WorldWideScience

Sample records for composite coating prepared

  1. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  2. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  3. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Science.gov (United States)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  4. Nacre biomimetic design—A possible approach to prepare low infrared emissivity composite coatings

    International Nuclear Information System (INIS)

    Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang

    2013-01-01

    Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic–inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Highlights: ► Nacre-like composite coatings with low infrared emissivity were prepared. ► Infrared emissivity of PU/flaky bronze composite coatings can be as low as 0.206. ► One-dimensional photonic structure is the cause for low emissivity of the coatings.

  5. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  6. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  7. Preparation and properties of electrodeposited Ni-TiO2 composite coating

    Directory of Open Access Journals (Sweden)

    Sukhdev Singh Bhogal

    2015-03-01

    Full Text Available Mechanical properties of cutting tool like microhardness, coating adhesiveness & corrosion resistance are some important parameters, which affects the tool life and further indirectly affects the component cost. In this paper Ni-TiO2 composite coating was prepared through electrocodeposition in order to improve the mechanical properties of tungsten carbide cutting tools. Microhardness of Ni-TiO2 composite layer have been studied by varying input current density (mA, pH vale of electrolyte & particle concentration of TiO2 in electrolyte bath. Microstructure and phase structure of composite layer were investigated using atomic force microscope (AFM, scanning electronic microscope (SEM and X-ray diffraction (XRD. Surface morphology of Ni-TiO2 coated layer shows fine grained structures is obtained at low currents with higher microhardness of composite coating. Maximum microhardness 1483 HV of coated layer is found at 15mA of current and at 4.5 pH of watt’s solution. It has also been seen that with the increase of Ti, microhardness of the layer is also increases.  

  8. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  9. Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Hu, Hongjie; Liu, Xuanyong; Ding, Chuanxian

    2010-01-01

    Porous and nanostructured TiO 2 /tricalcium phosphate (TCP) composite coating on titanium substrate was prepared by plasma electrolytic oxidation (PEO). The microstructure and phase composition of the coating were characterized using scanning electron microscopy and X-ray diffraction. Its bioactivity was evaluated by simulated body fluid (SBF) immersion tests. MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. Potentiodynamic polarization tests were applied to measure its corrosion resistance. The results revealed that rough and hydrophilic TiO 2 /TCP composite coating with pores of several micrometers and grains of 50-200 nm was prepared by one-step PEO treatment. The TiO 2 /TCP composite coating showed good apatite-forming ability in SBF, and the TCP phase in the coating played an important role in inducing apatite formation. MG63 cells could adhere and proliferate on the surface of the coating, indicating its good cytocompatibility. The composite coating also exhibited good corrosion resistance in 0.9% NaCl solution.

  10. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  11. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  12. Radiation-curable coating composition

    International Nuclear Information System (INIS)

    Mibae, Jiro; Kawamura, Hiroshi; Takahashi, Masao.

    1970-01-01

    A radiation-curable coating composition, suitable for metal precoating, is provided. The composition is prepared by mixing 50 to 90 parts of a long chain fatty acid ester (A) with 10 to 50 parts of monomer (B) which is copolymerizable with (A). (A) is prepared by reacting a dimer acid (particularly the dimer of linolenic acid) with hydroxyalkyl methacrylate or glycidyl methacrylate. Upon irradiation with electron beams (0.1 to 3 MeV) the composition cures to yield a coating of high adhesion, impact resistance and bending resistance. In one example, 100 g of dimer acid (Versadime 216, manufactured by General Mills) was esterified with 50 g of 2-hydroxyethyl methacrylate. A zinc plated iron plate was coated with the product and irradiated with electron beams (2 Mrad). Pencil hardness was F; adhesion 0: impact resistance (Du Pont) 1 kg x 30 cm; bending resistance 2T. (Kaichi, S.)

  13. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  14. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  15. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  16. X-ray diffraction characterization of electrodeposited Ni–Al composite coatings prepared at different current densities

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Wu, Xueyan

    2014-01-01

    Highlights: • Different X-ray diffraction techniques were applied to characterize the Ni–Al composite coatings. • Al 2 O 3 formed on the coating surface after potentiostatic polarization experiments. • The relationship between corrosion and the Al content and the texture were also investigated. - Abstract: Ni–Al composite coatings were prepared at different applied current densities (1–8 A/dm 2 ) from a conventional Watt bath. The influences of current densities on the texture, grain size, microstrain, residual stress of the Ni–Al composite coating were investigated with X-ray diffraction method, which includes texture coefficients (TC) and pole figures, Voigt method, classical sin 2 ψ X-ray diffraction method and the Multi-reflection grazing incidence geometry (referred to as MGIXD) method. The morphology, composition, anti-corrosion properties and friction coefficients at 200 °C of the coating were also studied. The results showed that the texture of coating deposited at higher current densities evolved from the (2 0 0) preferred orientation with fiber texture to random orientation with reducing current density. Al particle content increased with reducing current density, grain size decreased with the reducing current density, while the microstrain and the tensile residual stresses increased. The MGIXD result showed stress gradient on the near-surface of the coating. Potentiodynamic polarization results demonstrated that the Ni–Al coating deposited at 2 A/dm 2 exhibited the best anti-corrosion which was contributed by the formation of Al 2 O 3 on the surface. The minimum friction coefficient of 0.57 was also observed for coating deposited at 4 A/dm 2

  17. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Science.gov (United States)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  18. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  19. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  20. Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong; Yi, Yi; Li, Liya; Ai, Hengyu; Wang, Xiaoxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Lulu [Jiangsu Eagle-globe Group Co., Ltd., Nantong 226600 (China)

    2017-04-15

    Fe powder was coated with NiZn ferrite by a co-precipitation method using chlorate as the raw material. Soft magnetic composites were manufactured via compaction and heat treatment of the coated powder. The coated powder and heat treated powder were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. Their magnetic properties were determined using a Quantum Design-Vibrating Sample Magnetometer (QD-VSM). The composites were analysed with SEM and EDS. The permeability and magnetic loss of the composites were measured with a B-H curve analyzer. The results show that, using the co-precipitation method, the raw precipitate was successfully prepared and coated the pure Fe powder and turned into spinel NiZn ferrite treated at 600 ℃ for 1 h. After heat treatment at 500 ℃ under air, the insulation coating layer of soft magnetic composite (SMC) was not destroyed and containing Fe, Ni, Zn and oxygen. The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range and the total loss was lower. - Graphical abstract: Scanning electron microscopy (SEM) images of Fe/(NiZn)Fe{sub 2}O{sub 4} composite powder heated at 600 ℃ for 1 h. - Highlights: • Fe particles were coated with (NiZn)Fe{sub 2}O{sub 4} via a co-precipitation and calcined method. • Coating layers were uniform and dense. • The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range.

  1. Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

    Directory of Open Access Journals (Sweden)

    Fathi MH.

    2002-08-01

    Full Text Available Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS, cobalt-chromium alloy (Vit and commercial pure titanium (cpTi were chosen as metallic substrates and hydroxyapatite coating (HAC were performed by plasma-spraying (PS process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morpholgy and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocmpatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS

  2. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Leilei, Zhang; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-01-01

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na + and CO 3 2− were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement

  3. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Leilei, Zhang, E-mail: zhangleilei1121@aliyun.com; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-09-15

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na{sup +} and CO{sub 3}{sup 2−} were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement.

  4. Mechanical behavior of nanocellulose coated jute/green epoxy composites

    Science.gov (United States)

    Jabbar, A.; Militký, J.; Ali, A.; Usman Javed, M.

    2017-10-01

    The present study was aimed to investigate the effect of nanocellulose coating on the mechanical behavior of jute/green epoxy composites. Cellulose was purified from waste jute fibers, converted to nanocellulose by acid hydrolysis and subsequently 3, 5 and 10 wt % of nanocellulose suspensions were coated over woven jute reinforcement. The composites were prepared by hand layup and compression molding technique. The surface topologies of treated jute fibers, jute cellulose nanofibrils (CNF), nanocellulose coated jute fabrics and fractured surfaces of composites were characterized by scanning electron microscopy (SEM). The prepared composites were evaluated for tensile, flexural, fatigue and fracture toughness properties. The results revealed the improvement in tensile modulus, flexural strength, flexural modulus, fatigue life and fracture toughness of composites with the increase in concentration of nanocellulose coating over jute reinforcement except the decrease in tensile strength.

  5. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  6. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  7. Process for a preparing a coating composition. [electrom irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, J; Nakamoto, H; Sunano, K

    1968-07-16

    An easily hardenable acrylic coating composition is prepared with low energy electron beams to develop a surface coating process without requiring solvents, and which may be widely applied by industry. The process comprises dissolving a polymer with a molecular weight in the 5,000 to 500,000 range in a monomer consisting of at least 30% by weight of acrylic monomer and 70% by weight of other vinyl monomers. The polymer is obtained by the polymerization of 1 to 40% by weight of vinyl monomer containing carboxyl radicals, 30 to 99% by weight of methacrylic monomer and 0 to 69% by weight of other copolymerizable vinyl monomers. Then, one mole of carboxyl radical of the solution reacts with 0.1 to 1.0 mole of vinyl monomer containing a glycidyl radical. In an embodiment, 17.5% by weight of methacrylate are dissolved in 82.5% of alkyl acrylate and undergo suspension polymerization in water in the presence of a catalyst to produce a beads-like polymer of molecular weight in the 5,000 to 500,000 range. Thereafter, 120 parts of the beads-like polymer are dissolved in 180 parts of acrylic monomer in the presence of a polymerization inhibitor. To this solution are added 22 parts of glycidyl methacrylate to react with carboxyl radicals, thereby obtaining non-solvent coating materials which contain the side chain vinyl radicals in the polymer. The acceleration voltage of the electron beams employed in the polymerization is generally 0.1 to 2.0 MeV. The dose rate to harden the coatings is in the range of 0.1 to 2.0 Mrad/sec.

  8. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings

    International Nuclear Information System (INIS)

    Kang Yingke; Chen Xinhua; Song Shiyong; Yu Laigui; Zhang Pingyu

    2012-01-01

    Hydrophilic silica nanoparticles (abridged as nano-SiO 2 ) surface-capped with epoxide were dispersed in the solution of epoxy resin (abridged as EP) in tetrahydrofuran under magnetic stirring. Resultant suspension of nano-SiO 2 in EP was then coated onto the surface of glass slides and dried at 80 °C in a vacuum oven for 2 h, generating epoxy resin-nanosilica composite coatings (coded as EP/nano-SiO 2 ). EP coating without nano-SiO 2 was also prepared as a reference in the same manner. A water contact angle meter and a surface profiler were separately performed to measure the water contact angles and surface roughness of as-prepared EP/nano-SiO 2 composite coatings. The friction and wear behavior of as-prepared EP/nano-SiO 2 composite coatings sliding against steel in a ball-on-plate contact configuration under unlubricated condition was evaluated. Particularly, the effect of coating composition on the friction and wear behavior of the composite coatings was highlighted in relation to their microstructure and worn surface morphology examined by means of scanning electron microscopy. Results indicate that EP/nano-SiO 2 composite coatings have a higher surface roughness and water contact angle than EP coating. The EP-SiO 2 coatings doped with a proper amount of hydrophilic SiO 2 nanoparticles show lower friction coefficient than EP coating. However, the introduction of surface-capped nanosilica as the filler results in inconsistent change in the friction coefficient and wear rate of the filled EP-matrix composites; and it needs further study to achieve well balanced friction-reducing and antiwear abilities of the composite coatings for tribological applications.

  9. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-01-15

    A simple two-step solution immersion process was combined with surface-modification by stearic acid to prepare superhydrophobic coatings on copper substrates so as to reduce friction coefficient, increase wear resistance and improve the anticorrosion ability of copper. Briefly, cuprous oxide (Cu{sub 2}O) crystal coating with uniform and compact tetrahedron structure was firstly created by immersing copper substrate in 2 mol L{sup −1} NaOH solution. As-obtained Cu{sub 2}O coating was then immersed in 0.33 mmol L{sup −1} AgNO{sub 3} solution to incorporate silver nanoparticles, followed by modification with stearic acid (denoted as SA) coating to achieve hydrophobicity. The surface morphology and chemical composition of silver-cuprous oxide/stearic acid (denoted as Ag-Cu{sub 2}O/SA) composite coating were investigated using a scanning electron microscope and an X-ray photoelectron spectroscope (XPS); and its phase structure was examined with an X-ray diffractometer (XRD). Moreover, the contact angle of water on as-prepared Ag-Cu{sub 2}O/SA composite coating was measured, and its friction-reducing and anticorrosion abilities were evaluated. It was found that as-prepared Ag-Cu{sub 2}O/SA composite coating has a water contact angle of as high as 152.4{sup o} and can provide effective friction-reducing, wear protection and anticorrosion protection for copper substrate, showing great potential for surface-modification of copper.

  10. Electrodeposition and properties of Zn-Ni-CNT composite coatings

    International Nuclear Information System (INIS)

    Praveen, B.M.; Venkatesha, T.V.

    2009-01-01

    Zn-Ni-CNT composite coatings were prepared by electrodeposition from a sulphate bath. The effect of CNTs on the corrosion behavior, wear resistance and hardness of the composite coatings was investigated. Their corrosion properties were evaluated by polarization, impedance, weight loss and salt spray tests. The CNT particles inclusion improved the corrosion resistance, hardness and wear resistance of the coating. The grain size of the composite coating was smaller than that of a pure Zn-Ni coating with the same Zn/Ni ratio. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature.

  11. Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites

    Science.gov (United States)

    Kumar, Kundan; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P. M.

    2015-08-01

    Carbon fibres (Cf) are one of the most important reinforced materials for ceramic matrix composites such as Cf - SiC composites and they are generally sought for high temperature applications in as space application, nuclear reactor and automobile industries. But the major problem arise when Cf reinforced composites exposed to high temperature in an oxidizing environment, Cf react with oxygen and burnt away. In present work, we have studied the effect of silica (SiO2) coating as a protective coating on Cf for the Cf / SiC composites. The silica solution prepared by the sol-gel process and coating on Cf is done by dip coating technique with varying the withdrawing speed i.e. 2, 5, 8 mm/s with fixed dipping cycle (3 Nos.). The uniform silica coating on the Cf is shown by the Scanning Electron Microscope (SEM) analysis. The tensile test shows the increase in tensile strength with respect to increase in withdrawing speed. The isothermal oxidation analysis confirmed enhancement of oxidation resistance of silica coated Cf as compared tothe uncoated Cf.

  12. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  14. Microstructures and formation mechanism of W–Cu composite coatings on copper substrate prepared by mechanical alloying method

    International Nuclear Information System (INIS)

    Meng, Yunfei; Shen, Yifu; Chen, Cheng; Li, Yongcan; Feng, Xiaomei

    2013-01-01

    In the present work, high-energy mechanical alloying (MA) method was applied to prepare tungsten–copper composite coatings on pure copper surface using a planetary ball mill. During mechanical alloying process, grains on the surface layer of substrate were refined and the substrate surface was activated as a result of repeated collisions by a large number of flying balls along with powder particles. The repeated ball-to-substrate collisions resulted in the deposition of coatings. The microstructures and elemental and phase composition of mechanically alloyed coatings at different milling durations during mechanical alloying process were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS). Microhardness tests were carried out to examine the mechanical properties of the coatings. The results showed that the coatings and the substrates were well bonded, and with the increase of the milling duration, multi-layered coatings with different structures were generated and the coatings became denser. The microhardness tests showed that the maximum microhardness of the coatings reached HV 0.1 228, showing a threefold improvement upon the substrate. And the cross-sectional microhardness values of the processed sample changed gradually, which gave a proof for the cushioning and sustaining functions of the multi-layered coatings. A reasonable formation mechanism of coatings on bulk materials with metallic immiscible system by mechanical alloying method was presented.

  15. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    Science.gov (United States)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  16. Preparation of transparent fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coating with improved self-cleaning performance and anti-aging property

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianping, E-mail: zf161162@163.com; Tan, Zhongyuan; Liu, Zhilei; Jing, Mengmeng; Liu, Wenjie; Fu, Wanli

    2017-02-28

    Graphical abstract: Semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide were prepared via a sol-gel approach and annealed by a microwave heating treatment. The fabricated fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings are transparent, exhibit a highly stable and excellent hydrophilicity, an improved photocatalytic activity and outstanding self-cleaning performance. What’s more, the composite coatings display an excellent anti-aging performance toward UV irradiation. These findings indicate that the fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings could be potentially used for outdoor applications. - Highlights: • Semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide presenting a particle size of 6–10 nm were prepared via a sol-gel approach and annealed by microwave heating method. • The fabricated transparent fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited a superior hydrophilicity, an improved photocatalytic activity and excellent self-cleaning performance. • The fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited an excellent anti-aging performance toward UV irradiation, rendering it quite suitable for outdoor applications. - Abstract: This work reports a facile method to fabricate transparent self-cleaning fluorocarbon coatings filled by semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide presenting a particle size ranging from 6 to 10 nm. Anatase-TiO{sub 2} crystallites were successfully obtained after microwave heating treatment of the TiO{sub 2}-SiO{sub 2} colloidal particles as confirmed by XRD, TEM and FTIR measurements. The fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited a superior hydrophilicity and an improved photocatalytic activity in contrast to the TiO{sub 2}-filled coatings. In particular, a water contact angle (WCA) value of 4.5° and a decolorization ratio relative to methyl orange as high as 96.0% were

  17. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Renhui [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Lanzhou University of Technology, College of Science, Lanzhou 730050 (China); Liang Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Wang Qing [Lanzhou University of Technology, College of Science, Lanzhou 730050 (China)

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  18. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  19. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  20. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites

    International Nuclear Information System (INIS)

    Liu Yongsheng; Zhang Litong; Cheng Laifei; Yang Wenbin; Zhang Weihua; Xu Yongdong

    2009-01-01

    An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl 3 -CH 4 -H 2 -Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 deg. C in 14 vol.% H 2 O/8 vol.% O 2 /78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.

  1. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  2. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  3. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  4. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shou-jie, E-mail: jlliushoujie@126.com; Li, He-jun, E-mail: lihejun@nwpu.edu.cn; Zhang, Lei-lei, E-mail: zhangleilei@nwpu.edu.cn; Feng, Lei, E-mail: fengleijinan@163.com; Yao, Pei, E-mail: 1113923884@qq.com

    2015-12-30

    Graphical abstract: The potentiodynamic polarization curve shows that the SM-DCPD coating can dramatically enhance the corrosion potential (E{sub corr}) value and meanwhile decrease the corrosion current density (I{sub corr}) of C/C composites. - Highlights: • Strontium and magnesium substituted dicalcium phosphate dehydrate coatings for carbon/carbon composites were synthesized by pulsed eletrodeposition. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites exhibited excellent bioactivity in vivo. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites showed lower corrosion rate with the comparison to pure carbon/carbon composites. - Abstract: Trace elements substituted apatite coatings have received a lot of interest recently as they have many benefits. In this work, strontium and magnesium substituted DCPD (SM-DCPD) coatings were deposited on carbon/carbon (C/C) composites by pulsed electrodeposition method. The morphology, microstructure, corrosion resistance and in vitro bioactivity of the SM-DCPD coatings are analyzed. The results show that the SM-DCPD coatings exhibit a flake-like morphology with dense and uniform structure. The SM-DCPD coatings could induce the formation of apatite layers on their surface in simulated body fluid. The electrochemical test indicates that the SM-DCPD coatings can evidently decrease the corrosion rate of the C/C composites in simulated body fluid. The SM-DCPD has potential application as the bioactive coatings.

  5. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch

    International Nuclear Information System (INIS)

    Jia, Yujun; Li, Hejun; Feng, Lei; Sun, Jiajia; Li, Kezhi; Fu, Qiangang

    2016-01-01

    Highlights: • La-modified ZrC coating was prepared by supersonic atmosphere plasma spraying. • The oxyacetylene ablation behavior of La-modified ZrC/SiC coating was evaluated. • The coating shows a good ablation resistance under heat flux of 2.4 MW/m"2. • La promotes the liquid phase sintering of ZrO_2 and the formation of a compact scale. • The protection of the scale results in retaining elemental C in its inner layer. - Abstract: To improve the ablation resistance of carbon/carbon (C/C) composites at ultra-high temperature, La-modified ZrC coating was prepared on SiC-coated C/C composites by supersonic atmosphere plasma spraying. The coating shows a significant improvement on the ablation resistance compared with ZrC coating and could protect C/C composites for more than 120 s under heat flux of 2.4 MW/m"2. La acted as a role in promoting the liquid phase sintering of ZrO_2 and forming a compact scale with high thermal stability, improving the ablation resistance of C/C composites.

  6. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  7. Development of high performance electroless Ni–P–HNT composite coatings

    International Nuclear Information System (INIS)

    Ranganatha, S.; Venkatesha, T.V.; Vathsala, K.

    2012-01-01

    Highlights: ► Novel Ni–P composites were prepared by incorporating Halloysite nanotubes. ► Mild steel specimens surface engineered by nickel using electroless technique. ► Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. ► HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm × 1–3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni–P–HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni–P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni–P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni–P matrix leading to the development of high performance Ni–P–HNT composite coatings.

  8. Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun

    2017-07-28

    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.

  9. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  10. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    Science.gov (United States)

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  11. Preparation and Properties of Epoxy Resin-Coated Micro-Sized Ferrosilicon Powder

    OpenAIRE

    Ku,Jiangang; Chen,Huihuang; He,Kui; Yan,Quanxiang

    2016-01-01

    Ferrosilicon powder surface coated with a dense epoxy resin membrane was prepared via coating precipitation methods using silane coupling agents as the modifier and epoxy resin as the coating agent. FTIR, FESEM, MPMS-XL, and TG-DSC were used to analyze the morphology, surface composition, magnetic property and thermostability of ferrosilicon powder before and after the modification and coating. The experimental results indicate that epoxy resin membranes of a certain thickness were successful...

  12. Electrochemically assisted co-deposition of calcium phosphate/collagen coatings on carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xueni [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hu Tao [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Li Hejun, E-mail: lihejun@nwpu.edu.cn [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen Mengdi; Cao Sheng; Zhang Leilei [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hou Xianghui [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-02-01

    Calcium phosphate (CaP)/collagen coatings were prepared on the surface of carbon/carbon (C/C) composites by electrochemically assisted co-deposition technique. The effects of collagen concentration in the electrolyte on morphology, structure and composition of the coatings were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesive strength of the coatings was also evaluated by scratch tests and tensile bond tests. It was demonstrated that the coatings of three-dimensional collagen network structure was formed on the C/C composites from the electrolyte containing collagen. The surface of the collagen network was covered by uniform CaP aggregates. The coatings were actually composites of CaP and collagen. Hydroxyapatite (HA) was a favorable composition in the coatings with the increase of the collagen concentration in the electrolyte. The formed collagen network increased the cohesive and adhesive strength of the coatings. The adhesive strength between the coatings and substrates increased as the collagen concentration in the electrolyte increased. The coatings prepared at the collagen concentration of 500 mg/L in the electrolyte were not scraped off until the applied load reached 32.0 {+-} 2.2 N and the average tensile adhesive strength of the coatings was 4.83 {+-} 0.71 MPa. After C/C coated with composite coatings (500 mg/L) being immersed in a 10{sup -3} M Ca (OH){sub 2} solution at 30-33 deg. C for 96 h, nano-structured HA/collagen coatings similar to the natural human bone were obtained on the C/C.

  13. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  14. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  15. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  16. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  17. Development of high performance electroless Ni-P-HNT composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ranganatha, S., E-mail: kamath.ranganath@gmail.com [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Venkatesha, T.V., E-mail: drtvvenkatesha@yahoo.co.uk [Department of studies in chemistry, School of chemical sciences, Kuvempu university, Shankaraghatta-577451, Shimoga, Karnataka (India); Vathsala, K., E-mail: vathsala.mahesh@gmail.com [Nanotribology Laboratory, Mechanical engineering department, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Novel Ni-P composites were prepared by incorporating Halloysite nanotubes. Black-Right-Pointing-Pointer Mild steel specimens surface engineered by nickel using electroless technique. Black-Right-Pointing-Pointer Incorporated halloysite nanotubes made nickel matrix highly corrosion resistant. Black-Right-Pointing-Pointer HNT composite exhibits high hardness and largely reduces friction. - Abstract: Halloysite nanotubes (HNTs) of the dimension 50 nm Multiplication-Sign 1-3 {mu}m (diameter Multiplication-Sign length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  18. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  19. Preparation of Ti-coated diamond particles by microwave heating

    International Nuclear Information System (INIS)

    Gu, Quanchao; Peng, Jinghui; Xu, Lei; Srinivasakannan, C.

    2016-01-01

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  20. Preparation of Ti-coated diamond particles by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Quanchao [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yunnan Copper Smelting and Processing Complex, Yunnan Copper (Group) CO., LTD., Kunming 650102 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Peng, Jinghui [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); International Joint Research Center of Advanced Preparation of Superhard Materials Field, Kunming Academician Workstation of Advanced Preparation of Superhard Materials Field, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); and others

    2016-12-30

    Highlights: • The Ti-Coated diamond particles have been prepared using by microwave heating. • The uniform and dense coating can be produced, and the TiC species was formed. • With increases the temperature results in the thickness of coating increased. • The coating/diamond interfacial bonding strength increased with temperature increasing until 760 °C, then decreased. - Abstract: Depositing strong carbide-forming elements on diamond surface can dramatically improve the interfacial bonding strength between diamond grits and metal matrix. In the present work, investigation on the preparation of Ti-coated diamond particles by microwave heating has been conducted. The morphology, microstructure, and the chemical composition of Ti-coated diamond particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive x-ray spectrometer (EDX). The thickness of Ti coating was measured and the interfacial binding strength between Ti coating and diamond was analyzed. The results show that the surface of the diamond particles could be successfully coated with Ti, forming a uniform and continuous Ti-coated layer. The TiC was found to form between the surface of diamond particles and Ti-coated layer. The amount of TiC as well as the thickness of coating increased with increasing coating temperature, furthermore, the grain size of the coating also grew gradually. The interfacial bonding strength between coating and diamond was found to be best at the temperature of 760 °C.

  1. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  2. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  3. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  4. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available ?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal... preparation process: (A) WG coated fibre, (B) High speed granulator, (C) Composite granules, (D) Single screw extruder, (E) Injection moulder and (F) Composite samples (dumbbells) Mechanical and thermal properties of water glass coated sisal fi bre...

  5. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  6. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    International Nuclear Information System (INIS)

    Lan, Xiaodong; Wu, Hong; Liu, Yong; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-01-01

    Metallic glass composite coatings Ti 45 Cu 41 Ni 9 Zr 5 and Ti 45 Cu 41 Ni 6 Zr 5 Sn 3 (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni 2 SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  7. Radiation polymerizable coating composition containing an unsaturated phosphoric ester

    International Nuclear Information System (INIS)

    Dickie, R.A.; Cassatta, J.C.

    1976-01-01

    A radiation polymerizable protective coating composition or paint consists essentially of a binder solution of: (1) between about 90 and about 10 parts of a saturated, thermoplastic vinyl polymer prepared from at least about 85 weight percent of monofunctional vinyl monomers; (2) between about 10 and about 90 parts of vinyl solvent monomers for the vinyl polymer, at least about 10 weight percent, preferably at least about 30 weight percent, of the solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures of these; and (3) between about 1.0 and about 15.0 parts per 100 parts of the total of the thermoplastic vinyl polymer and the vinyl solvent monomers of a triester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrates, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by applying a base coat to a substrate and curing the same; vapor depositing a coating of metal over the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein. 7 claims, no drawings

  8. Microstructure, optimum pigment content and low infrared emissivity of polyurethane/Ag composite coatings

    International Nuclear Information System (INIS)

    Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Qiao, Jialiang; Duan, Kaige

    2013-01-01

    Polyurethane (PU)/Ag composite coatings with low infrared emissivity were successfully prepared by using PU and flaky Ag powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of as-prepared products were systematically investigated by infrared emissometer and scanning electron microscopy, respectively. Infrared emissivity measurement shows that the emissivity of the coatings approaches the lowest value of 0.082 at the wavelength of 8–14 µm when the Ag content is about 20 wt%. Microstructure observation shows that the coatings have similar one-dimensional photonic structural characteristics. According to the structural characteristics, a simulation method for optimum pigment content and the cause of low infrared emissivity of the coatings were successfully obtained and discussed by using the theories of one-dimensional photonic structure, respectively. The results indicate that the low infrared emissivity of PU/Ag composite coatings is derived from the similar one-dimensional photonic structure in the coatings, and the calculated optimum Ag content is in good agreement with the experimental value, which reveals that it is a practical simulation method for optimum pigment content of low infrared emissivity composite coatings

  9. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  10. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  11. Development of high performance electroless Ni-P-HNT composite coatings

    Science.gov (United States)

    Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.

    2012-12-01

    Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  12. Preparation and temperature dependence of electrostriction properties for PMN-based composite ceramics

    International Nuclear Information System (INIS)

    Zhao Jingbo; Qu Shaobo; Du Hongliang; Zheng Yanju; Xu Zhuo

    2009-01-01

    Both low- and high-temperature units were prepared by columbite precursor method, and Pb(Mg 1/3 Nb 2/3 )O 3 (PMN)-based ferroelectric composite ceramics were prepared by conventional method, baking-block method and coating method, respectively. The effects of preparation methods on dielectric and electrostriction properties as well as the temperature-dependence property of the obtained composite ceramics were studied. The results show that compared with the samples prepared by traditional blend sintering method, of the samples prepared by baking-block and coating methods have much better dielectric and electrostriction properties. For those prepared by baking-block method, the electrostriction temperature-dependence properties are good in the range of 20-60 deg. C. For those prepared by coating method, the dielectric temperature-dependence properties are also good in the broad range of -30 to 70 deg. C, and the electrostriction temperature properties are better than those prepared by blending-block. Compared with the traditional blending sintering method, the dielectric and electrostriction temperature-dependence properties are much better, which effectively solves the problem of temperature properties existing in present engineering applications.

  13. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shoujie, E-mail: jlliushoujie@126.com; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Su, Yangyang, E-mail: suyangyang@mail.nwpu.edu.cn; Guo, Qian, E-mail: 1729299905@163.com; Zhang, Leilei, E-mail: zhangleilei@nwpu.edu.cn

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86 ± 1.43 MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. - Highlights: • A novel bioceramic composite coating of hydroxyapatite reinforced with in-situ grown carbon nanotubes was fabricated. • The doping of carbon nanotubes had almost no impact on the biocompatibility of hydroxyapatite coatings. • The doping of carbon nanotubes improved corrosion resistance of hydroxyapatite coatings in simulated human body solution.

  14. Electrodeposition of Copper/Carbonous Nanomaterial Composite Coatings for Heat-Dissipation Materials

    Directory of Open Access Journals (Sweden)

    Yasuki Goto

    2017-12-01

    Full Text Available Carbonous nanomaterials are promising additives for composite coatings for heat-dissipation materials because of their excellent thermal conductivity. Here, copper/carbonous nanomaterial composite coatings were prepared using nanodiamond (ND as the carbonous nanomaterial. The copper/ND composite coatings were electrically deposited onto copper substrates from a continuously stirred copper sulfate coating bath containing NDs. NDs were dispersed by ultrasonic treatment, and the initial bath pH was adjusted by adding sodium hydroxide solution or sulfuric acid solution before electrodeposition. The effects of various coating conditions—the initial ND concentration, initial bath pH, stirring speed, electrical current density, and the amount of electricity—on the ND content of the coatings were investigated. Furthermore, the surface of the NDs was modified by hydrothermal treatment to improve ND incorporation. A higher initial ND concentration and a higher stirring speed increased the ND content of the coatings, whereas a higher initial bath pH and a greater amount of electricity decreased it. The electrical current density showed a minimum ND content at approximately 5 A/dm2. Hydrothermal treatment, which introduced carboxyl groups onto the ND surface, improved the ND content of the coatings. A copper/ND composite coating with a maximum of 3.85 wt % ND was obtained.

  15. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  16. Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Zhang, Weidong; Li, Ruidi; Chen, Shiqi; Zai, Xiongfei; Hu, Te

    2016-10-15

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTi phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.

  17. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  18. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  20. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  1. Stress development in particulate, nano-composite and polymeric coatings

    Science.gov (United States)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  2. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  3. Bioactive glass–ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route)

    International Nuclear Information System (INIS)

    Rau, J.V.; Teghil, R.; Fosca, M.; De Bonis, A.; Cacciotti, I.; Bianco, A.; Albertini, V. Rossi; Caminiti, R.; Ravaglioli, A.

    2012-01-01

    Highlights: ► Bioactive glass–ceramic coatings for bone tissue repair and regeneration. ► Pulsed Lased Deposition allowed congruent transfer of target composition to coating. ► Target was prepared by sol–gel process suitable for compositional tailoring. ► Titanium, widely used for orthopaedics and dental implants, was used as substrate. ► The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass–ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol–gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm 2 and 500 °C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 μm thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 μm thick sol–gel films with the hardness of 17 GPa were obtained.

  4. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  5. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  6. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  7. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  8. Radiation curable coating compositions

    International Nuclear Information System (INIS)

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  9. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    Science.gov (United States)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  10. Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration.

    Science.gov (United States)

    Cao, Danfeng; Zhang, Yingchao; Li, Yao; Shi, Xiaoyu; Gong, Haihuan; Feng, Dan; Guo, Xiaowei; Shi, Zuosen; Zhu, Song; Cui, Zhanchen

    2017-09-01

    Superhydrophobic coatings were successfully fabricated by photo-crosslinked polyurethane (PU) and organic fluoro group-functionalized SiO 2 nanoparticles (F-SiO 2 NPs), and were introduced for preventing microleakage in a dental composite restoration. The F-SiO 2 NPs possessed low surface energy and the PU can not only improve the mechanical stability but also promote F-SiO 2 NPs to form multiscale structure, which could facilitate the properties of the as-prepared superhydrophobic coating by synergetic effect. The morphology and properties of the resulted superhydrophobic coatings with different PU/F-SiO 2 ratios were studied using 1 H NMR spectrum, fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy and UV-vis spectrophotometry. The results showed that the superhydrophobic coatings with low PU/F-SiO 2 ratio (1:3) possessed excellent hierarchical papillae structure with trapped air pockets, high contact angle (160.1°), low sliding angle (superhydrophobic property, the as-prepared superhydrophobic coatings effectively prevented water permeation in resin composite restoration evaluation. This research may provide an effective method to solve the problem of microleakage and will efficiently increase the success rate of dental composite restorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  12. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    International Nuclear Information System (INIS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-01-01

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO_3 vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  13. Al-Si/B{sub 4}C composite coatings on Al-Si substrate by plasma spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, Ozkan [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Anik, Selahaddin [Sakarya University, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Aslanlar, Salim [Sakarya University, Faculty of Technical Education, Department of Mechanical Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Cem Okumus, S. [Sakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya 54187 (Turkey); Celik, Erdal [Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Buca, Izmir 35160 (Turkey)]. E-mail: erdal.celik@deu.edu.tr

    2007-07-01

    Plasma-sprayed coatings of Al-Si/B{sub 4}C have been prepared on Al-Si piston alloys for diesel engine motors. The Al-Si/B{sub 4}C composite powders including 5-25 wt% B{sub 4}C were prepared by mixing and ball-milling processes. These powders were deposited on Al-Si substrate using an atmospheric plasma spray technique. The coatings have been characterised with respect to phase composition, microstructure, microhardness, bond strength and thermal expansion. It was found that Al, Si, B{sub 4}C and Al{sub 2}O{sub 3} phases were determined in the coatings with approximately 600 {mu}m thick by using X-ray diffraction analysis. Scanning electron microscope observation revealed that boron carbide particles were uniformly distributed in composite coatings and B{sub 4}C particles were fully wetted by Al-Si alloy. Also, no reaction products were observed in Al-Si/B{sub 4}C composite coatings. It was found that surface roughness, porosity, bond strength and thermal expansion coefficient of composite coatings decreased with increasing fraction of the boron carbide particle. It was demonstrated that the higher the B{sub 4}C content, the higher the hardness of coatings because the hardness of B{sub 4}C is higher than that of Al-Si.

  14. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  15. C/SiC/MoSi2-Si multilayer coatings for carbon/carbon composites for protection against oxidation

    International Nuclear Information System (INIS)

    Zhang Yulei; Li Hejun; Qiang Xinfa; Li Kezhi; Zhang Shouyang

    2011-01-01

    Highlights: → A C/SiC/MoSi 2 -Si multilayer coating was prepared on C/C by slurry and pack cementation. → Multilayer coating can protect C/C for 300 h at 1873 K or 103 h at 1873 K in air. → The penetration cracks in the coating result in the weight loss of the coated C/C. → The fracture of the coated C/C in wind tunnel result from the excessive local stress. - Abstract: To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi 2 -Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.

  16. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  17. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings prepared from TiC_0_._7N_0_._3 powder using ball milling followed by oxidation

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Highlights: • TiO_2/TiC_0_._7N_0_._3 coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO_2 formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO_2 coatings on the surfaces of Al_2O_3 balls from TiC_0_._7N_0_._3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC_0_._7N_0_._3 coatings were formed after ball milling. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings were prepared after the direct oxidization of TiC_0_._7N_0_._3 coatings in the atmosphere. However, TiO_2 was hardly formed in the surface layer of TiC_0_._7N_0_._3 coatings within a depth less than 10 nm during the heat oxidation of TiC_0_._7N_0_._3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO_2/TiC_0_._7N_0_._3 composite microstructure.

  18. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Dezhi; Yan, Jianhui; Sun, Aokui

    2013-01-01

    MoSi 2 oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi 2 and Mo 5 Si 3 , the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi 2 coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  19. Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO{sub 2} nanotube for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Li, Caixia [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-03-30

    Highlights: • Chitosan/silver-doped hydroxyapatite biocomposite coating was successfully deposited on anodized Ti by electrochemical deposition. • The chemical state of silver in the synthesized coatings was studied by XPS peak deconvolution. • The synthesized coatings have excellent antibacterial activity because of synergistic effect of the Ag and CS. • The CSAgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: A biocomposite coating containing chitosan, silver, and hydroxyapatite was developed on anodized titanium substrate by electrochemical deposition. Coatings were characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and polarisation studies. Results showed that the prepared coatings had compact and dense morphology with a thickness of 6.2 ± 0.7 μm and that silver was evenly distributed. Testing the prepared coatings with Gram-positive and Gram-negative bacterial strains exhibited antibacterial activity because of the synergistic effect of silver and chitosan. The prepared coatings were also found to be nontoxic to MC3T3-E1 cells. These results suggested that chitosan/silver-hydroxyapatite biocomposite coatings can prevent the bacterial infection of implants.

  20. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  1. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    International Nuclear Information System (INIS)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-01-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  2. Preparation and characterization of underwater superoleophobic chitosan/poly(vinyl alcohol) coatings for self-cleaning and oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian; Fu, Youjia; Yan, Xiaoxia; Chang, Yanjiao; Ren, Lili; Zhou, Jiang

    2017-08-01

    Highlights: • Underwater superoleophobic CS/PVA coatings were prepared using a facile method. • Immersion in NaOH solution was crucial to enhance roughness of the coating surface. • Effects of coating composition on wettability of coating surface were investigated. • The CS/PVA coatings possess self-cleaning property. • The CS/PVA coatings can be used for oil/water separation with high efficiency. - Abstract: In this paper, chitosan (CS)/poly(vinyl alcohol) (PVA) coatings cross-linked with glutaraldehyde (GA) were prepared. Effects of the coating composition and NaOH solution treatment on surface morphology and topography were investigated by scanning electron microscope and atomic force microscope. It was found that the process of immersing the CS/PVA coatings into NaOH solution was crucial to enhance rough structure on the coating surface. The rough surface structure and the hydrophilic groups of CS and PVA made the CS/PVA coatings possess underwater superoleophobicity and low adhesion to oil. Oil contact angle of the prepared CS/PVA coatings was up to 161° and slide angle was only 3°. Moreover, the CS/PVA coatings showed stable superoleophobicity in high salt, strong acidic, and alkaline environments as well as underwater self-cleaning property and excellent transparency. The CS/PVA coatings could be used for gravity driven oil/water separation with high efficiency.

  3. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  4. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate

    Directory of Open Access Journals (Sweden)

    Yern Chee Ching

    2013-01-01

    Full Text Available Acrylic based polyurethane (PU coatings with various amounts of nanosilica contents were prepared using solution casting method. The nanosilica (SiO2 particles used are around 16 nm in diameter. The friction and wear test was conducted using the reciprocating wear testing machine. The tests were performed at rotary speed of 100 rpm and 200 rpm with load of 0.1 kg to 0.4 kg under 1 N interval. The effect of the PU/nano-SiO2 composite coating on friction and wear behavior of polypropylene substrate was investigated and compared. The worn surface of coating film layer after testing was investigated by using an optical microscope. The introduction of PU/nanosilica composite coating containing 3 wt% of nano-SiO2 content gives the lowest friction coefficient and wear rate to PP substrate. Both the friction and wear rate of PP substrate coated with >3 wt% of nano-SiO2 filled PU coating would increase with the increasing of applied load and sliding time.

  5. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  6. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  7. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    International Nuclear Information System (INIS)

    Yu Donghai; Wang Chengyong; Cheng Xiaoling; Zhang Fenglin

    2009-01-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  8. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Donghai [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang Chengyong, E-mail: cywang@gdut.edu.c [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng Xiaoling; Zhang Fenglin [Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2009-07-01

    TiAlSiN coatings with different Si content were prepared by hollow cathode discharge (HCD) and mid-frequency magnetron sputtering (MFMS) hybrid coating deposition technology. The chemical composition, microstructure, mechanical properties of these coatings were systematically investigated by means of energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nanoindentation measurement, scratch and high speed milling hardened steel tests. The coatings prepared by this method showed the structure of crystalline phase was corresponding to that of TiAlN, however, different preferred orientation with addition of Si. Proper content of Si into TiAlN led to increase of microhardness and adhesion. TiAlSiN coated end mill with Si content of 4.78 at.% had the least flank wear, which was improved about 20% milling distance than TiAlN coated end mill.

  9. Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone

    Science.gov (United States)

    Xiang, Feng; Gan, Weiping

    2018-01-01

    In this work, a new electroless silver plating method for the synthesis of silver-coated glass frit composite powders with good morphology has been proposed and the polyvinyl-pyrrolidone (PVP) was used the activating agent. It was found that the weight ratio of PVP to glass frit affected the distribution and number of silver nanoparticles. Moreover, the loading capacity of the glass frit, the pH value and reaction temperature could influence the size of the silver nanoparticles and morphology of silver on the surface of glass frit. The as-prepared silver-coated glass frit was used to prepare a silver paste using an optimized process to form silver nanoparticles with uniform size and high density. The silver paste with silver-coated glass frit increased the photovoltaic conversion efficiency of silicon solar cells by 0.271% compared with the silver paste prepared with pure glass frit. The silver nanoparticles can promoted the precipitation of Ag crystallites on the silicon wafer. Therefore, the silver-coated glass frit can further optimize and enhance the electrical performance of solar cells.

  10. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  11. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@163.com [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yan, Jianhui [Advanced Materials Synthesis and Application Technology Laboratory, Hunan University of Science and Technology, Xiangtan 411201 (China); Sun, Aokui [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-11-01

    MoSi{sub 2} oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi{sub 2} and Mo{sub 5}Si{sub 3}, the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi{sub 2} coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  12. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Ezhil Selvi, V.; Rajam, K.S.

    2010-01-01

    In the present investigation the electroless Ni-P-Si 3 N 4 composite coatings were prepared by using a low phosphorus bath containing submicron size silicon nitride particles. Plain Ni-P deposits were also prepared for comparison. The phosphorus contents present in electroless plain Ni-P and Ni-P-Si 3 N 4 coatings are 3.7 and 3.4 wt.%, respectively. Scanning electron microscope (SEM) images obtained for composite coatings (cross-sections) showed that the second phase particles are uniformly distributed throughout the thickness of the deposits. It was found that nodularity increased with particle codeposition in Ni-P matrix. To find out the electrochemical behavior of plain Ni-P and composite coatings, potentiodynamic polarization and electrochemical impedance (EIS) studies were carried out in 3.5 wt.% sodium chloride solution in non-deaerated condition. Second phase particle incorporation in Ni-P matrix indicated a marginal decrease in corrosion current density compared to the plain Ni-P deposits. This was further confirmed by EIS studies and SEM analysis of the corroded samples.

  13. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  14. 2-Mercaptobenzothiazole doped chitosan/11-alkanethiolate acid composite coating: Dual function for copper protection

    International Nuclear Information System (INIS)

    Bao Qi; Zhang Dun; Wan Yi

    2011-01-01

    Chitosan (CS) hydrogel loaded with the well-known corrosion inhibitor 2-mercaptobenzothiazole (MBT) has been introduced into a composite coating to improve copper protection. This composite coating, which has both anticorrosion and antibacterial properties, was fabricated onto the surface of copper by combining a simple self-assembled monolayer technique with a sol-gel method. The anti-corrosion ability of the coating in 3.5 wt.% NaCl solution was investigated by electrochemical methods including potentiodynamic polarization and electrochemical impedance spectroscopy. The protection efficiency of the coating is 97.70%, calculated on the basis of the corrosion current density. The stability and integrity of the composite coating were evaluated by field emission scanning electron microscopy (FESEM) and energy dispersive spectrometry (EDS). The FESEM and EDS results suggest that the composite coating endows the copper substrate with antibacterial properties, as untreated bare copper underwent microbiologically influenced corrosion in the presence of sulphate reducing bacteria (SRB). This antibacterial feature was further confirmed by the SRB culture method. In a 3.5% NaCl solution and highly corrosive SRB culture media, the as-prepared CS based composite coating gave corrosion protection by exhibiting better barrier effects against the attack of aggressive environments.

  15. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  16. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    Science.gov (United States)

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  17. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  18. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  19. Pulsed laser synthesis of ceramic-metal composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-01-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  20. Pulsed laser synthesis of ceramic-metal composite coating on steel

    Science.gov (United States)

    Du, Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-12-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  1. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  2. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication

    International Nuclear Information System (INIS)

    Xu Haiyan; Feng Zhizhong; Chen Jianmin; Zhou Huidi

    2006-01-01

    Carbon fiber reinforced polyphenylene sulphide (PPS) composite coatings (the mass fraction of the carbon fiber varied from 1 to 5 wt%) were prepared by flame spraying. The microstructure and physical properties of the composite coating were studied. The friction and wear characteristics of the PPS coating and carbon fiber reinforced PPS composite coating under dry- and water-lubricated sliding against stainless steel were comparatively investigated using a block-ring tester. The composite coatings showed lower friction coefficient and higher wear rate than pure PPS coatings under dry sliding. Under water-lubricated condition, the composite coatings showed better wear resistance than under dry. Under water-lubricated condition the tribological behaviors of the 3 wt% carbon fiber reinforced composite coating also were investigated under different sliding speed and load. The result showed that the sliding speed had little effect on the tribological properties, but the load affected greatly on that of the composite coatings. The morphologies of the worn surfaces of the composite coatings and the counterpart steel were analyzed by means of scanning electron microscopy (SEM), coupled with an energy-dispersive X-ray spectrometer (EDS) for compositional analysis

  3. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  4. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2015-01-01

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO 2 ) and cerium oxide (CeO 2 ) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  5. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  6. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  7. Ti substrate coated with composite Cr–MoO2 coatings as highly selective cathode materials in hypochlorite production

    International Nuclear Information System (INIS)

    Lačnjevac, U.Č.; Jović, B.M.; Gajić-Krstajić, Lj.M.; Kovač, J.; Jović, V.D.; Krstajić, N.V.

    2013-01-01

    Highlights: ► Composite Cr–MoO 2 coatings were prepared by electrodeposition onto mild steel and Ti substrates. ► Ti/Cr–MoO 2 electrodes were investigated as cathode materials for the hypochlorite production. ► Selectivity of electrodes increased with the increase of the content of MoO 2 in the coating. ► The current efficiency for the HER exceeded 97% at the best cathode. ► The suppression of hypochlorite reduction is caused by the presence of Cr 2 O 3 at the surface. -- Abstract: The aim of this work was to investigate the possibility of preparation of the composite Cr–MoO 2 coatings onto steel and titanium substrates as cathode materials with high selective properties which imply the suppression of hypochlorite reduction as a side reaction during hypochlorite commercial production. The electrodes were prepared by simultaneous deposition of chromium and suspended MoO 2 particles on titanium substrate from acid chromium (VI) bath. The current efficiency for electrodeposition of the composite coatings did not vary significantly with the concentration of suspended MoO 2 particles. The content of molybdenum in the deposits was relatively low (0.2–1.5 at.%) and increased with increasing the concentration of suspended MoO 2 particles in the bath, in the range from 0 to 10 g dm −3 . With further increase in the concentration of MoO 2 , the content of molybdenum in the coating varied insignificantly. X-ray photoelectron spectroscopy-XPS and EDS analysis were applied to analyze elemental composition and chemical bonding of elements on the surface and in the sub-surface region of obtained coatings. When the concentration of MoO 2 particles in the bath was raised above 5 g dm −3 , the appearance of the coating changed from the typical pure chromium deposit to needle-like deposit with the appearance of black inclusions on the surface. XPS analysis and corresponding Cr 2p spectra showed the presence of chromium oxide, probably Cr 2 O 3 with Cr(3

  8. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-01-01

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi 5 composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi 5 particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi 5 coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol -1 for the Ni-Co-LaNi 5 , Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi 5 proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi 5 is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface

  9. Effect of Graphene Coating on the Heat Transfer Performance of a Composite Anti-/Deicing Component

    Directory of Open Access Journals (Sweden)

    Long Chen

    2017-09-01

    Full Text Available The thermal conductivity of a graphene coating for anti-/deicing is rarely studied. This paper presents an improved anti-/deicing efficiency method for composite material anti-/deicing by using the heat-transfer characteristic of a graphene coating. An anti-/deicing experiment was conducted using the centrifugal force generated by a helicopter rotor. Results showed that the graphene coating can accelerate the internal heat transfer of the composite material, thereby improving the anti-icing and deicing efficiency of the helicopter rotor. The spraying process parameters, such as coating thickness and spraying pressure, were also studied. Results showed that reducing coating thickness and increasing spraying pressure are beneficial in preparing a graphene coating with high thermal conductivity. This study provides an experimental reference for the application of a graphene coating in anti-/deicing.

  10. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  11. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  12. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    McCarty, W.H.; Nagy, F.A.; Guarino, J.P.

    1983-01-01

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  13. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  14. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    Science.gov (United States)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  15. Spectrally selective paint coatings. Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Crnjak Orel, Z.C.; Klanjsek Gunde, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)

    2001-06-01

    Preparation and characterization of spectrally selective paint coating for photothermal solar energy conversion are discussed. The applied methods for preparation of paints with described measurements and calculations of black-pigmented coatings were reviewed. The article represents not only possible future applications but also past and current applications of spectrally selective paint coating which are used all over the world since the 1980s. Spectrally selective paint coatings based on combinations of two types of resins, various types of pigments and three types of silica, were prepared. The influence of pigment type and pigment volume concentration (PVC) was studied by applying the Kubelka-Munk (K-M) theory. The relation between the degrees of dispersion and distribution of pigment particles across the paint layer is discussed in terms of K-M coefficients.

  16. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Science.gov (United States)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  17. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-I., E-mail: s1322509@gmail.com [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemistry and Material Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Wang, Gao-Liang, E-mail: wanggl@takming.edu.tw [Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan (China)

    2015-12-01

    Highlights: • The Ni-P-BN(h) coatings were prepared by electroless plating techniques in this research. • Surfactant CTAB resulting in a uniform dispersion of particles in Ni-P coating. • CTAB with a positive effect on the tribological performance of Ni–P/BN(h) coatings. • Frictional tests results show that optimal friction coefficient would be decreased 75%. • Wear resistance of the Ni-P/BN(h) coating is higher about 10 times Ni–P coatings. - Abstract: Ni–P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni–P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni–P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni–P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni–P composites is approximately 10 times higher than Ni–P coating.

  18. Preparation and characterization of Bioglass®-based scaffolds reinforced bypoly-vinyl alcohol/microfibrillated cellulose composite coating

    Czech Academy of Sciences Publication Activity Database

    Bertolla, Luca; Dlouhý, Ivo; Boccaccini, A. R.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3379-3387 ISSN 0955-2219. [Fractography of Advanced Ceramics IV. Smolenice Castle Congres Center, Smolenice SAS, 29.09.13-02.10.13] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : bioceramcs * bioglass (R) scaffolds * porous materials * polymer coating * composite coating Subject RIV: JI - Composite Materials Impact factor: 2.947, year: 2014 http://www.imr.saske.sk/confer/fac2013/publication.htm

  19. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites.

    Science.gov (United States)

    Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M

    2018-06-15

    This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    Science.gov (United States)

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  1. Properties of Al2O3 nano-particle reinforced copper matrix composite coatings prepared by pulse and direct current electroplating

    International Nuclear Information System (INIS)

    Allahkaram, Saeed Reza; Golroh, Setareh; Mohammadalipour, Morteza

    2011-01-01

    Highlights: → The influence of Al 2 O 3 is studied on morphologies of the DC and PC applied coatings. → The influence of Al 2 O 3 is studied on the DC and PC coating thicknesses. → The influence of Al 2 O 3 is studied on wear resistance. → The effect of Al 2 O 3 is studied on the porosity and corrosion resistance. -- Abstract: Cu-Al 2 O 3 nano-composite coatings have high potential for use in applications in which high mechanical properties together with high corrosion resistance are required. In the present study it is intended to produce copper nano-alumina composite coatings with various nano-alumina contents in order to investigate the effect of alumina reinforcement particles on corrosion resistance and mechanical properties such as hardness and wear resistance. The composite coatings were deposited using direct current (DC) and pulse current (PC) plating. The microstructures of the coatings produced from both methods were examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The wear behaviors, micro hardness, coating thickness, corrosion rate and coating porosity were examined using appropriate methods. Compared to DC deposition, PC plating facilitated higher amounts of particle incorporation with more uniform distribution. The results indicated that the mechanical properties of the applied coatings with incorporated nano-alumina reinforcement were far more superior as compared to its own matrix as well as non-composite copper coatings. It was also found out that increasing the amount of nano-alumina content in the coating, led to enhanced general properties of the coatings.

  2. Mechanical Properties And Microstructure Of AlN/SiCN Nanocomposite Coatings Prepared By R.F.-Reactive Sputtering Method

    Directory of Open Access Journals (Sweden)

    Nakafushi Y.

    2015-06-01

    Full Text Available FIn this work, AlN/SiCN composite coatings were deposited by r.f.-reactive sputtering method using a facing target-type sputtering (FTS apparatus with composite targets consisting of Al plate and SiC chips in a gaseous mixture of Ar and N2, and investigated their mechanical properties and microstructure. The indentation hardness (HIT of AlN/SiCN coatings prepared from composite targets consisting of 8 ~32 chips of SiC and Al plate showed the maximum value of about 29~32 GPa at a proper nitrogen gas flow rate. X-ray diffraction (XRD patterns for the AlN/SiCN composite coatings indicated the presence of the only peeks of hexagonal (B4 structured AlN phase. AlN coatings clarified the columnar structure of the cross sectional view TEM observation. On the other hand, microstructure of AlN/SiCN composite coatings changed from columnar to equiaxed structure with increasing SiCN content. HR-TEM observation clarified that the composite coatings consisted of very fine equiaxial grains of B4 structured AlN phase and amorphous phase.

  3. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  4. One-step triple-phase interfacial synthesis of polyaniline-coated polypyrrole composite and its application as electrode materials for supercapacitors

    Science.gov (United States)

    Lei, Wen; He, Ping; Zhang, Susu; Dong, Faqin; Ma, Yongjun

    2014-11-01

    We first present an alternative one-step route for constructing a novel polyaniline (PANI)-coated polypyrrole (PPy) composite in an ingenious triple-phase interface system, where PPy and PANI are prepared in individual non-interference interfaces and, in the middle aqueous phase, smaller PANI particles are uniformly coated on the surface of PPy particles, forming a core-shell structure. The prepared PPy/PANI composite electrode shows a superior capacitance behavior that is more suitable for supercapacitor application.

  5. Microstructure and Properties of Composite Coatings Obtained on Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Bara M.

    2016-09-01

    Full Text Available This paper presents methods of modifying the anode surface layers of Al2O3 by introducing carbon to their microstructure. Composite coatings were prepared using two different methods. In the first, coatings were formed by means of oxidation under constant current conditions. Anodic oxidation of aluminium was conducted in a multicomponent electrolyte with the addition of organic acids and graphite. The second method was based on the formation of oxide coatings in an electrolyte without the addition of graphite or heat treatment of the layers of succinic acid. The obtained coatings were tested using SEM, TEM, and GDOES (glow discharge optical emission spectrometry and their tribological and stereometric properties were measured. The study demonstrated the beneficial effects of the methods when used to improve the tribological properties of sliding couples.

  6. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

    Science.gov (United States)

    Abhyankar, Wishwas R; Kamphorst, Kiki; Swarge, Bhagyashree N; van Veen, Henk; van der Wel, Nicole N; Brul, Stanley; de Koster, Chris G; de Koning, Leo J

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14 N spores prepared on solid Schaeffer's-glucose (SG) agar plates and 15 N metabolically labeled spores prepared in shake flasks containing 3-( N -morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14 N: 15 N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  7. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    Science.gov (United States)

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  8. The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores.

    Directory of Open Access Journals (Sweden)

    Wishwas R. Abhyankar

    2016-10-01

    Full Text Available Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid SG agar plates and 15N metabolically labelled spores prepared in shake flasks containing MOPS buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N: 15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and

  9. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Division of Advanced Materials Engineering, Kongju National University, 1223–24, Cheonan-daero, Cheonan, Chungnam, 31080 (Korea, Republic of); Ryou, Myung-Hyun [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Lee, Yong Min, E-mail: yongmin.lee@hanbat.ac.kr [Department of Chemical & Biological Engineering, Hanbat National University, 125, Dongseodaero, Yuseong-gu, Daejeon, 34158 (Korea, Republic of); Cho, Kuk Young, E-mail: kycho@hanyang.ac.kr [Department of Materials Science and Chemical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangrok-gu, Ansan, Gyeonggi-do, 15588 (Korea, Republic of)

    2016-08-05

    Ceramic composite separators (CCSs) play a critical role in ensuring safety for lithium-ion batteries (LIBs), especially for mid- and large-sized devices. However, production of CCSs using organic solvents has some cost and environmental concerns. An aqueous process for fabricating CCSs is attractive because of its cost-effectiveness and environmental-friendliness because organic solvents are not used. The success of an aqueous coating system for LIBs is dependent upon minimizing moisture content, as moisture has a negatively impact on LIB performance. In this study, CCSs were fabricated using an aqueous coating solution containing Al{sub 2}O{sub 3} and an acrylic binder. Compared with polyethylene (PE) separators, CCSs coated with an aqueous coating solution showed improved thermal stability, electrolyte uptake, puncture strength, ionic conductivity, and rate capability. In addition, our new approach of introducing a small amount of an oily liquid to the aqueous coating solution reduced the water adsorption by 11.7% compared with coatings that do not contain the oily liquid additive. - Highlights: • Ceramic composite separator is fabricated using aqueous coating process. • Coated separator showed enhanced mechanical and thermal stability. • Liquid oil additive in coating solution reduce moisture reabsorption of separator. • Oil additive in aqueous coating solution does not deteriorate LIB performance.

  10. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. Black-Right-Pointing-Pointer The bonding force between the coating and the magnesium alloy was optimized. Black-Right-Pointing-Pointer The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS {<=} 0.25 g, nHA {<=} 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA {<=} 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating

  11. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    International Nuclear Information System (INIS)

    Zhang Jie; Dai Changsong; Wei Jie; Wen Zhaohui

    2012-01-01

    Highlights: ► Calcium phosphate/chitosan composite coatings on the MAO-AZ91D alloy were prepared. ► The bonding force between the coating and the magnesium alloy was optimized. ► The composite coating slowed down the corrosion rate of magnesium alloy in m-SBF. - Abstract: In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG–DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca 10 (PO 4 ) 6 (OH) 2 ) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40–110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS–acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in

  12. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  13. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  14. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  15. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  16. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  17. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings prepared from TiC{sub 0.7}N{sub 0.3} powder using ball milling followed by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang, E-mail: haoliang@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Wang, Zhenwei, E-mail: 1004329228@qq.com [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology, Weihai, No. 2, Wenhua West Road, Weihai 264209 (China); Zheng, Yaoqing, E-mail: 13612177268@163.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Li, Qianqian, E-mail: 1482471595@qq.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Guan, Sujun, E-mail: sujunguan1221@gmail.com [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Zhao, Qian, E-mail: zhaoqian@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Cheng, Lijun, E-mail: chenglijun@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Liu, Jizi, E-mail: jzliu@njust.edu.cn [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing 210094 (China)

    2017-01-01

    Highlights: • TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO{sub 2} formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO{sub 2} coatings on the surfaces of Al{sub 2}O{sub 3} balls from TiC{sub 0.7}N{sub 0.3} powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC{sub 0.7}N{sub 0.3} coatings were formed after ball milling. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings were prepared after the direct oxidization of TiC{sub 0.7}N{sub 0.3} coatings in the atmosphere. However, TiO{sub 2} was hardly formed in the surface layer of TiC{sub 0.7}N{sub 0.3} coatings within a depth less than 10 nm during the heat oxidation of TiC{sub 0.7}N{sub 0.3} coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite microstructure.

  18. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  19. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    International Nuclear Information System (INIS)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-01-01

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained

  20. Preparation of novel functional Mg/O/PCL/ZnO composite biomaterials and their corrosion resistance

    International Nuclear Information System (INIS)

    Xi, Zhongxian; Tan, Cui; Xu, Lan; Yang, Na; Li, Qing

    2015-01-01

    Highlights: • Novel functional Mg/O/PCL/ZnO composite biomaterials were prepared. • The biomaterials were prepared by anodization treatment and dip-coating technique. • The composite biomaterials were smooth and with low porosity. • The prepared biomaterials have good corrosion resistance in SBF. • The composite biomaterials can release zinc ion to promote bone formation. - Abstract: In this study, novel and functional Mg/O/PCL/ZnO (magnesium/anodic film/poly(ε-caprolactone)/zinc oxide) composite biomaterials for enhancing the bioactivity and biocompatibility of the implant was prepared by using anodization treatment and dip-coating technique. The surface morphology, microstructure, adhesion strength and corrosion resistance of the composite biomaterials were investigated using scanning electron microscopy (SEM), adhesion measurements, electrochemical tests and immersion tests respectively. In addition, the biocompatible properties of Mg (magnesium), Mg/PCL (magnesium/poly(ε-caprolactone)) and Mg/O/PCL (magnesium/anodic film/poly(ε-caprolactone)) samples were also investigated. The results show that the Mg/O/PCL/ZnO composite biomaterials were with low porosity and with the ZnO powders dispersed in PCL uniformly. The adhesion tests suggested that Mg/O/PCL/ZnO composite biomaterials had better adhesion strength than that of Mg/PCL composite biomaterials obviously. Besides, an in vitro test for corrosion demonstrated that the Mg/O/PCL/ZnO composite biomaterials had good corrosion resistance and zinc ion was released obviously in SBF

  1. Microstructure changes and properties of TiC-coated carbon fiber-reinforced carbon composites

    International Nuclear Information System (INIS)

    Wang Kunjie; Guo Quangui; Zhang Guobing; Shi Jingli; Zhang Hua; Liu Lang

    2008-01-01

    In the present paper, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to study distortion of TiC crystals after thermal cycles in plasma environment. Scanning electron microscopy (SEM) was used to observe morphology changes and penetrating cracks in TiC/C coatings. To avoid the cracks and enhance properties of coated carbon fiber-reinforced carbon (C/C) composites, TiC/C composites were prepared as buffer layer to relieve thermal stresses. Thermal cycles indicated that the buffer layer could effectively improve thermal shock resistance of pure TiC coated C/C composites. To study the reason, transmission electron microscopy (TEM) results suggested that TiC particles were uniformly imbedded in pyrocarbon in the buffer layer, which was advantageous to relieve mismatch of coefficient of thermal expansion (CTE) between pure TiC and C/C. Moreover, thermal conductivity tests showed that the buffer layer was in favor of transferring heat loading

  2. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  3. Electrochemical preparation and characteristics of Ni-Co-LaNi{sub 5} composite coatings as electrode materials for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-02-15

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi{sub 5} composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi{sub 5} particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi{sub 5} coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol{sup -1} for the Ni-Co-LaNi{sub 5}, Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi{sub 5} proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi{sub 5} is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface.

  4. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    Science.gov (United States)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  5. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  6. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  7. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  8. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  9. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  10. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    Science.gov (United States)

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  11. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  12. Preparation of raspberry-like polypyrrole composites with applications in catalysis.

    Science.gov (United States)

    Yao, Tongjie; Wang, Chuanxi; Wu, Jie; Lin, Quan; Lv, Hui; Zhang, Kai; Yu, Kui; Yang, Bai

    2009-10-15

    Raspberry-like composites were prepared by coating the silver/polypyrrole core/shell composites onto the surface of silica spheres via oxidation polymerization of pyrrole monomer with [Ag(NH3)2]+ ions as oxidants. The whole process allowed the absence of stabilizers, which greatly improved the quality of the conducting polymer composites. The morphology of the resulting composites was investigated, which can be described as raspberry-like; also, the structure and composition of the composites were characterized in detail. A possible formation mechanism was proposed. The present synthetic strategy substantially extended the scope of metal/conducting polymer composite synthesis. The raspberry-like composites exhibited excellent catalytic properties in the reduction of methylene blue dye with the reducing agent of sodium borohydride.

  13. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  14. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  15. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  16. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  17. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  18. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  19. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  20. Effect of protective coating on marginal integrity of nanohybrid composite during bleaching with carbamide peroxide: A microleakage study

    OpenAIRE

    A Ashok Kumar; V P Hariharavel; Ashwin Narayanan; S Murali

    2015-01-01

    Aim: The aim of the study was to evaluate the microleakage on the marginal integrity of nanohybrid composite during bleaching with carbamide peroxide after applying a protective coating of G-Coat plus (GC, Japan). Materials and Methods: Class V cavities were prepared and restored with nanohybrid composite restoration in 60 freshly extracted noncarious premolars extracted for orthodontic reasons. Then they were divided into 3 groups. Group 1 - bleaching with carbamide peroxide without G co...

  1. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  2. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  3. Triple carbon coated LiFePO4 composite with hierarchical conductive architecture as high-performance cathode for Li-ion batteries

    International Nuclear Information System (INIS)

    Mei, Riguo; Yang, Yanfeng; Song, Xiaorui; An, Zhenguo; Zhang, Jingjie

    2015-01-01

    Triple carbon coated LiFePO 4 composite is prepared by spray drying-carbothermal reduction (SD-CTR) method. The triple carbon sources (viz. graphene oxide, thermoplastic phenolic resin and water-solubility starch) play different roles in constructing the hierarchical conductive architecture. The structure, component and morphology of the as-obtained LiFePO 4 composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The results indicate that, compared with double carbon coated LiFePO 4 counterparts, the triple carbon coated LiFePO 4 composite possesses smaller crystallite and high-efficiency of carbon coating such as more complete coating, lower I D /I G ratio, and better conductive architecture. Benefited from the above mentioned superiority, the triple carbon coated LiFePO 4 composite exhibits outstanding electrochemical performance, especially for high-rate capability, which reaches up to 120 mA h g −1 at 10 C

  4. Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium

    International Nuclear Information System (INIS)

    Afshar, Abdollahe; Yousefpour, Mardali; Xiudong, Yang; Li Xudong; Yang Bangcheng; Wu Yao; Chen Jiyong; Zhang Xingdong

    2006-01-01

    Electrochemical co-deposition approach was expanded to prepare composite bio-ceramic coating of hydroxyapatite (HA)/polyvinyl acetate on the surface of titanium. The role is to improve the bioactive and crystallization properties. The results of XRD, XPS, SEM and TEM characterization showed that by increasing amount of vinyl acetate in the composite bio-ceramic coating before and after immersing in the simulated body fluid (SBF), an oriented growth of HA planes on the (0 0 2) direction had been observed on titanium substrate. Also significant surface morphology changes were obtained

  5. Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode

    International Nuclear Information System (INIS)

    Chen, Hedong; Wang, Zhoulu; Hou, Xianhua; Fu, Lijun; Wang, Shaofeng; Hu, Xiaoqiao; Qin, Haiqing; Wu, Yuping

    2017-01-01

    Carbon-coated core-shell structure artificial graphite@plasma nano-silicon@carbon (AG@PNSi@C) composite, applying as lithium ion battery anode material, has been prepared via spray drying method. The plasma nano-silicon (<100 nm), which contained amorphous silicon, was synthesized by radio frequency induction plasma system with the high temperatures processing capability and high quench rates. The artificial graphite in the composite acts as the core which supports the particle and provides electroconductivity, while PNSi attached on the surface of the core, enhances the specific capacity of the composite. The as prepared composite shows superior performance as anode in lithium-ion batteries, regarding to the initial Coulombic efficiency and cycle life. The initial Coulombic efficiency of AG@PNSi@C electrode is 81.0% with a discharge capacity of 553 mAh g −1 and a recharge capacity of 448 mAh g −1 . During cycling, AG@PNSi@C exhibits excellent performance with a very low capacity fading that the discharge capacity maintains 498.2 mAh g −1 and 449.4 mAh g −1 after 250 cycles and 500 cycles. AG@PNSi@C also shows enhanced resistance against high current density. Besides the remarkable electrochemical performances, the facile and mass-producible synthesis process makes the AG@PNSi@C composite very promising for its application in lithium-ion batteries.

  6. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    Science.gov (United States)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  7. Method and compositions for producting optically clear photocatalytic coatings

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method and compositions for producing a hydrophilic coating on a surface of a solid material. The method comprises a cleaning step and a coating step. The cleaning step may be preceded by an initial cleaning step and it may optionally be succeeded by a preconditioning...... step prior to the coating step. The cleaning step comprises cleaning and preconditioning a surface of a material by use of a first cleaning fluid composition comprising ceria (CeO2) particles. The coating step comprises treatment by use of a coating fluid composition comprising photocatalytically...

  8. Investigation on the evolution of microstructure and texture of electroplated Ni–Ti composite coating by Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuantao, E-mail: zhaoyuantao@sjtu.edu.cn; Cai, Fei, E-mail: caifei32@126.com; Wang, Chengxi, E-mail: sjtucxw@sjtu.edu.cn; Chai, Ze, E-mail: zechaisjtu@163.com; Zhu, Kaiyuan, E-mail: xrd125@163.com; Xu, Zhou, E-mail: xuzhou@sjtu.edu.cn; Jiang, Chuanhai, E-mail: chjiang-sjtu@hotmail.com

    2015-10-30

    Highlights: • Ni–Ti composite coatings were prepared by electroplating. • Morphology and Ti content of Ni–Ti coatings were studied upon SEM and EDXS. • Microstructures of Ni–Ti coatings were studied upon the Rietveld method. • The texture of Ni–Ti coatings was studied upon the pole figure. - Abstract: Rietveld refinement was utilized to investigate the evolution of microstructure and texture of the Ni–Ti composite coatings electroplated at different applied current densities. Scanning Electron Microscope and Energy Dispersive Spectroscopy were utilized to investigate the morphology and chemical composition of the coatings. Relative texture coefficients (RTC) and measured pole figures were utilized to investigate the texture evolution of the coatings. The results showed that the surface morphology of the coatings changed from a colonial structure to a polyhedral one. And the incorporated Ti content decreased with increasing applied current density. As the applied current density increased, the crystallite sizes increased and their distribution got less uniform, and the microstrain and dislocation density decreased. The results of simulated pole figures obtained from Rietveld refinement illustrated that the texture of the coatings changed from no obvious texture to a strong [2 0 0] fiber texture with increasing applied current density. The texture evolution obtained from simulated pole figures was confirmed by the result of RTC and the measured pole figures. The evolutions of the microstructure and texture were derived from the change of the applied current density and incorporated Ti content in the Ni–Ti composite coatings.

  9. Mg-MOF-74/MgF₂ Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance.

    Science.gov (United States)

    Liu, Wei; Yan, Zhijie; Ma, Xiaolu; Geng, Tie; Wu, Haihong; Li, Zhongyue

    2018-03-07

    Surface modification on Mg alloys is highly promising for their application in the field of bone repair. In this study, a new metal-organic framework/MgF₂ (Mg-MOF-74/MgF₂) composite coating was prepared on the surface of AZ31B Mg alloy via pre-treatment of hydrofluoric acid and in situ hydrothermal synthesis methods. The surface topography of the composite coating is compact and homogeneous, and Mg-MOF-74 has good crystallinity. The corrosion resistance of this composite coating was investigated through Tafel polarization test and immersion test in simulated body fluid at 37 °C. It was found that Mg-MOF-74/MgF₂ composite coating significantly slowed down the corrosion rate of Mg alloy. Additionally, Mg-MOF-74/MgF₂ composite coating expresses super-hydrophilicity with the water contact angle of nearly 0°. In conclusion, on the basis of MgF₂ anticorrosive coating, the introduction of Mg-MOF-74 further improves the biological property of Mg alloys. At last, we propose that the hydrophilicity of the composite coating is mainly owing to the large number of hydroxyl groups, the high specific surface area of Mg-MOF-74, and the rough coating produced by Mg-MOF-74 particles. Hence, Mg-MOF-74 has a great advantage in enhancing the hydrophilicity of Mg alloy surface.

  10. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  11. One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Haihan; Han, Gaoyi

    2016-01-01

    Highlights: • CPs-GO/CNTs ternary composites have been prepared via one-step electrodeposition. • The composites show a GO supported CPs-coated CNTs ternary hybrid microstructure. • The capacitive nature of CPs-GO is promoted significantly by introducing CNTs. • CPs-GO/CNTs electrodes show high areal capacitance and excellent cycle stability. - Abstract: Composite films of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes (CPs-GO/CNTs; CPs, PPy and PEDOT) have been fabricated via one-step electrochemical co-deposition. Scanning electron microscope and transmission electron microscopy characterizations indicate that the as-prepared CPs-GO/CNTs composites show a GO supported CPs-coated CNTs ternary hybrid microstructure. The electrochemical measurements including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests manifest that the capacitive performances of CPs-GO electrodes are obviously promoted as the introduction of CNTs, and the PEDOT-GO/CNTs electrodes exhibit the more significantly improved electrochemical performances as the more CNTs introduced. Furthermore, the as-prepared PPy-GO/CNTs and PEDOT-GO/CNTs ternary composites achieve a high areal specific capacitance (142.2 mF cm −2 and 99.0 mF cm −2 at 1.0 mA cm −2 , respectively), together with superior rate capability, and excellent cycle stability (maintain 97.3% and 99.2% of initial capacitance for 5000 cycles, respectively), which are essential for their applications in high-performance supercapacitor electrodes.

  12. Microstructure and Tribological Performance of TiB2-NiCr Composite Coating Deposited by APS

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-12-01

    Full Text Available Nickel chromium (NiCr powders with different titanium diboride (TiB2 additions (20, 40 and 60 wt % were prepared with a mechanical alloying method and then sprayed using an air plasma spraying technology. The microstructure and phase composite of the powders and the cross-sections of deposited coatings were analyzed with a scanning electronic microscope and X-ray diffraction. The tribological performance of the coatings was studied using a pin-on-disk tribometer at room temperature. The weight loss of the as-sprayed coating was measured by using a high accuracy weighing balance. Cr3C2-25NiCr coating was produced and tested for comparison. The morphologies of the worn surface were then investigated. Parts of debris with some scratches were found, presenting typical signs of abrasive wear and showing slight adhesive wear on the surface. The 20 wt % additive TiB2 coating demonstrated the highest microhardness and the lowest coefficient of friction. The wear resistance of the metal-ceramic composites coatings was enhanced with the addition of TiB2.

  13. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders

    International Nuclear Information System (INIS)

    Zhang, Lianmeng; Chen, Wenshu; Luo, Guoqiang; Chen, Pingan; Shen, Qiang; Wang, Chuanbin

    2014-01-01

    Highlights: • High-density (98.4%) W–20 wt.%Cu composites were low-temperature fabricated. • A highly pure Cu network and a homogenous microstructure formed in the composites. • The interfaces between W and Cu are well bonded with no spaces. • The composites have excellent thermal properties. -- Abstract: High-density W–20 wt.%Cu composites containing a Cu-network structure and exhibiting good thermal properties were fabricated by low-temperature hot-press sintering from high-purity copper-coated tungsten powders. The relative density of W–20 wt.%Cu composites sintered at 950 °C–100 MPa–2 h was 98.4%. The low-temperature densification of W–Cu composites occurs because the sintering mode of the coated particles involves only sintering of Cu to Cu, rather than both Cu to W and Cu to Cu, as required for conventional powder particles. The microstructure shows that a network of high-purity Cu extends throughout the composites, and that the W is distributed homogeneously; the interfaces between W and Cu show good contact. The composites have excellent thermal conductivity (239 W/(m K)) and a relatively low coefficient of thermal expansion (7.4 × 10 −6 /K), giving them some of the best properties reported to date for thermal-management materials. The excellent performance is mainly because of their structure, which arises from the characteristics of the high-purity copper-coated tungsten powders

  14. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  15. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  16. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.

    Science.gov (United States)

    Nine, Md J; Cole, Martin A; Johnson, Lucas; Tran, Diana N H; Losic, Dusan

    2015-12-30

    Superhydrophobic surfaces for self-cleaning applications often suffer from mechanical instability and do not function well after abrasion/scratching. To address this problem, we present a method to prepare graphene-based superhydrophobic composite coatings with robust mechanical strength, self-cleaning, and barrier properties. A suspension has been formulated that contains a mixture of reduced graphene oxide (rGO) and diatomaceous earth (DE) modified with polydimethylsiloxane (PDMS) that can be applied on any surface using common coating methods such as spraying, brush painting, and dip coating. Inclusion of TiO2 nanoparticles to the formulation shows further increase in water contact angle (WCA) from 159 ± 2° to 170 ± 2° due to the structural improvement with hierarchical surface roughness. Mechanical stability and durability of the coatings has been achieved by using a commercial adhesive to bond the superhydrophobic "paint" to various substrates. Excellent retention of superhydrophobicity was observed even after sandpaper abrasion and crosscut scratching. A potentiodynamic polarization study revealed excellent corrosion resistance (96.78%) properties, and an acid was used to provide further insight into coating barrier properties. The ease of application and remarkable properties of this graphene-based composite coating show considerable potential for broad application as a self-cleaning and protective layer.

  17. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Lin, C.-K.; Chan, C.-C.; Chang, C.-C.; Tsay, C.-Y.

    2006-01-01

    TiO 2 materials possessing not only photocatalytic but also electrochromic properties have attracted many research and development interests. Though WO 3 exhibits excellent electrochromic properties, the much higher cost and water-sensitivity of WO 3 as compared with the TiO 2 may restrict the practical application of WO 3 materials. In the present study, the feasibility of preparing nanocrystalline porous TiO 2 /WO 3 composite thin films was investigated. Precursors of sols TiO 2 and/or WO 3 and polystyrene microspheres were used to prepare nanocrystalline pure TiO 2 , WO 3 , and composite TiO 2 /WO 3 thin films by spin coating. The spin-coated thin films were amorphous and, after heat treating at a temperature of 500 o C, nanocrystalline TiO 2 , TiO 2 /WO 3 , and WO 3 thin films with or without pores were prepared successfully. The heat-treated thin films were colorless and coloration-bleaching phenomena can be observed during cyclic voltammetry tests. The heat-treated thin films exhibited good reversible electrochromic behavior while the porous TiO 2 /WO 3 composite film exhibited improved electrochromic properties

  18. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  19. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  20. Infiltration processing of metal matrix composites using coated ceramic particulates

    Science.gov (United States)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  1. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  2. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  3. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  4. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

    Science.gov (United States)

    Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo

    2013-04-01

    The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

  5. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings

    International Nuclear Information System (INIS)

    Vasilić, R.; Stojadinović, S.; Radić, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbić, B.

    2015-01-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO 2 coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO 2 coatings are partly crystallized and mainly composed of anatase phase TiO 2 , with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO 2 coatings exhibit notable red shift with respect to the pure TiO 2 coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO 2 coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO 2 coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO 2 coatings in 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO 2 coatings is shifted towards red side of the spectrum. • V-doped TiO 2 coatings have better photocatalytic activity than pure TiO 2 . • After 12 h of simulated sunlight irradiation, 67% of methyl orange was decomposed

  6. Characterization of Ta–Si–N coatings prepared using direct current magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Lin, Kun-Yi; Wang, Hsiu-Hui; Cheng, Yu-Ru

    2014-06-01

    Ta–Si–N coatings were prepared using reactive direct current magnetron co-sputtering on silicon substrates. When the sputtering powers and N{sub 2} flow ratio were varied, Ta–Si–N coatings exhibited various chemical compositions and crystalline characteristics. The high-Si-content Ta–Si–N coatings exhibited an amorphous phase in the as-deposited states, whereas the low-Si-content coatings exhibited a face-centered cubic phase or an amorphous phase depending on the N content. This study evaluated the application of amorphous Ta–Si–N coatings, such as the protective coatings on glass molding dies, in high-temperature and oxygen-containing atmospheres for longed operation durations. To explore the oxidation resistance and mechanical properties of the Ta–Si–N coatings, annealing treatments were conducted in a 1%O{sub 2}–99%Ar atmosphere at 600 °C for 4–100 h. The material characteristics and oxidation behavior of the annealed Ta–Si–N coatings were examined using atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and a nanoindentation tester. The Si oxidized preferentially in the Ta–Si–N coatings. The in-diffusion of oxygen during 600 °C annealing was restricted by the formation of an amorphous oxide scale consisting of Si and O.

  7. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications.

    Science.gov (United States)

    Rikhari, Bhavana; Pugal Mani, S; Rajendran, N

    2018-06-01

    In the present work, the corrosion resistance performance and biocompatibility of polypyrrole/chitosan (PPy/CHI) composite coated Ti was studied. The deposition of composite coating was carried out by electropolymerization method. The deposited PPy/CHI composite coatings were different in morphology, structural, surface roughness and wettability compared PPy coated Ti. The presence of composite coating was confirmed by solid 13 C NMR. The PPy/CHI composite coating showed enhanced microhardness and adhesion strength compared to the PPy coating. The corrosion protection ability of PPy/CHI composite coatings at various applied potentials was analyzed by dynamic electrochemical impedance spectroscopy (DEIS), exhibited higher impedance in all the potentials compared to uncoated and PPy coated Ti. The lower corrosion current density obtained for PPy/CHI-2 composite coating from polarization studies revealed increased corrosion protection ability in SBF solution. The stability of composite coating was confirmed by immersion studies. PPy/CHI-2 composite coating immersed in SBF solution enhances hydroxyapatite (HAp) formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    International Nuclear Information System (INIS)

    Zhang Shitang; Zhou Jiansong; Guo Baogang; Zhou Huidi; Pu Yuping; Chen Jianmin

    2008-01-01

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si 3 N 4 from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C

  9. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2008-09-15

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si{sub 3}N{sub 4} from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C.

  10. One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan

    Directory of Open Access Journals (Sweden)

    Karla M. Gregorio-Jauregui

    2012-01-01

    Full Text Available Preparation of magnetic nanoparticles coated with chitosan in one step by the coprecipitation method in the presence of different chitosan concentrations is reported here. Obtaining of magnetic superparamagnetic nanoparticles was confirmed by X-ray diffraction and magnetic measurements. Scanning transmission electron microscopy allowed to identify spheroidal nanoparticles with around 10-11 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy demonstrated that composite chitosan-magnetic nanoparticles were obtained. Chitosan content in obtained nanocomposites was estimated by thermogravimetric analysis. The nanocomposites were tested in Pb2+ removal from a PbCl2 aqueous solution, showing a removal efficacy up to 53.6%. This work provides a simple method for chitosan-coated nanoparticles obtaining, which could be useful for heavy metal ions removal from water.

  11. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  12. A preparation method and effects of Al–Cr coating on NdFeB sintered magnets

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Lin, Min; Xia, Qingping

    2012-01-01

    A 50 μm Al–Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 °C. The morphology and composition of the Al–Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al–Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al–Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al–Cr coating moves positively from −0.67 to −0.48 V, which is in accordance with Nyquist and Bode plots. The Al–Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: ► The Al–Cr coating can be prepared by dipping in solution, shaking dry and heating. ► The coating morphology shows to be an intense overlapping structure. ► The barrier effect combines with passivation and cathodic protection. ► The anticorrosion abilities improve while magnetic properties change little. ► Compared with other surface treatments, this method is convenient and low cost.

  13. Composition superconductive plumbous coatings

    International Nuclear Information System (INIS)

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  14. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al_2O_3 kernels and ZrO_2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al_2O_3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that are

  15. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  16. Preparation of rutile TiO(2) coating by thermal chemical vapor deposition for anticoking applications.

    Science.gov (United States)

    Tang, Shiyun; Wang, Jianli; Zhu, Quan; Chen, Yaoqiang; Li, Xiangyuan

    2014-10-08

    To inhibit the metal catalytic coking and improve the oxidation resistance of TiN coating, rutile TiO2 coating has been directly designed as an efficient anticoking coating for n-hexane pyrolysis. TiO2 coatings were prepared on the inner surface of SS304 tubes by a thermal CVD method under varied temperatures from 650 to 900 °C. The rutile TiO2 coating was obtained by annealing the as-deposited TiO2 coating, which is an alternative route for the deposition of rutile TiO2 coating. The morphology, elemental and phase composition of TiO2 coatings were characterized by SEM, EDX and XRD, respectively. The results show that deposition temperature of TiO2 coatings has a strong effect on the morphology and thickness of as-deposited TiO2 coatings. Fe, Cr and Ni at.% of the substrate gradually changes to 0 when the temperature is increased to 800 °C. The thickness of TiO2 coating is more than 6 μm and uniform by metalloscopy, and the films have a nonstoichiometric composition of Ti3O8 when the deposition temperature is above 800 °C. The anticoking tests show that the TiO2 coating at a deposition temperature of 800 °C is sufficiently thick to cover the cracks and gaps on the surface of blank substrate and cut off the catalytic coke growth effect of the metal substrate. The anticoking ratio of TiO2 coating corresponding to each 5 cm segments is above 65% and the average anticoking ratio of TiO2 coating is up to 76%. Thus, the TiO2 coating can provide a very good protective layer to prevent the substrate from severe coking efficiently.

  17. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  18. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  19. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings

    International Nuclear Information System (INIS)

    Yi, Deliang; Wu, Chengtie; Chang, Jiang; Ma, Xubing; Ji, Heng; Zheng, Xuebin

    2012-01-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca 2 MgSi 2 O 7 ) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7–42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. (paper)

  20. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chong M.; Liu, Jun; Zhang, Jiguang

    2016-08-27

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.

  1. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    International Nuclear Information System (INIS)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-01-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained

  2. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  3. Review of Research Work on Ti-BASED Composite Coatings

    Science.gov (United States)

    Gabbitas, Brian; Salman, Asma; Zhang, Deliang; Cao, Peng

    The service life of industrial components is limited predominantly by Chemical corrosion/mechanical wear. The project is concerned with the investigation of the capability of Ti(Al,O)/Al2O3 coatings to improve the service life of tool steel (H13) used for dies in aluminium high pressure die casting. This paper gives a general review on the research work conducted at the University of Waikato on producing and evaluating the titanium/alumina based composite coatings. The powder feedstocks for making the composite coatings were produced by high energy mechanical milling of a mixture of Al and TiO2 powders in two different molar ratios followed by a thermal reaction process. The feedstocks were then thermally sprayed using a high velocity air-fuel (HVAF) technique on H13 steel substrates to produce a Ti(Al,O)/Al2O3 composite coatings. The performance of the coating was assessed in terms of thermal shock resistance and reaction kinetics with molten aluminium. The composite powders and coatings were characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD).

  4. Microstructure characteristic and excellent corrosion protection properties of sealed Zn-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Shiyan; Liu Fang; Wang Shaoyin; Zhang Haixiao [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-04-09

    In this paper, a protective sealed Zn-TiO{sub 2} composite coating (SCC) was prepared on sintered NdFeB magnet by electrodeposition and sol-gel combined technique. For a comparison, unsealed Zn-TiO{sub 2} composite coating (UCC) was also studied. The surface morphologies of composite coating were studied using scanning electron microscope (SEM). The microstructure of composite coatings and structure of sealing layer were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum, respectively. The anticorrosive properties of composite coatings in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. The results of corrosion tests showed that due to the blocking effect of sealing layer, SCC could suppress the corrosion process by holding back the transfer or diffusion of corrosive medium, and therefore showed the excellent corrosion protection properties for sintered NdFeB magnet.

  5. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Hung, E-mail: tieamo2002@gmail.com; Wu, Guo-Wei; He, Ju-Liang

    2015-03-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property.

  6. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Ying-Hung; Wu, Guo-Wei; He, Ju-Liang

    2015-01-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property

  7. Study on the nano-composite electroless coating of Ni-P/Ag

    International Nuclear Information System (INIS)

    Ma Hongfang; Tian Fang; Li Dan; Guo Qiang

    2009-01-01

    The nano-composite coating of Ni-P/Ag was obtained by adding silver nanoparticles to the Ni-P electroless plating solutions. The properties of the coating were tested by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and microsclerometer. Silver nanoparticles changed the properties of the composite coating. The Ni-P electroless coating contains 12.23 wt.% P while the composite coating of Ni-P/Ag contains 11.17 wt.% P and 0.24 wt.% Ag. The hardness of the composite coating is bigger than that of Ni-P alloy coating. Differential scanning calorimeter studies showed the amorphous to crystalline transition with precipitation of Ni 3 P and Ni around 335 deg. C

  8. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  9. The influence of nickel coating on the interface of pressureless infiltrated with vibration Al-SiC composites

    Science.gov (United States)

    Elahinejad, Setare; Sharifi, Hassan; Tayebi, Morteza; Rajaee, Ali

    2017-11-01

    The aim of this study was to investigate the effect of nickel coatings on infiltration and interface of SiC reinforced Al-Mg composite. To this end, the pressureless infiltration procedure with vibration applied to produce composites with uncoated and nickel coated reinforcements at two temperatures of 650 °C and 850 °C. The microstructure of the infiltrated cross section was investigated by optical microscopy, scanning electron microscopy, linear and point analyses. Results indicated that coated ceramic preforms improved infiltration and strong interfaces in both temperatures were achieved. Also uncoated preform infiltrated at a temperature of 650 °C, was not proved to be appropriate and it did not form any interface. In this condition a small gap was found between aluminum matrix and ceramic reinforcement, and no bonding was established between the reinforcement and matrix, however the composite prepared in 850 °C had an acceptable interface and the presence of MgAl2O4 at the interface caused improvement in interface bonding. In addition, in the composite sample with coated reinforcement, the existence of Ni as coating prevented the SiC dissolution in the alloy and there was no sign of carbide formation at the interface. At the interface of produced composite, Al3Ni and Al3Ni2 compounds were formed in the matrix around the reinforcement.

  10. Laser-induced reaction alumina coating on ceramic composite

    Science.gov (United States)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  11. Preparation and self-sterilizing properties of Ag@TiO{sub 2}–styrene–acrylic complex coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao, E-mail: yangjt@zjut.edu.cn; Yan, Xiao-hui; Zhong, Ming-qiang, E-mail: zhongmingqiang@hotmail.com

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO{sub 2} particle incorporation into styrene–acrylic latex. The Ag@TiO{sub 2} particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO{sub 2} particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO{sub 2} nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO{sub 2} nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO{sub 2} loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO{sub 2}–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect.

  12. TiO{sub 2} coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhu, Hongzheng; Zhuang, Chen [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Chen, Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Wang, Longqiang [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Dong, Lihua [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China); Yin, Yansheng, E-mail: ysyin@shmtu.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China)

    2016-08-15

    The composite coatings of TiO{sub 2} coated multi-wall carbon nanotube (MWCNTs)/bis-[triethoxysilylpropyl]tetrasulfide (BTESPT) with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technique and the experimental conditions were optimized to attain the appropriate volume ratio. The modified MWCNTs obviously improved the corrosion resistance of BTESPT and BTESPT/TiO{sub 2} coatings, especially for the long-term corrosion resistance ability because of the good dispersion of MWCNTs. The geometry of composite coatings were explored by scanning electron microscopy, fourier transform infrared spectra and the surface coverage rate (θ), the results indicate that the composite coatings produce good cross-linked structure at the interfacial layer, the coating compactness increases gradually with the addition of TiO{sub 2} and/or MWCNTs, and the composite coating effectively postpones the production of cracks with the addition of MWCNTs. - Highlights: • The composite coatings with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technology. • The formation of composite coating on AA 2024 surface considerably improved the corrosion resistance ability. • The composite coating with a TiO{sub 2} to MWCNTs volume ratio of 4/1 shows the best corrosion resistance. • The kinetic evaluation of inhibitive behavior for different coatings against immersion time was explored.

  13. Electrochemical performance of Li-rich oxide composite material coated with Li0.75La0.42TiO3 ionic conductor

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Liao, Pin-Ci; Wu, Yi-Shiuan; Lue, Shingjiang Jessie

    2017-01-01

    Graphical abstract: Schematic diagram for Li-rich oxide (Li 1.2 Ni 0.2 Mn 0.60 O 2 ) coated with Li 0.75 La 0.42 TiO 3 (LLTO) solid ionic conductor. - Highlights: • Li 1.2 Ni 0.2 Mn 0.60 O 2 /C composite material was prepared by one-pot solid-state method. • 1D a-MnO 2 nanowires and microsphere hollow b-Ni(OH) 2 were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li 1.2 Ni 0.2 Mn 0.60 O 2 ) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO 2 , β-Ni(OH) 2 raw materials. Two raw materials of α-MnO 2 nanowires and microsphere β-Ni(OH) 2 were synthesized by a hydrothermal process. In addition, Li 0.75 La 0.42 TiO3 (LLTO) fast ionic conductor was coated on SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composite via a sol–gel method. The properties of the LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li 1.2 Ni 0.2 Mn 0.60 O 2 composites were 256, 250, 231, 200, 158, and 114 mAh g −1 at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g −1 in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g −1 was obtained, which showed the capacity retention of 95.4%.

  14. Interfacial microstructure and mechanical properties of Cf/AZ91D composites with TiO2 and PyC fiber coatings.

    Science.gov (United States)

    Li, Shaolin; Qi, Lehua; Zhang, Ting; Ju, Luyan; Li, Hejun

    2017-10-01

    In spite of the effectiveness of the fiber coatings on interface modification of carbon fiber reinforced magnesium matrix composites, the cost and exclusive equipment for the coatings preparation are usually ignored during research work. In this paper, pyrolytic carbon (PyC) and TiO 2 were coated on carbon fiber surface to study the effects of fiber coatings on interfacial microstructure and mechanical properties of carbon fiber reinforced AZ91D composites (C f /AZ91D composites). It was indicated that both the two coatings could modify the interface and improve the mechanical properties of the composites. The ultimate tensile strength of the TiO 2 -C f /AZ91D and the PyC-C f /AZ91D composite were 333MPa and 400MPa, which were improved by 41.7% and 70.2% respectively, compared with the untreated-C f /AZ91D composite. The microstructure observation revealed that the strengthening of the composites relied on fiber integrity and moderate interfacial bonding. MgO nano-particles were generated at the interface due to the reaction of TiO 2 with Mg in the TiO 2 -C f /AZ91D composite. The volume expansion resulting from the reaction let to disordered intergranular films and crystal defects at the interface. The fibers were protected and the interfacial reaction was restrained by PyC coating in the PyC-C f /AZ91D composite. The principle to select the coating of fiber was proposed by comparing the effectiveness and cost of the coatings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    International Nuclear Information System (INIS)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-01-01

    The purpose of this study was to investigate the effect of different concentration of Mg 2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg 2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg 2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg 2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg 2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg 2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  16. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg2+ in the m-SBF on its bioactivity

    Science.gov (United States)

    Zhang, Jie; Dai, Changsong; Wei, Jie; Wen, Zhaohui; Zhang, Shujuan; Lin, Lemin

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg2+ in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg2+ for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg2+ concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg2+ concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg2+ increasing from 1× Mg to 10× Mg. Over all, with the Mg2+ concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  17. Composite phase change materials prepared by encapsuling paraffin in PVC macrocapsules

    International Nuclear Information System (INIS)

    Chen, Yingbo; Zhang, Shifeng; Zhang, Qi; Chen, Yusheng; Zhang, Yufeng

    2014-01-01

    Highlights: • PVC macrocapsules coated with SiO 2 were synthesized. • Paraffin was encapsuled in the capsules. • The composite PCM has high heat capacity. • The composite PCM has no surpercooling. - Abstract: A novel phase change material capsules with SiO 2 in their surface was prepared by absorbing paraffin into PVC hollow capsules and by the polycondensation reaction of TEOS in different conditions. X-ray photoelectron spectroscopy (XPS) analysis and scanning electronic microscope (SEM) were used to determine chemical composition and microstructure of the composite capsules, respectively. Enthalpy capacity and thermal stability of the composite capsules are systematically characterized by using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA) and thermocycling tests. The composite has high heat capacity with good stability and absence of supercooling phenomena

  18. A preparation method and effects of Al-Cr coating on NdFeB sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Lin, Min, E-mail: linm@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, 519 Road Zhuangshi, District Zhenghai, Ningbo 315201, People' s Republic of China (China); Xia, Qingping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-11-15

    A 50 {mu}m Al-Cr coating on NdFeB sintered magnets was prepared through dipping in solution, shaking dry and heating at 300 Degree-Sign C. The morphology and composition of the Al-Cr coating were investigated with scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The corrosion resistance of NdFeB sintered magnets with and without the Al-Cr coating was analyzed by normal salt spray, polarization curves and electrochemical impedance spectroscopy. The magnetic properties were measured with a hysteresis loop tracer. The results show that the Al-Cr coating forms an overlapping structure and Al flakes lie nearly parallel to the substrate, which improves the anticorrosion and increases normal salt spray test from 10 to 100 h. The corrosion potential of NdFeB sintered magnets with and without the Al-Cr coating moves positively from -0.67 to -0.48 V, which is in accordance with Nyquist and Bode plots. The Al-Cr coating has little influence on the magnetic properties of the NdFeB sintered magnets. - Highlights: Black-Right-Pointing-Pointer The Al-Cr coating can be prepared by dipping in solution, shaking dry and heating. Black-Right-Pointing-Pointer The coating morphology shows to be an intense overlapping structure. Black-Right-Pointing-Pointer The barrier effect combines with passivation and cathodic protection. Black-Right-Pointing-Pointer The anticorrosion abilities improve while magnetic properties change little. Black-Right-Pointing-Pointer Compared with other surface treatments, this method is convenient and low cost.

  19. Process for preparing coating materials

    International Nuclear Information System (INIS)

    Ryoke, Hideyasu; Kobayashi, Juichi; Kobayashi, Kei.

    1972-01-01

    A coating material curable with ionizing radiations or ultraviolet radiation can be prepared by reacting a compound (A) having one OH group and at least one α,β-ethylenic or allyl group with a polyisocyanate. (A) is a diester of a dicarboxylic acid. One of the ester groups may have a terminal α,β-ethylenic or allyl group and the other contains one OH and one α,β-ethylenic or allyl group. (A) is reacted with a polyisocyanate to yield an urethane. The latter may be diluted with a vinyl monomer. When exposed to a radiation, the coating material cures to give a film excellent in adhesion, impact strength and resistances to pollution, water and solvents. Dose of the ionizing radiation (α-, β-, γ-rays, electron beams) is 0.2-20 Mrad. In one example, 116 parts of 2-hydroxyethyl acrylate was reacted with 148 parts of phthalic anhydride and 142 parts of glycidyl methacrylate to give (A). (A) was reacted with 87 parts of tolylenediisocyanate. A metallic panel was coated with the coating material and cured with electron beams (5 Mrad). Pencil hardness was H, and gel fraction measured in acetone was above 97%. The coating was excellent in resistances to solvent and chemicals, impact strength and adhesion. (Kaichi, S.)

  20. Suspension plasma sprayed composite coating using amorphous powder feedstock

    International Nuclear Information System (INIS)

    Chen Dianying; Jordan, Eric H.; Gell, Maurice

    2009-01-01

    Al 2 O 3 -ZrO 2 composite coatings were deposited by the suspension plasma spray process using molecularly mixed amorphous powders. X-ray diffraction (XRD) analysis shows that the as-sprayed coating is composed of α-Al 2 O 3 and tetragonal ZrO 2 phases with grain sizes of 26 nm and 18 nm, respectively. The as-sprayed coating has 93% density with a hardness of 9.9 GPa. Heat treatment of the as-sprayed coating reveals that the Al 2 O 3 and ZrO 2 phases are homogeneously distributed in the composite coating

  1. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  2. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2017-06-27

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  3. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  4. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  5. Preparation and characterization of composite microspheres for brachytherapy and hyperthermia treatment of cancer

    International Nuclear Information System (INIS)

    Zhao Di; Huang Wenhai; Rahaman, Mohamed N.; Day, Delbert E.; Wang Deping; Gu Yifei

    2012-01-01

    Composite microspheres were prepared by coating yttrium–aluminum–silicate (YAS) glass microspheres (20–30 μm) with a layer of Fe 3 O 4 nanoparticles and evaluated for potential use in brachytherapy and hyperthermia treatment of cancer. After neutron activation to form the β-emitting 90 Y radionuclide, the composite microspheres can be injected into a patient to destroy cancerous tumors; at the same time, the composite microspheres can generate heat upon application of a magnetic field to also destroy the tumors. The results showed that the composite microspheres were chemically durable when immersed in a simulated body fluid (SBF), with ∼ 0.25% weight loss and ∼ 3.2% yttrium dissolved into the SBF after 30 days at 37 °C. The composite microspheres also showed ferromagnetic properties as a result of the Fe 3 O 4 coating; when immersed in water at 20 °C (20 mg in 1 mL of water), the application of an alternating magnetic field produced a temperature increase from 20 °C to 38−46 °C depending on the thickness of the Fe 3 O 4 coating. The results indicate that these composite microspheres have promising potential in combined brachytherapy and hyperthermia treatment of cancerous tumors. - Highlights: ► Composite microspheres for brachytherapy and hyperthermia treatment of cancer. ► Fe 3 O 4 nanoparticles coated on the yttrium–aluminum–silicate glass microspheres. ► Microspheres are chemically stable in SBF. ► Microspheres can generate heat for hyperthermia under an alternating magnetic field. ► Microspheres can emit β-rays for brachytherapy after neutron activation.

  6. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate

    Science.gov (United States)

    Zhang, Jie; Dai, Chang-Song; Wei, Jie; Wen, Zhao-Hui

    2012-11-01

    In order to improve the bonding strength between calcium phosphate/chitosan composite coatings and a micro-arc oxidized (MAO)-AZ91D Mg alloy, different influencing parameters were investigated in the process of electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). Surface morphology and phase constituents of the as-prepared materials were investigated by using X-ray diffractometer (XRD), Fourier-transformed infrared spectrophotometer (FTIR), Raman spectrometer, scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), and a thermo gravimetric and differential thermal analyzer (TG-DTA). Scratch tests were carried out to study the bonding properties between the coatings and the substrates. In vitro immersion tests were conducted to determine the corrosion behaviors of samples with and without deposit layers through electrochemical experiments. In the EPD process, the acetic acid content in the electrophoresis suspension and the electrophoretic voltage played important roles in improving the bonding properties, while the contents of chitosan (CS) and nano-hydroxyapatite (nHA, Ca10(PO4)6(OH)2) in the suspension had less significant influences on the mechanical bonding strength. It was observed that the coatings showed the excellent bonding property when an electrophoretic voltage was in a range of 40-110 V with other reagent amounts as follows: acetic acid: 4.5 vol.%, CS ≤ 0.25 g, nHA ≤ 2.0 g in 200 ml of a CS-acetic acid aqueous solution and nHA ≤ 2.5 g in 300 ml of absolute ethanol. The morphology of the composite coating obtained under the above optimal condition had a flake-like crystal structure. The EPD in the nHA/CS-acetic acid/ethanol suspension resulted in hydroxyapatite, chitosan, brushite (DCPD, CaHPO4·2H2O) and Ca(OH)2 in the coatings. After the as-prepared coating materials were immersed into PBS, Ca(OH)2 could be converted into HA and DCPD. The results of the electrochemical tests

  7. TaxHf1−xB2–SiC multiphase oxidation protective coating for SiC-coated carbon/carbon composites

    International Nuclear Information System (INIS)

    Ren, Xuanru; Li, Hejun; Fu, Qiangang; Li, Kezhi

    2014-01-01

    Highlights: • Ta x Hf 1−x B 2 –SiC coating was prepared on SiC coated C/C by in-situ reaction method. • TaB 2 and HfB 2 were introduced in the form of solid solution Ta x Hf 1−x B 2 . • The coating could protect C/C for 1480 h with only 0.57% mass loss at 1773 K in air. • Oxidation layer consists of out Ta–Si–O compound layer and inner SiO 2 glass layer. • Ta–Si–O compound silicate layer presents a better stability than SiO 2 glass layer. - Abstract: A Ta x Hf 1−x B 2 –SiC coating was prepared by in-situ reaction method on SiC coated C/C composites. Ta x Hf 1−x B 2 phase is the form of solid solution between TaB 2 and HfB 2 . Isothermal oxidation behavior at 1773 K and ablation behavior of the coated C/C were tested. Ta x Hf 1−x B 2 –SiC/SiC coating could protect the C/C from oxidation at 1773 K for 1480 h and ablation above 2200 K for 40 s. During oxidation, oxides of Ta and Hf atoms exist as “pinning phases” in the compound glass layer consisted of outer Ta–Si–O compound silicate layer and inner SiO 2 glass layer, which was responsible for the excellent oxidation resistance

  8. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  9. Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide.

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Shakoori, Sahar

    2017-11-01

    In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO 2 as a coating additive. TiO 2 nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO 2 /graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO 2 /graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO 2 /graphene oxide modified polyacrylic coating and compared with that of pristine TiO 2 modified and unmodified polyacrylic coatings. TiO 2 /graphene oxide nanocomposite and polyacrylic coating modified by TiO 2 /graphene oxide additive were characterized using FT-IR, UV-Vis, XRD, and FESEM techniques. The effect of TiO 2 /graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO 2 /graphene oxide nanocomposite additive with TiO 2 to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO 2 is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO 2 /graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation. Copyright © 2017

  10. New oxide-composite coatings for difficult metal-cutting tasks

    International Nuclear Information System (INIS)

    Westphal, H.; Berg, H. van den; Sottke, V.; Tabersky, R.

    2001-01-01

    The changes in today's metal working technology are driven by increasing cutting speeds, heavy/hard machining and an enormous amount by changes in work piece materials. These applications are asking for more tailor made cutting tool solutions. Together with the well established multi component coating technology a new approach of composite coatings is giving solutions for the tough demands of the cutting tool market. In this paper is presented composite coatings of AI 2 O 3 /ZrO-2/TiO x made by CVD. The coating is like high performance oxide ceramics for cutting applications. The coating is used in combination with MT CVD coatings and different carbide substrates. The CVD coating has optimum stress for cutting applications, low friction and very high thermal isolation. The outstanding performance of this coating is demonstrated in different applications. (author)

  11. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  12. MC3T3-E1 cell response of amorphous phase/TiO{sub 2} nanocrystal composite coating prepared by microarc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, Daqing, E-mail: daqingwei@hit.edu.cn [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Haoyue; Feng, Wei [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Su [Department of Mechanical Engineering, School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150001 (China); Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-06-01

    Bioactive amorphous phase/TiO{sub 2} nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO{sub 2} nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. - Highlights: • Amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated. • The MC3T3-E1 cell response of the APTN coatings was evaluated. • The APTN coatings greatly enhanced the cell proliferation ability.

  13. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leilei, E-mail: zhangleilei1121@aliyun.com; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  14. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    International Nuclear Information System (INIS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-01-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  15. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  16. Synthesis and characterization of Ni-P-Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Elias, Liju; Hegde, A. Chitharanjan

    2016-01-01

    Highlights: • Electrocatalytic activity of Ni-P alloy is improved by Ag nanoparticle incorporation. • Ni-P-Ag electrode is developed through sol-enhanced electrodeposition. • Ni-P-Ag composite coating shows better electrocatalytic efficiency for HER. - Abstract: The effect of addition of silver nanoparticle sol (SNS) into Ni-P plating bath was studied in terms of the variation in electrocatalytic behavior of the developed coatings in 1.0 M KOH. Ni-P-Ag composite coating was achieved through direct electrolysis by adding a known quantity of the conventionally prepared SNS into Ni-P bath. Ni-P-Ag coatings electrodeposited galvanostatically on copper under different conditions of the bath was used as electrode material for alkaline hydrogen evolution reaction (HER). The optimal concentration of the SNS required for maximum electrocatalytic activity towards HER was obtained by adding different volumes of SNS (from 0 to 50 mL L −1 ) into the bath. The HER efficiency of the test electrodes in 1.0 M KOH medium was examined using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. The kinetics of HER on the alloy and composite electrodes were established through Tafel polarization and electrochemical impedance spectroscopy (EIS) analyses. Energy dispersive spectroscopy (EDS) was used to confirm the incorporation of Ag nanoparticles into the Ni-P alloy matrix. The microstructure and morphology of the alloy and composite coatings were analyzed by Scanning Electron Microscopy (SEM). A significant improvement in the electrocatalytic property of nano-Ag derived composite coatings was found, and was attributed to the enhanced electroactive sites of Ag particles. Deposition conditions to maximize the electrocatalytic activity of Ni-P-Ag nanocomposite coatings in relation to traditional Ni-P alloy coatings was arrived, and results are discussed.

  17. Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells

    Science.gov (United States)

    Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.

    2014-12-01

    The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.

  18. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-05-01

    Full Text Available The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC. Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS and stearic acid (STA modified kaolin (KL particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°. Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR and the total heat release (THR of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite.

  19. Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Liu Bing; Zhang Kaihong; Tang Chunhe

    2012-01-01

    Zirconium carbide (ZrC) layer on pyrocarbon-coated particles was successfully prepared in a fluidized bed coater furnace by chemical vapor deposition using a zirconium chloride (ZrCl 4 ) vapor method and quantitative controlling of the Zr-source through a ZrCl 4 powder feeder. The crystal phase, microstructure and chemical composition of ZrC-coating layer were analyzed using X-ray diffraction (XRD), optical metallographical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results show that the deposited ZrC-coating layer has smooth and compact surface, no obvious holes, clear interface with dense pyrocarbon layer, and a thickness of 35 μm. The main phase of ZrC-coating layer is fcc-ZrC crystal, which is composed of small grains with the size of 20–50 nm. The grain size increases monotonously with the deposition temperature increasing. The main elements of ZrC-coating layer are Zr and C, and the Zr/C molar ratio is close to 1:1. The analysis of composition and crystal structure suggest that a stoichiometric fcc-ZrC crystal was obtained and no obvious preferred orientation of the grains was found.

  20. Microstructure and wear behavior of {gamma}/Al{sub 4}C{sub 3}/TiC/CaF{sub 2} composite coating on {gamma}-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)], E-mail: liubobo0828@yahoo.com.cn; Shi Shihong [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China); Guo Jian [School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan West Road, Zhengzhou 450007 (China); Fu Geyan; Wang Mingdi [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)

    2009-03-15

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF{sub 2} in the preparation of precursor NiCr-Cr{sub 3}C{sub 2}-CaF{sub 2} mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al{sub 4}C{sub 3} carbides reinforcement as well as fine isolated spherical CaF{sub 2} solid lubrication particles uniformly dispersed in the NiCrAlTi ({gamma}) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF{sub 2} and the increasing of it's wettability with the NiCrAlTi ({gamma}) matrix during the laser cladding process.

  1. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  2. Development of Electrodeposited Zn/nano-TiO2 Composite Coatings with Enhanced Corrosion Performance

    Science.gov (United States)

    Benea, L.; Dănăilă, E.

    2017-06-01

    Pure zinc coatings have been found ineffective when are used in aggressive environments such as those which contain chlorides or industrial pollutants [1]. In this paper, Zn/nano-TiO2 composite coatings with various contents of TiO2 nanoparticles (diameter size of 10 nm) were prepared on low-carbon steel by electro-codeposition technique. The deposition was carried out at different cathodic potentials ranging from -1600 mV to -2100 mV for different deposition times between 5-15 min. Pure Zn coatings were also produced under the same experimental conditions for comparison. Present work aims to investigate the effects of selected electrodeposition parameters (cathodic potential, TiO2 nanoparticle concentration in the plating bath and electrodeposition time) on the corrosion behavior of electrodeposited Zn/nano-TiO2 composite obtained. The corrosion experiments were performed in natural seawater, using electrochemical methods such as open circuit potential, potentiodynamic polarization and linear polarization resistance. The results showed that the inclusion of TiO2 nanoparticles into zinc matrix lead to an improved corrosion resistance comparatively with pure zinc coatings obtained under similar conditions.

  3. Calcium phosphate/chitosan composite coating: Effect of different concentrations of Mg{sup 2+} in the m-SBF on its bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Pharmacy College, Jiamusi University, Jiamusi 154007 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wei, Jie [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Chemistry and Bioengineering, Suzhou Science Technology University, Suzhou 215009 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Shujuan; Lin, Lemin [Department of neuro intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2013-09-01

    The purpose of this study was to investigate the effect of different concentration of Mg{sup 2+} in a modified simulated body fluid (m-SBF) on the bioactivity of calcium phosphate/chitosan composite coating. Calcium phosphate/chitosan composite coating was prepared on graphite substrate via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The obtained samples were soaked in the m-SBF containing different concentration of Mg{sup 2+} for different times. And then, the composite coatings were assessed using X-ray diffractometer (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectra, and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The soaking solution was evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) test. The analytical results showed that hydroxyapatite (HA) and bone-like apatite (HCA) grew on the surface of calcium phosphate/chitosan composite coating after incubation in different m-SBF. With Mg{sup 2+} concentration in m-SBF increased from 1× Mg to 10× Mg, HA in the composite coating first presented a dissolving process and then a precipitating one slowly, while HCA presented a growing trend, continuously. The increasing of Mg{sup 2+} concentration in the m-SBF inhibited the total growing process of HA and HCA as a whole. The structure of the composite coating changed from spherical into irregular morphology with the concentration of Mg{sup 2+} increasing from 1× Mg to 10× Mg. Over all, with the Mg{sup 2+} concentration increasing, the bioactivity of calcium phosphate/chitosan composite coating tended to decrease.

  4. Standard guide for metallographic preparation of thermal sprayed coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers recommendations for sectioning, cleaning, mounting, grinding, and polishing to reveal the microstructural features of thermal sprayed coatings (TSCs) and the substrates to which they are applied when examined microscopically. Because of the diversity of available equipment, the wide variety of coating and substrate combinations, and the sensitivity of these specimens to preparation technique, the existence of a series of recommended methods for metallographic preparation of thermal sprayed coating specimens is helpful. Adherence to this guide will provide practitioners with consistent and reproducible results. Additional information concerning standard practices for metallographic preparation can be found in Practice E 3. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitatio...

  5. Gum arabic based composite edible coating on green chillies

    Science.gov (United States)

    Valiathan, Sreejit; Athmaselvi, K. A.

    2018-04-01

    Green chillies were coated with a composite edible coating composed of gum arabic (5%), glycerol (1%), thyme oil (0.5%) and tween 80 (0.05%) to preserve the freshness and quality of green chillies and thus reduce the cost of preservation. In the present work, the chillies were coated with the composite edible coating using the dipping method with three dipping times (1, 3 and 5 min). The physicochemical parameters of the coated and control chillies stored at room temperature (28±2ºC) were evaluated at regular intervals of storage. There was a significant difference (p≤0.05) in the physicochemical properties between the control chillies and coated chillies with 1, 3 and 5 min dipping times. The coated green chillies showed significantly (p≤0.05) lower weight loss, phenolic acid production, capsaicin production and significantly (p≤0.05) higher retention of ascorbic acid, total chlorophyll content, colour, firmness and better organoleptic properties. The composite edible coating of gum arabic and thyme oil with 3 min dipping was effective in preserving the desirable physico-chemical and organoleptic properties of the green chillies up to 12 days, compared to the uncoated chillies that had a shelf life of 6 days at room temperature.

  6. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Directory of Open Access Journals (Sweden)

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  7. Water-repellent coatings prepared by modification of ZnO nanoparticles

    Science.gov (United States)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  8. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  9. Radiation hardening coating material

    International Nuclear Information System (INIS)

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  10. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Dědourková, Tereza [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Pardubice, Doubravice 41, 532 10 Pardubice (Czech Republic); Knížek, Karel; Jirák, Zdeněk [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Hydrothermal synthesis of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2–0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B{sub 0}=0.5 T, reveal high transverse relaxivity (r{sub 2}(20 °C)=450 s{sup −1} mmol(Me{sub 3}O{sub 4}){sup −1} L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime. - Highlights: • Mn-Zn ferrite particles with size of ≈10 nm are synthesized by hydrothermal method. • Their structure and magnetic properties are analysed in dependence on composition. • Silica-coated clusters with the size ≈26 nm are prepared as contrast agent for MRI. • Their transverse relaxivity shows strong temperature dependence.

  11. Preparation of Cu–Ni–Fe alloy coating and its evaluation on corrosion behavior in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Zhou, Qiongyu; Jiang, Jibo; Zhong, Qingdong; Wang, Yi; Li, Ke; Liu, Huijuan

    2013-01-01

    Highlights: ► An uniform Cu–Ni–Fe alloy coating constituted of homogenous γ-phases was prepared on the surface of low-carbon steel. ► The increase of Ni has a significant promotion to produce a uniform and homogenous Cu–Ni–Fe alloy coating. ► Electrochemical test results indicated the excellent corrosion resistance of the coating with high Ni content. ► EIS test and results demonstrated the surface homogeneity or compactness of the coating with high Ni content. -- Abstract: In this paper, an attempt had been made to prepare a Cu–Ni–Fe alloy coating for improving the corrosion resistance of the low-carbon steel. The surface heat treatment of coated low-carbon steel was performed at 1000 °C for 3 h under hydrogen atmosphere. The structure and microstructure of coatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the samples was evaluated by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS). Results indicated that a compact alloy coating was formed on the surface of low-carbon steel and the Ni content had a prodigious impact to the microstructure, composition and structure of Cu–Ni–Fe alloy coating. Apart from that, significant improvements in corrosion resistance were achieved by using the Cu–Ni–Fe alloy coating, which constituting of homogeneous γ-phases

  12. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  13. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  14. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  15. Preparation of alginate coated chitosan microparticles for vaccine delivery

    Directory of Open Access Journals (Sweden)

    Wei YuQuan

    2008-11-01

    Full Text Available Abstract Background Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine. Results The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE of 60% and loading capacity (LC of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM, the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h. SDS-polyacrylamide gel electrophoresis (SDS-PAGE assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR. Conclusion The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan

  16. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  17. HfC plasma coating of C/C composites

    International Nuclear Information System (INIS)

    Boncoeur, M.; Schnedecker, G.; Lulewicz, J.D.

    1992-01-01

    The surface properties of C/C composites such as hardness and corrosion or erosion resistance can be modified by a ceramic coating applied by plasma torch. The technique of plasma spraying in controlled temperature and atmosphere, that was developed and patented by the CEA, makes it possible to apply coatings to the majority of metals and ceramics without affecting the characteristics of the composite. An example of hard deposit of HfC on a C/C composite is described. The characteristics of the deposit and of the bonding with the C/C composite were studied before and after a heat treatment under vacuum for 2 hours at 1000 C. 2 refs

  18. One-step preparation and photocatalytic performance of vanadium doped TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vasilić, R., E-mail: rastko.vasilic@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, N. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Dohčević-Mitrović, Z. [University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Grbić, B. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2015-02-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO{sub 2} coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO{sub 2} coatings are partly crystallized and mainly composed of anatase phase TiO{sub 2}, with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO{sub 2} coatings exhibit notable red shift with respect to the pure TiO{sub 2} coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO{sub 2} coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO{sub 2} coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO{sub 2} coatings in 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO{sub 2} coatings is shifted towards red side of the spectrum. • V-doped TiO{sub 2} coatings have better photocatalytic activity than pure TiO{sub 2}. • After 12 h of simulated sunlight irradiation, 67% of

  19. Preparation and Study of Electromagnetic Interference Shielding Materials Comprised of Ni-Co Coated on Web-Like Biocarbon Nanofibers via Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Xiaohu Huang

    2015-01-01

    Full Text Available Electromagnetic interference (EMI shielding materials made of Ni-Co coated on web-like biocarbon nanofibers were successfully prepared by electroless plating. Biocarbon nanofibers (CF with a novel web-like structure comprised of entangled and interconnected carbon nanoribbons were obtained using bacterial cellulose pyrolyzed at 1200°C. Paraffin wax matrix composites filled with different loadings (10, 20, and 30 wt%, resp. of CF and Ni-Co coated CF (NCCF were prepared. The electrical conductivities and electromagnetic parameters of the composites were investigated by the four-probe method and vector network analysis. From these results, the EMI shielding efficiencies (SE of NCCF composites were shown to be significantly higher than that of CF at the same mass fraction. The paraffin wax composites containing 30 wt% NCCF showed the highest EMI SE of 41.2 dB (99.99% attenuation, which are attributed to the higher electrical conductivity and permittivity of the NCCF composites than the CF composites. Additionally, EMI SE increased with an increase in CF and NCCF loading and the absorption was determined to be the primary factor governing EMI shielding. This study conclusively reveals that NCCF composites have potential applications as EMI shielding materials.

  20. Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine.

    Science.gov (United States)

    Wei, Xuetuan; Luo, Mingfang; Liu, Huizhou

    2014-04-01

    The bifunctional coating with antithrombotic and antimicrobial activity was developed using nattokinase (NK) and nanosilver (AgNPs). Firstly, the adsorption interactions between NK and AgNPs were confirmed, and the composite particles of NK-AgNPs were prepared by adsorption of NK with AgNPs. At 5FU/mL of NK concentration, the saturation adsorption capacity reached 24.35 FU/mg AgNPs with a high activity recovery of 97%, and adsorption by AgNPs also enhanced the heat stability and anticoagulant effect of NK. Based on the electrostatic force driven layer-by-layer self-assembly, the NK-AgNPs were further assembled with polyethylenimine (PEI) to form coating. UV-vis analysis showed that the self-assembly process was regular, and atom force microscopy analysis indicated that NK-AgNPs were uniformly embedded into the coating. The NK-AgNPs-PEI composite coating showed potent antithrombotic activity and antibacterial activity. This study developed a novel strategy to construct the bifunctional coating with antithrombotic and antimicrobial properties, and the coating material showed promising potential to be applied in the medical device. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Evaluating tamsulosin hydrochloride-released microparticles prepared using single-step matrix coating.

    Science.gov (United States)

    Maeda, Atsushi; Shinoda, Tatsuki; Ito, Naoki; Baba, Keizo; Oku, Naoto; Mizumoto, Takao

    2011-04-15

    The objective of the present study was to determine the optimum composition for sustained-release of tamsulosin hydrochloride from microparticles intended for orally disintegrating tablets. Microparticles were prepared from an aqueous ethylcellulose dispersion (Aquacoa®), and an aqueous copolymer based on ethyl acrylate and methyl methacrylate dispersion (Eudragit®) NE30D), with microcrystalline cellulose as core particles with a fluidized bed coating process. Prepared microparticles were about 200 μm diameter and spherical. The microparticles were evaluated for in vitro drug release and in vivo absorption to assess bioequivalence in a commercial product, Harnal® pellets. The optimum ratio of Aquacoat® and Eudragit® NE30D in the matrix was 9:1. We observed similar drug release profiles in microparticles and Harnal® pellets. Higuchi model analysis of the in vitro drug release from microparticles was linear up to 80% release, typical of Fickian diffusion sustained-release profile. The in vivo absorption properties from microparticles were comparable to Harnal® pellets, and there was a linear relationship between in vitro drug release and in vivo drug release. In conclusion, this development produces microparticles in single-step coating, that provided a sustained-release of tamsulosin hydrochloride comparable to Harnal® pellets. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  3. Improved dehydriding property of polyvinylpyrrolidone coated Mg-Ni hydrogen storage nano-composite prepared by hydriding combustion synthesis and wet mechanical milling

    Directory of Open Access Journals (Sweden)

    Linglong Yao

    2018-02-01

    Full Text Available In this work, polyvinylpyrrolidone (PVP coated Mg95Ni5 nano-composites were prepared by hydriding combustion synthesis (HCS plus wet mechanical milling (WM with tetrahydrofuran (THF and donated as WM-x wt% PVP (x = 1, 3, 5 and 7 respectively. The phase compositions, microstructures and dehydriding property, as well as the co-effect of PVP and THF were investigated in detail. XRD results showed that the average crystal size of MgH2 in the milled Mg95Ni5 decreased from 23 nm without PVP to 18 nm with 1 wt% PVP. The peak temperature of dehydrogenation of MgH2 in the milled Mg95Ni5 decreased from 293.0 °C without THF to 250.4 °C with THF. The apparent activation energy for decomposition of MgH2 in WM-7 wt% PVP was estimated to be 66.94 kJ/mol, which is 37.70 kJ/mol lower than that of milled Mg95Ni5 without THF and PVP. PVP and THF can facilitate the refinement of particle size during mechanical milling process. Attributed to small particle sizes and synergistic effect of PVP and THF, the composites exhibit markedly improved dehydriding properties. Keywords: Mg-Ni-PVP, Composite, Mg-based alloy, Wet mechanical milling, Dehydriding temperature

  4. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  5. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    Brack, K.

    1976-01-01

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  6. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sidane, D., E-mail: dj.sidane@yahoo.fr [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); Rammal, H. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Beljebbar, A. [UMR CNRS 7369, Equipe MéDIAN Biophotonique et Technologies pour la Santé, UFR de Pharmacie, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51096 Reims (France); Gangloff, S.C. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Chicot, D. [FRE 3723 - LML - Laboratoire de Mécanique de Lille, Univ. Lille, 59000 Lille (France); Velard, F. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Khireddine, H. [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); and others

    2017-03-01

    Titania-Hydroxyapatite (TiO{sub 2}/HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO{sub 2}/HAP composite and TiO{sub 2}/HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO{sub 2}/HAP composite once incubated in physiological conditions for 7 days whereas the TiO{sub 2}/HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO{sub 2}/HAP bilayer whereas on TiO{sub 2}/HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO{sub 2}/HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO{sub 2}/HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO{sub 2} reinforced HAP coatings were investigated and compared. • TiO{sub 2}/HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO{sub 2}/HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications.

  7. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  8. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  9. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  10. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  11. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  12. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper.

    Science.gov (United States)

    Liu, Kai; Liang, Hunan; Nasrallah, Joseph; Chen, Lihui; Huang, Liulian; Ni, Yonghao

    2016-05-20

    An effective method of preparing composites containing inorganic (Ag) and organic (beeswax) particles was established in this study. Ag nanoparticles were first immobilized on the cellulose nanocrystals (CNC) during the reduction of AgNO3 in the presence of CNC, then mixed with beeswax by high speed stirring. Scanning transmission electron microscopy (STEM) images indicated that Ag and beeswax particles were uniformly dispersed and stable in the network structure formed by CNC. Upon coating on a paper surface, a layer of beeswax film was evident based on scanning electron microscopy (SEM) images. The dynamic contact angle and antibacterial activity tests indicated that the contact angle of coated paper reached 113.06° and the growth inhibition of Escherichia coli increased to 99.96%, respectively, at a coating amount of 21.53 g/m(2). When applied onto paper surface by coating, the CNC/Ag/beeswax composites can impact paper with antibacterial property and improved water resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    Science.gov (United States)

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  14. The characterization of an oxide interfacial coating for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Coons, Timothy P., E-mail: tpcoons@gmail.com [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Reutenauer, Justin W.; Mercado, Andrew [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Kmetz, Michael A. [Pratt and Whitney, 400 Main Street M/S 114-43, East Hartford, CT 06108 (United States); Suib, Steven L. [Department of Chemistry, Unit 3060, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States)

    2013-06-20

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon{sup ™}, Hi-Nicalon{sup ™}, and Hi-Nicalon{sup ™} Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO{sub 2} coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO{sub 2} duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon{sup ™} Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  15. Preparation and self-sterilizing properties of Ag@TiO2-styrene-acrylic complex coatings.

    Science.gov (United States)

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao; Yan, Xiao-hui; Zhong, Ming-qiang

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO2 particle incorporation into styrene-acrylic latex. The Ag@TiO2 particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO2 particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO2 nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO2 nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO2 loading concentration of 2-5 wt.%. The weathering endurance of the complex coating was also measured. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  17. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    International Nuclear Information System (INIS)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V.

    2013-01-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid

  18. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  19. Hybrid laser technology for composite coating and medical applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Písařík, Petr; Mikšovský, Jan; Remsa, Jan; Mihailescu, I. N.; Kopeček, Jaromír

    2014-01-01

    Roč. 10, č. 1 (2014), s. 1-8 ISSN 1823-3430 R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : hybrid technology * pulsed laser deposition * biocompatible composites * doped coating * composite coating Subject RIV: BM - Solid Matter Physics ; Magnetism http://web.usm.my/jes/pastIssue.html

  20. Tribological characteristics of electroless Ni–P–MoS2 composite coatings at elevated temperatures

    International Nuclear Information System (INIS)

    Li Zhen; Wang Jingbo; Lu Jinjun; Meng Junhu

    2013-01-01

    Highlights: ► Uniform Ni–P–MoS 2 composite coatings are deposited by electroless plating. ► Friction coefficient of composite coating decreases with the increase of temperature. ► Formation of lubricious oxide film leads to excellent tribological property. - Abstract: Ni–P–MoS 2 composite coatings were deposited on AISI-1045 steel plate by electroless plating followed by a heat treatment at 300 °C for 2 h. The high-temperature tribological characteristics of the composite coatings were evaluated under dry sliding conditions in a tribometer with ball-on-disk configuration. The effect of the co-deposition of MoS 2 on the friction and wear behaviors of composite coatings at elevated temperature was investigated. Scanning electron microscopy was used to determine the morphology of the worn surface of composite coating. The chemical states of some typical elements on the worn surfaces were determined by X-ray photoelectron spectroscope. The results indicate that friction coefficient of the composite coatings decreases with the increase of test temperature up to 500 °C, and the best tribological properties of Ni–P–MoS 2 composite coatings are achieved at 400 °C. The worn surface of Ni–P–MoS 2 composite coatings are characterized by mild scuffing and deformation. The improvement of tribological properties of the composite coatings was attributed to the formation of the lubricious oxide film composed of oxides of Ni and Mo at high temperatures. With the test temperature increasing to 600 °C, the tribological properties of the composite coating begin to deteriorate due to softening of the coating.

  1. Anti-browning and barrier properties of edible coatings prepared with electrospraying

    NARCIS (Netherlands)

    Khan, M.K.I.; Cakmak, I.; Tavman, S.; Schutyser, M.A.I.; Schroen, C.G.P.H.

    2014-01-01

    Electrospraying is a novel technique for the application of coating to foods. In this study, thin lipid-based coatings were prepared by electrospraying on model surface and evaluated for their moisture barrier functionality. Sunflower oil and chocolate based coating materials were electrosprayed at

  2. Effect of Al-B2O3-TiO2 Exothermic System on Performances of Fly Ash Glass/Ceramic Composite Coating

    Directory of Open Access Journals (Sweden)

    Yajun An

    2018-01-01

    Full Text Available Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B2O3 exothermic system, the morphology, phase, thermal shock resistance, and corrosion resistance of the coating were tested, and the influence of exothermic system on the structure and properties of the composite coating was studied. The experimental results show that the addition of exothermic system can promote the formation of NaB15, TiB2, Na2B4O7, Ca2Al2SiO7, and other new phases by thermo-chemical reaction; when compared to the composite coating without addition of exothermic system, combined with a good interface, higher compactness, and lower porosity. The highest micro hardness can be reached 725HV0.1. The number of thermal shock from 700 °C to room temperature can reach more than 50 times; acid, salt, oil immersion corrosion test, composite coating with exothermic system relative to the matrix increased by 27.40 times, 3.97 times, and 1.88 times, respectively. The overall performance is better than that of the composite coating without exothermic system.

  3. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  4. Mechanical properties of titanium-hydroxyapatite (Ti-HA) composite coating on stainless steel prepared by thermal spraying

    Science.gov (United States)

    Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.

    2017-09-01

    Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.

  5. Preparation of Reduced Graphene Oxide/MnO Composite and Its Electromagnetic Wave Absorption Performance

    Science.gov (United States)

    Yuan, Jiangtao; Li, Kunzhen; Liu, Zhongfei; Jin, Shaowei; Li, Shikuo; Zhang, Hui

    2018-02-01

    The composite containing reduced graphene oxide and MnO nanoparticles (RGO/MnO) has been prepared via a one step pyrolysis method. The MnO nanoparticles were uniformly dispersed on the surface of RGO nanosheets forming MnO/RGO composite. The composite displays a maximum absorption of ‒38.9 dB at 13.5 GHz and the bandwidth of reflection loss corresponding to -10 dB can reach 4.9 GHz (from 11.5 to 16.4 GHz) with a coating layer thickness of only 2 mm. Therefore, the obtained RGO/MnO composite a perfect lightweight and high-performance electromagnetic wave absorbent.

  6. Potential assisted fabrication of metal-ceramic composite coatings

    International Nuclear Information System (INIS)

    Knote, A.; Schindler, U.; Krueger, H.G.; Kern, H.

    2003-01-01

    A possibility to produce uniform metal-ceramic composite coatings with a high content of ceramic particles up to 60 vol.% will be presented in this study. This method includes a combination of electrophoretic deposition and electrolytic deposition by several steps. A yttria-stabilized zirconia coating (Tosoh TZ-8Y) was first electrophoretically deposited on a ferritic steel plate and then sintered by 1100 C to an open porous layer. In the next step nickel was electrodeposited into the pores of the layer. By a final annealing step it was possible to improve the bonding of the composit coating on the substrate by diffusion of the metal components. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  7. Development of Zn-Al-Cu coatings by hot dip coated technology: preparation and characterization

    International Nuclear Information System (INIS)

    Cervantes, J.; Barba, A.; Hernandez, M. A.; Salas, J.; Espinoza, J. L.; Denova, C.; Torres-Villasenor, G.; Conde, A.; Covelo, A.; Valdez, R.

    2013-01-01

    In the present study, research concerning Zn-Al-Cu coatings on low carbon steels has been conducted in order to characterize different properties obtained by a hot-dip coated process. The results include preparation procedure as well as the processing parameters of the coatings. The obtained coatings were subjected to a cold rolling process followed by an anneal heat treatment at different temperatures and under different time conditions. The structural characteristics of coatings have been investigated by optical and electron microscopy. The mechanical properties were obtained by using micro-hardness testing, deep drawing and wear tests whereas chemical analyses were carried out using the SEM/EDAX microprobe. The corrosion properties were achieved by using a salt spray fog chamber and potentiodynamic tests in a saline solution. The coatings are resistant to corrosion and wear in the presence of sodium chloride, therefore, the coatings could be an attractive alternative for application in coastal areas, and adequate wear adhesive resistance. (Author)

  8. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  9. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  10. Laser cladding of in situ TiB2/Fe composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Zou Zengda; Wang Xinhong; Qu Shiyao

    2008-01-01

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB 2 /Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB 2 and α-Fe. TiB 2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB 2

  11. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    Directory of Open Access Journals (Sweden)

    Wenjing Xia

    2017-08-01

    Full Text Available The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI, hydroxyl terminated polybutadiene (HTPB, 1,4-butanediol (BDO, and 2-hydroxyethyl acrylate (HEA. Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane coatings significantly enhanced the hydrophobic property, mechanical property, pencil hardness, and glossiness of the polyurethane coatings. This method of preparing UV crosslinkable, hydrophobic polyurethane coatings based on thiol-ene chemistry exhibited numerous advantages over other UV photocuring systems.

  12. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  13. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qingjun [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: sduzhu@yahoo.com.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2007-06-30

    Amorphous composite coatings Fe{sub 38}Ni{sub 30-X}Si{sub 16}B{sub 14}V{sub 2}M {sub X} (X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  14. ODS - modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating

    Science.gov (United States)

    Kokare, Ashvini M.; Sutar, Rajaram S.; Deshmukh, S. G.; Xing, Ruimin; Liu, Shanhu; Latthe, Sanjay S.

    2018-05-01

    Rolling water drops takes off dust particles from lotus leaf showing self-cleaning performance. Self-cleaning effect has great importance in industry as well as in daily life. The present paper describes the preparation of self-cleaning superhydrophobic coating through simple and low cost dip coating technique. The prepared superhydrophobic surface enact as lotus leaf. Firstly TiO2 nanoparticles were dispersed in ethanol and different concentration of octadecyltrichlorosilane (ODS) was added in TiO2 dispersion. The effect of number of deposition layer on the wettability of the coating was studied. The coating prepared from five deposition layers showed contact angle higher than 150° and sliding angle less than 10°. The superhydrophobicity increases with increasing concentration of ODS. The hierarchical rough morphology which is preferable for superhydrophobicity was obtained. The prepared coatings were stable against water jet impact and showed repellent towards colored and muddy water. Such superhydrophobic coating can find enormous scope in self-cleaning application.

  15. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  16. Microstructure of a Ni Matrix Composite Coating Reinforced by In-situ TiC Particles Using Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    WUYu-ping; WANGZe-hua; LINPing-hua

    2004-01-01

    Plasma cladding process was used to prepare the TiC/Ni composite coating on the mild steel substrates. The TiC particles were synthesized in-situ. Microstructure and properties of the coating were investigated by optical microscopy, X-Ray diffraction, SEM, TEM and microhardness tester. The results show that the interface between the coating and the substrate is metallurgically bonded. The coating was uniform and almost defect-free when [Ti+C] varied from 10% to 20% after ball milling. The microstructure of the coating is mainly composed of γ-Ni dendrite, interdendritic eutectic (γ-Ni austenite, M23C6 and CrB) and TiC particles. Most of the TiC particles are spherical and a small fraction is blocky in size of 1-2μm. The TiC particles are smaller at the bottom than near the top of the coating. The coating has a gradient microstructure and a highest hardness of 1000Hv0.1.

  17. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  18. Improved corrosion resistant and mechanical behavior of distinct composite coatings (silica/titania/zirconia on Ti–6Al–4V deposited by EPD

    Directory of Open Access Journals (Sweden)

    M. Chellappa

    2017-09-01

    Full Text Available Synthesized composite powders (ZrO2/TiO2, SiO2/TiO2, and SiO2/ZrO2 were successfully deposited on Ti–6Al–4V by electrophoretic deposition method (EPD to improve its electrochemical characteristics for better biomedical applications. In the present investigation, the three composite powders were prepared by sol–gel synthesis and its phase purity was analyzed by Powder X-ray diffraction (XRD method. Further, the performance of the deposited coatings was assessed by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDAX, scratch resistance test. The electrochemical properties of the composite coatings were analyzed by Potentiodynamic (Tafel polarization and electrochemical impedance spectroscopy (EIS studies. From the results, we observed that the corrosion resistance behavior of the different composite coated metallic substrate exhibited divergent corrosion resistance nature than blank Ti–6Al–4V. Of all these coatings on Ti–6Al–4V, the composite made up of, ZrO2/TiO2 has pronounced corrosion resistance behavior in Ringer’s solution when compared to others. This behavior is due to the presence of strong adherent coating owing to the existence of uniform deposition on Ti–6Al–4V.

  19. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    Science.gov (United States)

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (Pnano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (Pnano-silver coating can

  20. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  1. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    Science.gov (United States)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  2. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    Science.gov (United States)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  3. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  4. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    International Nuclear Information System (INIS)

    Cao, Xiao Guo; Ren, Hao; Zhang, Hai Yan

    2015-01-01

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range

  5. Microstructure and Transparent Super-Hydrophobic Performance of Vacuum Cold-Sprayed Al2O3 and SiO2 Aerogel Composite Coating

    Science.gov (United States)

    Li, Jie; Zhang, Yu; Ma, Kai; Pan, Xi-De; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-02-01

    In this study, vacuum cold spraying was used as a simple and fast way to prepare transparent super-hydrophobic coatings. Submicrometer-sized Al2O3 powder modified by 1,1,2,2-tetrahydroperfluorodecyltriethoxysilane and mixed with hydrophobic SiO2 aerogel was employed for the coating deposition. The deposition mechanisms of pure Al2O3 powder and Al2O3-SiO2 mixed powder were examined, and the effects of powder structure on the hydrophobicity and light transmittance of the coatings were evaluated. The results showed that appropriate contents of SiO2 aerogel in the mixed powder could provide sufficient cushioning to the deposition of submicrometer Al2O3 powder during spraying. The prepared composite coating surface showed rough structures with a large number of submicrometer convex deposited particles, characterized by being super-hydrophobic. Also, the transmittance of the obtained coating was higher than 80% in the range of visible light.

  6. Preparation and Properties of Polyester-Based Nanocomposite Gel Coat System

    Directory of Open Access Journals (Sweden)

    P. Jawahar

    2006-01-01

    Full Text Available Nanocomposite gel coat system is prepared using unsaturated polyester resin with aerosil powder, CaCO3, and organoclay. The influence of organoclay addition on mechanical and water barrier properties of gel coat system is studied for different amount (1, 2, and 3 wt % of organoclay. The nanolevel incorporation of organoclay improves the mechanical and water barrier properties of nanocomposite gel coat system. The nanocomposite gel coat system exhibits 55% improvement in tensile modulus and 25% improvement in flexural modulus. There is a 30% improvement in impact property of nanocomposite gel coat system. The dynamic mechanical analysis shows a slight increase in glass transition temperature for nanocomposite gel coat system.

  7. Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Guo, Xunzhong [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Huang, Zhendong [Graduate School of Human and Environmental Studies, Kyoto University, oshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto shi 606-8501 (Japan); Liu, Hongbing [Shanghai Aircraft Manufacturing Co,. Ltd, Shanghai 200436 (China); Wang, Tao [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2013-06-15

    Highlights: ► The enamel coating was prepared by spin-coating and enameling method. ► The dense enamel coatings were chemically bonded with TA1 substrate. ► The coatings possessed better thermal shock resistance property. ► The coatings had excellent ball-dropping impact properties. ► The enamel coating exhibited a good barrier effect to hydrogen isotope penetration. -- Abstract: The enamel coating with a thickness of 90–110 × 10{sup −6} m was prepared on TA1 substrate by spin-coating and enameling to solve the problems of hydrogen isotope penetration for commercial pure titanium TA1. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffraction, optical and scanning electron microscopy. The profiles of main elements at the interface were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with TA1 substrate, and possessed better thermal shock resistance and ball-dropping impact properties. It was concluded from the results of hydrogen charging test with Vickers microhardness measurement and deuterium penetration experiments that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen isotope penetration.

  8. Coated electroactive materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  9. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  10. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  11. Witness sample preparation for measuring antireflection coatings.

    Science.gov (United States)

    Willey, Ronald R

    2014-02-01

    Measurement of antireflection coating of witness samples from across the worldwide industry has been shown to have excess variability from a sampling taken for the OSA Topical Meeting on Optical Interference Coatings: Measurement Problem. Various sample preparation techniques have been discussed with their limitations, and a preferred technique is recommended with its justification, calibration procedures, and limitations. The common practice of grinding the second side to reduce its reflection is less than satisfactory. One recommended practice is to paint the polished second side, which reduces its reflection to almost zero. A method to evaluate the suitability of given paints is also described.

  12. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    ) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density (icorr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied...

  14. Electrochemical performance of Li-rich oxide composite material coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} ionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen, E-mail: ccyang@mail.mcut.edu.tw [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Liao, Pin-Ci [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Wu, Yi-Shiuan [Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC (China); Lue, Shingjiang Jessie [Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Kwei-shan, Tao-yuan 333, Taiwan , ROC (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Tao-yuan 333, Taiwan, ROC (China); Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, NewTaipei City 243, Taiwan, ROC (China)

    2017-03-31

    Graphical abstract: Schematic diagram for Li-rich oxide (Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) coated with Li{sub 0.75}La{sub 0.42}TiO{sub 3} (LLTO) solid ionic conductor. - Highlights: • Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}/C composite material was prepared by one-pot solid-state method. • 1D a-MnO{sub 2} nanowires and microsphere hollow b-Ni(OH){sub 2} were prepared by a hydrothermal method. • 1 wt.%LLTO-coated composite showed the best performance among samples. • LLTO layer not only improves the ionic transport of Li-rich oxide material, but also prevent Li-rich material corrosion. - Abstract: Li-rich (spray-dried (SP)-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2}) composite materials were prepared via two-step ball-mill and spray dry methods by using LiOH, α-MnO{sub 2}, β-Ni(OH){sub 2} raw materials. Two raw materials of α-MnO{sub 2} nanowires and microsphere β-Ni(OH){sub 2} were synthesized by a hydrothermal process. In addition, Li{sub 0.75}La{sub 0.42}TiO3 (LLTO) fast ionic conductor was coated on SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composite via a sol–gel method. The properties of the LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were determined by X-ray diffraction, scanning electron microscopy, micro-Raman, XPS, and the AC impedance method. The discharge capacities of 1 wt.%-LLTO-coated SP-Li{sub 1.2}Ni{sub 0.2}Mn{sub 0.60}O{sub 2} composites were 256, 250, 231, 200, 158, and 114 mAh g{sup {sub −}{sub 1}} at rates of 0.1, 0.2, 0.5, 1, 3, and 5C, respectively, in the voltage range 2.0–4.8 V. The 1 wt.%-LLTO-coated Li-rich oxide composite showed the discharge capacities of up to 256 mAh g{sup −1} in the first cycle at 0.1C. After 30 cycles, the discharge capacity of 244 mAh g{sup −1} was obtained, which showed the capacity retention of 95.4%.

  15. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  16. Viability of oxide fiber coatings in ceramic composites for accommodation of misfit stresses

    International Nuclear Information System (INIS)

    Kerans, R.J.

    1996-01-01

    The C and BN fiber coatings used in most ceramic composites perform a less obvious but equally essential function, in addition to crack deflection; they accommodate misfit stresses due to interfacial fracture surface roughness. Coatings substituted for them must also perform that function to be effective. However, in general, oxides are much less compliant materials than C and BN, which raises the question of the feasibility of oxide substitutes. The viability of oxide coatings for accommodating misfit stresses in Nicalon fiber/SiC composites was investigated by calculating the maximum misfit stresses as functions of coating properties and geometries. Control of interfacial fracture path was also briefly considered. The implications regarding composite properties were examined by calculating properties for composites with mechanically viable oxide coatings

  17. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

  18. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preparation and comparison of a-C:H coatings using reactive sputter techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M., E-mail: martin.keunecke@ist.fraunhofer.d [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Weigel, K.; Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Cremer, R.; Fuss, H.-G. [CemeCon AG, Wuerselen (Germany)

    2009-12-31

    Amorphous hydrogenated carbon (a-C:H) coatings are widely used in several industrial applications. These coatings commonly will be prepared by plasma activated chemical vapor deposition (PACVD). The main method used to prepare a-C:H coating in industrial scale is based on a glow discharge in a hydrocarbon gas like acetylene or methane using a substrate electrode powered with medium frequency (m.f. - some 10 to 300 kHz). Some aims of further development are adhesion improvement, increase of hardness and high coating quality on complex geometries. A relatively new and promising technique to fulfil these requirements is the deposition of a-C:H coatings by a reactive d.c. magnetron sputter deposition from a graphite target with acetylene as reactive gas. An advancement of this technique is the deposition in a pulsed magnetron sputter process. Using these three mentioned techniques a-C:H coatings were prepared in the same deposition machine. For adhesion improvement different interlayer systems were applied. The effect of different substrate bias voltages (d.c. and d.c. pulse) was investigated. By applying the magnetron sputter technique in the d.c. pulse mode, plastic hardness values up to 40 GPa could be reached. Besides hardness other mechanical properties like resistance against abrasive wear were measured and compared. Cross sectional SEM images showed the growth structure of the coatings.

  20. An experimental study of the composite CNT/copper coating

    Science.gov (United States)

    Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.

    2018-03-01

    This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.

  1. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  2. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    International Nuclear Information System (INIS)

    Janković, Ana; Eraković, Sanja; Mitrić, Miodrag; Matić, Ivana Z.; Juranić, Zorica D.; Tsui, Gary C.P.; Tang, Chak-yin; Mišković-Stanković, Vesna; Rhee, Kyong Yop; Park, Soo Jin

    2015-01-01

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  3. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  4. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  5. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  6. Development of functionally graded anti-oxidation coatings for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J.H. [Dept. of Materials Technology, Korea Inst. of Machinery and Materials, Changwon (Korea); Fang Hai-Tao; Lai Zhong-Hong; Yin Zhong-Da [Materials Science and Engineering School, Harbin Inst. of Tech., Harbin (China)

    2005-07-01

    The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in the development of various structural and functional materials, such as cutting tools, photonic crystals, dielectric and piezoelectric ceramics, thermoelectric semiconductors, and biomaterials. We have developed functionally graded structural ceramic/metal composite materials for relaxation of thermal stress, functionally graded anti-oxidation coatings for carbon/carbon composites, and functionally graded dielectric ceramic composites to develop advanced dielectric ceramics with flat characteristics of dielectric constant in a wide temperature range. This paper introduces functionally graded coatings for C/C composites with superior oxidation resistance at high temperatures. (orig.)

  7. Composition Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats

    International Nuclear Information System (INIS)

    Pint, BA

    2001-01-01

    Formerly, the role of metallic coatings on Ni-base superalloys was simply to limit environmental attack of the underlying substrate. However, a new paradigm has been established for metallic coatings adapted as bond coats for thermal barrier coatings. It is no longer sufficient for the coating to just minimize the corrosion rate. The metallic coating must also form a slow-growing external Al(sub 2)O(sub 3) layer beneath the overlying low thermal conductivity ceramic top coat. This thermally grown oxide or scale must have near-perfect adhesion in order to limit spallation of the top coat, thereby achieving a long coating lifetime. While oxidation is not the only concern in complex thermal barrier coating systems, it is, however, a primary factor in developing the next generation of bond coats. Therefore, a set of compositional guidelines for coatings is proposed in order to maximize oxidation performance. These criteria are based on test results of cast alloy compositions to quantify an d understand possible improvements as a basis for further investigations using coatings made by chemical vapor deposited (CVD). Experimental work includes furnace cycle testing and in-depth characterization of the alumina scale, including transmission electron microscopy (TEM)

  8. A novel combinatorial approach for the realization of advanced cBN composite coating

    International Nuclear Information System (INIS)

    Russell, W.C.; Yedave, S.N.; Sundaram, N.; Brown, W.D.; Malshe, A.P.

    2001-01-01

    The paper reports a novel coating process for the synthesis of hard material composite coatings. It consists of electrostatic spray coating (ESC) of powder particles (of micron-nanometer size) followed by chemical vapor infiltration (CVI) of a suitable binder phase. This novel approach enables fabrication of unique compositions such as cubic boron nitride (cBN) and titanium nitride (TiN) in a coating form. Recently, we have demonstrated the success of this technology by first coating a uniform over-layer (in excess of ∼ 10 μm) of cBN particles an carbide cutting tool inserts using ESC, followed by infiltration of particulate cBN matrix with TiN from its vapor phase using CVI to synthesize cBN-TiN a composite coating. The composite has shown excellent cBN-to-TiN and composite coating-to-carbide substrate adhesion. One of the main emphases of the paper is to discuss optimization and scale up of the ESC technology to achieve the desired microstructure and tailor the thickness across the cutting tool for better performance. Further, the cutting tools have been successfully tested for advanced machining applications. (author)

  9. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  10. Effect of Y2O3 Content on Microstructure of Gradient Bioceramic Composite Coating Produced by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Liu Qibin; Zou Jianglong; Zheng Min; Dong Chuang

    2005-01-01

    To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that "monosodium glutamate" effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.

  11. Preparation and Characterization of FC Films Coated on PET Substrates by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Huang Mei-lin

    2018-01-01

    Full Text Available Fluorocarbon (FC films were prepared on polyethylene terephthalate (PET plates and PET fabrics respectively by a radiofrequency (RF magnetron sputtering technique using polytetrafluoroethylene (PTFE as a target. Scanning electron microscope and X-ray photoelectron spectroscopy were used to investigate the morphology, structure and composition of the obtained FC films. The hydrophobicity and uvioresistant properties of the FC film coated fabric were studied. The results show that the FC films were successfully deposited on the PET substrates by a RF magnetron sputtering. The deposited films are made up of four components -CF3, -CF2-, CF- and -C-. The proportions of the four components and surface morphologies of the deposited films vary with the sputtering conditions. Compared with the original fabric samples, the hydrophobicity of the FC film coated fabrics is quite good and improved significantly.

  12. Electromagnetic and Microwave Absorption Properties of Carbonyl Tetrapod-Shaped Zno Nanostructures Composite Coatings

    Science.gov (United States)

    Yu, Haibo; Qin, Hui; Huang, Yunhua

    2012-08-01

    CIP/T-ZnO/EP composite coatings with carbonyl iron powders (CIP) and tetrapodshaped ZnO (T-ZnO) nanostructures as absorbers, and epoxy resin (EP) as matrix were prepared. The complex permittivity, permeability and microwave absorption properties of the coatings were investigated in the frequency range of 2-18 GHz. The effects of the weight ratio (CIP/T-ZnO/EP), the thickness and the solidification temperature on microwave absorption properties were discussed. When the weight ratio (CIP/TZnO/ EP), the thickness and the solidification temperature is 28:2:22, 1.8 mm, and 10°C, respectively, the optimal wave absorption with the minimum reflection loss (RL) value of -22.38 dB at 15.67 GHz and the bandwidth (RLcoatings may have a promising application in Ku-band (12-18 GHz).

  13. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  14. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  15. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference.

    Science.gov (United States)

    Yang, Yan; Shen, Lian; Yuan, Feng; Fu, Hui; Shan, Weiguang

    2018-05-30

    Lately, a great deal of attention is being paid to capsule coating, since the coat protects active pharmaceutical ingredients (APIs) from damage, as is in the case of tablet and pellet. However, moisture and heat sensitivity of gelatin shells make it challenging to coat capsules using the conventional aqueous coating techniques. In an effort to overcome this challenge, the present study aims to coat capsules using two different coating techniques: electrostatic dry powder coating (EDPC) and dip coating (DC). Both capsule coatings and free films were prepared by these two coating techniques, and the effects of coating formulations and processing conditions on the film quality were investigated. The corresponding drug in vitro release and mechanisms were characterized and compared. The results of dissolution tests demonstrated that the drug release behavior of both EDPC and DC coated capsules could be optimized to a sustained release of 24 h, following the Fick's diffusion law. The results of this study suggest that EDPC method is better than DC method for coating capsules, with respect to the higher production efficiency and better stability, indicating that this dry coating technology has promised in gelatin capsule coating applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer

    Science.gov (United States)

    Liu, Feng; Wang, Shuliang; Zhang, Ming; Ma, Miaolian; Wang, Chengyu; Li, Jian

    2013-09-01

    Improvement of the robustness of superhydrophobic surfaces is crucial for the purpose of achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. We have investigated a fabrication of polyvinyl alcohol (PVA)/silica (SiO2) composite polymer coating on wooden substrates with super repellency toward water, low sliding angles, low contact angle hysteresis, and relatively better mechanical robustness. The composite polymer slurry, consisting of well-mixing SiO2 particles and PVA, is prepared simply and subsequently coated over wooden substrates with good adhesion. In this study, the mechanical robustness of superhydrophobic wood surfaces was evaluated. The effect of petaloid structures of the composite polymer on robustness was investigated using an abrasion test and the results were compared with those of superhydrophobic wood surfaces fabricated by other processes. The produced wood surfaces exhibited promising superhydrophobic properties with a contact angle of 159̊ and a sliding angle of 4̊, and the relatively better mechanical robustness.

  17. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Yamaura, M.; Camilo, R.L.; Sampaio, L.C.; Macedo, M.A.; Nakamura, M.; Toma, H.E.

    2004-01-01

    Magnetite nanoparticles coated with (3-aminopropyl)triethoxysilane, NH 2 (CH 2 ) 3 Si(OC 2 H 5 ) 3 , were prepared by silanization reaction and characterized by X-ray diffractometry, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and magnetization measurements. Both uncoated and organosilane-coated magnetite exhibited superparamagnetic behavior and strong magnetization at room temperature. Basic groups anchored on the external surface of the coated magnetite were observed. The superparamagnetic particles of coated magnetite are able to bind to biological molecules, drugs and metals and in this way remove them from medium by magnetic separation procedures

  18. Preparation of Cotton-Wool-Like Poly(lactic acid-Based Composites Consisting of Core-Shell-Type Fibers

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-11-01

    Full Text Available In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid (SiVPCs. Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid (PLGA. A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating.

  19. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  20. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cancan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Lei, E-mail: chenlei@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Zhou, Huidi; Chen, Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China)

    2014-05-01

    Highlights: • A new kind of adaptive coatings was fabricated using relatively simple spraying techniques. • The tribological properties of Ag/MoS{sub 2} phosphate composite coatings were investigated at the temperature from 20 °C to 700 °C. • The composition and wear mechanisms of Ag/MoS{sub 2} phosphate composite coatings were also discussed. • The Ag/MoS{sub 2} phosphate composite coatings have self-repairing capability in the rubbing process at 700 °C. - Abstract: Adaptive phosphate composite coatings with addition of solid lubricants of molybdenum disulfide (MoS{sub 2}) and silver (Ag) using aluminum chromium phosphate as the binder were fabricated on high-temperature steel. The tribological properties of phosphate composite coatings were evaluated from room temperature (RT) to 700 °C. The phase composition and microstructure were investigated according to the characterization by power X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The results show that the composite coating with the Ag/MoS{sub 2} mass ratio of 2:1 exhibits the stable and low friction coefficients from RT to 700 °C and relative low wear rates at all testing temperatures. The tribo-chemical reaction between Ag and MoS{sub 2} occurred in the rubbing process to form silver molybdates compounds lubricating film. The temperature-adaptive tribological properties were attributed to the formation of lubricating films composed of lubricants silver, MoS{sub 2} and silver molybdates phases on the worn surfaces of the composites coatings in a wide-temperature range.

  1. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  2. High-temperature protective coatings for C/SiC composites

    OpenAIRE

    Xiang Yang; Chen Zhao-hui; Cao Feng

    2014-01-01

    Carbon fiber-reinforced silicon carbide (C/SiC) composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C...

  3. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-05-01

    Full Text Available Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  4. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    Science.gov (United States)

    Iskandar, F.; Aimon, A. H.; Akmaluddin, A. R.; Nuryadin, B. W.; Abdullah, M.

    2016-08-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices.

  5. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    International Nuclear Information System (INIS)

    Iskandar, F; Aimon, A H; Akmaluddin, A R; Abdullah, M; Nuryadin, B W

    2016-01-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices. (paper)

  6. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO2 metal matrix composite coating on mild steel

    International Nuclear Information System (INIS)

    Fayomi, O.S.I.; Popoola, A.P.I.; Aigbodion, V.S.

    2015-01-01

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO 2 embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO 2 (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO 2 in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO 2 composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO 2 embedded into the Zn–Al metal deposit and effective deposition parameters

  7. Preparation of germanium doped plasma polymerized coatings as ICF target ablators

    International Nuclear Information System (INIS)

    Brusasco, R.M.; Saculla, M.D.; Cook, R.C.

    1994-01-01

    Targets for Inertial Confinement Fusion (ICF) experiments at the Lawrence Livermore National Laboratory (LLNL) utilize an organic (CH) ablator coating prepared by plasma polymerization. Some of these experiments require a mid-Z dopant in the ablator coating to modify the opacity of the shell. Bromine had been used in the past, but the surface finish of brominated CH degrades rapidly with time upon exposure to air. This paper describes the preparation and characterization of plasma polymer layers containing germanium as a dopant at concentrations of between 1.25 and 2.25 atom percent. The coatings are stable in air and have an rms surface roughness of 7--9 nm (modes 10--1,000) which is similar to that obtained with undoped coatings. High levels of dopant result in cracking of the inner mandrel during target assembly. Possible explanations for the observed cracking behavior will be discussed

  8. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  9. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  10. Laser cladding of in situ TiB{sub 2}/Fe composite coating on steel

    Energy Technology Data Exchange (ETDEWEB)

    Du Baoshuai; Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-15

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB{sub 2}/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB{sub 2} and {alpha}-Fe. TiB{sub 2} particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the {alpha}-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB{sub 2}.

  11. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  12. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  13. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    International Nuclear Information System (INIS)

    Bora, Pritom J; Ramamurthy, Praveen C; Madras, Giridhar; Vinoy, K J; Kishore

    2015-01-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at −30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2–12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability. (paper)

  14. Structure and phase composition of titanium nitride coating on austenitic steel

    International Nuclear Information System (INIS)

    Dubovitskaya, N.V.; Kolenchenko, L.D.; Larikov, L.N.

    1989-01-01

    Structure and phase composition of titanium nitride coating deposited on 08Kh18N10T steel substrate using ''Bulat'' device are studied. Use of complex investigation methods permitted despite small coating thickness (1μm) to aquire information on hardness, porosity, to study phase composition in all coating thickness. The surface layer (∼0.1 μm) consists of ε-Ti 2 N, TiN 0.6 , TiC 0.35 , that is formed with carbon participation from oil vacuum. In more deeper layers beside ε-Ti 2 N TiC 0.14 N 0.77 is present. Effect of carbon diffusion from substrate to forming coating is stated. Gradient of element concentrations in the substrate-coating interface causes recrystallization of austenite

  15. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    Science.gov (United States)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  16. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    International Nuclear Information System (INIS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-01-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect

  17. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  18. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  19. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  20. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  1. Mn{sub 2}O{sub 3}/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingyan, E-mail: wxianyou@yahoo.com [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Liu Li [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Wang Xianyou, E-mail: wqinyan801@yahoo.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Yi Lanhua [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hu Chuanyue [Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Zhang Xiaoyan [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China)

    2011-09-15

    Highlights: > Mn{sub 2}O{sub 3}/CAMB composite materials for supercapacitor were prepared by in situ coating method. > The optimum amount of Mn{sub 2}O{sub 3} in Mn{sub 2}O{sub 3}/CAMB composite is 10 wt%. > Coating nano-sized Mn{sub 2}O{sub 3} on the CAMB could improve the supercapacitive behaviors of composites. - Abstract: A series of Mn{sub 2}O{sub 3}/carbon aerogel microbead (Mn{sub 2}O{sub 3}/CAMB) composites for supercapacitor electrodes have been synthesized by in situ encapsulation method. The structure and morphology of Mn{sub 2}O{sub 3}/CAMB are characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectrum and scanning electron microscopy (SEM). Electrochemical performances of the synthesized composites are evaluated by cyclic voltammetry and galvanostatic charge/discharge measurement. All the composites with different Mn{sub 2}O{sub 3} contents show higher specific capacitance than pure CAMB due to the pseudo-capacitance of the Mn{sub 2}O{sub 3} particles dispersed on the surface of CAMB. The highest specific capacitance is up to 368.01 F g{sup -1} when 10 wt% Mn{sub 2}O{sub 3} is coated on the surface of CAMB. Besides, 10%-Mn{sub 2}O{sub 3}/CAMB supercapacitor exhibits excellent cyclic stability, the specific capacitance still retains 90% of initial capacitance over 5000 cycles.

  2. Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding

    International Nuclear Information System (INIS)

    Wang Lingqian; Zhou Jiansong; Yu Youjun; Guo Chun; Chen Jianmin

    2012-01-01

    NiCr + Cr 3 C 2 + Ag + BaF 2 /CaF 2 composite coatings were produced on stainless steel (1Cr18Ni9Ti) substrates by laser cladding. Corresponding powders were prepared by high-energy ball milling technique. The friction and wear behavior at room temperature was investigated through sliding against the Si 3 N 4 ball. The morphologies of the wear debris, worn surfaces of both samples and the Si 3 N 4 ball were analyzed by scanning electron microscopy and three dimensional non-contact surface mapping. Results showed that milling time had a great effect on the size, morphology, uniformity of the powders as well as the microstructure and properties of laser cladding coatings. The wear mechanism of the coatings is dominated by abrasive wear, plastic deformation and slight adhesive wear. The consecutive evolution trend of friction coefficient, wear rate as well as microhardness of the serials of coatings produced with powders of different sizes was presented.

  3. Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding

    Science.gov (United States)

    Wang, Lingqian; Zhou, Jiansong; Yu, Youjun; Guo, Chun; Chen, Jianmin

    2012-06-01

    NiCr + Cr3C2 + Ag + BaF2/CaF2 composite coatings were produced on stainless steel (1Cr18Ni9Ti) substrates by laser cladding. Corresponding powders were prepared by high-energy ball milling technique. The friction and wear behavior at room temperature was investigated through sliding against the Si3N4 ball. The morphologies of the wear debris, worn surfaces of both samples and the Si3N4 ball were analyzed by scanning electron microscopy and three dimensional non-contact surface mapping. Results showed that milling time had a great effect on the size, morphology, uniformity of the powders as well as the microstructure and properties of laser cladding coatings. The wear mechanism of the coatings is dominated by abrasive wear, plastic deformation and slight adhesive wear. The consecutive evolution trend of friction coefficient, wear rate as well as microhardness of the serials of coatings produced with powders of different sizes was presented.

  4. Phase composition and tribomechanical properties of Ti-B-C nanocomposite coatings prepared by magnetron sputtering

    Science.gov (United States)

    Sánchez-López, J. C.; Abad, M. D.; Justo, A.; Gago, R.; Endrino, J. L.; García-Luis, A.; Brizuela, M.

    2012-09-01

    Protective nanocomposite coatings based on hard ceramic phases (TiC, TiB2) combined with amorphous carbon (a-C) are of interest because of their adequate balance between mechanical and tribological performances. In this work, Ti-B-C nanocomposite coatings were prepared by co-sputtering of graphite and TiB2 targets. Varying the discharge power ratio applied to the graphite and TiB2 targets from 0 to 2, the a-C content in the coatings could be tuned from 0 to 60%, as observed by means of Raman and x-ray photoelectron spectroscopy (XPS). The microstructural characterization demonstrated a progressive decrease in crystallinity from an initial nanocrystalline (nc) TiB2-like structure to a distorted TiBxCy ternary compound with increasing C concentration. X-ray absorption near-edge structure measurements on the B K-edge helped to determine a hexagonal arrangement around the B atoms in the ternary TiBxCy phase. A fitting analysis of the C 1s XPS peak allowed us to evaluate the relative amount of a-C and TiBxCy components. A drastic change in hardness (from 52 to 13 GPa) and friction coefficient values (from 0.8 to 0.2) is noticed when moving from nc-TiB2 to TiBC/a-C nanocomposites. The fraction of a-C necessary to decrease the friction below 0.2 was found to be 45%. Raman observation of the wear tracks determined the presence of disordered sp2-bonded carbon phase associated with the diminution of the friction level.

  5. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  6. PREPARATION OF ZEOLITE X COATINGS ON SODA-LIME TYPE GLASS PLATES

    Directory of Open Access Journals (Sweden)

    M. Tatlier

    Full Text Available Abstract The dissolution of glass in highly alkaline reaction mixtures and the impact of this phenomenon on zeolite coating formation were investigated. Coating samples were prepared and characterized by X-ray diffraction (XRD, field emission gun scanning electron microscopy (FEGSEM and thermogravimetry (TG. It was demonstrated that zeolite X coatings might be prepared on soda-lime glass. Glass dissolved to some degree, up to 2% of its original mass, in the reaction mixtures for the conditions investigated. This dissolution affected the zeolite synthesis taking place on the glass surface, resulting in phases different from those obtained on inert metal surfaces in some cases, especially for the use of reaction mixtures with relatively high Si/Al ratios. The percentage of dissolution of glass plates increased with their decreasing thickness, indicating a surface phenomenon for the dissolution. The stabilities of the coatings, which varied with the synthesis conditions, benefited from the addition of extra thin layers of polyacrylic acid.

  7. PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Jakub Skocdopole

    2017-07-01

    Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.

  8. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  9. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  10. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  11. DETERMINATION OF PHASE COMPOSITION OF SEALING COATING BASED ON APC (ALUMINOPHOSPHATE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-02-01

    Full Text Available Summary. Goal. To investigate the phase composition of the obtained sealing coatings based on aluminophosphate compound (APC and the impact of temperature rise on it. Methods. Qualitative X-ray phase analysis (XRPA and differential thermal analysis (DTA are used as the methods of research. Roentgenograms for structural analysis were obtained on a DRON-4-07 using filtered copper radiation in the secondary beam. Registration and initial processing of diffraction patterns was performed using the software package PDOS with the output of the diffraction patterns on the screen. Using the "loupe" option allowed to identify weak interference lines, which increased the accuracy of the method of qualitative XRPA. The thermograms for DTA received on the device type Termoskan-2. The results. It is revealed that base of coating is X-ray amorphous phase. There are following crystalline phases: Al, AlPO4, Al (PO3 3, BN found in the coating. It is revealed that annealing doesn’t make a significant influence on the phase composition of the crystalline phases and the coating doesn’t lose properties after annealing during repeated thermal stress. Scientific novelty. The phase composition of the proposed sealing coatings based on APC and produced by plasma spraying, and the effect of annealing on the phase composition of the coating are investigated. The reaction of synthesis of primary material forming on the basis of APC for coating is offered. Practical significance. The results can be used in aviation technology in the development of gas turbine engines (GTE and the design of the compressors. The sealing coating may be used to improve the reliability of the compressor and to increase the efficiency ratio of turbine engine. During the operation the compressor’s blades touch the sealing coating of compressor’s stator and grooves it without causing locking and destruction of the rotor. Therefore, the development of new sealing coating compositions that

  12. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  13. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  14. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO{sub 2} metal matrix composite coating on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Fayomi, O.S.I., E-mail: ojosundayfayomi3@gmail.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Department of Mechanical Engineering, Covenant University, P.M.B 1023, Ota, Ogun State (Nigeria); Popoola, A.P.I. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria (South Africa); Aigbodion, V.S. [Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2015-02-25

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO{sub 2} embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO{sub 2} nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO{sub 2} (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO{sub 2} in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO{sub 2} composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO{sub 2} embedded into the Zn–Al metal deposit and effective deposition parameters.

  15. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  16. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment.

    Science.gov (United States)

    Yu, Wenbin; Yuan, Peng; Liu, Dong; Deng, Liangliang; Yuan, Weiwei; Tao, Bo; Cheng, Hefa; Chen, Fanrong

    2015-03-21

    Hierarchically porous diatomite/MFI-type zeolite (Dt/Z) composites with excellent benzene adsorption performance were prepared. The hierarchical porosity was generated from the microporous zeolite coated at the surface of diatom frustules and from the macroporous diatomite support. A facile NaOH etching method was employed for the first time to treat the frustule support, followed by hydrothermal growth of MFI-type zeolite at the surface of frustules previously seeded with nanocrystalline silicalite-1 (Sil-1). NaOH etching enlarged the pores on diatom frustules and further increased the coated zeolite contents (W(z)). The central macropore size of the diatom frustules increased from approximately 200-500 nm to 400-1000 nm after NaOH etching. The W(z) could reach 61.2%, while the macroporosity of the composites was largely preserved due to more voids for zeolite coating being formed by NaOH etching. The Dt/Z composites exhibited higher benzene adsorption capacity per unit mass of zeolite and less mass transfer resistance than Sil-1, evaluated via a method of breakthrough curves. These results demonstrate that etching of a diatomite support is a facile but crucial process for the preparation of Dt/Z composites, enabling the resulting composites to become promising candidates for uses in volatile organic compounds emission control. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  18. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H_2SO_4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  19. Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid-Vaterite Composite Fibermats for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shuji Yamazaki

    2012-01-01

    Full Text Available In our earlier work, a flexible fibermat consisting of a biodegradable composite with soluble silicate species, which has been reported to enhance bone formation, was prepared successfully using poly(L-lactic acid and siloxane-containing calcium carbonate particles by electrospinning. The fibermat showed enhanced bone formation in an in vivo test. In the present work, to improve the hydrophilicity of skeletal fibers in a fibermat, they were coated with nanotubular aluminum silicate crystals, which have a hydrophilic surface that has excellent affinity to body fluids and a high surface area advantageous for pronounced protein adsorption. The nanotubes were coated easily on the fiber surface using an electrophoretic method. In a conventional contact angle test, a drop of water rapidly penetrated into the nanotube-coated fibermat. The culture test using murine osteoblast-like cells (MC3T3-E1 showed that the cell attachment to the nanotube-coated fibermat at an early stage after seeding was enhanced in comparison with that to the noncoated one. This approach may provide a new method of improving the surface of polymer-based biomaterials.

  20. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  1. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  2. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  3. Effect of heat treatment on residual stress and wear behaviors of the TiNi/Ti2Ni based laser cladding composite coatings

    Science.gov (United States)

    Tao, Yang-Feng; Li, Jun; Lv, Ying-Hao; Hu, Lie-Feng

    2017-12-01

    The TiNi/Ti2Ni based composite coatings reinforced by TiC and TiB2 were prepared on Ti6Al4V at different circumstance temperatures (25 °C, 400 °C, 600 °C, and 800 °C) by laser cladding, then were preserved for 3 h. Macromorphologies and microstructures of the coatings were examined through an optical microscope (OM), an X-ray diffractometer (XRD), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). Residual stresses along the depth direction of the coatings were measured by the nanoindentation method, and wear behaviors of the coatings were also investigated using an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni as the matrix and TiC/TiB2 as the reinforcement. A small amount of Cr2Ti was formed in the coatings prepared at 400 °C and 600 °C. Besides that, Ti3Al was also observed in the coating prepared at 800 °C. The tensile stress existed in the coatings prepared at 25 °C, 400 °C and 600 °C when the coating prepared at 800 °C was regarded as the stress-free reference. The average residual stress in the surface of coating prepared at 25 °C reached the largest value of about 2.79 GPa and presented a decreasing tendency with increasing the circumstance temperature (1.03 GPa at 400 °C, 0.52 GPa at 600 °C, and 0 GPa at 800 °C). It revealed that the rise in circumstance temperature contributed to the reduction in cracking susceptibility in the laser cladding coating. However, the wear volumes of the coatings were increased with increasing the circumstance temperature (0.1912 mm3 at 25 °C, 0.2828 mm3 at 400 °C, 0.3732 mm3 at 600 °C, and 0.6073 mm3 at 800 °C) due to the weakening in strain-hardening effect and the reduction in reinforcement density. The wear mechanism of the coatings was transformed from the single brittle-debonding into the combination of micro-cutting and brittle-debonding when the circumstance temperature was changed from room temperature to

  4. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  5. Preparation and characterization of titanate nanotubes/carbon composites

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pan Hui; Xue Xiaoxiao; Qian Junjie; Yu Laigui; Yang Jianjun; Zhang Zhijun

    2011-01-01

    Highlights: → Titanate nanotubes/carbon composites were synthesized from TiO 2 -carbon composites. → The carbon shell of TiO 2 particles obstructed the reaction between TiO 2 and NaOH. → TEM, XRD, and Raman spectra reveal the formation processes of the TNT/CCs. - Abstract: Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO 2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 deg. C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO 2 particles in TiO 2 -carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO 2 to orthorhombic titanate. As a result, the anatase TiO 2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO 2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.

  6. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  7. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    Science.gov (United States)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  8. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    International Nuclear Information System (INIS)

    Salman, A; Gabbitas, B; Zhang, D; Li, J

    2009-01-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al 2 O 3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al 2 O 3 composite powder was produced from a mixture of Al and TiO 2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700 deg. C). The results showed that the composite coating has lower wear rate at high temperature (700deg. C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  9. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings

    Directory of Open Access Journals (Sweden)

    Laura Floroian

    2016-06-01

    Full Text Available In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release

  10. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.

    Science.gov (United States)

    Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N

    2016-06-09

    In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess

  11. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating

    International Nuclear Information System (INIS)

    Yang, Y.F.; Jiang, C.Y.; Yao, H.R.; Bao, Z.B.; Zhu, S.L.; Wang, F.H.

    2016-01-01

    Graphical abstract: Tiny Hf particles were successfully incorporated into Pt plating via simple electro-plating method. The hafnium particles were either nipped at Pt grain boundaries or wrapped inside Pt grains, and most of them were below 3 μm in size, showing a uniform distribution within the Pt plating. - Highlights: • A Hf-rich belt formed between outer (Ni,Pt)Al and IDZ after aluminisation. • Hf-doped coating showed much decreased mass gain and oxidation rate constant k_p. • Hf-rich belt acted as diffusion barrier by restraining diffusions of Al and W. • Degradation of β was effectively postponed by the unique Hf addition. • Hf-doped coating exhibited lighter oxide scale rumpling tendency. - Abstract: A Hf-doped β-(Ni,Pt)Al coating was prepared by co-deposition of a Pt-Hf composite plating and successive aluminisation. Then, a distinct Hf-rich belt was formed internally between the outer additive (Ni,Pt)Al coating and interdiffusion zone. An isothermal oxidation test at 1100 °C revealed a relatively lower oxidation rate constant and decreased oxide scale rumpling tendency for the Hf-doped coating during which the Hf-rich belt partly acted as an effective diffusion barrier. The unique addition of Hf into a β-(Ni,Pt)Al coating can delay the transitional oxidation period from transient alumina to stable one and postpone the degradation from β to γ'.

  12. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  13. Deposition of aluminum coatings on bio-composite laminates

    Science.gov (United States)

    Boccarusso, L.; Viscusi, A.; Durante, M.; Astarita, A.; De Fazio, D.; Sansone, R.; Caraviello, A.; Carrino, L.

    2018-05-01

    As a result of the increasing environmental awareness, the concern for environmental sustainability and the growing global waste problem, the interest of bio-composites materials is growing rapidly in the last years in order to use them in various engineering fields. Tremendous advantages and opportunities are associated with the use of these materials. On the other hand, some issues are related to the superficial properties of the bio-laminates, in particular the wear properties, the flame resistance and the aesthetic appearance have to be improved in order to extend the application fields of these materials. Aiming to these goals this paper deals with the study of the deposition of aluminum coating through cold spray process on hemp/PLA bio-composites manufactured by using the compression molding technique. Therefore, SEM observations, roughness analyses, bending tests, pin on disk and scratch tests were carried out in order to study the feasibility of the process and to investigate on the properties of the coated samples. The experimental results proved that when the process parameters of the deposition process are properly set, no damages are induced in the composite panel and that the aluminum coating, under specific load conditions, resulted to be able to protect the substrate.

  14. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  15. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  16. Phase composition and tribomechanical properties of Ti-B-C nanocomposite coatings prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Sánchez-López, J C; Abad, M D; Justo, A; Gago, R; Endrino, J L; García-Luis, A; Brizuela, M

    2012-01-01

    Protective nanocomposite coatings based on hard ceramic phases (TiC, TiB 2 ) combined with amorphous carbon (a-C) are of interest because of their adequate balance between mechanical and tribological performances. In this work, Ti-B-C nanocomposite coatings were prepared by co-sputtering of graphite and TiB 2 targets. Varying the discharge power ratio applied to the graphite and TiB 2 targets from 0 to 2, the a-C content in the coatings could be tuned from 0 to 60%, as observed by means of Raman and x-ray photoelectron spectroscopy (XPS). The microstructural characterization demonstrated a progressive decrease in crystallinity from an initial nanocrystalline (nc) TiB 2 -like structure to a distorted TiB x C y ternary compound with increasing C concentration. X-ray absorption near-edge structure measurements on the B K-edge helped to determine a hexagonal arrangement around the B atoms in the ternary TiB x C y phase. A fitting analysis of the C 1s XPS peak allowed us to evaluate the relative amount of a-C and TiB x C y components. A drastic change in hardness (from 52 to 13 GPa) and friction coefficient values (from 0.8 to 0.2) is noticed when moving from nc-TiB 2 to TiBC/a-C nanocomposites. The fraction of a-C necessary to decrease the friction below 0.2 was found to be 45%. Raman observation of the wear tracks determined the presence of disordered sp 2 -bonded carbon phase associated with the diminution of the friction level.

  17. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  18. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    Science.gov (United States)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  19. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    Science.gov (United States)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  20. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    Science.gov (United States)

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  1. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xuming Pang

    2018-06-01

    Full Text Available In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  2. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  3. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  4. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing clay content.

  5. Process for the production of radiation curable coating compositions containing microcapsules

    International Nuclear Information System (INIS)

    Lee, Y.; Shackle, D.R.

    1979-01-01

    A process for producing a radiation curable coating composition containing microcapsules comprises the steps of preparing a dispersion of substantially discrete microcapsules in a continuous phase, the continuous phase comprising a liquid volatile solvent, preparing a liquid radiation curable suspending medium, the liquid radiation curable suspending medium comprising one or more ethylenically unsaturated organic compounds having at least one terminal ethylenic group per molecule, mixing the dispersion of substantially discrete microcapsules in the continuous phase and the liquid radiation curable suspending medium with turbulent agitation to form an intimate mixture of the dispersion of microcapsules and the liquid radiation curable suspending medium, and applying heat and vacuum to the mixture, while maintaining the agitation, until the liquid volatile solvent is substantially removed from the mixture to form a dispersion of substantially discrete microcapsules in the liquid radiation curable suspending medium. The heat is applied to maintain the mixture at a temperature above the boiling point of the volatile solvent at the vacuum level

  6. Functional regulation of Pb-Ti/MoS_2 composite coatings for environmentally adaptive solid lubrication

    International Nuclear Information System (INIS)

    Ren, Siming; Li, Hao; Cui, Mingjun; Wang, Liping; Pu, Jibin

    2017-01-01

    Highlights: • Co-doped Pb-Ti/MoS_2 composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS_2 composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS_2 composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS_2 are easily affected by water to form MoO_3 that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS_2 in high humidity condition, the co-doped Pb-Ti/MoS_2 composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS_2-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS_2 coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS_2 composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS_2 composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS_2 coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS_2 coatings as the environmentally adaptive lubricants.

  7. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    Science.gov (United States)

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  8. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and. Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing ...

  9. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    Science.gov (United States)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  10. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

    Science.gov (United States)

    Lin, Yinghua; Lei, Yongping; Fu, Hanguang; Lin, Jian

    2015-10-01

    Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

  11. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    Science.gov (United States)

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  12. Optical coating preparation

    International Nuclear Information System (INIS)

    Belleville, P.; Sabary, F.; Marcel, C.

    2003-01-01

    In order to optimize the properties of optical components, thin film deposition with controlled thickness and refractive index is often needed. Two different deposition techniques are proposed in this article and illustrated with examples: physical vapor deposition (PVD) and liquid sol-gel process (LSG). PVD and LSG techniques are equivalent as far as the following topics are concerned: elaboration of oxide or composite coated material, optical performance, mechanical performance, and laser performance. PVD is better for the elaboration of metallic films, the design of multi-layers or complex pile-up of layers. LSG is better for the treatment of large surfaces, for substrates with complicated shapes and for its low cost. PVD technique has been widely used so it benefited from an industrial maturity and a clean technology concerning wastes and effluents. On the contrary LSG is a new technique not yet widely used in industrial processes but that looks promising. (A.C.)

  13. Mechanical Properties of TC4 Matrix Composites Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    WANG Lin

    2017-06-01

    Full Text Available In order to improve the penetration performance of TC4, the direct laser deposition technology was used to prepare TC4 composite material. TA15+30% TiC powder, TA15+20%Cr3C2 powder and TA15+15%B4C powder were used as deposited materials for TC4 matrix. The micromorphology, change of hardness of the deposited coating and mechanical properties of the three composites were studied. The experimental results demonstrate that the TC4 matrix with the three kinds of materials can form a complete metallurgical bonding, and the strength of TC4-(TA15+TiC, TC4-(TA15+Cr3C2 and TC4-(TA15+B4C are higher than that of TC4 matrix materials, while the plasticity is slightly worse.

  14. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  15. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  16. Preparation of visible-light-responsive TiO{sub 2} coatings using molten KNO{sub 3} treatment and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Guan, Sujun; Takaya, Shunsuke [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshida, Hiroyuki [Chiba Industrial Technology Research Institute, 6-13-1, Tendai, Inage-ku, Chiba 263-0016 (Japan); Tochihara, Misako [JFE Techno-Research Corporation, No. 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2017-06-15

    Highlights: • Molten KNO{sub 3} treatment are used to prepare K-doped TiO{sub 2} photocatalyst coatings. • The coatings show good antibacterial activity even in absence of light. • The photocatalytic activity is increased with the amount increase of K-doping. • The good antibacterial activity should come from the doping and release of K ions. - Abstract: In this work, the process of mechanical coating followed by molten KNO{sub 3} treatment is given to prepare visible-light-responsive K{sup +}-doped TiO{sub 2}. X-ray diffraction (XRD), scanning electron spectroscopy (SEM), Energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize these TiO{sub 2} coatings. The results showed that K{sup +}-doped anatase TiO{sub 2}/Ti composite coatings formed after molten KNO{sub 3} treatment at elevated temperatures. Meanwhile, their photocatalytic degradation of methylene blue (MB) and the antibacterial activity against Escherichia coli (E. coli) was also studied. The visible-light-responsive photocatalytic activity of the coatings in MB degradation increased with increase of K{sup +} ions when holding temperature was raised from 673 to 773 K. An excellent antibacterial activity of the K{sup +}-doped TiO{sub 2}/Ti coatings against E. coli was also obtained even in absence of light. The antibacterial activity in dark should attribute to the release of K{sup +} ions from the coatings. The photocatalytic activity under visible-light irradiation should result from the absorption spectrum extension due to the doping of K{sup +} ions into the lattice of TiO{sub 2}.

  17. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  18. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  19. Synthesis and Characterization of BaFe12O19/Poly(aniline, pyrrole, ethylene terephthalate) Composites Coatings as Radar Absorbing Material (RAM)

    Science.gov (United States)

    Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti

    2017-07-01

    This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.

  20. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  2. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  4. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  5. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  6. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang; Li, Jishuai; Li, Xinyue

    2015-10-25

    NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr{sub 2}) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr{sub 5}Si{sub 4} and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and during the growth of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}, the consumption of Zr atoms at the lateral interface of liquid/Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. • Reinforced phases significantly improve wear resistance of the coating.

  7. Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lingqian [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong, E-mail: jszhou@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu Youjun; Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2012-06-15

    NiCr + Cr{sub 3}C{sub 2} + Ag + BaF{sub 2}/CaF{sub 2} composite coatings were produced on stainless steel (1Cr18Ni9Ti) substrates by laser cladding. Corresponding powders were prepared by high-energy ball milling technique. The friction and wear behavior at room temperature was investigated through sliding against the Si{sub 3}N{sub 4} ball. The morphologies of the wear debris, worn surfaces of both samples and the Si{sub 3}N{sub 4} ball were analyzed by scanning electron microscopy and three dimensional non-contact surface mapping. Results showed that milling time had a great effect on the size, morphology, uniformity of the powders as well as the microstructure and properties of laser cladding coatings. The wear mechanism of the coatings is dominated by abrasive wear, plastic deformation and slight adhesive wear. The consecutive evolution trend of friction coefficient, wear rate as well as microhardness of the serials of coatings produced with powders of different sizes was presented.

  8. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, G.M.; Nychka, J.A. [Department of Chemical and Materials Engineering, University of Alberta, 7th Floor, Electrical and Computer Engineering Research Facility, Edmonton, Alberta T6G 2V4 (Canada); McDonald, A.G., E-mail: andre2@ualberta.ca [Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8 (Canada)

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20 ± 2 MPa (n = 5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  9. A novel approach using powder metallurgy for strengthened RABiTS composite substrates for coated superconductors

    International Nuclear Information System (INIS)

    Suo Hongli; Zhao Yue; Liu Min; Ye Shuai; Zhu YongHua; He Dong; Ma Lingji; Ji Yuan; Zhou Meiling

    2008-01-01

    We report on the development of mechanically strengthened, highly textured Ni-5 at.%W/Ni-12 at.%W composite materials prepared by a powder metallurgical approach as promising weakly magnetic substrates for coated superconductors. The key configuration of this composite substrate consists of a thin, sharp cubic textured Ni-5 at.%W layer on a Ni-12 at.%W alloy core, thus providing a mechanical reinforcement while decreasing the saturation magnetization of the whole substrate. The composite substrates have a sharp cubic texture at the top Ni-5 at.%W outer layer and their yield strength reaches 272 MPa, exceeding that of the commercially used Ni5W substrates by a factor of 1.6. The saturation magnetization of the composite substrate Ni5W/Ni12W/Ni5W is substantially reduced when compared to that of pure Ni and Ni-5 at.%W substrates, respectively

  10. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  11. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  12. Electroforming of nickel and partially stabilized zirconia (Ni+PSZ) gradient coating

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Dai Changsong [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Wang Dianlong [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Hu Xinguo [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.

    1997-05-01

    A sediment electrodeposition technique has been successfully used to prepare Ni+PSZ gradient coatings with a compositional gradient. The microstructure and composition of the coating have been studied by scanning electron microscopy and electron probe microanalysis. The variation of the hardness, elastic modulus, residual stress, thermal expansion coefficient and thermal conductivity of the coatings with various components is also discussed. Thermal fatigue tests demonstrate that Ni+PSZ gradient coatings improve the resistance to thermal shock by eliminating the mismatch with the substrate. (orig.)

  13. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  14. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    Science.gov (United States)

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  15. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  16. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  17. Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal

    Science.gov (United States)

    Huang, Qiang; Liu, Meiying; Zhao, Jiao; Chen, Junyu; Zeng, Guangjian; Huang, Hongye; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-01-01

    Polyethylenimine-tannins coated SiO2 (SiO2@PEI-TA) hybrid materials have been prepared via a single-step multifunctional coating with polyethylenimine (PEI) and tannins (TA), and characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The as-prepared SiO2@PEI-TA composites were examined as adsorbents to remove the Cu2+ from aqueous solution. The effects of contact time, initial Cu2+ concentration, solution pH and temperature, on Cu2+ adsorption have been investigated. The results show that the adsorption of Cu2+ onto SiO2@PEI-TA is dependent on the contact time, Cu2+ concentration, pH and temperature. The SiO2@PEI-TA composites show a 2.4-fold increase in adsorption capacity, implying that the introduction of PEI-TA coating is in favor of the Cu2+ adsorption. Based on the analysis of kinetic data, the kinetics of Cu2+ adsorption is more accurately described by the pseudo-second-order model. The equilibrium data are analyzed by Langmuir and Freundlich isotherms. Results of isotherms show that the better agreement is Freundlich isotherm model with correlation coefficient of 0.9914, which suggests that the adsorption of Cu2+ onto SiO2@PEI-TA is mainly a heterogeneous adsorption process. Thermodynamic analyses show that the adsorption interaction is actually a spontaneous and endothermic chemical process, which might involve the chemical chelation between Cu2+ and functional groups (amine and carboxyl groups) on the surface of SiO2@PEI-TA. In addition, the Cu2+ ions could desorb from SiO2@PEI-TA by using acid solution and the adsorption efficiency remains at high level after five adsorption-desorption recycles. These results provide potential applications of these novel adsorbents for the removal of heavy metal Cu2+ from aqueous solution and also provide strong evidence to support the adsorption mechanism proposed in the study.

  18. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    International Nuclear Information System (INIS)

    Hernandez-Montelongo, J.; Gallach, D.; Naveas, N.; Torres-Costa, V.; Climent-Font, A.; García-Ruiz, J.P.; Manso-Silvan, M.

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  19. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  20. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com [College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002 (China); Zhang, Deyuan; Cai, Jun; Hu, Yanyan; Yuan, Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2014-07-01

    In this paper, helical silver-coated Spirulina cells were used as conductive fillers for the fabrication of polymeric composites. The morphology and composition of the coated Spirulina cells were analyzed with scanning electron microscope and energy dispersive X-ray spectrometer. The densities of silver-coated Spirulina cells were measured using the standard Archimedes method with distilled water. The electrical resistivity was measured by four-probe technique using ammeter and voltmeter whereas electromagnetic interference shielding effectiveness was measured by four-port method using vector network analyzer and coaxial-airline sample holder. The results showed that the silver-coated Spirulina cells with different coating thickness were lightweight fillers compared to the other typical conductive particles. The polymeric composites could achieve good conductivity at the lower content of silver-coated Spirulina cells owing to their helical shape. The shielding effectiveness of polymeric composites had a strong dependence on their conductivity. At the coating thickness of 0.96 μm and the content of 40 vol%, the shielding effectiveness could reach above 74.3 dB in entire test wave band.

  1. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  2. Preparation and magnetic properties of Ni–P–La coating by electroless plating on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Jihui, E-mail: jhwang@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, Jing [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China); Li, Haiqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China)

    2016-02-28

    Graphical abstract: The content of Ni phase, which is the main ferromagnetic phase in Ni–P–La coating, is almost increased linearly with the concentration of La in plating solution. - Highlights: • The La element improves the magnetic properties of Ni–P–La coating. • Magnetism increases but the stability of bath decreases with La content and pH. • Coatings peel off at high temperature (≥80 °C) and magnetism is weak in short time. • The optimum is the La{sub 2}O{sub 3} of 10 mg L{sup −1}, pH of 5.0, temperature of 75 °C and time of 45 min. - Abstract: Ni–P–La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni–P–La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni–P–La coating is La{sub 2}O{sub 3} addition of 10 mg L{sup −1}, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni–P–La coating.

  3. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  4. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  5. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating

    Directory of Open Access Journals (Sweden)

    WANG Huai-yuan

    2017-01-01

    Full Text Available Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs.The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.

  6. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  7. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  8. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    Science.gov (United States)

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.

  9. Formation of protective composite coatings with the use of SPTFE suspensions

    Science.gov (United States)

    Nadaraia, K. V.; Mashtalyar, D. V.; Sinebryukhov, S. L.; Gnedenkov, S. V.

    2017-09-01

    The method of protective composite coatings formation with the use of the plasma electrolytic oxidation (PEO) and subsequent treatment in isopropanol or aqueous suspension of the superdispersed polytetrafluoroethylene (SPTFE) have been developed. Morphological, electrochemical and tribological studies, as well as wetting ability of the protective coatings have been carried out. The obtained results corroborated the increase of the corrosion and wear resistance parameters for the polymer-containing coating in comparison with the base PEO-coating and uncoated material.

  10. Preparation and study of new rubber to steel adhesive systems

    International Nuclear Information System (INIS)

    Labaj, I.; Ondrusova, D.; Dubec, A.; Pajtasova, M.; Kohutiar, M.

    2017-01-01

    The present paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment by applying the adhesive coats based on Co (II) and Cu(II) salts. For demonstration of coats chemical composition EDX analysis was used. The topography and microstructure of prepared adhesive coats were investigated using Scanning Electron Microscopy. Finally the efficiency of adhesion between rubber blends and coated metal steel pieces was evaluated according to Test ASTM D429 Rubber to metal adhesion, method A. The adhesive strength resulting values of prepared steel samples with new adhesive coats were compared with samples covered with adhesive systems commonly used in industry. (authors)

  11. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  12. High performance bio-based thermosets for composites and coatings

    Science.gov (United States)

    Paramarta, Adlina Ambeg

    In the recent decade, there has been increasing interest in using renewable feedstocks as chemical commodities for composites and coatings application. Vegetable oils are promising renewable resources due to their wide availability with affordable cost. In fact, the utilization of vegetable oils to produce composite and coatings products has been around for centuries; linseed oil was widely used for wide variety of paints. However, due to its chemical structure, the application of vegetable oils for high-performance materials is limited; and thus chemical modification is necessary. One of the modification approaches is by substituting the glycerol core in the triglycerides with sucrose to form sucrose esters of vegetable oil fatty acids, in which this resin possesses a higher number of functional group per molecule and a more rigid core. In this research, thermosets of highly functionalized sucrose esters of vegetable oils were developed. Two crosslinking methods of epoxidized surcrose soyate (ESS) resins were explored: direct polymerization with anhydride moieties for composite applications and Michael-addition reaction of acrylated-epoxidized sucrose soyate (AESS) for coatings applications. In the first project, it was shown that the reaction kinetics, thermal and mechanical properties of the materials can be tuned by varying the molar ratio between the epoxide and anhydride, plus the type and amount of catalyst. Furthermore, the toughness properties of the ESS-based thermosets can be improved by changing the type of anhydride crosslinkers and incorporating secondary phase rubbers. Then, in the second system, the epoxy functionality in the ESS was converted into acrylate group, which then crosslinked with amine groups through the Michael-addition reaction to produce coatings systems. The high number of functional groups and the fast reactivity of the crosslinker results in coatings that can be cured at ambient temperature, yet still possess moderately high glass

  13. Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings

    International Nuclear Information System (INIS)

    Yao Zhongping; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2009-01-01

    The aim of this work is to investigate the effects of the cathode pulse under the low working frequency on the structure and the composition of the ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology, and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy, and energy distribution spectroscopy. The coating was mainly composed of a large amount of Al 2 TiO 5 and a little α-Al 2 O 3 and rutile TiO 2 . Increasing the cathode pulse, the amount of rutile TiO 2 was increased while the amount of Al 2 O 3 was decreased; and decreasing the cathode pulse, the amount of Al 2 O 3 was increased while the amount of rutile TiO 2 was decreased. The thickness of the coatings was increased and then decreased with the increase of the cathode pulse. The grain sizes of Al 2 TiO 5 were increased with the cathode current densities, but changed little with the cathode pulse width. The grain size of α-Al 2 O 3 was decreased with the decrease of the cathode pulse, while the grain size of TiO 2 was increased with the increase of the cathode pulse. The proper cathode pulse was helpful to reduce the roughness and to increase the density of the coatings.

  14. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianhua, E-mail: laser@zjut.edu.cn; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Graphical abstract: - Highlights: • The hard Ni-based alloy powder as matrix in diamond composite coating was studied. • The influence of laser on diamond distribution of composite coating was analyzed. • The graphitization of diamond was prohibited in supersonic laser deposition process. • The abrasion mechanisms of diamond/Ni60 composite coating were discussed. - Abstract: Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  15. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  16. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    Science.gov (United States)

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  17. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  18. Composition, morphology and mechanical properties of sputtered TiAlN coating

    Energy Technology Data Exchange (ETDEWEB)

    Budi, Esmar, E-mail: esmarbudi@unj.ac.id [Department of Physics, Faculty of Science and Mathematics, Universitas Negeri Jakarta, Jl. Pemuda No. 10, Jakarta 13220 (Indonesia); Razali, M. Mohd. [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia); Nizam, A. R. Md. [Faculty of Manufacturing Engineering, UniversitiTeknikal Malaysia Melaka, Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal 76109 Melaka (Malaysia)

    2014-03-24

    TiAlN coating was deposited on the tungsten carbide cutting tool by using DC magnetron sputtering system to study the influence of substrate bias and nitrogen flow rate on the composition, morphology and mechanical properties. The negatively substrate bias and nitrogen flow rate was varied from about −79 to −221 V and 30 sccm to 72 sccm, respectively. The coating composition and roughness were characterized by using SEM/EDX and Atomic Force Microscopy (AFM), respectively. The dynamic ultra micro hardness tester was used to measure the mechanical properties. The coating hardness increases to about 10-12 GPa with an increase of the negatively substrate bias up to − 200 V and it tend to decrease with an increase in nitrogen flow rate up to 70 sccm. The increase of hardness follows the increase of Ti and N content and rms coating roughness.

  19. Preparation and characteristics of CNT-metal composites

    CSIR Research Space (South Africa)

    Pityana, SL

    2006-01-01

    Full Text Available The success in keeping carbon nanotubes (CNT) bonded to stainless steel provides a possible method for the preparation of CNT-metal composites. Alternative methods for the preparation of CNT-metal composites include hot pressing, sintering, etc...

  20. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  1. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2004-01-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  2. Preparation of polyester /Calcium sulfate/ composites using radiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2003-04-01

    Different composites have been prepared using various doses of gamma radiation. Two polyesters, Super Mastics and General, and calcium sulfate or natural gypsum have been used for preparing the composites. Some physical properties of the composites and the influence of Gamma rays on it has been studied as: compression, hardness, thermal decomposition temperature in nitrogen or oxygen, and change in weight in aqua solutions with different pH. Our results show that the glass transition temperature increases by increasing the absorbed dose up to a plateau. Further, the composites show a good thermal stability, and the absorbed dose does not affect the thermal decomposition temperature or the oxidation induction time for the prepared composites. Compression strength of the prepared composites decreases by increasing the filler ratios, and the absorbed does not seem to influence this property significantly. (author)

  3. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles

    OpenAIRE

    Gan, Zhenhai; Ju, Jianhui; Zhang, Ting; Wu, Daocheng

    2011-01-01

    Poly(methacrylic acid) (PMAA)-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid)...

  4. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  5. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shihui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Chen, Cheng; Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Li, Wei [Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2017-06-15

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  6. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    International Nuclear Information System (INIS)

    Qiu, Shihui; Chen, Cheng; Cui, Mingjun; Li, Wei; Zhao, Haichao; Wang, Liping

    2017-01-01

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  7. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  8. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Mathematical Sciences; Gnaeupel-Herold, T.; Brand, P.C.; Prask, H.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1998-12-15

    Residual stresses in plasma-sprayed coatings were studied by three experimental techniques: curvature measurements, neutron diffraction and X-ray diffraction. Two distinct material classes were investigated: (1) single-material coatings (molybdenum) and (2) bi-material composites (nickel+alumina and NiCrAlY+yttria-stabilized zirconia), with and without graded layers. This paper deals with the effects of coating thickness and material properties on the evolution of residual stresses as a function of composition and thickness in both homogeneous and graded coatings. Mathematical analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the quenching stress plays a dominant role in the metallic phase, whereas the stress in the ceramic phase is mostly dominated by thermal mismatch. The respective thermal expansion coefficients and mechanical properties are the most important factors determining the stress sign and magnitude. The three residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. The most noteworthy outcomes are the determination of the through-thickness stress profile in graded coatings with high spatial resolution (curvature method) and determination of stress in each phase of a composite separately (neutron diffraction). (orig.) 25 refs.

  9. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  10. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  11. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  12. Self-sealing multilayer coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Ferraris, M.; Appendino Montorsi, M.; Salvo, M.; Isola, C.; Kohyama, A.

    1997-01-01

    A double layer coating for SiC/SiC for fusion applications is proposed: the first layer consists in a homogeneous, crack free, glass-ceramic with high characteristic temperatures and thermal expansion coefficient compatible to the composite one; the second layer is amorphous and shows self-sealing properties above 700degC. The glass and the glass-ceramic materials used for this double layer coating do not contain lithium and boron oxide, making them particularly interesting for thermonuclear fusion applications. The self-sealing property of the double layer coating was valued by inducing cracks on the coatings and observing their reparation after heating. (author)

  13. Functional regulation of Pb-Ti/MoS{sub 2} composite coatings for environmentally adaptive solid lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Hao [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Pu, Jibin, E-mail: pujibin@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Highlights: • Co-doped Pb-Ti/MoS{sub 2} composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS{sub 2} composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS{sub 2} composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS{sub 2} are easily affected by water to form MoO{sub 3} that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS{sub 2} in high humidity condition, the co-doped Pb-Ti/MoS{sub 2} composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS{sub 2}-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS{sub 2} coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS{sub 2} composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS{sub 2} composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS{sub 2} coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS{sub 2} coatings as the environmentally adaptive

  14. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    International Nuclear Information System (INIS)

    Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz

    2014-01-01

    Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix

  15. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  16. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  17. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  18. Composite of ceramic-coated magnetic alloy particles

    Science.gov (United States)

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  19. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  20. Tribaloy alloy reinforced tin-bronze composite coating for journal bearing applications

    International Nuclear Information System (INIS)

    Gao, F.; Liu, R.; Wu, X.J.

    2011-01-01

    This article presents an experimental study of the tribological behavior of a tin/bronze-based composite coating. The improved-ductility Tribaloy alloy (T-401) particles are selected as the reinforcement. This coating is made on the bushing of planet journals used in aerospace engines, deposited with the high velocity oxygen fuel (HVOF) thermal spray technique. The tribological properties such as friction and wear resistance of the coated bushing are investigated under the WAMsc3 Sliding Contact Test, along with the leaded tin/bronze bushing tested for comparison. The testing results show that the bushing coated with the composite exhibits superior tribological properties to the leaded tin/bronze bushing in that the former runs longer before the friction coefficient reaches 0.5 and also leads a to lower wear rate than the latter. The experimental results and wear mechanisms of these two bushings are discussed with the assistance of worn surface analyses using scanning electron microscopy (SEM).