Krishnan, R.

    2018-02-01

    The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.

  13. Panel Analysis

    DEFF Research Database (Denmark)

    Brænder, Morten; Andersen, Lotte Bøgh

    2014-01-01

    Based on our 2013-article, ”Does Deployment to War Affect Soldiers' Public Service Motivation – A Panel Study of Soldiers Before and After their Service in Afghanistan”, we present Panel Analysis as a methodological discipline. Panels consist of multiple units of analysis, observed at two or more...... in research settings where it is not possible to distribute units of analysis randomly or where the independent variables cannot be manipulated. The greatest disadvantage in regard to using panel studies is that data may be difficult to obtain. This is most clearly vivid in regard to the use of panel surveys...... points in time. In comparison with traditional cross-sectional studies, the advantage of using panel studies is that the time dimension enables us to study effects. Whereas experimental designs may have a clear advantage in regard to causal inference, the strength of panel studies is difficult to match...

  14. Wave impact on a deck or baffle

    Science.gov (United States)

    Md Noar, Nor Aida Zuraimi; Greenhow, Martin

    2015-02-01

    Some coastal or ocean structures have deck-like baffles or horizontal platforms that can be exposed to wave action in heavy seas. A similar situation may occur in partially-filled tanks with horizontal baffles that become engulfed by sloshing waves. This can result in dangerous wave impact loads (slamming) causing a rapid rise of pressures which may lead to local damaging by crack initiation and/or propagation. We consider the wave impact against the whole of underside of horizontal deck (or baffle) projecting from a seawall (or vertical tank wall), previously studied by Wood and Peregrine (1996) using a different method based on conformal mappings. The approach used is to simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse, P (x, y). Our method expresses this in terms of eigenfunctions that satisfy the boundary conditions apart from that on the impact region and the matching of the two regions (under the platform and under the free surface); this results in a matrix equation to be solved numerically. As in Wood and Peregrine, we found that the pressure impulse on the deck increases when the length of deck increases, there is a strong pressure gradient beneath the deck near the seaward edge and the maximum pressure impulse occurs at the landward end of the impact zone.

  15. Gust loading on streamlined bridge decks

    DEFF Research Database (Denmark)

    Larose, Guy; Mann, Jakob

    1998-01-01

    The current analytical description of the buffeting action of wind on long-span bridges is based on the strip assumption. However, recent experiments on closed-box girder bridge decks have shown that this assumption is not valid and is the source of an important part of the error margin...... of the analytical prediction methods. In this paper, an analytical model that departs from the strip assumption is used to describe the gust loading on a thin airfoil. A parallel is drawn between the analytical model and direct measurements of gust loading on motionless closed-box girder bridge decks. Empirical...

  16. 46 CFR 108.487 - Helicopter deck fueling operations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter deck fueling operations. 108.487 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.487 Helicopter deck fueling operations. (a) Each helicopter landing deck on which fueling operations are...

  17. 46 CFR 132.320 - Helicopter-landing decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...

  18. 46 CFR 12.15-13 - Deck engine mechanic.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  19. 46 CFR 174.215 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 174.215 Section 174.215 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES... weather deck. The weather deck must have open rails to allow rapid clearing of water, or must have freeing...

  20. 46 CFR 173.062 - Drainage of weather deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of weather deck. 173.062 Section 173.062 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO VESSEL USE School Ships § 173.062 Drainage of weather deck. The weather deck of each sailing...

  1. Renovation techniques for fatigue cracked orthotropic steel bridge decks

    NARCIS (Netherlands)

    de Jong, F.B.P.

    2007-01-01

    This dissertation presents the research into renovation techniques for orthotropic steel bridge decks. These techniques are needed to solve fatigue problems in the decks of these bridges, as several fatigue cracks have been detected in the deck structure of these bridges the last decade. A

  2. Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang; Jang, Yong Joon

    2007-01-01

    The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by using the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location

  3. Life-cycle assessment of redwood decking in the United States with a comparison to three other decking materials

    Science.gov (United States)

    R. Bergman; H. Sup-Han; E. Oneil; I. Eastin

    2013-01-01

    The goal of the study was to conduct a life-cycle inventory (LCI) of California redwood (Sequoia sempervirens) decking that would quantify the critical environmental impacts of decking from cradle to grave. Using that LCI data, a life-cycle assessment (LCA) was produced for redwood decking. The results were used to compare the environmental footprint...

  4. Deck Yourself with Flu Protection Song

    Centers for Disease Control (CDC) Podcasts

    2009-12-22

    This song (sung to the tune of Deck the Halls) describes actions you can take to protect yourself and others from the flu. Sing along!  Created: 12/22/2009 by National Center for Preparedness, Detection, and Control of Infectious Diseases (NCPDCID), Division of Global Migration and Quarantine (DGMQ).   Date Released: 12/22/2009.

  5. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  6. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  7. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš; Červ, Jan; Valeš, František

    2007-01-01

    Roč. 1, č. 1 (2007), s. 127-136 ISSN 1802-680X. [Computational Mechanics 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : FRP composite * carbon-epoxy * orthotropic material Subject RIV: BI - Acoustics

  8. Fiber composition of a diversity panel of the world collection of sugarcane (Saccharum spp. and related grasses

    Directory of Open Access Journals (Sweden)

    James Ryan Todd

    2017-12-01

    Full Text Available ABSTRACT The world collection of sugarcane (Saccharum hybrids. and related grasses (WCSRG is an important source of genes for sugarcane and energycane breeding. The core collection or diversity panel of the WCSRG was created in Canal Point with 300 accession and 10 checks to evaluate its diversity. The fiber components of the species and accessions within the WCSRG are unknown, so a shredded and dried fiber sample was taken from each accession and sent for fiber analysis. The acetyl groups, acid insoluble lignin, acid soluble lignin, arabinan, glucan, holocellulose, total lignin, structural ash, and xylan were quantified on a % fiber basis and nonstructural ash on a % total basis. There were significant, but not large differences between species for holocellulose, lignin, acetyl, acid soluble lignin, nonstructural ash, and glucan. For each trait, Saccharum spontaneum had significantly more holocellulose, glucan, lignin, and nonstructural ash and less acetyl and acid soluble lignin than other species. In all populations, glucan and holocellulose were positively correlated and glucan and lignin were negatively correlated. In hybrids, internode length correlated positively with holocellulose and nonstructural ash and negatively with lignin. Principal component analysis indicated that a large amount of diversity exists within each of the species. The results suggest that strategic use of the WCSRG could provide both positive and negative selection for fiber-related traits could be made within all species of the collection.

  9. WIPP [Waste Isolation Pilot Plant] panel entryway seal: Numerical simulation of seal composite interaction for preliminary design evaluation

    International Nuclear Information System (INIS)

    Argueello, J.G.

    1988-04-01

    This report presents the results of a series of structural analyses performed to evaluate the structural interaction of the components of a potential two-component panel entryway seal configuration with each other and with the rock salt formation at the repository horizon of the Waste Isolation Pilot Plant. A two-dimensional axisymmetric geomechanical model is used to numerically simulate the interaction of the components of a 30.48 m (100 ft) long seal, consisting of concrete end caps and a crushed salt core, with each other and with the surrounding formation. Issues addressed in this report pertain to the consolidation of the crushed salt in terms of how much of the seal core reaches effective consolidation in the presence of the stiff concrete end caps since these could conceivably cause bridging (retardation of closure around the core) to occur. In addition, the stress field in the end caps is evaluated to determine if the concrete component maintains its integrity. The stresses induced in the surrounding formation are also evaluated to determine if the presence of the concrete component in the seal system results in a ''tightening'' of the formation around the seal. 20 refs., 43 figs., 2 tabs

  10. Large thermal protection system panel

    Science.gov (United States)

    Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  11. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    Science.gov (United States)

    2016-02-01

    all of the ADA called indications into three groups: true positives (TP), missed calls (MC) and false calls (FC). Note, an indication position error...data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis ( ADA ) algorithms...thickness and backwall C-scan images. 15. SUBJECT TERMS automated data analysis ( ADA ) algorithms; time-of-flight indications; backwall amplitude dropout

  12. Panel Session

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege

    2004-01-01

    In this panel session, four researchers will discuss the role of a theoretical foundation, in particular AT, in the design of information technology based artefacts. The general discussion will take of from a specific examination of the ActAD approach.......In this panel session, four researchers will discuss the role of a theoretical foundation, in particular AT, in the design of information technology based artefacts. The general discussion will take of from a specific examination of the ActAD approach....

  13. Damage methodology approach on a composite panel based on a combination of Fringe Projection and 2D Digital Image Correlation

    Science.gov (United States)

    Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-02-01

    The recent improvement in accessibility to high speed digital cameras has enabled three dimensional (3D) vibration measurements employing full-field optical techniques. Moreover, there is a need to develop a cost-effective and non-destructive testing method to quantify the severity of damages arising from impacts and thus, enhance the service life. This effect is more interesting in composite structures since possible internal damage has low external manifestation. Those possible damages have been previously studied experimentally by using vibration testing. Namely, those analyses were focused on variations in the modal frequencies or, more recently, mode shapes variations employing punctual accelerometers or vibrometers. In this paper it is presented an alternative method to investigate the severity of damage on a composite structure and how the damage affects to its integrity through the analysis of the full field modal behaviour. In this case, instead of punctual measurements, displacement maps are analysed by employing a combination of FP + 2D-DIC during vibration experiments in an industrial component. In addition, to analyse possible mode shape changes, differences between damaged and undamaged specimens are studied by employing a recent methodology based on Adaptive Image Decomposition (AGMD) procedure. It will be demonstrated that AGMD Image decomposition procedure, which decompose the displacement field into shape descriptors, is capable to detect and quantify the differences between mode shapes. As an application example, the proposed approach has been evaluated on two large industrial components (car bonnets) made of short-fibre reinforced composite. Specifically, the evolution of normalized AGMD shape descriptors has been evaluated for three different components with different damage levels. Results demonstrate the potential of the presented approach making it possible to measure the severity of a structural damage by evaluating the mode shape based in

  14. Remote monitoring of bond line defects between a composite panel and a stiffener using distributed piezoelectric sensors

    Science.gov (United States)

    Yu, Xudong; Fan, Zheng; Puliyakote, Sreedhar; Castaings, Michel

    2018-03-01

    Structural health monitoring (SHM) using ultrasonic guided waves has proven to be attractive for the identification of damage in composite plate-like structures, due to its realization of both significant propagation distances and reasonable sensitivity to defects. However, topographical features such as bends, lap joints, and bonded stiffeners are often encountered in these structures, and they are susceptible to various types of defects as a consequence of stress concentration and cyclic loading during the service life. Therefore, the health condition of such features has to be assessed effectively to ensure the safe operation of the entire structure. This paper proposes a novel feature guided wave (FGW) based SHM strategy, in which proper FGWs are exploited as a screening tool to rapidly interrogate the representative stiffener-adhesive bond-composite skin assembly. An array of sensors permanently attached to the vicinity of the feature is used to capture scattered waves from the localized damage occurring in the bond line. This technique is combined with an imaging approach, and the damage reconstruction is achieved by the synthetic focusing algorithm using these scattered signals. The proposed SHM scheme is implemented in both the 3D finite element simulation and the experiment, and the results are in good agreement, demonstrating the feasibility of such SHM strategy.

  15. Organic Functional Group Playing Card Deck

    Science.gov (United States)

    Welsh, Michael J.

    2003-04-01

    The recognition and identification of organic functional groups, while essential for chemistry and biology majors, is also very useful for non-science majors in the study of molecules in art and life. In order to make this task more palatable for the non-science major (art and communications students), the images of a traditional playing deck of cards (heart, spade, diamond, and club) have been replaced with four representations of common organic functional groups. The hierarchy rules for naming two groups in a molecule is loosely incorporated to represent the sequence (King, Queen, Jack, ?, Ace) of the deck. Students practice recognizing and identifying organic groups by playing simple card games of "Old Maid" and "Go Fish". To play games like "Poker" or "Gin", a student must not only recognize the functional groups, but also master a naming hierarchy for the organic groups.

  16. Improvement of fatigue properties of orthotropic decks

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Urushadze, Shota

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1166-1169 ISSN 0141-0296 R&D Projects: GA ČR GA103/08/1340; GA MŠk(CZ) 7E08098 Grant - others:BRIFAG -Bridge Fatigue Guidance(XE) RFSR_CT-2008-00033 Institutional research plan: CEZ:AV0Z20710524 Keywords : orthotropic deck * fatigue * prolonged life Subject RIV: JM - Building Engineering Impact factor: 1.351, year: 2011

  17. European good practice in composite floor construction

    NARCIS (Netherlands)

    Brekelmans, J.W.P.M.; Daniels, B.J.; Stark, J.W.B.; Darwin, David; Buckner, C.D.

    1992-01-01

    Previous European experience, research and design for composite slabs with profiled steel decking are discussed. Present efforts to harmonize composite slab design and good construction practice are presented. Future European developments, for the next five years, are postulated.

  18. Whole body dual X-ray absorptiometry for bone mineral density and body composition using a flat panel detector

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Gonon, G.; Bordy, T.

    2003-01-01

    Whole-body dual-energy X-ray absorptiometry (DXA) systems are used for the determination of bone mineral density (BMD) but also for body composition estimates (lean mass and fat mass). The calculation is based on the difference in attenuation of body tissues for a low-energy of about 50 KeV and a high-energy of about 80-100 KeV. The measurement of dual-energy projections allows first to compute to the body composition in the non-bone area, and then to extrapolate the fat / lean ratio of soft tissue into the bone area in order to compute the BMD. Since detectors have limited area, a whole body examination requires a scan of the patient and a reconstruction process in order to build up a large field image from smaller radiographs. This reconstruction process must keep the quantitative value of the radiographs, and avoid any distortion which could be a consequence of the conic acquisition geometry. The cone angle is low (6 at maximum) and the large overlap between radiographs helps to reconstruct an image equivalent with a parallel-beam geometry. Scatter is corrected from the radiographs before reconstruction, as described in a previous paper ('Dual-energy X-rays absorptiometry using a 2D digital radiography detector. Application to bone densitometry', SPIE Medical Imaging 2001, Medical Physics). We have developed an original reconstruction method dedicated to whole-body examinations which will be described. Thanks to the quasi-radiologic quality of the detector, reconstructed images are of very good quality and this makes the measurement of BMD and fat / lean masses easier. (author)

  19. 46 CFR 28.565 - Water on deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Water on deck. 28.565 Section 28.565 Shipping COAST... VESSELS Stability § 28.565 Water on deck. (a) Each vessel with bulwarks must comply with the requirements... energy, “b” in Figure 28.565, must not be less than the water on deck heeling energy, “a” in Figure 28...

  20. Lipid Panel

    Science.gov (United States)

    ... A routine cardiac risk assessment typically includes a fasting lipid panel. Beyond that, research continues into the usefulness of other non-traditional markers of cardiac risk, such as Lp-PLA 2 . A health practitioner may choose to evaluate one or more ...

  1. Advances and challenges of wood polymer composites

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    Wood flour and fiber have been blended with thermoplastic such as polyethylene, polypropylene, polylactic acid and polyvinyl chloride to form wood plastic composites (WPC). WPCs have seen a large growth in the United States in recent years mainly in the residential decking market with the removal of CCA treated wood decking from residential markets. While there are...

  2. Healable Composites

    Science.gov (United States)

    2012-03-28

    oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects 5. Characterize the...composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (2) Polymer (1) Furan (1) Maleimide Healable Composites...Develop pre-preg system of oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects

  3. Fatigue Assessment of Full-Scale Retrofitted Orthotropic Bridge Decks

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    Full-scale fatigue tests were performed on two retrofitted orthotropic bridge decks (OBDs). The retrofitting systems consist of adding a second steel plate on the top of the existing deck. The aim is to reduce the stresses at the fatigue-sensitive details and therefore extend the fatigue life of

  4. Rapid replacement of bridge deck expansion joints study - phase I.

    Science.gov (United States)

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  5. 46 CFR 45.143 - Hull openings above freeboard deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings above freeboard deck. 45.143 Section 45.143 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.143 Hull openings above freeboard deck. Closures for openings above...

  6. Panel discussion

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The panel discussion at the 10th Allianz Forum on 'Technology and Insurance' dealt with the following topics: New technologies: energy conversion (coal, petroleum, natural gas, nuclear energy, solar energy); infrastructure (transport, data processing); basic products (metallic materials, chemical products, pharmaceutical products); integrated products (microprocessors, production line machines) as well as new risks: political; general economic (financing, market structure); insurance-related, dangers to persons and property; reduction of risks. (orig.) [de

  7. Critique of the Reggeized deck model

    International Nuclear Information System (INIS)

    Berger, E.L.

    1975-01-01

    A detailed analysis is presented of the Reggeized pion exchange Deck model for processes of the type ap → A*N → (a*π)N, where a = π, K, or nucleon and a* = rho, K*, N or Δ. Predictions of the model for both production and decay properties of the low mass system A* → (a*π) are derived and contrasted with data. Diffractive as well as charge exchange reactions are treated. The role of pion exchange in generating (a*π) enhancements near threshold and their properties is examined from several points of view. Characteristic exchange effects and quantum number properties (e.g., cross-overs) of the pion exchange Deck graph are shown to be verified in the data, but this graph alone is inadequate. The failures all point to the need for a second graph, having a* exchange properties. The contribution of a* exchange is roughly equal to that of the π exchange graph. (U.S.)

  8. Panel surveys

    OpenAIRE

    MADRE, JL; ZUMKELLER, D; CHLOND, B; ARMOOGUM, J

    2004-01-01

    l'analyse du comportement humain constitue un enjeu important dans le domaine des transports, lequel se transforme radicalement sous la pression des évolutions économique, écologique et démographique. les premières grandes études ont commence il y a plus d'une dizaine d'années : parc auto sofres en france, puget sound panel a seattle. cet article fait le bilan de ces expériences et met en évidence les principaux problèmes méthodologiques rencontres tout en proposant de nouvelles directions d'...

  9. Experiments and theory on deck and girder crushing

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Ocakli, Hasan

    1999-01-01

    -deflection curves and modes of deformation for decks, stringer decks and deep thin-walled beams subjected to central or excentric point loads between transverse frames. Based on theory and experiments, various modelling aspects of the local/global failure of the beams are discussed. The agreement between......This paper is concerned with theoretical and experimental analysis of deep plastic collapse of a deck or deep girder subjected to an in-plane, concentrated load. A theory is derived which is valid until initition of fracture in the structure. The presented experimental results show load...

  10. A feasibility study of bridge deck deicing using geothermal energy.

    Science.gov (United States)

    2015-04-01

    In this study, we investigated the feasibility of a ground-coupled system that utilizes heat energy harvested from the ground for : deicing of bridge decks. Heat exchange is performed using circulation loops integrated into the deep foundations suppo...

  11. Precision monitoring of bridge deck curvature change during replacement.

    Science.gov (United States)

    2016-05-01

    This project was focused on development and deployment of a system for monitoring vertical : displacement in bridge decks and bridge spans. The system uses high precision wireless inclinometer : sensors to monitor inclinations at various points of a ...

  12. Bridge deck concrete volume change : final contract report.

    Science.gov (United States)

    2010-02-01

    Concrete structures such as bridge decks, with large surface area relative to volume, shrink and crack, thus reducing service life performance and increasing operation costs. The project evaluated the early, first 24 hours, and long-term, 180 days, s...

  13. Evaluation of bridge deck with shrinkage-compensating concrete.

    Science.gov (United States)

    2016-04-01

    Concrete bridge decks are susceptible to premature cracking and to corrosion of reinforcing steel. Low-permeability : concrete does not always ensure durability if the concrete has excessive cracks that facilitate the intrusion of aggressive solution...

  14. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  15. Structural Loading of Cross Deck Connections for Trimaran Vessels

    National Research Council Canada - National Science Library

    Rhoads, Jason

    2004-01-01

    ...: longitudinal bending, transverse bending, torsional bending, spreading and squeezing of hulls, inner and outer hull slam pressures, wet deck slam pressures, loading from ship's motions, and whipping of slender hulls...

  16. Shrinkage and durability study of bridge deck concrete.

    Science.gov (United States)

    2010-12-01

    The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...

  17. Study of deflection and crack interrelation that use deck slab's automatic measurement

    International Nuclear Information System (INIS)

    Park, Sung Woo; Park, Yung Suk; Joo, Kwon Yong

    2004-01-01

    Reinforce concrete slab executes finish work if 6 - 8 hours pass since concrete placing. Specially, because minimize process composition slab occasion early space-time that use structure deck plate, concrete strength revelation is very important. The reason is that when strength revelation is not made, fine shock and deflection can provoke concrete crack. Executed radio automatic measure to prevent these crack initiation cause in the advance. Apply radio automatic measure is il-san culture center building and pasta measure period 03/09/06 - 03/10/08.

  18. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  19. Panel Discussion

    Science.gov (United States)

    Langer, James

    1997-03-01

    Panelists: Arthur Bienenstock, Stanford University Cherry Ann Murray, Lucent Technologies Venkatesh Narayanamurti, University of California-Santa Barbara Paul Peercy, SEMI-SEMATECH Robert Richardson, Cornell University James Roberto, Oak Ridge National Laboratory The Board on Physics and Astronomy is undertaking a series of reassessments of all branches of physics as the foundation of a new physics survey. As part of this project, a Committee on Condensed Matter and Materials Physics has been established under the leadership of Venkatesh Narayanamurti of the University of California-Santa Barbara. The committee has been working since June on a study that will include an illustrative recounting of major recent achievements; identification of new opportunities and challenges facing the field; and articulation-for leaders in government, industry, universities, and the public at large-of the important roles played by the field in modern society. An especially urgent issue is how to maintain the intellectual vitality of condensed matter and materials physics, and its contributions to the well-being of the United States, in an era of limited resources. The forum will feature a panel of materials researchers who are members of the Committee on Condensed Matter and Materials Physics. They will give a brief report on the status of the study and engage in a dialogue with the audience about issues facing the condensed matter and materials physics community. Broad community input is vital to the success of the study. Please come and make your voice heard!

  20. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... Educators Search English Español Blood Test: Hepatic (Liver) Function Panel KidsHealth / For Parents / Blood Test: Hepatic (Liver) ... kidneys ) is working. What Is a Hepatic (Liver) Function Panel? A liver function panel is a blood ...

  1. Comprehensive metabolic panel

    Science.gov (United States)

    Metabolic panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... Chernecky CC, Berger BJ. Comprehensive metabolic panel (CMP) - blood. In: ... Tests and Diagnostic Procedures . 6th ed. St Louis, MO: ...

  2. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  3. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  4. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  5. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  6. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  7. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  8. Aircraft Carrier Flight and Hangar Deck Fire Protection: History and Current Status

    National Research Council Canada - National Science Library

    Darwin, Robert L; Bowman, Howard L; Hunstad, Mary; Leach, William B; Williams, Frederick W

    2005-01-01

    .... Next, a review of firefighting systems, including the firefighting agents currently in use, as well as the current tactics for fighting fires on the flight deck and the hangar deck, is provided...

  9. "The Battery" designed with Super-Light (concrete) Decks

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    This paper describes how Super-Light structures can be used as a structural principle for the buildings in the project ‘The Battery’ designed by Bjarke Ingels Group. The overall structural concept is described and the advantages of using super-light slabs for the project are explored. Especially...... the cantilevered internal corridors are investigated. Super-Light Structures is a newly patented structural concrete concept. Slabs based on the concept are the first structural element developed under the patent. The slabs called SL-decks have multiple advantages compared to traditional hollow core slabs....... The paper aims to describe the concept of how the deck can be used in these innovative buildings and how the special advantages of the SL-decks are applied....

  10. Issues in bridge deck damage evaluation using aerial photos

    Science.gov (United States)

    Natarajan, M.; Chen, S. E.; Boyle, C.; Martin, E.; Hauser, E.

    2012-04-01

    Small format aerial photography (SFAP) with low flying technique is proposed for damage evaluation of bridge decks. High resolution images obtained using under-belly photography can be used to quantify the various bridge deck problems. The conventional truck-mount or vehicle-mount deck imaging technologies require a large number of image samples. Hence the physical scanning is time consuming and it is also challenging consider the size and location of a bridge. Aerial imaging overcomes these issues, but they face different kinds of challenges that are posed by obstacles such as shadow from trees, power lines and vehicles, signs and luminaries structures. The image resolution uncertainty, which is a function of the pilot skills and flying conditions, may also add additional challenges to aerial imaging technique. Hence different image processing tools have to be integrated into a single package to achieve the desired task. This paper summarizes the challenges faced and the preliminary results are presented and discussed.

  11. Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Bolt, Gert; Hansen, Jens J

    2015-01-01

    orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII...... FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce...

  12. Polyurethane foam infill for fiber-reinforced polymer (FRP) bridge deck panels.

    Science.gov (United States)

    2014-05-01

    Although still in their infancy, fiber-reinforced polymer (FRP) bridges have shown great promise in eliminating corrosion : concerns and meeting (or exceeding) FHWAs goal of 100-year life spans for bridges. While FRP bridges are cost-effective in ...

  13. Stochastic analysis and robust optimization for a deck lid inner panel stamping

    International Nuclear Information System (INIS)

    Hou, Bo; Wang, Wurong; Li, Shuhui; Lin, Zhongqin; Xia, Z. Cedric

    2010-01-01

    FE-simulation and optimization are widely used in the stamping process to improve design quality and shorten development cycle. However, the current simulation and optimization may lead to non-robust results due to not considering the variation of material and process parameters. In this study, a novel stochastic analysis and robust optimization approach is proposed to improve the stamping robustness, where the uncertainties are involved to reflect manufacturing reality. A meta-model based stochastic analysis method is developed, where FE-simulation, uniform design and response surface methodology (RSM) are used to construct meta-model, based on which Monte-Carlo simulation is performed to predict the influence of input parameters variation on the final product quality. By applying the stochastic analysis, uniform design and RSM, the mean and the standard deviation (SD) of product quality are calculated as functions of the controllable process parameters. The robust optimization model composed of mean and SD is constructed and solved, the result of which is compared with the deterministic one to show its advantages. It is demonstrated that the product quality variations are reduced significantly, and quality targets (reject rate) are achieved under the robust optimal solution. The developed approach offers rapid and reliable results for engineers to deal with potential stamping problems during the early phase of product and tooling design, saving more time and resources.

  14. PARAMETRIC STUDY OF SKEW ANGLE ON BOX GIRDER BRIDGE DECK

    OpenAIRE

    Shrikant D. Bobade *, Dr. Valsson Varghese

    2016-01-01

    Box girder bridge deck, is the most common type of bridges in world and India, it consists of several Slab or girders. The span in the direction of the roadway and connected across their tops and bottoms by a thin continuous structural stab, the longitudinal box girders can be made of steel or concrete. The Simple supported single span concrete bridge deck is presented in present study. Skewed bridges are suitable in highway design when the geometry of straight bridges is not possible. The sk...

  15. 46 CFR 109.575 - Accumulation of liquids on helicopter decks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Accumulation of liquids on helicopter decks. 109.575... DRILLING UNITS OPERATIONS Miscellaneous § 109.575 Accumulation of liquids on helicopter decks. The master or person in charge shall ensure that no liquids are allowed to accumulate on the helicopter decks. ...

  16. Characterization of stormwater runoff from bridge decks in eastern Massachusetts, 2014–16

    Science.gov (United States)

    Smith, Kirk P.; Sorenson, Jason R.; Granato, Gregory E.

    2018-05-02

    The quality of stormwater runoff from bridge decks (hereafter referred to as “bridge-deck runoff”) was characterized in a field study from August 2014 through August 2016 in which concentrations of suspended sediment (SS) and total nutrients were monitored. These new data were collected to supplement existing highway-runoff data collected in Massachusetts which were deficient in bridge-deck runoff concentration data. Monitoring stations were installed at three bridges maintained by the Massachusetts Department of Transportation in eastern Massachusetts (State Route 2A in the city of Boston, Interstate 90 in the town of Weston, and State Route 20 near Quinsigamond Village in the city of Worcester). The bridges had annual average daily traffic volumes from 21,200 to 124,000 vehicles per day; the land use surrounding the monitoring stations was 25 to 67 percent impervious.Automatic-monitoring techniques were used to collect more than 160 flow-proportional composite samples of bridge-deck runoff. Samples were analyzed for concentrations of SS, loss on ignition of suspended solids (LOI), particulate carbon (PC), total phosphorus (TP), total dissolved nitrogen (DN), and particulate nitrogen (PN). The distribution of particle size of SS also was determined for composite samples. Samples of bridge-deck runoff were collected year round during rain, mixed precipitation, and snowmelt runoff and with different dry antecedent periods throughout the 2-year sampling period.At the three bridge-deck-monitoring stations, median concentrations of SS in composite samples of bridge-deck runoff ranged from 1,490 to 2,020 milligrams per liter (mg/L); however, the range of SS in individual composites was vast at 44 to 142,000 mg/L. Median concentrations of SS were similar in composite samples collected from the State Route 2A and Interstate 90 bridge (2,010 and 2,020 mg/L, respectively), and lowest at the State Route 20 bridge (1,490 mg/L). Concentrations of coarse sediment (greater

  17. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  18. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  19. On the typography of flight-deck documentation

    Science.gov (United States)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  20. A FORM ANALYSIS OF JAPANESE PEDESTRIAN DECKS AND EUROPEAN PLAZAS

    Directory of Open Access Journals (Sweden)

    ANDO Naomi

    2015-06-01

    Full Text Available This study compares Japanese pedestrian decks and European plazas as public pedestrian spaces. The characteristics of both types of spaces will be clarified through a schematic analysis. The connections of these spaces with their surroundings will also be analyzed. Further, the spatial image of these spaces are discussed. Pedestrian spaces in Romania will be discussed as well.

  1. Compressive Membrane Action in Prestressed Concrete Deck Slabs

    NARCIS (Netherlands)

    Amir, S.

    2014-01-01

    One of the most important questions that structural engineers all over the world are dealing with is the safety of the existing structures. In the Netherlands, there are a large number of transversely prestressed bridge decks that have been built in the last century and now need to be investigated

  2. The effect of floating deck structures on underwater radiated noise

    NARCIS (Netherlands)

    Bosschaart, C.; Jansen, H.W.; Jong, C.A.F. de; Basten, T.

    2017-01-01

    A concept for underwater machinery noise mitigation of future civil and military ships is the application of a common deck structure, supporting multiple machines, which is installed on resilient mounts on the ship's foundation structure. TNO is addressing the availability and testing of tools to be

  3. Development of MIDAS/SMR Input Deck for SMART

    International Nuclear Information System (INIS)

    Cho, S. W.; Oh, H. K.; Lee, J. M.; Lee, J. H.; Yoo, K. J.; Kwun, S. K.; Hur, H.

    2010-01-01

    The objective of this study is to develop MIDAS/SMR code basic input deck for the severe accidents by simulating the steady state for the SMART plant. SMART plant is an integrated reactor developed by KAERI. For the assessment of reactor safety and severe accident management strategy, it is necessary to simulate severe accidents using the MIDAS/SMR code which is being developed by KAERI. The input deck of the MIDAS/SMR code for the SMART plant is prepared to simulate severe accident sequences for the users who are not familiar with the code. A steady state is obtained and the results are compared with design values. The input deck will be improved through the simulation of the DBAs and severe accidents. The base input deck of the MIDAS/SMR code can be used to simulate severe accident scenarios after improvement. Source terms and hydrogen generation can be analyzed through the simulation of the severe accident. The information gained from analyses of severe accidents is expected to be helpful to develop the severe accident management strategy

  4. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  5. Life-Cycle Inventory Analysis of Manufacturing Redwood Decking

    Science.gov (United States)

    Richard D. Bergman; Han-Sup Han; Elaine Oneil; Ivan L. Eastin

    2012-01-01

    Green building has become increasingly important. Therefore, consumers and builders often take into account the environmental attributes of a building material. This study determined the environmental attributes associated with manufacturing 38-mm × 138-mm (nominal 2 × 6) redwood decking in northern California using the life-cycle inventory method. Primary data...

  6. Fatigue Properties of Orthotropic Decks on Railway Bridges

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Gajdoš, Lubomír

    1999-01-01

    Roč. 21, č. 7 (1999), s. 639-652 ISSN 0141-0296 Grant - others:XX(CZ) ERRI D 191 Keywords : railway bridges * orthotropic decks * fatigue Subject RIV: JM - Building Engineering Impact factor: 0.364, year: 1999

  7. Punching shear strength of transversely prestressed concrete decks

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.

    2012-01-01

    In the Netherlands, there is a need to determine the capacity of bridge decks as a large number of them were built back in the 60’s and 70’s. Since then, not only a lot of additional safety requirements have been incorporated into the modern codes but the traffic flow has also increased drastically.

  8. Graphite/epoxy orthogrid panel fabrication

    Science.gov (United States)

    Lager, J. R.

    1978-01-01

    The structural concept considered for a spacecraft body structure is a grid stiffened skin with a skin laminate configuration and the stiffener grid geometry selected to best suit the design requirements. The orthogrid panel developed weighs 0.55 lb/sq ft and resisted an ultimate in-plane shear load of 545 lbf/in. The basic concept of a grid stiffener composite panel is that a relatively thin skin is reinforced with a gridwork of stiffeners so that the overall panel can resist design loads without becoming structurally unstable or being overstressed. The main feature of the orthogrid panel design is that it provides the potential for low cost structural panels when advanced to the production phase. The most innovative part of the fabrication method is the foam/fiberglass stiffener web grid billet fabrication and machining to size.

  9. Hepatitis virus panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  10. Antinuclear antibody panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003535.htm Antinuclear antibody panel To use the sharing features on this page, please enable JavaScript. The antinuclear antibody panel is a blood test that looks at ...

  11. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael; Kilian, Martin; Schiftner, Alexander; Mitra, Niloy J.; Pottmann, Helmut; Pauly, Mark

    2010-01-01

    with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication

  12. Investigation of Aerodynamic Interference between Twin Deck Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC); Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division. Transportation Research and Analysis Computing Center (TRACC)

    2016-05-01

    Construction of a twin bridge can be a cost effective and minimally disruptive way to increase capacity when an existing bridge is not near the end of its service life. With ever growing vehicular traffic, when demand approaches the capacity of many existing roads and bridges. Remodeling a structure with an insufficient number of lanes can be a good solution in case of smaller and less busy bridges. Closing down or reducing traffic on crossings of greater importance for the construction period, however, can result in major delays and revenue loss for commerce and transportation as well as increasing the traffic load on alternate route bridges. Multiple-deck bridges may be the answer to this issue. A parallel deck can be built next to the existing one, without reducing the flow. Additionally, a new bridge can be designed as a twin or multi-deck structure. Several such structures have been built throughout the United States, among them: - The New NY Bridge Project - the Tappan Zee Hudson River Crossing, - SR-182 Columbia River Bridge, - The Thaddeus Kosciusko Bridge (I-87), - The Allegheny River Bridge, Pennsylvania, which carries I76, - Fred Hartman Bridge, TX, see Figure 1.2. With a growing number of double deck bridges, additional, more detailed, studies on the interaction of such bridge pairs in windy conditions appears appropriate. Aerodynamic interference effects should be examined to assure the aerodynamic stability of both bridges. There are many studies on aerodynamic response of single deck bridges, but the literature on double-deck structures is not extensive. The experimental results from wind tunnels are still limited in number, as a parametric study is required, they can be very time consuming. Literature review shows that some investigation of the effects of gap-width and angle of wind incidence has been done. Most of the CFD computational studies that have been done were limited to 2D simulations. Therefore, it is desirable to investigate twin decks

  13. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on public health risks represented by certain composite products containing food of animal origin

    DEFF Research Database (Denmark)

    Hald, Tine

    products requires information on their composition, processing and further handling, which can largely differ for foods belonging to the same category. Further conditions may influence the risk and should be verified, i.e. hygienic conditions during preparation of the composite products......This Opinion reviews the factors that affect microbial survival and growth in composite products, and in foods in general. It concludes that the main factors to be considered are: water activity, pH, temperature and duration of storage, processing, and intensity and duration of other non......-thermal physical processes applied. Prevalence and concentration of the pathogens in food are important to determine the risk for consumers. The opinion presents a review of the quantitative microbiology models and databases that can be used to provide quantitative estimations of the impact of the above factors...

  14. At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy.

    Science.gov (United States)

    Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger

    2017-01-01

    The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13 C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2 (cal) value of 0.973, and R 2 (CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

  15. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  16. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  17. Hybrid FRP-concrete bridge deck system final report II : long term performance of hybrid FRP-concrete bridge deck system.

    Science.gov (United States)

    2009-06-01

    This report describes the investigation of the long term structural performance of a : hybrid FRP-concrete (HFRPC) bridge deck on steel girders. The study aimed at : assessing three long term aspects pertaining to the HFRPC bridge deck: (1) creep : c...

  18. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  19. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  20. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  1. Service Life and Maintenance Modelling of Reinforced Concrete Bridge Decks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Recent research in the area of assessment and maintenance of reinforced concrete bridge decks is presented in this paper. Three definitions of service lifetime are introduced and the difficult problem of assessing the service life is discussed. A stochastic modelling of corrosion and corrosion...... cracking is introduced and the site dependency of corrosion is stressed. Finally, a recently developed optimal repair strategy for bridges is briefly explained....

  2. Delamination Detection of Reinforced Concrete Decks Using Modal Identification

    Directory of Open Access Journals (Sweden)

    Shutao Xing

    2012-01-01

    Full Text Available This study addressed delamination detection of concrete slabs by analyzing global dynamic responses of structures. Both numerical and experimental studies are presented. In the numerical examples, delaminations with different sizes and locations were introduced into a concrete slab; the effects of presence, sizes, and locations of delaminations on the modal frequencies and mode shapes of the concrete slab under various support conditions were studied. In the experimental study, four concrete deck specimens with different delamination sizes were constructed, and experimental tests were conducted. Traditional peak-picking, frequency domain decomposition, and stochastic subspace identification methods were applied to the modal identification from dynamic response measurements. The modal parameters identified by these three methods correlated well. The changes in modal frequencies, damping ratios, and mode shapes that were extracted from the dynamic measurements were investigated and correlated to the actual delaminations and can indicate presence and severity of delamination. Finite element (FE models of reinforced concrete decks with different delamination sizes and locations were established. The modal parameters computed from the FE models were compared to those obtained from the laboratory specimens, and the FE models were validated. The delamination detection approach was proved to be effective for concrete decks on beams.

  3. Influence of ceiling systems on room temperature and energy efficiency in steel sheet deckings; Einfluss von Deckensystemen auf Raumtemperatur und Energieeffizienz im Stahlgeschossbau

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Bernd

    2008-07-01

    Over the past years the use of flooring systems to affect the indoor climate of buildings is of increasing interest, including both thermo-active and also passive systems. The amendment of the German Energy saving ordinance (Energieeinsparverordnung 2007) requires, that in future projects, the energy demand for cooling and ventilation has to be considered for the calculation of the energy demand of non-residential buildings. Due to this circumstance, solutions for energy efficient cooling will come more into the focus. Up to now, the use of flooring systems in steel structures have not been investigated regarding this aspect. In this thesis, six different flooring systems were investigated: two passive acting solutions, using the effects of enlarging the surface and integrating phase change materials (PCM), one system comprising ducts that pass cold air through the floor during the night and three thermo-active deck systems (i.e. profiled steel sheet decking, a hollow-core slab, and a laser-welded steel sandwich panel). Generally, the thermal behaviour of such elements is described only using one-dimensional multilayer structure (for standardized calculations or for thermal building simulation), this concept is not adequate for profiled and homogeneous components. Therefore three-dimensional Finite Elemente investigations were performed to consider the specific properties. Based on these results a simplified method using equivalent parameters was developed, which allows the implementation of the considered flooring systems in standardized calculations (ISO 13786). For selected systems, validation by in-service measurements was performed. By using Thermal Building Simulation tools, a parametric study was carried out to specify the range and limits of application in respect of climate and internal heat gains. The results can be summarized as follows: - Profiled steel sheet decking show a higher effective thermal capacity than conventional flat slabs. - PCM increases

  4. Durability of Capped Wood Plastic Composites

    Science.gov (United States)

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  5. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  6. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  7. Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge

    Czech Academy of Sciences Publication Activity Database

    Buljac, Andrija; Kozmar, H.; Pospíšil, Stanislav; Macháček, Michael

    2017-01-01

    Roč. 137, April (2017), s. 310-322 ISSN 0141-0296 R&D Projects: GA ČR(CZ) GA15-01035S; GA MŠk(CZ) LO1219 Keywords : bridge decks * roadway wind barrier * aerodynamic forces and moments * galloping * flutter * wind-tunnel experiments Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering , Municipal and structural engineering Impact factor: 2.258, year: 2016 http://www.sciencedirect.com/science/ article /pii/S014102961730278X

  8. Stressed skin panels

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-07-01

    Advantages and disadvantages of stressed skin panels, also known as structural insulated panels (SIPs), are discussed as material and labour-saving alternatives to traditional stick framing. Stressed skin panels are manufactured 'sandwich' assemblies with a rigid insulating polystyrene foam core, whose interior and exterior surfaces are bonded into panels. The skins distribute and carry the structural loading while the bonded foam core provides insulation and keeps the two skins aligned. Since there are fewer framing members, there is little thermal bridging and the R-value remains high. SIPs are usually manufactured in four feet by eight feet panels, although some manufacturers can produce panels up to eight feet by forty feet. SIPs are resource efficient as they use less wood than conventional framing (about 25 per cent less); can structurally cover large spans, requiring less supplementary framing. Use of SIPs eliminate the need for headers over small openings; provide the ability to nail anywhere; create less scrap and waste; lessen vulnerability to unfavourable weather and other job-site hazards, can reduce delays, and often can produce significant savings in material and labour costs. Limitations include the more complex approaches to plumbing and electrical systems, although this can be minimized by designers by incorporating much of the plumbing and electrical work on interior (non-panel) walls. Most stressed skin panels require one-half inch interior gypsum drywall. If become wet, stressed skin panels take a long time to dry out and may harbour mold growth. Larger stressed-skin panels used in floors and roofs, may require cranes or other machinery for handling because of their weight. Although not without some environmental impact, overall, stressed skin panels are judged to be a resource-efficient building technology with significant energy-efficiency benefits and distinct advantages over stick framing. 3 photos.

  9. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    OpenAIRE

    Chon W.; Amano R. S.

    2005-01-01

    When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Do...

  10. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  11. Preparation of Input Deck to analyze the Nuclear Power Plant for the Use of Regulatory Verification

    International Nuclear Information System (INIS)

    Kang, Doo Hyuk; Kim, Hyung Seok; Suh, Jae Seung; Ahn, Seung Hoon

    2009-01-01

    The objectives of this paper are to make out the input deck that analyzes a nuclear power plant for the use of regulatory verification and to produce its calculation note. We have been maintained the input deck of T/H safety codes used in existing domestic reactors to ensure independent and accurate regulatory verification for the thermal-hydraulic safety analysis in domestic NPPs. This paper is mainly divided into two steps: first step is to compare existing input deck to the calculation note in order to verify the consistency. Next step is to model 3-dimensional reactor pressure vessel using MULTID component instead of the 1D existing input deck

  12. Solar panel foundation device

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1983-03-29

    A transportable solar panel foundation device which has a bottom member, at least one upstanding side member, and an essentially open top. The side members are angled to permit nesting of a plurality of the foundation devices, and reinforcement pads are carried by the foundation device to support legs for one or more solar panels.

  13. Panel 5: Microbiology and Immunology Panel

    Science.gov (United States)

    Murphy, Timothy F.; Chonmaitree, Tasnee; Barenkamp, Stephen; Kyd, Jennelle; Nokso-Koivisto, Johanna; Patel, Janak A.; Heikkinen, Terho; Yamanaka, Noboru; Ogra, Pearay; Swords, W. Edward; Sih, Tania; Pettigrew, Melinda M.

    2014-01-01

    Objective The objective is to perform a comprehensive review of the literature from January 2007 through June 2011 on the virology, bacteriology, and immunology related to otitis media. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels with co-chairs comprising experts in the virology, bacteriology, and immunology of otitis media were formed. Each of the panels reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a second draft was created. The entire panel met at the 10th International Symposium on Recent Advances in Otitis Media in June 2011 and discussed the review and refined the content further. A final draft was created, circulated, and approved by the panel. Conclusion Excellent progress has been made in the past 4 years in advancing an understanding of the microbiology and immunology of otitis media. Advances include laboratory-based basic studies, cell-based assays, work in animal models, and clinical studies. Implications for Practice The advances of the past 4 years formed the basis of a series of short-term and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media. PMID:23536533

  14. RECIPANEL: RECYCLED PAPER PANELS

    Directory of Open Access Journals (Sweden)

    HERNÁN CAÑOLA

    2012-01-01

    Full Text Available En este artículo se estudia la fabricación y el comportamiento mecánico de paneles a base de papel reciclado. El objetivo principal del proyecto es producir un prototipo de panel que emplee elementos provenientes de residuos sólidos (papel periódico y de un material conglomerante (cemento Portland blanco. El panel debe ser económico, debe tener buenas propiedades mecánicas y debe tener dimensiones comerciales para su uso en muros tabiques y en cielos falsos en la industria de la construcción. El Recipanel es un panel no estructural a base de papel reciclado. El Recipanel cumple las normas colombianas en lo relativo a los paneles de uso no estructural y presenta además unas excelentes características mecánicas.

  15. Puncture panel optimization

    International Nuclear Information System (INIS)

    Glass, R.E.; Longenbaugh, R.S.

    1986-01-01

    Sandia National Laboratories developed the TRansUranic PACkage Transporter (TRUPACT) to transport defense contact-handled transuranic wastes. The package has been designed to meet the normal and hypothetical accident conditions in 10CFR71 which includes the demonstrated ability to survive a 1-meter drop onto a mild steel pin. The puncture protection is provided by puncture resistant panels. In conjunction with the development of TRUPACT, a series of experiments has been conducted to reduce the weight of the puncture resistant panels. The initial scoping tests resulted in a preliminary design incorporating 30 layers of Kevlar. This design has been shown to meet the regulatory puncture test. To reduce the weight of this panel, subscale tests were conducted on panels utilizing Kevlar yarns with varying mass per unit length (denier) as well as different resins. This paper reviews the testing undertaken in the original panel development and discusses the results obtained from the recent subscale and full-scale optimization tests

  16. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  17. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  18. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  19. Images from Galileo of the Venus cloud deck

    Science.gov (United States)

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  20. Super-light concrete decks for building floor slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Castberg, Niels Andreas; Christensen, Jacob

    2014-01-01

    to flexibility, sound insulation and fire resistance compared with present-day prefabricated structures. Full-scale tests and theoretical investigations show that the deck structure performs as intended. Also, that it is possible to assess by calculation the loadbearing capacity in bending and shear, and assess...... the pull-out strength of prestressing wires, the fire resistance and the acoustic insulation. Based on the results of the investigations, recommendations are given for further development of the structure before fully automated mass production is established....

  1. Advanced flight deck/crew station simulator functional requirements

    Science.gov (United States)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  2. Use of Polyurethane Insulated Panel for Heat Infiltration in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: This study investigates the overall heat transfer coefficient of reinforced composite panel ... K thermal conductivity value W/m2k ... fabricated from epoxy resin and E-glass fibre and the ... Table 1: Parameters used in calculation.

  3. A review of optimization techniques used in the design of fibre composite structures for civil engineering applications

    International Nuclear Information System (INIS)

    Awad, Ziad K.; Aravinthan, Thiru; Zhuge, Yan; Gonzalez, Felipe

    2012-01-01

    Highlights: → We reviewed existing optimization techniques of fibre composite structures. → Proposed an improved methodology for design optimization. → Comparison showed the MRDO is most suitable. -- Abstract: Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer's experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

  4. Development and layout of a protocol for the field performance of concrete deck and crack sealers.

    Science.gov (United States)

    2009-09-01

    The main objective of this project was to develop and layout a protocol for the long-term monitoring and assessment of the performance of concrete deck and crack sealants in the field. To accomplish this goal, a total of six bridge decks were chosen ...

  5. 46 CFR 45.135 - Hull openings at or below freeboard deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hull openings at or below freeboard deck. 45.135 Section 45.135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.135 Hull openings at or below freeboard deck. Closures for hull...

  6. 46 CFR 108.133 - Hull superstructure, structural bulkheads, decks, and deckhouses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hull superstructure, structural bulkheads, decks, and deckhouses. 108.133 Section 108.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A... Protection § 108.133 Hull superstructure, structural bulkheads, decks, and deckhouses. Each hull...

  7. Super-Light Prefabricated Deck Element Integrated in Traditional Concrete Prefabricated Element Construction

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl

    Super-light structures in form of deck elements have been used for the first time in a building to construct indoor pedestrian bridges. Examples of connections to external structures and other super-light deck elements are given along with other details. Other examples on the great versatility...

  8. decké osobnosti a vedení ve vědě

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    č. 3 (2005), s. 14-17 ISSN 1210-9525 Institutional research plan: CEZ:AV0Z10300504 Keywords : vědecké osobnosti * talent * grantový systém * vědecká excelence Subject RIV: AM - Education http://abicko.avcr.cz/archiv/2005/3/obsah/vedecke-osobnosti-a-vedeni-ve-vede.html

  9. 29 CFR 1915.73 - Guarding of deck openings and edges.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Guarding of deck openings and edges. 1915.73 Section 1915.73 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION..., Ladders and Other Working Surfaces § 1915.73 Guarding of deck openings and edges. (a) The provisions of...

  10. Blue Ribbon Panel Report

    Science.gov (United States)

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  11. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  12. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  13. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  14. Honeycomb metal panel

    International Nuclear Information System (INIS)

    1979-01-01

    Product constituted by a honeycomb metal panel that can be employed to advantage for manufacturing lagging by sandwiching it between two plane sheets, utilized in particular in the nuclear industry where lagging has to have a very long life strength. The honeycomb metal panel is made of an expanded metal extrusion previously cut so as to form, after additional drawing, a honeycomb structure with square or rectangular cells with a plane surface [fr

  15. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    Directory of Open Access Journals (Sweden)

    Chon W.

    2005-01-01

    Full Text Available When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.

  16. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  17. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  18. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  19. 7 CFR 2902.19 - Composite panels.

    Science.gov (United States)

    2010-01-01

    ...; and Signage. USDA is requesting that manufacturers of these qualifying biobased products provide... EPA-designated laminated paperboard, structural fiberboard, shower and restroom dividers, and signage... laminated paperboard and structural fiberboard, shower and restroom dividers, and signage containing...

  20. The development of an Infrared Environmental System for TOPEX Solar Panel Testing

    Science.gov (United States)

    Noller, E.

    1994-01-01

    Environmental testing and flight qualification of the TOPEX/POSEIDON spacecraft solar panels were performed with infrared (IR) lamps and a control system that were newly designed and integrated. The basic goal was more rigorous testing of the costly panels' new composite-structure design without jeopardizing their safety. The technique greatly reduces the costs and high risks of testing flight solar panels.

  1. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  2. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  3. Development of precast bridge deck overhang system : technical report.

    Science.gov (United States)

    2011-07-01

    The implementation of full-depth, precast overhang panel systems has the potential to improve constructability, : productivity, and make bridges more economical. Initial testing and analyses reported in the 0-6100-2 report resulted in : a design that...

  4. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  5. Advanced solar panel designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  6. Panel 3 - characterization

    Energy Technology Data Exchange (ETDEWEB)

    Erck, R.A.; Erdemir, A.; Janghsing Hsieh; Lee, R.H.; Xian Zheng Pan; Deming Shu [Argonne National Lab., IL (United States); Feldman, A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Glass, J.T. [North Carolina State Univ., Raleigh (United States); Kleimer, R. [Coors Ceramics Co., Golden, CO (United States); Lawton, E.A. [JPL/Caltech, Pasadena, CA (United States); McHargue, C.J. [Univ. of Tennessee, Knoxville (United States)

    1993-01-01

    The task of this panel was to identify and prioritize needs in the area of characterization of diamond and diamond-like-carbon (DLC) films for use in the transportation industry. Until recent advances in production of inexpensive films of diamonds and DLC, it was not feasible that these materials could be mass produced. The Characterization Panel is restricting itself to identifying needs in areas that would be most useful to manufacturers and users in producing and utilizing diamond and DLC coatings in industry. These characterization needs include in-situ monitoring during growth, relation of structure to performance, and standards and definitions.

  7. Analysis of Panel Data

    Science.gov (United States)

    Hsiao, Cheng

    2003-02-01

    Panel data models have become increasingly popular among applied researchers due to their heightened capacity for capturing the complexity of human behavior, as compared to cross-sectional or time series data models. This second edition represents a substantial revision of the highly successful first edition (1986). Recent advances in panel data research are presented in an accessible manner and are carefully integrated with the older material. The thorough discussion of theory and the judicious use of empirical examples make this book useful to graduate students and advanced researchers in economics, business, sociology and political science.

  8. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    Science.gov (United States)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  9. Advanced Solar Panel Designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  10. INTERNATIONAL COLLABORATION: Panelling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    At the meeting of the International Committee for Future Accelerators (ICFA), in Geneva in July, Chairman A.N. Skrinsky of Novosibirsk reviewed ICFA progress, particularly the activities of the specialist Panels which pursue specific Committee objectives in guiding worldwide collaboration in high energy physics

  11. INTERNATIONAL COLLABORATION: Panelling

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-10-15

    At the meeting of the International Committee for Future Accelerators (ICFA), in Geneva in July, Chairman A.N. Skrinsky of Novosibirsk reviewed ICFA progress, particularly the activities of the specialist Panels which pursue specific Committee objectives in guiding worldwide collaboration in high energy physics.

  12. Law Panel in action.

    Science.gov (United States)

    Odulana, J

    In September 1976 the Africa Regional Council (ARC) of IPPF created a Law Panel to 1) advise the ARC on the emphasis of laws and parenthood programs in the region, 2) investigate legal obstacles to family planning and ways of removing them, 3) institute a monitoring service on laws and court decisions affecting planned parenthood, and 4) prepare a list of lawyers and legal reformers by country. The panel has 1) recommended adoption of an IPPF Central Medical Committee and Central Law Panel statement on sterilization, adolescent fertility control, and the use of medical and auxiliary personnel in family planning services with guidelines for Africa; 2) appointed National Legal Correspondents to carry on the monitoring service mentioned above in 18 countries; and 3) discussed solutions to problems in delivering family planning services with family planning associations in Tanzania, Zambia, Mauritius, Madagascar, and Kenya. Laws governing family planning education and services, marriage, divorce, and maternity benefits in these countries are summarized. In 1978 the panel will hold 2 workshops on law and the status of women.

  13. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael; Kilian, Martin; Schiftner, Alexander; Mitra, Niloy J.; Pottmann, Helmut; Pauly, Mark

    2010-01-01

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a

  14. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  15. Dynamic panel data models

    NARCIS (Netherlands)

    Bun, M.J.G.; Sarafidis, V.

    2013-01-01

    This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.

  16. Aerospace Safety Advisory Panel

    Science.gov (United States)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  17. Panel and planar experimental shear behavior of wood panels ...

    African Journals Online (AJOL)

    Panel shear strength along the thickness and planar shear along the length of wood panels laminated softwood oriented OSB 10 mm thick, conditioned at different moisture contents (anhydrous medium, ambient temperature and humid medium) was measured on standardized test specimens, cut in half lengthwise panel ...

  18. CRASH TEST AND EVALUATION OF RESTRAINED SAFETY-SHAPE CONCRETE BARRIERS ON CONCRETE BRIDGE DECK

    Science.gov (United States)

    2018-01-01

    This research designed and tested a new portable concrete barrier that meets the performance of MASH TL-4 and can be used in temporary and permanent applications on bridge decks. Additionally, this new barrier system will minimize deflection, allowin...

  19. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  20. Fluid-structure interaction analysis of a deck structure during a HCDA

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated

  1. Performance of Rail Fastening Systems on an Open-Deck Bridge

    Science.gov (United States)

    2018-02-01

    Transportation Technology Center, Inc. (TTCI) monitored the performance of rail fasteners on an open-deck bridge and its approaches, located at Norfolk Southern Corporations (NS's) eastern mega site. The project was co-sponsored by the Federal Rai...

  2. Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.

    Science.gov (United States)

    2012-03-01

    Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...

  3. A Highly Accurate and Efficient Analytical Approach to Bridge Deck Free Vibration Analysis

    Directory of Open Access Journals (Sweden)

    D.J. Gorman

    2000-01-01

    Full Text Available The superposition method is employed to obtain an accurate analytical type solution for the free vibration frequencies and mode shapes of multi-span bridge decks. Free edge conditions are imposed on the long edges running in the direction of the deck. Inter-span support is of the simple (knife-edge type. The analysis is valid regardless of the number of spans or their individual lengths. Exact agreement is found when computed results are compared with known eigenvalues for bridge decks with all spans of equal length. Mode shapes and eigenvalues are presented for typical bridge decks of three and four span lengths. In each case torsional and non-torsional modes are studied.

  4. 3D laser scanning for quality control and assurance in bridge deck construction.

    Science.gov (United States)

    2014-08-01

    The inspection of installations of rebar and other embedded components in bridge deck construction is a tedious : task for eld inspectors, requiring considerable eld time for measurement and verication against code requirement. The verica...

  5. 75 FR 32902 - Wire Decking from the People's Republic of China: Final Affirmative Countervailing Duty...

    Science.gov (United States)

    2010-06-10

    ... Riqian Equipment Co., Ltd 437.11% Deyoma Wire Decking Factory 437.11% Global Storage Equipment... Dingxing Furniture Company 437.11% Tianjin Machinery Imp & Exp Corp 437.11% Tianjin Mandarin Import...

  6. Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.

    Science.gov (United States)

    2014-12-01

    Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...

  7. Flight Deck of the Future: Virtual Windows and e-textile iGear

    Data.gov (United States)

    National Aeronautics and Space Administration — The Flight Deck of the Future (F.F) will integrate interdisciplinary talent to design innovative, integrated human interfaces for the next generation of human...

  8. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    Science.gov (United States)

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  9. ASSESSING CHILDREN'S EXPOSURES TO THE WOOD PRESERVATIVE CCA (CHROMATED COPPER ARSENATE) ON TREATED PLAYSETS AND DECKS

    Science.gov (United States)

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for re...

  10. Using artificial neural networks in the design of orthotropic bridge decks

    Directory of Open Access Journals (Sweden)

    Ahmed Shamel Fahmy

    2016-12-01

    Full Text Available For orthotropic bridge decks a lot of progress has been made in the development of codes to aid in the design process, in addition to software tools for numerical analysis and design. However, professional software tools will not aid the designer in choosing a preliminary economic layout at the conceptual design stage. Designers would go through iterative, lengthy and expensive procedures to reach the best configuration. The present research provides a methodology to investigate the contingency of using artificial neural networks for conceptual design of orthotropic steel-deck bridge. A neural network model was trained with different combinations of dimensions, and eight types of safety checks were performed on all of them. The resulting network can predict whether the deck is safe or not. It is found that this approach for the selection of orthotropic deck dimensions is a better and cost-effective option compared with international codes or expert opinion.

  11. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    International Nuclear Information System (INIS)

    Oar, D.L.

    1994-01-01

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0

  12. Human factors considerations in the design and evaluation of flight deck displays and controls

    Science.gov (United States)

    2013-11-01

    The objective of this effort is to have a single source document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on human factor...

  13. FEMA DFIRM Panel Scheme Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer contains information about the Flood Insurance Rate Map (FIRM) panel areas. The spatial entities representing FIRM panels are polygons. The polygon for...

  14. Report of Industry Panel Group

    Science.gov (United States)

    Gallimore, Simon; Gier, Jochen; Heitland, Greg; Povinelli, Louis; Sharma, Om; VandeWall, Allen

    2006-01-01

    A final report is presented from the industry panel group. The contents include: 1) General comments; 2) Positive progress since Minnowbrook IV; 3) Industry panel outcome; 4) Prioritized turbine projects; 5) Prioritized compressor projects; and 6) Miscellaneous.

  15. Concept design and alternate arrangements of orbiter mid-deck habitability features

    Science.gov (United States)

    Church, R. A.; Ciciora, J. A.; Porter, K. L.; Stevenson, G. E.

    1976-01-01

    The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed.

  16. Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; D. Conger

    The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...

  17. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  18. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  19. Mounting clips for panel installation

    Science.gov (United States)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph

    2017-07-11

    A photovoltaic panel mounting clip comprising a base, central indexing tabs, flanges, lateral indexing tabs, and vertical indexing tabs. The mounting clip removably attaches one or more panels to a beam or the like structure, both mechanically and electrically. It provides secure locking of the panels in all directions, while providing guidance in all directions for accurate installation of the panels to the beam or the like structure.

  20. Disadvantageous Deck Selection in the Iowa Gambling Task: The Effect of Cognitive Load

    Directory of Open Access Journals (Sweden)

    Melissa J. Hawthorne

    2015-05-01

    Full Text Available Research has shown that cognitive load affects overall Iowa Gambling Task (IGT performance, but it is unknown whether such load impacts the selection of the individual decks that correspond to gains or losses. Here, participants performed the IGT either in a full attention condition or while engaged in a number monitoring task to divide attention. Results showed that the full attention group was more aware of the magnitude of gains or losses for each draw (i.e., payoff awareness than was the divided attention group. However, the divided attention group was more sensitive to the frequency of the losses (i.e., frequency awareness, as evidenced by their increased preference for Deck B, which is the large but infrequent loss deck. An analysis across blocks showed that the number monitoring group was consistently more aware of loss frequency, whereas the full attention group shifted between awareness of loss frequency and awareness of payoff amount. Furthermore, the full attention group was better able to weigh loss frequency and payoff amount when making deck selections. These findings support the notion that diminished cognitive resources may result in greater selection of Deck B, otherwise known as the prominent Deck B phenomenon.

  1. Ultra-high performance fiber-reinforced concrete (UHPFRC) for infrastructure rehabilitation Volume II : behavior of ultra-high strength concrete bridge deck panels compared to conventional stay-in-place deck panels

    Science.gov (United States)

    2017-08-01

    The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...

  2. Experience with citizens panels

    International Nuclear Information System (INIS)

    Selwyn, J.

    2002-01-01

    In May 1999, 200 delegates attended a four-day UK Consensus Conference on radioactive waste management, which was organised by the UK Centre for Economic and Environmental Development (UK CEED) and supported by the government, industry and environmental groups. The event brought together a Citizens' Panel of fifteen people, randomly selected to represent a cross section of the British public, together with the major players in the debate. The four-day conference saw the panel cross-examine expert witnesses from organisations such as NIREX, British Nuclear Fuels Limited, the Ministry of Defence, Greenpeace and Friends of the Earth. The findings of their investigations were put together in a report containing detailed recommendations for government and industry and presented to the Minister on the final day. (author)

  3. Theoretical and Experimental Studies of Wave Impact underneath Decks of Offshore Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Baarholm, Rolf Jarle

    2001-07-01

    The main objective of this thesis has been to study the phenomenon of water impact underneath the decks of offshore platforms due to propagating waves. The emphasis has been on the impact loads. Two theoretical methods based on two-dimensional potential theory have been developed, a Wagner based method (WBM) and a nonlinear boundary element method (BEM). A procedure to account for three-dimensional effects is suggested. The deck is assumed to be rigid. Initial studies of the importance of hydroelasticity for wave loads on an existing deck structure have been performed. For a given design wave, the local structural responses were found to behave quasi-static. Global structural response has not been studied. In the Wagner based method gravity is neglected and a linear spatial distribution of the relative impact velocity along the deck is assumed. The resulting boundary value problem is solved analytically for each time step. A numerical scheme for stepping the wetted deck area in time is presented. The nonlinear boundary element method includes gravity, and the exact impact velocity is considered. The incident wave velocity potential is given a priori, and a boundary value problem for the perturbation velocity potential associated with the impact is defined. The boundary value problem is solved for each time step by applying Green's second identity. The exact boundary conditions are imposed on the exact boundaries. A Kutta condition is introduced as the fluid flow reaches the downstream end of the deck. At present, the BEM is only applicable for fixed platform decks. To validate the theories, experiments have been carried out in a wave flume. The experiments were performed in two-dimensional flow condition with a fixed horizontal deck at different vertical levels above the mean free surface. The vertical force on the deck and the wetting of the deck were the primary parameters measured. Only regular propagating waves were applied. When a wave hits the deck, the

  4. Precast concrete sandwich panels subjected to impact loading

    Science.gov (United States)

    Runge, Matthew W.

    multiple impacts. It was shown that panels impacted on the fascia wythe are capable of withstanding multiple impacts of energy levels in excess of 16 000 J while panels that were impacted on the structural wythe are capable of resisting a single impact delivering an energy level of 10 000 J or multiple impacts from an energy level of 5 000 J. A Single Degree of Freedom (SDOF) model was developed to predict the maximum deflection of the panels and it provided a good approximation of the deflection observed during the experimental program. A high degree of composite action between the two wythes was determined to exist from the results of high speed video imaging and through SDOF modelling.

  5. Panel data analysis using EViews

    CERN Document Server

    Agung, I Gusti Ngurah

    2013-01-01

    A comprehensive and accessible guide to panel data analysis using EViews software This book explores the use of EViews software in creating panel data analysis using appropriate empirical models and real datasets. Guidance is given on developing alternative descriptive statistical summaries for evaluation and providing policy analysis based on pool panel data. Various alternative models based on panel data are explored, including univariate general linear models, fixed effect models and causal models, and guidance on the advantages and disadvantages of each one is given. Panel Data Analysis

  6. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  7. Embodied Energy Optimization of Prestressed Concrete Slab Bridge Decks

    Directory of Open Access Journals (Sweden)

    Julián Alcalá

    2018-04-01

    Full Text Available This paper presents one approach to the analysis and design of post-tensioned cast-in-place concrete slab bridge decks. A Simulated Annealing algorithm is applied to two objective functions: (i the economic cost; and (ii the embodied energy at different stages of production materials, transport, and construction. The problem involved 33 discrete design variables: five geometrical ones dealing with the thickness of the slab, the inner and exterior web width, and two flange thicknesses; concrete type; prestressing cables, and 26 variables for the reinforcement set-up. The comparison of the results obtained shows two different optimum families, which indicates that the traditional criteria of economic optimization leads to inefficient designs considering the embodied energy. The results indicate that the objectives are not competing functions, and that optimum energy designs are close to the optimum cost designs. The analysis also showed that the savings of each kW h of energy consumed carries an extra cost of 0.49€. The best cost solution presents 5.3% more embodied energy. The best energy solution is 9.7% more expensive than that of minor cost. In addition, the results have showed that the best cost solutions are not the best energy solutions.

  8. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-01-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessmentclose quotes procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable in a form that future inspections will have comparative information

  9. ANDERS: future of concrete bridge deck evaluation and rehabilitation

    Science.gov (United States)

    Gucunski, Nenad; Moon, Franklin

    2011-04-01

    The Automated Nondestructive Evaluation and Rehabilitation System (ANDERS) aims to provide a uniquely comprehensive tool that will transform the manner in which bridge decks are assessed and rehabilitated. It is going to be achieved through: 1) much higher evaluation detail and comprehensiveness of detection at an early stage deterioration, 2) comprehensive condition and structural assessment at all stages of deterioration, and 3) integrated assessment and rehabilitation that will be minimally invasive, rapid and cost effective. ANDERS is composed of four systems. that merge novel imaging and NDE techniques, together with novel intervention approaches to arrest the deterioration processes. These technologies are incorporated within a series of human-operated and robotic vehicles. To perform assessments, ANDERS will be equipped with two complimentary nondestructive approaches. The first, Multi-Modal Nondestructive Evaluation (MM-NDE) System aims to identify and characterize localized deterioration with a high degree of resolution. The second, Global Structural Assessment (GSA) System aims to capture global structural characteristics and identify any appreciable effects of deterioration on a bridge structure. Output from these two approaches will be merged through a novel Automated Structural Identification (Auto St-Id) approach that will construct, calibrate, and utilize simulation models to assess overall structural vulnerability and capacity. These three systems comprise the assessment suite of ANDERS and will directly inform the Nondestructive Rehabilitation (NDR) System. The NDR System leverages robotics for the precision and rapid delivery of novel materials capable of halting the early-stage deterioration identified.

  10. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-10-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessment close-quote procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable form that future inspections will have comparative information

  11. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  12. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  13. Photovoltaic panel clamp

    Science.gov (United States)

    Mittan, Margaret Birmingham [Oakland, CA; Miros, Robert H. J. [Fairfax, CA; Brown, Malcolm P [San Francisco, CA; Stancel, Robert [Loss Altos Hills, CA

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  14. Application Side Casing on Open Deck RoRo to Improve Ship Stability

    Science.gov (United States)

    Hasanudin; K. A. P Utama, I.; Chen, Jeng-Horng

    2018-03-01

    RoRo is a vessel that can transport passengers, cargo, container and cars. Open Car Deck is favourite RoRo Vessel in developing countries due to its small GT, small tax and spacious car deck, but it has poor survival of stability. Many accident involve Open Car Deck RoRo which cause fatalities and victim. In order to ensure the safety of the ship, IMO had applied intact stability criteria IS Code 2008 which adapted from Rahola’s Research, but since 2008 IMO improved criteria become probabilistic damage stability SOLAS 2009. The RoRo type Open Car Deck has wide Breadth (B), small Draft (D) and small freeboard. It has difficulties to satisfy the ship’s stability criteria. Side Casings which has been applied in some RoRo have be known reduce freeboard or improve ship’s safety. In this paper investigated the effect side casings to survival of intact dan damage ship’s stability. Calculation has been conducted for four ships without, existing and full side casings. The investigation results shows that defect stability of Open Deck RoRo can be reduce with fitting side casing.

  15. Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform

    Science.gov (United States)

    Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer

    2017-02-01

    Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.

  16. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  17. Comparison of deck- and trial-based approaches to advantageous decision making on the Iowa Gambling Task.

    Science.gov (United States)

    Visagan, Ravindran; Xiang, Ally; Lamar, Melissa

    2012-06-01

    We compared the original deck-based model of advantageous decision making assessed with the Iowa Gambling Task (IGT) with a trial-based approach across behavioral and physiological outcomes in 33 younger adults (15 men, 18 women; 22.2 ± 3.7 years of age). One administration of the IGT with simultaneous measurement of skin conductance responses (SCRs) was performed and the two methods applied: (a) the original approach of subtracting disadvantageous picks of Decks A and B from advantageous picks of Decks C and D and (b) a trial-based approach focused on the financial outcome for each deck leading up to the trial in question. When directly compared, the deck-based approach resulted in a more advantageous behavioral profile than did the trial-based approach. Analysis of SCR data revealed no significant differences between methods for physiological measurements of SCR fluctuations or anticipatory responses to disadvantageous picks. Post hoc investigation of the trial-based method revealed Deck B contributed to both advantageous and disadvantageous decision making for the majority of participants. When divided by blocks of 20, the number of advantageous to disadvantageous choices reversed as the task progressed despite the total number of picks from Deck B remaining high. SCR fluctuations for Deck B, although not significantly different from the other decks, did show a sharp decline after the first block of 20 and remained below levels for Decks C and D toward the end of the task, suggesting that participants may have gained knowledge of the frequency of loss for this deck. (c) 2012 APA, all rights reserved

  18. Reliability Study in Solar Panels

    OpenAIRE

    Español Lifante, Albert

    2012-01-01

    Crystalline silicon Modules are formed by single silicon photovoltaic cells. Since each one of these cells individually contributes to the overall electric power of the panel, the failure of one of them directly affects to its benefits and performance. To Minimize these negative effects, junction boxes with few bypass diodes are usually included in Photovoltaic Solar panels. A still experimental way to built solar panels is to integrate bypass diodes in every single cell, which would in...

  19. ALDS 1978 panel review. [PNL

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.L. (ed.)

    1979-08-01

    Pacific Northwest Laboratory (PNL) is examining the analysis of large data sets (ALDS). After one year's work, a panel was convened to evaluate the project. This document is the permanent record of that panel review. It consists of edited transcripts of presentations made to the panel by the PNL staff, a summary of the responses of the panel to these presentations, and PNL's plans for the development of the ALDS project. The representations of the PNL staff described various aspects of the project and/or the philosophy surrounding the project. Supporting materials appear in appendixes. 20 figures, 4 tables. (RWR)

  20. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  1. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument

  2. Panel summary report

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Previous Advisory Group Meetings have led to IAEA Technical Reports No.15=5 (1974) on thermal discharge, 118 (1970) and 169 (1975) on sampling, storage and analysis methods for marine radioactivity studies, 167 (1975) on design of marine biological studies permitting comparative evaluation, and 172 (1976) on the effects of ionizing radiation on aquative organisms and eco-systems. The aim of the present report was a bringing into perspective not only problems designing radioecological experiments but to describe reliable experimental methodology suitable for a successful evaluation of radioactivity cycling, and of the effects of such radioactive additions to aquatic environments, as a result of nuclear activities. Specific examples are described. Individual studies presented to the Panel have been treated in detail, and constitute 19 separate INIS entries

  3. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  4. Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck

    Science.gov (United States)

    Chon, Woochong; Amano, Ryoichi S.

    Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.

  5. Super-light SL-Deck elements with fixed end connections

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2015-01-01

    Super-light structures combining light and strong concrete are invented by the author at the Technical University of Denmark and commercialized by the spin-out company Abeo Ltd. The first product is the SL-Deck element that represents a number of strong improvements to the building industry among...... to low weight and due to possibilities of continuous elements and fixed end connections. A new machine is constructed producing the elements and BIM software is developed optimizing the structures, the production, and the logistics and running the machine. New production lines are established...... building projects leading to considerable savings of time and costs and opening up new possibilities for architects and users. Furthermore, the paper describes full-scale test results with new fixed end connections between decks and walls and between decks and columns in facades giving more possibilities...

  6. Structural Performance Evaluation of Tsing MA Bridge Deck Using Long-Term Monitoring Data

    Science.gov (United States)

    Ni, Y. Q.; Xia, H. W.; Ko, J. M.

    The Tsing Ma Bridge in Hong Kong is suspension bridge with a main span of 1377 m carrying both highway and railway traffic. After completing its construction in 1997, the bridge was instrumented by the Hong Kong SAR Government Highways Department with a long-term structural health monitoring system comprising about 300 sensors permanently installed on the bridge. As part of this monitoring system, a total of 110 strain gauges have been installed to measure strain at the deck cross-sections and bearings. In this study, a method for real-time structural performance evaluation of the stiffening deck system making use of long-term strain measurement data is proposed and verified using the strain monitoring data from a typical deck cross-section of the Tsing Ma Bridge.

  7. Flow field analysis of a pentagonal-shaped bridge deck by unsteady RANS

    Directory of Open Access Journals (Sweden)

    Md. Naimul Haque

    2016-01-01

    Full Text Available Long-span cable-stayed bridges are susceptible to dynamic wind effects due to their inherent flexibility. The fluid flow around the bridge deck should be well understood for the efficient design of an aerodynamically stable long-span bridge system. In this work, the aerodynamic features of a pentagonal-shaped bridge deck are explored numerically. The analytical results are compared with past experimental work to assess the capability of two-dimensional unsteady RANS simulation for predicting the aerodynamic features of this type of deck. The influence of the bottom plate slope on aerodynamic response and flow features was investigated. By varying the Reynolds number (2 × 104 to 20 × 104 the aerodynamic behavior at high wind speeds is clarified.

  8. 46 CFR 179.350 - Openings in the side of a vessel below the bulkhead or weather deck.

    Science.gov (United States)

    2010-10-01

    ... whether the port light is or is not capable of being opened. (c) Except for engine exhausts, each inlet or... deck. (a) On a vessel operating on exposed or partially protected waters, an opening port light is not permitted below the weather deck unless the sill of the port light is at least 760 millimeters (30 inches...

  9. 49 CFR 214.519 - Floors, decks, stairs, and ladders of on-track roadway maintenance machines.

    Science.gov (United States)

    2010-10-01

    ... roadway maintenance machines. 214.519 Section 214.519 Transportation Other Regulations Relating to... SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.519 Floors, decks, stairs, and ladders of on-track roadway maintenance machines. Floors, decks, stairs, and ladders of on-track roadway...

  10. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    Science.gov (United States)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  11. Simple model of cable-stayed bridge deck subjected to static wind loading

    Science.gov (United States)

    Kang, Yi-Lung; Wang, Yang Cheng

    1997-05-01

    Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.

  12. Towards a characterization of information automation systems on the flight deck

    Science.gov (United States)

    Dudley, Rachel Feddersen

    This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.

  13. Field and Laboratory Decay Evaluations of wood-plastic Composites

    Science.gov (United States)

    Rebecca E. Ibach; Marek Gnatowski; Grace Sun

    2013-01-01

    Experimental wood–plastic composites (WPCs) were made so that they matched the manufacturing process, dimensions, and water absorption of some commercial decking boards. WPC samples from selected formulations were divided into two identical groups. The first group was exposed in exterior conditions in Vancouver, British Columbia, and Hilo, Hawaii, at sun and shadow...

  14. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    Science.gov (United States)

    1990-01-01

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  15. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    Science.gov (United States)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  16. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  17. Ergonomic Redesign of an Industrial Control Panel

    Directory of Open Access Journals (Sweden)

    S Raeisi

    2016-07-01

    Full Text Available Operator's role in industrial control centers takes place in time, which is one of the most important determinants of whether an expected action is going to be successful or not. In certain situations, due to the complex nature of the work, the existing interfaces and already prepared procedures do not meet the dynamic requirements of operator's cognitive demands, making the control tasks unnecessarily difficult. This study was conducted to identify ergonomic issues with a specific industrial control panel, and redesign its layout and elements to enhance its usability. Task and link analysis methodologies were implemented. All essential functions and supporting operations were identified at the required trivial levels. Next, the weight of any possible link between the elements of the panel was computed as a composite index of frequency and importance. Finally, all components were rearranged within a new layout, and a computerized mockup was generated. A total of 8 primary tasks was identified, including 4 system failure handling tasks, switching between manual and automated modes, and 3 types of routine vigilance and control tasks. These tasks were broken down into 28 functions and 145 supporting operations, accordingly. Higher link values were observed between hand rest position and 2 elements. Also, 6 other components showed robust linkages. In conclusion, computer modeling can reduce the likelihood of accidents and near misses in industrial control rooms by considering the operators' misperception or mental burden and correcting poor design of the panels and inappropriate task allocation.

  18. Strong increase of solar panels

    International Nuclear Information System (INIS)

    Segers, R.; Janssen, S.

    2012-01-01

    The number of installed solar panels in 2011 has increased again. 40 megawatt of new panels have been installed. This increase is twice as high as the year before. The production of solar power increased to 90 million kWh in 2011 as a result of this expansion. However, the share of solar power in total energy use is still very limited. [nl

  19. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  20. Matlab Software for Spatial Panels

    NARCIS (Netherlands)

    Elhorst, J.Paul

    2014-01-01

    Elhorst provides Matlab routines to estimate spatial panel data models at his website. This article extends these routines to include the bias correction procedure proposed by Lee and Yu if the spatial panel data model contains spatial and/or time-period fixed effects, the direct and indirect

  1. Mounting clips for panel installation

    Science.gov (United States)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph; Valdes, Francisco

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the first spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.

  2. Considerations on FEM modeling in analyzing buckling and plastic collapse of a detection control; Boto panel no zakutsu sosei hokai kaiseki ni okeru FEM model ka ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T; Fujikubo, M; Yanagihara, D; Irisawa, M [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1997-10-01

    Buckling and plastic collapse of upper decks and bottom outer plates of a hull results directly in longitudinal bending collapse of the hull. Therefore, discussions were given on analysis for pressure destruction strength of a detection control panel which assumes an upper deck and a bottom outer plate. Pressure destruction behavior of the panting panel is a complex phenomenon accompanying non-linearity and geometrical non-linearity of the materials. Its whole phenomenon may be analyzed by using the finite element method (FEM) as a principle, but the analysis is not efficient. Therefore, considerations were given in relation to modeling when using the FEM. The considerations were given on a panel attached with flat steel panting members with respect to the modeling scope which considers the buckling mode according to the aspect ratio of the panel partitioned by the deflection control members. If the local buckling mode of the panel is an even number wave mode in the longitudinal direction, a triple span model is required. A modeling scope for a case of being subjected to water pressure and in-plane compression was considered on a panel attached with angle-type steel members having non-symmetric cross section. In this case, a triple bay model is more preferable to reproduce the behavior under water pressure loading. 1 ref., 6 figs.

  3. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  4. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  5. Composite slab behavior and strength analysis under static and dynamic loads

    Directory of Open Access Journals (Sweden)

    Florin Radu HARIGA

    2012-07-01

    Full Text Available Steel-framed buildings are typically constructed using steel-deck-reinforced concrete floor slabs. The in-plane (or diaphragm strength and stiffness of the floor system are frequently utilized in the lateral load-resisting system design. This paper presents the results of an experimental research program in which four full size composite diaphragms were vertically loaded to the limit state, under static or dynamic loads. Two test specimens were provided with longitudinal steel-deck ribs, and the other two specimens with cross steel-deck ribs. Typical composite diaphragm limit states are described, and the controlling limit state for each of the full size tests is indicated. The interaction effects between the reinforced concrete slab and the steel girder on the composite slab strength and stiffness were mainly studied.

  6. Weight reductions for the airbus A380; postbuckling of the A380 VTP skin panels

    NARCIS (Netherlands)

    Kroese, R.

    2014-01-01

    The skin panels of the Vertical Tail Plane (VTP) are the largest single piece composite components assembled on the Airbus A380. By allowing postbuckling to these skin panels might result in severe weight reductions for the VTP of the A380. The goal of the study is to give an indication of possible

  7. Panel discussion: Nuclear cardiology

    International Nuclear Information System (INIS)

    Schwaiger, M.

    1991-01-01

    The panel discussion opened with a question concerning whether true quantification of myocardial sympathetic presynaptic function or receptor density can be obtained with currently available radiopharmaceuticals. What are the relative advantages of the two general approaches that have been proposed for quantification: (1) The assessment of tracer distribution volume in tissue following bolus injection and (2) quantification based on tracer displacement kinetics following administration of excess unlabeled tracer. It was pointed out that tracer kinetics for the delineation of presynaptic and postsynaptic binding sites by radiopharmaceuticals or radiolabeled receptor antagonists are rather complex, reflecting several physiologic processes that are difficult to separate. Several approaches were examined. The possibility of regional definition of receptor density by PET was questioned and it was noted that regions of interest can be applied to calculate regional receptor kinetics. However, due to the limited spatial resolution of PET, only average transmural values can be determined. The discussion then turned to the discrepancy between the known sparse parasympathetic innervation of the heart and the high density of muscarinic receptors observed with PET. Experiences with MIBG imaging were reported, including uptake in the transplanted heart and interaction of drugs with MIBG uptake

  8. 1994 Panel 1 Utilization Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The Waste Isolation Pilot Plant (WIPP) is intended to receive, handle, and permanently dispose of transuranic (TRU) waste. To fulfill this mission, the U.S. Department of Energy (DOE) constructed a full-scale facility to demonstrate both technical and operational principles of the permanent isolation of TRU waste. The WIPP consists of surface and underground facilities. Panel 1 is situated in the underground facility horizon which is located approximately 2,150 feet below the surface in the predominantly halite Salado Formation. The Panel 1 Utilization Plan provides a strategy for the optimum use of Panel 1 which is consistent with the priorities established by the DOE to accomplish the WIPP mission. These priorities, which include maintaining personnel safety, conducting performance assessment, and continued operational enhancements, are the guiding premise for the decisions on the planned usage of the WIPP underground facility. The continuation of ongoing investigations along with the planned testing and training to be carried out in Panel 1 will enhance the current knowledge and understanding of the operational and geotechnical aspects of the panel configuration. This enhancement will ultimately lead to safer, more efficient, and more cost-effective methods of operation. Excavation of the waste storage area began in May 1986 with the mining of entries to Panel 1. The original design for the waste storage rooms at the WIPP provided a limited period of time during which to mine the openings and to emplace waste. Each panel, consisting of seven storage rooms, was scheduled to be mined and filled in less than 5 years. Panel 1 was developed to receive waste for a demonstration phase that was scheduled to start in October 1988. The demonstration phase was deferred, and the experimental test program was modified to use contact-handled (CH) transuranic waste in bin-scale tests, planned for Room 1, Panel 1

  9. Measurement of bridge deck layout prior to concrete placement : final report.

    Science.gov (United States)

    2017-01-01

    The main objective of this research was to develop a method of measuring and : producing as built bridge drawings. This was the first step in the feasibility : assessment for automated bridge deck paving. The research goes to show the : standard meth...

  10. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  11. Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

    Science.gov (United States)

    Xue, Y. C.; Qian, Z. D.; Zhang, M.

    2017-01-01

    In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

  12. To the question of reliability and durability ballastless deck of bridge

    Directory of Open Access Journals (Sweden)

    V.V. Prystynskaya

    2012-12-01

    Full Text Available The principal causes of operational defects in bridge ballastless deck plates are considered in the article. The drawbacks of these plates construction that prevent from achieving a higher level of bridge framework reliability and durability have been analysed.

  13. A simple analytic treatment of rescattering effects in the Deck model

    International Nuclear Information System (INIS)

    Bowler, M.G.

    1979-01-01

    A simple application of old-fashioned final-state interaction theory is shown to give the result that rescattering the Deck model of diffraction dissociation is well represented by multiplying the bare amplitude by esup(idelta)cosdelta. The physical reasons for this result emerge particularly clearly in this formulation. (author)

  14. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  15. Moving dynamic loads caused by bridge deck joint unevenness - a case study

    CSIR Research Space (South Africa)

    Steyn, WJV

    2004-11-01

    Full Text Available This paper focus on the general guidelines regarding maximum unevenness from bridge deck joints for typical South African heavy vehicles, in order to minimize the generation of moving variable loads. In a recent investigation it was found that areas...

  16. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  17. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  18. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  19. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    Science.gov (United States)

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  20. Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling

    Science.gov (United States)

    Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.

    2010-01-01

    School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and…

  1. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  2. Mechanical and chemical properties of CCA-treated lumber removed from spent residential decks

    Science.gov (United States)

    Robert L. Smith; David Bailey; Philip A. Araman

    2007-01-01

    The amount of chromated copper arsenate (CCA)- treated wood being removed from spent residential decks is increasing at a tremendous rate. While most spent CCA-treated wood is being disposed in landfills, further useful and environmentally beneficial alternatives have to be met. If the volume of CCA-treated wood reaching landfills continues to rise, stricter disposal...

  3. Load test of the 277W Building high bay roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  4. Evaluation of performance and maximum length of continuous decks in bridges : part 1.

    Science.gov (United States)

    2011-06-01

    The purpose of this research was to evaluate the performance history of continuous bridge decks in the State of Georgia, to determine why the current design detail works, to recommend a new design detail, and to recommend the maximum and/or optimum l...

  5. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  6. STS 51-L crewmembers during training session in flight deck simulation

    Science.gov (United States)

    1985-01-01

    S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.

  7. Two-course bonded concrete bridge deck construction : condition and performance after six years.

    Science.gov (United States)

    1981-01-01

    This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...

  8. Plans for crash-tested wood bridge railings for concrete decks

    Science.gov (United States)

    Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal. Duwadi

    1998-01-01

    As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...

  9. Bridge deck cracking : effects on in-service performance, prevention, and remediation.

    Science.gov (United States)

    2015-08-01

    The main objectives of this project were: (a) to identify the causes of early-age cracking in concrete bridge decks, (b) to provide : recommendations for effective mitigation of early-age cracking, (c) to assess the effect of cracks on the long-term ...

  10. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  11. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  12. Thermal Analysis of Solar Panels

    Science.gov (United States)

    Barth, Nicolas; de Correia, João Pedro Magalhães; Ahzi, Saïd; Khaleel, Mohammad Ahmed

    In this work, we propose to analyze the thermal behavior of PV panels using finite element simulations (FEM). We applied this analysis to compute the temperature distribution in a PV panel BP 350 subjected to different atmospheric conditions. This analysis takes into account existing formulations in the literature and, based on NOCT conditions, meteorological data was used to validate our approach for different wind speed and solar irradiance. The electrical performance of the PV panel was also studied. The proposed 2D FEM analysis is applied to different region's climates and was also used to consider the role of thermal inertia on the optimization of the PV device efficiency.

  13. Screening life cycle assessment study of a sisal fibre reinforced micro-concrete structural insulated panel

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2013-12-01

    Full Text Available First international conference on composites, biocomposites and nanocomposites, DUT, Durban, South Africa, 2-4 December 2013 SCREENING LIFE CYCLE ASSESSMENT STUDY OFA SISAL FIBRE REINFORCED MICRO-CONCRETE STRUCTURAL INSULATED PANEL Naa Lamkai Ampofo...

  14. Demonstration and Validation of a Lightweight Composite Bridge Deck Technology as an Alternative to Reinforced Concrete

    Science.gov (United States)

    2016-08-01

    Examples of the sensor placement are shown in Fig- ure 58 through Figure 60. A fully loaded dump truck weighing 78,660 lb was driven across the bridge at...release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and...environmental challenges. ERDC develops innovative solutions in civil and military engineering , geospatial sciences, water resources, and

  15. Bridge deck surface temperature monitoring by infrared thermography and inner structure identification using PPT and PCT analysis methods

    Science.gov (United States)

    Dumoulin, Jean

    2013-04-01

    basis of the mast and at a same elevation than the bridge deck surface. This trial took place during 4 days, but our system was leaved in stand alone acquisition mode only during 3 days. Thanks to the software developed and the small computer hardware used, thermal image were acquired at a frame rate of 0.1 Hz by averaging 50 thermal images leaving the original camera frame rate fixed at 5 Hz. Each hour, a thermal image sequence was stored on the internal hard drive and data were also retrieved, on demand, by using a wireless connection and a tablet PC. In the second part of this work, thermal image sequences analysis was carried out. Two analysis approaches were studied: one based on the use of the Fast Fourier Transform [2] and the second one based on the Principal Component Analysis [3-4]. Results obtained show that the inner structure of the deck was identified though thermal images were affected by the fact that the bridge was open to traffic during the whole experiments duration. ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663. References [1] Dumoulin J. and Averty R., « Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", QIRT 2012, Naples, Italy, June 2012. [2] Cooley J.W., Tukey J.W., "An algorithm for the machine calculation of complex Fourier series", Mathematics of Computation, vol. 19, n° 90, 1965, p. 297-301. [3] Rajic N., "Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures", Composite Structures, vol 58, pp 521-528, 2002. [4] Marinetti S., Grinzato E., Bison P. G., Bozzi E., Chimenti M., Pieri G. and Salvetti O. "Statistical analysis of IR thermographic sequences by PCA," Infrared Physics & Technology vol 46 pp 85-91, 2004.

  16. Study of the action of blast deck charge in rocky soils

    Directory of Open Access Journals (Sweden)

    Boiko V.V.

    2017-04-01

    Full Text Available Blasting (B in the industry, including the mining extraction of minerals, are carried out mostly with the use of blasthole charges that systematically distributed on the block that is undermined, by individual groups. The latter are blasted according to the scheme of short-delay firing (SDF through the intervals that are accepted not less than 20 Ms. Thus, the seismic effect of group charge explosion, consisting of individual blasthole charges and that actually is a group located charge determined by the formula of concentrated charge. Blast deck charges are effectively used in the driving of the trenches in the mining, formation of screens and cracks near the security objects. Only this method of performing blasting allows to define seismic effect in the transition from one diameter of a charge to another, as well as to determine the actual number of detonated charges in one group, which may differ from the calculated in drilling and blasting project. The work analyzes the physical essence of processes happened while blasting of blast deck charges. The effect of the orientation of the seismic action of blasting of blast deck charges towards the allocation line of charges is investigated. The results of generalized dependence of the speed of the displacement of the ground by the blast parameters and epicentral distance are obtained. We demonstrate with specific examples that blast deck charges that blasting simultaneously make a major chain of the career massive explosions at mining. Keywords: seismic fluctuations; the number of charges; the interaction of charges; the distance between the charges; the coefficients of the seismicity and the attenuation of the intensity of the waves; the unit charge; blast deck and blasthole charges; phase shifting; effective charge.

  17. Exascale Workshop Panel Report Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2010-07-01

    The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

  18. Load Distribution Factors for Composite Multicell Box Girder Bridges

    Science.gov (United States)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  19. How to Meet the Last OIE Expert Surveillance Panel Recommendations on Equine Influenza (EI Vaccine Composition: A Review of the Process Required for the Recombinant Canarypox-Based EI Vaccine

    Directory of Open Access Journals (Sweden)

    Romain Paillot

    2016-11-01

    Full Text Available Vaccination is highly effective to prevent, control, and limit the impact of equine influenza (EI, a major respiratory disease of horses. However, EI vaccines should contain relevant equine influenza virus (EIV strains for optimal protection. The OIE expert surveillance panel annually reviews EIV evolution and, since 2010, the use of Florida clade 1 and 2 sub-lineages representative vaccine strains is recommended. This report summarises the development process of a fully- updated recombinant canarypox-based EI vaccine in order to meet the last OIE recommendations, including the vaccine mode of action, production steps and schedule. The EI vaccine ProteqFlu contains 2 recombinant canarypox viruses expressing the haemagglutinin of the A/equine/Ohio/03 and A/equine/Richmond/1/07 isolates (Florida clade 1 and 2 sub-lineages, respectively. The updated EI vaccine was tested for efficacy against the representative Florida clade 2 EIV strain A/equine/Richmond/1/07 in the Welsh mountain pony model. Protective antibody response, clinical signs of disease and virus shedding were compared with unvaccinated control ponies. Significant protection was measured in vaccinated ponies, which supports the vaccine registration. The recombinant canarypox-based EI vaccine was the first fully updated EI vaccine available in the EU, which will help to minimise the increasing risk of vaccine breakdown due to constant EIV evolution through antigenic drift.

  20. Analytical and Numerical Study of Foam-Filled Corrugated Core Sandwich Panels under Low Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available Analytical and finite element simulations are used to predict the effect of core density on the energy absorption of composite sandwich panels under low-velocity impact. The composite sandwich panel contains two facesheets and a foam-filled corrugated core. Analytical model is defined as a two degree-of-freedom system based on equivalent mass, spring, and dashpot to predict the local and global deformation response of a simply supported panel. The results signify a good agreement between analytical and numerical predictions.

  1. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  2. Analysis of 3-panel and 4-panel microscale ionization sources

    International Nuclear Information System (INIS)

    Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T.; Piascik, Jeffrey R.; Gilchrist, Kristin H.; Stoner, Brian R.

    2010-01-01

    Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10 -4 to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

  3. Analysis of irradiance losses on a soiled photovoltaic panel using contours

    International Nuclear Information System (INIS)

    Pulipaka, Subrahmanyam; Kumar, Rajneesh

    2016-01-01

    Highlights: • An irradiance loss factor to quantify relationship between irradiance, tilt angle and power of soiled panel is proposed. • Artificial soiling experiment and Sieve analysis are performed to obtain data for developing contours. • Contour analysis is used to observe the deviation in power of a soiled panel from clean panel. • A correction factor to calculate power of a soiled panel is proposed. • The correction factor is expressed in terms of soil particle size composition present on panel. - Abstract: This paper introduces an irradiance loss factor that quantifies the relationship between irradiance, tilt angle and power output of a soiled panel with the soil particle size composition. Artificial soiling experiments were performed using four soil samples at irradiance levels between 200 and 1200 W/m"2 at 18 tilt angles. Biharmonic interpolation was used to develop power contours in terms of irradiance and tilt angle from experimentally obtained data. These contours were compared with ideal ones of a clean panel to observe deviation in the nature of contours for a soiled panel. A correction factor in terms of particle size composition (as a coefficient to tilt angle) was proposed to calculate power output of a tilted soiled panel. The angular loss on a panel with soil sample containing 150 μm particle size in abundance was observed to be 22% and for sample containing 75 μm particles in majority, the loss is 24%. Presence of 300 μm particle size in abundance causes a 23.7% loss, while 52% angular loss was observed for soil with highest composition of less than 75 μm particle size.

  4. When Patients Write the Guidelines: Patient Panel Recommendations for the Treatment of Rheumatoid Arthritis.

    Science.gov (United States)

    Fraenkel, Liana; Miller, Amy S; Clayton, Kelly; Crow-Hercher, Rachelle; Hazel, Shantana; Johnson, Britt; Rott, Leslie; White, Whitney; Wiedmeyer, Carole; Montori, Victor M; Singh, Jasvinder A; Nowell, W Benjamin

    2016-01-01

    How best to involve patients in the development of clinical practice guideline (CPG) recommendations is not known. We sought to determine the feasibility and value of developing CPG recommendations based on a voting panel composed entirely of patients, with the ultimate goal of comparing the patients' recommendations to ones developed by a physician-dominated voting panel on the same clinical questions. Ten patients with rheumatoid arthritis completed 8 hours of training on evidence-based medicine and guideline development. They constituted a voting panel and, with 2 American College of Rheumatology staff with expertise in CPG development and a physician facilitator, subsequently met at a face-to-face meeting to develop recommendations. They applied the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology to formulate recommendations on 18 questions for which there was evidence warranting moderate or high confidence. The patient panel developed recommendations for 16 of the 18 questions; for the other 2, the panel thought there were insufficient data to support a recommendation. For 13 of the 16 questions, the patient panel recommended the same course of action as did the physician-dominated panel. Differences were due to how the 2 panels valued the balance between benefits and harms. Patient and physician-dominated panels developed the same recommendations for most questions for which there was evidence warranting moderate to high confidence. Additional experiences are necessary to advance the evidence necessary to determine what panel composition is optimal to produce the best guidelines. © 2015, American College of Rheumatology.

  5. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    Science.gov (United States)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  6. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  7. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management - pilot project.

    Science.gov (United States)

    2016-09-29

    This project piloted the findings from an initial research and development project pertaining to the detection, : quantification, and visualization of bridge deck distresses through the use of remote sensing techniques, specifically : combining optic...

  8. Flight deck human factors issues for National Airspace System (NAS) en route controller pilot data link communications (CPDLC)

    Science.gov (United States)

    2017-05-01

    Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...

  9. Human factors considerations in the design and evaluation of flight deck displays and controls : version 2.0

    Science.gov (United States)

    2016-12-01

    The objective of this effort is to have a single source reference document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on hu...

  10. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    Science.gov (United States)

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  11. Development and validation of deterioration models for concrete bridge decks - phase 2 : mechanics-based degradation models.

    Science.gov (United States)

    2013-06-01

    This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...

  12. Development of a precast bridge deck overhang system for the rock creek bridge.

    Science.gov (United States)

    2008-12-01

    Precast, prestressed panels are commonly used at interior beams for bridges in Texas. The use of these : panels provides ease of construction, sufficient capacity, and good economy for the construction of : bridges in Texas. Current practice for the ...

  13. A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect

    Science.gov (United States)

    Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng

    2018-01-01

    Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.

  14. New ASTM Standards for Nondestructive Testing of Aerospace Composites

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.

    2010-01-01

    Problem: Lack of consensus standards containing procedural detail for NDE of polymer matrix composite materials: I. Flat panel composites. II. Composite components with more complex geometries a) Pressure vessels: 1) composite overwrapped pressure vessels (COPVs). 2) composite pressure vessels (CPVs). III. Sandwich core constructions. Metal and brittle matrix composites are a possible subject of future effort.

  15. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  16. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    2002-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  17. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  18. An Advanced Coupled Genetic Algorithm for Identifying Unknown Moving Loads on Bridge Decks

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2014-01-01

    Full Text Available This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM and a coupled genetic algorithm (c-GA. We developed the inverse technique using a coupled genetic algorithm that can make global solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results demonstrate the excellence of the method from the standpoints of computation efficiency and avoidance of premature convergence.

  19. An alternative randomized response model using two deck of cards: a rejoinder

    Directory of Open Access Journals (Sweden)

    Raghunath Arnab

    2014-10-01

    Full Text Available The Randomized response (RR technique with two decks of cards proposed by Odumade and Singh (2009 can always be made more efficient than the RR techniques proposed by Warner (1965, Mangat and Singh (1990, and Mangat (1994 by adjusting the proportion of cards in the decks. Abdelfatah et al. (2011 modified Odumade and Singh (2009 RR technique and claimed that their method can be more efficient than the Warner (1965 model. In this paper it is shown that such claim is not valid and the RR technique proposed by Abdelfatah et al. (2011 is in fact less efficient than the Warner (1965 technique at equal protection of respondents. Such finding are recently shown by Giordano and Perri (2011.

  20. Human engineering analysis for the high speed civil transport flight deck

    Science.gov (United States)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  1. Review panel comments on geomedia specific research

    International Nuclear Information System (INIS)

    Heath, C.A.

    1984-01-01

    This includes remarks made by three panel members concerning geomedia-specific repository relevant research. The scientific work in the materials area has progressed significantly. Investigators are showing a better understanding of the importance of groundwater compositions. Significant attention is being paid to the importance of colloids and complexing agents. Good planning seems to be in evidence in the Nevada program. Much cooperation and planning in the materials program is needed. Requirements concerning the performance of waste management systems were included. Other topics discussed at the symposium were interactive testing of waste forms, canister materials, and repository rock. Characterization of the chemical and physical environment in the near-field was considered by several speakers. These papers and discussions were part of the Seventh International Symposium on the Scientific Ban's for Nuclear Waste Management

  2. Structural maintenance planning based on historical data of corroded deck plates of tankers

    International Nuclear Information System (INIS)

    Garbatov, Y.; Guedes Soares, C.

    2009-01-01

    A probabilistic maintenance and repair analysis of tanker deck plates subjected to general corrosion is presented. The decisions about when to perform maintenance and repair on the structure are studied. Different practical scenarios are analyzed and optimum repair times are proposed. The optimum repair age and intervals are defined based on the statistical analysis of operational data using the Weibull model and some assumptions about the inspection and time needed for repair. The total cost is calculated in normalized form.

  3. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  4. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Science.gov (United States)

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  5. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  6. STS-46 'blue' shift crewmembers look up from work on OV-104's flight deck

    Science.gov (United States)

    1992-01-01

    STS-46 'blue' shift crewmembers look up from checklist procedures to have their picture taken on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Seated at the commanders station (left) is Pilot Andrew M. Allen with Italian Payload Specialist Franco Malerba positioned in front of the center console and European Space Agency (ESA) Mission Specialist seated at the pilots station (right). MS Marsha S. Ivins is in the interdeck access hatch at the right bottom corner of the photo.

  7. Choice Experiment Analysis of Outdoor Decking Material Selection in E-Commerce Market in Finland

    OpenAIRE

    Holopainen, Jani Markus; Toppinen, Anne Maarit Kristiina; Lähtinen, Katja Päivikki; Rekola, Mika Olavi

    2017-01-01

    Since the early 1990s, there has been hope that the uptake of certified forest products would ensure more sustainable forest management and also deliver business benefits along the value chain. Our study applies a Discrete Choice Experiment (DCE) to model an e-commerce purchase in the case of multiple products with various attribute and certification combinations in the Finnish retail outdoor decking material market. We received 2772 responses from 231 participants in an online survey. Applyi...

  8. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM

    Czech Academy of Sciences Publication Activity Database

    Aygül, M.; AL-Emrani, M.; Urushadze, Shota

    2012-01-01

    Roč. 40, July (2012), s. 129-142 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) 7E08098 Grant - others:evropská komise(XE) RFSR-CT-2008-00033 (BRIFAG) Institutional support: RVO:68378297 Keywords : orthotropic bridge deck * open ribs * structural hot spot stress * effective notch stress Subject RIV: JM - Building Engineering Impact factor: 1.976, year: 2012

  9. Load test of the 272E Building high bay roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 272E Building high bay roof area was load tested according to the approved load-test procedure. The 272E Building is located in the 200 East Area of the Hanford Site and has the following characteristics: Roof deck -- wood decking supported by 4 x 14 timber purlins; Roof membrane -- tar and gravel; Roof slope -- flat (<10 deg); and Roof elevation -- maximum height of about 63 ft. The 272 Building was visited in August 1992 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determine to be the best way to qualify the roof. The pre-test briefing consisted of filling out the pre-test checklist, discussing proper lifting techniques, reviewing the fall-protection plan, reviewing the job hazards analysis, and reviewing the robot travel path. The load-test results consist of visual observations and the test engineer's conclusions. Visual observations found no adverse conditions such as large deflections or permanent deformations. No deflection measurements were recorded because the tar and gravel on roof get displaced by the robot tracks; the result is large variations in deflection measurements. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  10. Experimental Analysis of Stiffness of the Riveted Steel Railway Bridge Deck Members’ Joints

    Directory of Open Access Journals (Sweden)

    Gocál Jozef

    2014-12-01

    Full Text Available The paper deals with the real behaviour of the riveted steel railway bridge deck members’ connections with respect to their bending stiffness. Attention is paid to the stringer-to-cross beam connection as well as the cross beam-to-main girder connection. The stiffness of the two connections is investigated on the basis of evaluation of the experimentally determined stress response of the observed structural members to the actual traffic load on an existing railway bridge.

  11. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  12. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-12-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  13. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  14. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  15. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2018-01-30

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  16. Solar panel truss mounting systems and methods

    Science.gov (United States)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  17. Mobile response in web panels

    NARCIS (Netherlands)

    de Bruijne, M.A.; Wijnant, A.

    2014-01-01

    This article investigates unintended mobile access to surveys in online, probability-based panels. We find that spontaneous tablet usage is drastically increasing in web surveys, while smartphone usage remains low. Further, we analyze the bias of respondent profiles using smartphones and tablets

  18. Keuringspanele ("Screening Panels") as Gepaste ...

    African Journals Online (AJOL)

    In this particular article attention is paid to screening panels as pre-trial mechanism with the exclusive purpose to select malpractice disputes, discourage unfounded disputes and to encourage an early settlement in case of a prima facie case. Several objections have been raised by critics in this regard, for instance, ...

  19. ASIST 2003: Part II: Panels.

    Science.gov (United States)

    Proceedings of the ASIST Annual Meeting, 2003

    2003-01-01

    Forty-six panels address topics including women in information science; users and usability; information studies; reference services; information policies; standards; interface design; information retrieval; information networks; metadata; shared access; e-commerce in libraries; knowledge organization; information science theories; digitization;…

  20. Risk-based decisionmaking (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.

    1995-12-31

    By means of a panel discussion and extensive audience interaction, explore the current challenges and progress to date in applying risk considerations to decisionmaking related to low-level waste. This topic is especially timely because of the proposed legislation pertaining to risk-based decisionmaking and because of the increased emphasis placed on radiological performance assessments of low-level waste disposal.

  1. Nonlinear Analysis and Post-Test Correlation for a Curved PRSEUS Panel

    Science.gov (United States)

    Gould, Kevin; Lovejoy, Andrew E.; Jegley, Dawn; Neal, Albert L.; Linton, Kim, A.; Bergan, Andrew C.; Bakuckas, John G., Jr.

    2013-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, developed by The Boeing Company, has been extensively studied as part of the National Aeronautics and Space Administration's (NASA s) Environmentally Responsible Aviation (ERA) Program. The PRSEUS concept provides a light-weight alternative to aluminum or traditional composite design concepts and is applicable to traditional-shaped fuselage barrels and wings, as well as advanced configurations such as a hybrid wing body or truss braced wings. Therefore, NASA, the Federal Aviation Administration (FAA) and The Boeing Company partnered in an effort to assess the performance and damage arrestments capabilities of a PRSEUS concept panel using a full-scale curved panel in the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. Testing was conducted in the FASTER facility by subjecting the panel to axial tension loads applied to the ends of the panel, internal pressure, and combined axial tension and internal pressure loadings. Additionally, reactive hoop loads were applied to the skin and frames of the panel along its edges. The panel successfully supported the required design loads in the pristine condition and with a severed stiffener. The panel also demonstrated that the PRSEUS concept could arrest the progression of damage including crack arrestment and crack turning. This paper presents the nonlinear post-test analysis and correlation with test results for the curved PRSEUS panel. It is shown that nonlinear analysis can accurately calculate the behavior of a PRSEUS panel under tension, pressure and combined loading conditions.

  2. Labor Costs and Foreign Direct Investment: A Panel VAR Approach

    OpenAIRE

    Bahar Bayraktar-Sağlam; Selin Sayek Böke

    2017-01-01

    This paper examines the endogenous interaction between labor costs and Foreign Direct Investment (FDI) in the OECD countries via the Panel VAR approach under system GMM estimates for the period 1995–2009. The available data allows identifying the relevance of the components of labor costs, and allows a detailed analysis across different sectors. Empirical findings have revealed that sectoral composition of FDI and the decomposition of labor costs play a significant role in investigating the d...

  3. Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Zhiyong Cai; Xianyan Zhou

    2013-01-01

    This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the...

  4. Use of Internet panels to conduct surveys.

    Science.gov (United States)

    Hays, Ron D; Liu, Honghu; Kapteyn, Arie

    2015-09-01

    The use of Internet panels to collect survey data is increasing because it is cost-effective, enables access to large and diverse samples quickly, takes less time than traditional methods to obtain data for analysis, and the standardization of the data collection process makes studies easy to replicate. A variety of probability-based panels have been created, including Telepanel/CentERpanel, Knowledge Networks (now GFK KnowledgePanel), the American Life Panel, the Longitudinal Internet Studies for the Social Sciences panel, and the Understanding America Study panel. Despite the advantage of having a known denominator (sampling frame), the probability-based Internet panels often have low recruitment participation rates, and some have argued that there is little practical difference between opting out of a probability sample and opting into a nonprobability (convenience) Internet panel. This article provides an overview of both probability-based and convenience panels, discussing potential benefits and cautions for each method, and summarizing the approaches used to weight panel respondents in order to better represent the underlying population. Challenges of using Internet panel data are discussed, including false answers, careless responses, giving the same answer repeatedly, getting multiple surveys from the same respondent, and panelists being members of multiple panels. More is to be learned about Internet panels generally and about Web-based data collection, as well as how to evaluate data collected using mobile devices and social-media platforms.

  5. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  6. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  7. Exterior Decay of Wood-Plastic Composite Boards: Characterization and Magnetic Resonance Imaging

    Science.gov (United States)

    Rebecca Ibach; Grace Sun; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2016-01-01

    Magnetic resonance imaging (MRI) was used to evaluate free water content and distribution in wood-plastic composite (WPC) materials decayed during exterior exposure near Hilo, Hawaii. Two segments of the same board blend were selected from 6 commercial decking boards that had fungal fruiting bodies. One of the two board segments was exposed in sun, the other in shadow...

  8. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  9. El Salvador - Rural Electrification - Solar Panels

    Data.gov (United States)

    Millennium Challenge Corporation — This is a summative qualitative performance evaluation (PE) of the solar panel component of the solar panel component of the RE Sub-Activity. The final report will...

  10. Installation package for concentrating solar collector panels

    Science.gov (United States)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  11. Retaining Ring Fastener for Solar Panels

    Science.gov (United States)

    Wilson, A. H.

    1983-01-01

    Simple articulating linkage secures solar panels into supporting framework. Five element linkage collapses into W-shape for easy placement into framework, then expands to form rectangle of same dimensions as those of panel.

  12. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  13. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  14. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    Science.gov (United States)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  15. Control panel for CMC 8080 crate controller

    International Nuclear Information System (INIS)

    Masayuki Inokuchi

    1978-01-01

    The main features of Control Panel for CAMAC Crate Controller CMC 8080 are described. The control panel can be directly connected with CRATE CONTROLLER's front panel connector with a 50 lines cable without any changes in CMC 8080 system circuits. (author)

  16. 78 FR 63501 - Meetings of Humanities Panel

    Science.gov (United States)

    2013-10-24

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES Meetings of Humanities Panel AGENCY: National Endowment for the Humanities. ACTION: Notice of meetings. SUMMARY: Pursuant to section 10(a)(2) of the... Humanities Panel will be held during November, 2013 as follows. The purpose of the meetings is for panel...

  17. 78 FR 74175 - Meetings of Humanities Panel

    Science.gov (United States)

    2013-12-10

    ... NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES Meetings of Humanities Panel AGENCY: National Endowment for the Humanities. ACTION: Notice of meetings. SUMMARY: Pursuant to section 10(a)(2) of the... Humanities Panel will be held during January 2014 as follows. The purpose of the meetings is for panel review...

  18. Solar panel assembly and support pad

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-10-07

    A solar panel assembly is described comprising at least one solar panel, support means for carrying said panel, and at least one support pad having a base plate, upstanding longitudinal sides, and spaced apart flange means for connection to said support means, said upstanding sides and opposed flange means defining an interior volume for receiving and holding weighting material.

  19. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  20. Panel 4 - applications to transportation

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F. [Argonne National Lab., IL (United States); Au, J. [Sundstrand Aerospace, Rockford, IL (United States); Bhattacharya, R. [Universal Energy Systems, Inc., Dayton, OH (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Blunier, D. [Caterpillar, Inc., Peoria, IL (United States); Boardman, B. [Deere & Co., Moline, IL (United States); Brombolich, L. [Compu-Tec Engineering, Chesterfield, MO (United States); Davidson, J. [Vanderbilt Univ., Nashville, TN (United States); Graham, M. [Northwestern Univ., Evanston, IL (United States); Hakim, N. [Detroit Diesel Corp., MI (United States); Harris, K. [Dubbeldee Harris Diamond Corp., Mt. Arlington, NJ (United States); Hay, R. [Norton Diamond Film, Northboro, MA (United States); Herk, L. [Southwest Research Inst., Southfield, MI (United States); Hojnacki, H.; Rourk, D. [Intelligent Structures Incorporated, Canton, MI (United States); Kamo, R. [Adiabatics, Inc., Columbus, IN (United States); Nieman, B. [Allied-Signal Inc., Des Plaines, IL (United States); O`Neill, D. [3M, St. Paul, MN (United States); Peterson, M.B. [Wear Sciences, Arnold, MD (United States); Pfaffenberger, G. [Allison Gas Turbine, Indianapolis, IN (United States); Pryor, R.W. [Wayne State Univ., Detroit, MI (United States); Russell, J. [Superconductivity Publications, Inc., Somerset, NJ (United States); Syniuta, W. [Advanced Mechanical Technology, Inc., Newton, MA (United States); Tamor, M. [Ford Motor Co., Dearborn, MI (United States); Vojnovich, T. [Dept. of Energy, Washington, DC (United States); Yarbrough, W. [Pennsylvania State Univ., University Park (United States); Yust, C.S. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    The aim of this group was to compile a listing of current and anticipated future problem areas in the transportation industry where the properties of diamond and DLC films make them especially attractive and where the panel could strongly endorse the establishment of DOE/Transportation Industry cooperative research efforts. This section identifies the problem areas for possible applications of diamond/DLC technology and presents indications of current approaches to these problems.