WorldWideScience

Sample records for composite cmc systems

  1. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  2. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  4. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  5. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    Science.gov (United States)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  6. Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center

    Science.gov (United States)

    Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming

    2016-01-01

    In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.

  7. Novel, Nanotechnology Based CMC composites for Hot Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Very extensive R&D efforts over the past several decades resulted in several classes of high temperature composites offering potential for future hypersonic...

  8. Gradient Interphase, 3-D Fiber Architecture CMC's, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A clear need exists for the next generation of Ceramic Matrix Composites (CMC) for Thermal Protection Systems (TPS), propulsion hardware, and other high temperature...

  9. Identifying Opportunities in the Development of Ceramic Matrix Composite (CMC) Materials for Armor Applications

    Science.gov (United States)

    2017-03-01

    Composite Factory, Inc. Northrop-Grumman Composite Optics Inc. Ceramics (formerly a Dow Corning business unit) Refractory Composites, Inc. General...Creating carbon fiber from PAN precursor requires 4 pyrolysis steps: 1) oxidative stabilization (~200 °C), 2) carbonization (burning off other elements), 3...and mechanically strong graphene fibers. Science 2015;349 (6252):1083–1087. Yusof N, Ismail AF. Post spinning and pyrolysis processes of

  10. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    Science.gov (United States)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  11. Control panel for CMC 8080 crate controller

    International Nuclear Information System (INIS)

    Masayuki Inokuchi

    1978-01-01

    The main features of Control Panel for CAMAC Crate Controller CMC 8080 are described. The control panel can be directly connected with CRATE CONTROLLER's front panel connector with a 50 lines cable without any changes in CMC 8080 system circuits. (author)

  12. (CMC)/gum arabic

    Indian Academy of Sciences (India)

    Administrator

    material, which is widely used as food additives, washes, paste, etc. It is an anionic and ... This was ascribed to the good interaction between cassava starch and CMC ... drugs and also release the heavy metals to improve the agricultural soil.

  13. Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system

    Science.gov (United States)

    Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin

    2017-09-01

    We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.

  14. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    Science.gov (United States)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  15. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  16. Rationale for Haze Formation after Carboxymethyl Cellulose (CMC) Addition to Red Wine.

    Science.gov (United States)

    Sommer, Stephan; Dickescheid, Christian; Harbertson, James F; Fischer, Ulrich; Cohen, Seth D

    2016-09-14

    The aim of this study was to identify the source of haze formation in red wine after the addition of carboxymethyl cellulose (CMC) and to characterize the dynamics of precipitation. Ninety commercial wines representing eight grape varieties were collected, tested with two commercial CMC products, and analyzed for susceptibility to haze formation. Seventy-four of these wines showed a precipitation within 14 days independent of the CMC product used. The precipitates of four representative samples were further analyzed for elemental composition (CHNS analysis) and solubility under different conditions to determine the nature of the solids. All of the precipitates were composed of approximately 50% proteins and 50% CMC and polyphenols. It was determined that the interactions between CMC and bovine serum albumin are pH dependent in wine-like model solution. Furthermore, it was found that the color loss associated with CMC additions required the presence of proteins and cannot be observed with CMC and anthocyanins alone.

  17. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  18. A CMC database for use in the next generation launch vehicles (rockets)

    Science.gov (United States)

    Mahanta, Kamala

    1994-01-01

    Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.

  19. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  20. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    International Nuclear Information System (INIS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-01-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  1. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  2. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  3. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  4. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  5. CMC and Japanese University Students Studying English

    OpenAIRE

    Claro, Jennifer

    2008-01-01

    Computer-mediated communication (CMC) is becoming common in foreign language classes worldwide. In many countries, Japan included, students study English for years, rarely have the chance to use it. CMC has proven to be a viable and possibly even preferable alternative to face-to-face communication, providing an ideal environment in which English can be used in communicative situations. In addition to begin an environment where using learning, and modifying English takes place. CMC offers man...

  6. Synthesis and characterization of CMC from water hyacinth for lithium-ion battery applications

    Science.gov (United States)

    Hidayat, Sahrul; Susanty, Riveli, Nowo; Suroto, Bambang Joko; Rahayu, Iman

    2018-02-01

    Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and longer lifetime compared to similar rechargeable battery systems. One of the components that determine the performance of a lithium ion battery is the binder material, whether at the anode or the cathode. In commercial batteries, the material used as the binder is Polyvinylidene Difluoride (PVDF), with n-methyl-2-phyrrolidone (NMP) as the solvent. Both are synthetic materials that are expensive, toxic and harmful to the environment. An alternative binder material for lithium-ion battery electrodes is CMC (carboxymethyl cellulose) in a water solvent. CMC is cheaper than PVDF, non-toxic and more environmental friendly. CMC can be synthesized from several types of plants, such as water hyacinth, which is a weed plant with high cellulose content. The synthesis of CMC consists of three main steps, namely 1) the isolation process from water hyacinth, 2) the alkalization and carboxymethylation process and 3) the purification process to obtain CMC in high purity. FTIR characterization of the CMC shows five region of absorption bands. The bands in the region 1330-1400 cm-1 are due to symmetrical deformations of CH2 and OH groups. The ether bonds in CMC occur in the fingerprint region of 1250-1060 cm-1. The presence of new and strong absorption band around 1600 cm-1 is confirmed to the stretching vibration of the carboxyl group (COO-), while the one around 1415 cm-1 is assigned to carboxyl groups as it salts. The broad absorption band above 3400 cm-1 is due to the stretching frequency of the hydroxyl group (-OH). Purity test on three samples (CMC mesh-100, CMC mesh-60 and CMC, mesh-40) gives purity values of 99.89%, 99.99% and 99.89%, respectively. This proves that CMC have actually been formed with high purity.

  7. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  8. Qualification Approach for the CMC Nose Cap of X-38

    Science.gov (United States)

    Weihs, H.; Gülhan, A.

    2002-01-01

    In October 2001 the flight hardware of the TPS nose assembly of X-38 has been installed at the main structure of the X-38 V201 vehicle at NASA's Johnson Space Center, Houston Texas. X-38 is a test vehicle for the planned Crew Return Vehicle CRV for the International Space Station ISS. Currently the flight of the X-38 is scheduled for 2005. Besides the Body flaps (MAN-T) and the nose skirt system (ASTRIUM, MAN-T) the nose cap system is one of the essential hot structure components that were developed within Germany's national TETRA (Technologies for future space transportation systems) programme. The integration of the hardware was an important milestone for the nose cap development which started approx. 5 years ago. DLR-Stuttgart is responsible for the design and manufacturing of the CMC based nose cap system, which has to withstand the extreme thermal loads during re-entry which will induce a maximum temperature up to 1750 °C on the surface of the cap. Thus, the shell of the cap system is designed and manufactured using DLR's C/C-SiC material which is a special kind of carbon based ceramic matrix composite (CMC) material produced via the in house liquid silicon infiltration process of DLR. This material has demonstrated its good temperature resistance during FOTON and EXPRESS re-entry capsule missions. Besides the design and manufacturing of the nose cap system, the qualification approach was an important effort of the development work. Missing a test facility which is able to simulate all loading conditions from lift off to re-entry and landing, is was necessary to separate the loads and to use different test facilities. Considering the limitations of the facilities, the budget and time constraints, an optimized test philosophy has been established. The goal was to use a full scale qualification unit including all TPS components of the nose area for most of the tests. These were the simulation of ascent loads given by the shuttle requirements and descent loads

  9. SYLRAMICTM SiC fibers for CMC reinforcement

    International Nuclear Information System (INIS)

    Jones, Richard E.; Petrak, Dan; Rabe, Jim; Szweda, Andy

    2000-01-01

    Dow Corning researchers developed SYLRAMIC SiC fiber specifically for use in ceramic-matrix composite (CMC) components for use in turbine engine hot sections where excellent thermal stability, high strength and high thermal conductivity are required. This is a stoichiometric SiC fiber with a high degree of crystallinity, high tensile strength, high tensile modulus and good thermal conductivity. Owing to the small diameter, this textile-grade fiber can be woven into 2-D and 3-D structures for CMC fabrication. These properties are also of high interest to the nuclear community. Some initial studies have shown that SYLRAMIC fiber shows very good dimensional stability in a neutron flux environment, which offers further encouragement. This paper will review the properties of SYLRAMIC SiC fiber and then present the properties of polymer impregnation and pyrolysis (PIP) processed CMC made with this fiber at Dow Corning. While these composites may not be directly applicable to applications of interest to this audience, we believe that the properties shown will give good evidence that the fiber should be suitable for high temperature structural applications in the nuclear arena

  10. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  11. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  12. Evaluation of Ceramic Matrix Composite Technology for Aircraft Turbine Engine Applications

    Science.gov (United States)

    Halbig, Michael C.; Jaskowiak, Martha H.; Kiser, James D.; Zhu, Dongming

    2013-01-01

    The goals of the NASA Environmentally Responsible Aviation (ERA) Project are to reduce the NO(x) emissions, fuel burn, and noise from turbine engines. In order to help meet these goals, commercially-produced ceramic matrix composite (CMC) components and environmental barrier coatings (EBCs) are being evaluated as parts and panels. The components include a CMC combustor liner, a CMC high pressure turbine vane, and a CMC exhaust nozzle as well as advanced EBCs that are tailored to the operating conditions of the CMC combustor and vane. The CMC combustor (w/EBC) could provide 2700 F temperature capability with less component cooling requirements to allow for more efficient combustion and reductions in NOx emissions. The CMC vane (w/EBC) will also have temperature capability up to 2700 F and allow for reduced fuel burn. The CMC mixer nozzle will offer reduced weight and improved mixing efficiency to provide reduced fuel burn. The main objectives are to evaluate the manufacturability of the complex-shaped components and to evaluate their performance under simulated engine operating conditions. Progress in CMC component fabrication, evaluation, and testing is presented in which the goal is to advance from the proof of concept validation (TRL 3) to a system/subsystem or prototype demonstration in a relevant environment (TRL 6).

  13. A study of the characteristics and in vitro permeation properties of CMC/ chitosan microparticles as a skin delivery system for vitamin E Estudo das características e propriedades da permeação in vitro de micropartículas de CMC/quitosana como sitema de liberação cutânea para vitamina E

    Directory of Open Access Journals (Sweden)

    Juliana Bucchi Alencastre

    2006-03-01

    Full Text Available Carboxymethylcellulose (CMC/chitosan microparticles containing vitamin E were prepared by a complex coacervation method and their potential use as a topical delivery system was evaluated. Morphology, particle size distribution, encapsulation yield, physical and chemical stability, in vitro release and permeation through skin were studied. The microparticles appeared to be spherical, with a homogeneous surface and were not aggregated. Mean diameters ranged from 2.7 to 7.6 µm and the encapsulation yield was 81%. Chemical stability studies indicated a protection of encapsulated vitamin E, of 8.1% for O/W and of 10.83% for W/O emulsions, following storage at 45 °C for 60 days. Forty-eight% of vitamin E, determined by HPLC, were released within 24 hours. In vitro permeation and retention studies showed a higher penetration rate of vitamin E in the free and encapsulated forms, from the W/O emulsion. The carriers studied seem to be promising systems for topical administration.Micropartículas de carboximetilcelulose (CMC/quitosana contendo vitamina E foram preparadas pelo método de coacervação complexa e seu uso potencial como um sistema de liberação tópico foi avaliado. Estudos da morfologia, da distribuição do tamanho de partículas, da eficiência de encapsulação, da estabilidade física e química e da liberação e permeação cutânea in vitro foram realizados. As análises por Microscopia Eletrônica de Varredura mostraram que as partículas são esféricas, possuem uma superfície homogênea e ausência de agregados, com diâmetros na faixa de 2,7 a 7,6 µm. A eficiência de encapsulação da vitamina E foi 81%. Os estudos de estabilidade química mostraram proteção da vitamina E encapsulada, sendo que a diferença em relação à quantidade de ativo remanescente na emulsão O/A foi de 8,1% e na A/O, de 10,8%, após armazenamento a 45 °C por um período de 60 dias. O ensaio de liberação in vitro mostrou que 48% da vitamina E

  14. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  15. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  16. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  17. Radiation Synthesis of Super absorbent CMC Based Hydrogels For Agriculture Applications

    International Nuclear Information System (INIS)

    Raafat, A.I.; Eid, M.; El-Arnaouty, M.B.

    2010-01-01

    A good hydrogels of carboxy methyl cellulose (CMC) and poly vinyl pyrrolidone (PVP) were synthesized by gamma radiation at different doses and compositions. The prepared hydrogels were characterized by (FTIR) and (SEM). The hydrogels properties such as gelation (%), swelling and water retention capability were investigated. As the content of PVP in PVP/CMC hydrogels increased the gelation (%) increased. The swelling ratio of prepared hydrogel decreased with increasing of irradiation doses and the temperature. The (PVP/CMC) hydrogen of composition (40:60) prepared at 20 kGy showed the highest swelling ratio. The addition of sodium bicarbonate (NaHCO 3 ) to the PVP/CMC hydrogels during the irradiation process decreases the swelling ratio. The water retention reveals a similar behavior for the different compositions. The swelling characteristics in the presence of different cations and anions in a swelling medium were studied. The hydrogels were also loaded with urea solutions as a model agrochemical and their potential application for controlled release has been investigated. The improve properties of the prepared materials suggested that, the (PVP/CMC) hydrogels can be use in agriculture applications

  18. Spatially distributed damage detection in CMC thermal protection materials using thin-film piezoelectric sensors

    Science.gov (United States)

    Kuhr, Samuel J.; Blackshire, James L.; Na, Jeong K.

    2009-03-01

    Thermal protection systems (TPS) of aerospace vehicles are subjected to impacts during in-flight use and vehicle refurbishment. The damage resulting from such impacts can produce localized regions that are unable to resist extreme temperatures. Therefore it is essential to have a reliable method to detect, locate, and quantify the damage occurring from such impacts. The objective of this research is to demonstrate a capability that could lead to detecting, locating and quantifying impact events for ceramic matrix composite (CMC) wrapped tile TPS via sensors embedded in the TPS material. Previous research had shown a correlation between impact energies, material damage state, and polyvinylidene fluoride (PVDF) sensor response for impact energies between 0.07 - 1.00 Joules, where impact events were located directly over the sensor positions1. In this effort, the effectiveness of a sensor array is evaluated for detecting and locating low energy impacts on a CMC wrapped TPS. The sensor array, which is adhered to the internal surface of the TPS tile, is used to detect low energy impact events that occur at different locations. The analysis includes an evaluation of signal amplitude levels, time-of-flight measurements, and signal frequency content. Multiple impacts are performed at each location to study the repeatability of each measurement.

  19. The dynamic magnetoviscoelastic properties of biomineralized (Fe3O4) PVP-CMC hydrogel

    Science.gov (United States)

    Ray, Ayan; Saha, Nabanita; Saha, Petr

    2017-05-01

    The Polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) based polymer matrix was used as a template for the preparation of magnetic hydrogel. This freshly prepared PVP-CMC hydrogel template was successfully mineralized by in situ synthesis of magnetic nanoparticles (Fe3O4) via chemical co-precipitation reaction using liquid diffusion method. The present study emphasizes on the rheological behavior of non-mineralized and mineralized PVP-CMC hydrogels. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) pattern, Fourier transform infrared spectroscopy (FT-TR), Vibrating sample magnetometer (VSM) and dynamic magneto rheometer were used to study the morphological, physical, chemical and magnetic properties of nanoparticle (Fe3O4) filled PVP-CMC hydrogel respectively in order to monitor how Fe3O4 magnetic nanoparticles affects the mechanical properties of the hydrogel network. The storage (G') and loss (G") moduli with a complex viscosity of the system was measured using a parallel plate rheometer. Frequency and amplitude sweep with temperature variation was performed to determine the frequency and amplitude dependent magneto viscoelastic moduli for both hydrogel samples. A strong shear thinning effect was observed in both (non-mineralized and mineralized) PVP-CMC hydrogels, which confirm that Fe3O4 filled magnetic hydrogels, are pseudoplastic in nature. This Fe3O4 filled PVP-CMC hydrogel can be considered as stimuli-responsive soft matter that may be used as an actuator in medical devices.

  20. The optimization of CMC concentration as graphite binder on the anode of LiFePO4 battery

    Science.gov (United States)

    Hidayat, S.; Cahyono, T.; Mindara, J. Y.; Riveli, N.; Alamsyah, W.; Rahayu, I.

    2017-05-01

    Recently, the most dominating power supply on the mobile electronics market are rechargeable Lithium-ion batteries. This is because of a higher energy density and a longer lifetime compared to similar rechargeable battery systems. Graphite is commonly used as anode material in the Lithium-ion batteries, because of its excellent electrochemical characteristics and low cost fabrication. In this paper, we reported the optimization of the concentration of the CMC (carboxymethyl cellulose), that acts as the binder for graphite anode. Based on our experimental results, the best composition of graphite : C : CMC is 90 : 8 : 2 in weight %. Anode with such composition has, based on SEM measurement, a relatively good surface morphology, while it also has relatively high conductivity, about 2.68 S/cm. The result of cyclic voltammogram with a scan rate of 10 mV/s in the voltage range of 0 to 1 Volt, shows the peak of reduction voltage at 0.85 Volts and the peak voltage of oxidation is at -1.5 Volt. The performance of the battery system with LiFePO4 set as the cathode, shows that the working voltage is about 2.67 Volts at 1 mA current-loading, with the efficiency around 47%.

  1. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  2. CMC vane assembly apparatus and method

    Science.gov (United States)

    Schiavo, Anthony L; Gonzalez, Malberto F; Huang, Kuangwei; Radonovich, David C

    2012-10-23

    A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.

  3. Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC (Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling

    Science.gov (United States)

    Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp

    2018-03-01

    The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.

  4. Environmental/Thermal Barrier Coatings for Ceramic Matrix Composites: Thermal Tradeoff Studies

    Science.gov (United States)

    Murthy, Pappu L. M.; Brewer, David; Shah, Ashwin R.

    2007-01-01

    Recent interest in environmental/thermal barrier coatings (EBC/TBCs) has prompted research to develop life-prediction methodologies for the coating systems of advanced high-temperature ceramic matrix composites (CMCs). Heat-transfer analysis of EBC/TBCs for CMCs is an essential part of the effort. It helps establish the resulting thermal profile through the thickness of the CMC that is protected by the EBC/TBC system. This report documents the results of a one-dimensional analysis of an advanced high-temperature CMC system protected with an EBC/TBC system. The one-dimensional analysis was used for tradeoff studies involving parametric variation of the conductivity; the thickness of the EBC/TBCs, bond coat, and CMC substrate; and the cooling requirements. The insight gained from the results will be used to configure a viable EBC/TBC system for CMC liners that meet the desired hot surface, cold surface, and substrate temperature requirements.

  5. Development of the Virginia Tech Department of Geosciences MEDL-CMC

    Science.gov (United States)

    Glesener, G. B.

    2016-12-01

    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  6. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  7. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  8. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  9. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-09-22

    Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  11. Large thermal protection system panel

    Science.gov (United States)

    Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  12. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  13. The influence of carboxy methyl cellulose (CMC) on shale stability; Influencia do carboximetilcelulose (CMC) na estabilidade de folhelhos

    Energy Technology Data Exchange (ETDEWEB)

    Salles Filho, Antonio Alves de; Quezada, Augusto Eduardo Donoso [Grupo Ultra, XX (Brazil). Setor de Vendas Petroleo; Oliveira, Telma de [Grupo Ultra, XX (Brazil). Centro de Pesquisas e Desenvolvimento

    1988-12-31

    The methodology used in developing high and low viscosity purified CMC`s specific to salty and saturated drilling fluids is discussed. It is shown how CMC carboxy methyl groups, molecular weight, and uniformity of substitution affect the action of these products, decreasing overall drilling costs, substantially increasing penetration rates, and affording greater well wall stability. (author) 5 refs., 19 figs., 3 tabs.

  14. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  15. CHARACTERIZATION OF CARBOXY METHYL CELLULOSE (CMC FROM Eichornia crassipes (Mart Solms

    Directory of Open Access Journals (Sweden)

    Arum Wijayani

    2010-06-01

    Full Text Available Carboxy Methyl Cellulose (CMC, a compound made made of eceng gondok has been implied for its characteristic by a constructive wet system, with media such as methanol, propanol and water. Four consecutive phases involving alkalization, carboxymethylization, neutralization and drainage were used in the making process of CMC. The first two process were prepared by reacting NaOH and ClCH2COONa with NaOH 22; 32.5; 39.2; 45.9 g and 20; 26; 32; 38 g ClCH2COONa respectively. Added acetic acid was used in the neutralization process, whilst drainage only involved heating in the oven. The overall result for each characteristic substitution degree, acidity; viscosity; contens of water consentration of NaCl and purity 0.4 - 0.85, 6.10 - 8.49, 3 - 10 cP, 3.57 - 19.4 %, 12.9 - 22.4 % and 77.96 - 87.09 % respectively. Based on the obtained characteristic, could be concluded that CMC is considered as a technical quality and can also be used as filler constituent in adhesive. Keywords: CMC, alkalization, carboxymethylization

  16. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres

    International Nuclear Information System (INIS)

    Daenicke, Enrico

    2014-01-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  17. Efficient simultaneous removal of U(VI) and Cu(II) from aqueous solution using core-shell nZVI@SA/CMC-Ca beads

    International Nuclear Information System (INIS)

    Shuhong Hu; Xiaoyan Lin; Wenhui Zhao; Ministry of Education, Sichuan; Xuegang Luo

    2018-01-01

    Core-shell nanoscale zero-valent iron@alginate/carboxymethyl cellulose sodium composite loaded with calcium (nZVI@SA/CMC-Ca) beads were synthesized in this study using coaxial electronic injection method. The adsorbent structure was characterized via FT-IR, SEM, EDX and XPS. The adsorption behavior of U(VI) and Cu(II) on core-shell nZVI@SA/CMC-Ca beads was studied under various experimental parameters like pH, contact time and temperature. The isotherm and the kinetic data, pertaining to the adsorption of U(VI) and Cu(II) by core-shell nZVI@SA/CMC-Ca beads obeyed both the Langmuir and Freundlich isotherms model and the pseudo-second-order kinetics model, respectively. The thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption. The experiment of regeneration and reusability suggested core-shell nZVI@SA/CMC-Ca bead was a regenerated material. (author)

  18. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  19. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  20. Partial interlaminar separation system for composites

    Science.gov (United States)

    Elber, W. (Inventor)

    1980-01-01

    This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics.

  1. Statistical Analysis of CMC Constituent and Processing Data

    Science.gov (United States)

    Fornuff, Jonathan

    2004-01-01

    Ceramic Matrix Composites (CMCs) are the next "big thing" in high-temperature structural materials. In the case of jet engines, it is widely believed that the metallic superalloys currently being utilized for hot structures (combustors, shrouds, turbine vanes and blades) are nearing their potential limits of improvement. In order to allow for increased turbine temperatures to increase engine efficiency, material scientists have begun looking toward advanced CMCs and SiC/SiC composites in particular. Ceramic composites provide greater strength-to-weight ratios at higher temperatures than metallic alloys, but at the same time require greater challenges in micro-structural optimization that in turn increases the cost of the material as well as increases the risk of variability in the material s thermo-structural behavior. to model various potential CMC engine materials and examines the current variability in these properties due to variability in component processing conditions and constituent materials; then, to see how processing and constituent variations effect key strength, stiffness, and thermal properties of the finished components. Basically, this means trying to model variations in the component s behavior by knowing what went into creating it. inter-phase and manufactured by chemical vapor infiltration (CVI) and melt infiltration (MI) were considered. Examinations of: (1) the percent constituents by volume, (2) the inter-phase thickness, (3) variations in the total porosity, and (4) variations in the chemical composition of the Sic fiber are carried out and modeled using various codes used here at NASA-Glenn (PCGina, NASALife, CEMCAN, etc...). The effects of these variations and the ranking of their respective influences on the various thermo-mechanical material properties are studied and compared to available test data. The properties of the materials as well as minor changes to geometry are then made to the computer model and the detrimental effects

  2. Hydraulic concrete composition and properties control system

    OpenAIRE

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  3. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  4. Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials

    Science.gov (United States)

    Lee,Kang

    2001-01-01

    The upper use temperature of current Environmental Barrier Coatings (EBC's) based on mullite and BSAS (EPM EBC's) is limited to -255 F due to silica volatility, chemical reactions, and high thermal conductivity. Therefore, new EBC s having low CTE, good chemical compatibility, and high melting point (greater than 2700 F ) are being investigated. Sinter-resistant, low thermal conductivity EBC s are strongly desired to achieve the UEET EBC goal of 270 F EBC surface temperature and 30 F AT over long exposures (greater than 1000 hr). Key areas affecting the upper temperature limit of current EBC s as well as the ongoing efforts to develop next generation EBC s in the UEET Program will be discussed.

  5. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  6. Development of a material property database on selected ceramic matrix composite materials

    Science.gov (United States)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  7. Creep Behavior and Durability of Cracked CMC

    Science.gov (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  8. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  9. PENGARUH PENAMBAHAN CMC SEBAGAI SENYAWA PENSTABIL TERHADAP YOGHURT TEPUNG GEMBILI

    Directory of Open Access Journals (Sweden)

    Dewi Cakrawati

    2016-12-01

    Full Text Available The study aims to determine the effect of CMC in preventing yoghurt separation in 7 days with the addition of 2% Dioscorea esculenta flour. Organoleptic test using quality hedonic was conducting to find out yoghurt with addition of CMC that had accepted characteristic by panelists. Research was carried out using regression method to determine the total titrated acid, pH and separation level of yoghurt during storage. The concentrations of CMC were added at 0.2%, 0.4%, 0.6%, 0.8%. The analysis showed the addition of 0.6% CMC showed the lowest separation with high viscosity grades of DPAs 40.25. Yoghurt storage for 7 days shows a graph of the pH value and total titrated acid were parabolic where increasing in total titrated acid value would lower the pH value. Yoghurt was damaged on the 7th day of storage at room temperature characterized by the increasing in the pH value and damage to the organoleptics properties, namely yoghurt flavor and aroma.

  10. Does CMC Promote Language Play? Exploring Humor in Two Modalities

    Science.gov (United States)

    Vandergriff, Ilona; Fuchs, Carolin

    2009-01-01

    In view of the growing body of research on humor and language play in computer-mediated communication (CMC) which--more than any other medium--has been associated with goofing off, joking, and other nonserious communication, this paper compares spontaneous foreign language play (L2 play) in text-only synchronous computer-mediated versus…

  11. CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds

    International Nuclear Information System (INIS)

    Perdomo, Oscar M.

    2012-01-01

    In this paper we generalize the explicit formulas for constant mean curvature (CMC) immersion of hypersurfaces of Euclidean spaces, spheres and hyperbolic spaces given in Perdomo (Asian J Math 14(1):73–108, 2010; Rev Colomb Mat 45(1):81–96, 2011) to provide explicit examples of several families of immersions with constant mean curvature and non constant principal curvatures, in semi-Riemannian manifolds with constant sectional curvature. In particular, we prove that every h is an element of [-1,-(2√n-1/n can be realized as the constant curvature of a complete immersion of S 1 n-1 x R in the (n + 1)-dimensional de Sitter space S 1 n+1 . We provide 3 types of immersions with CMC in the Minkowski space, 5 types of immersion with CMC in the de Sitter space and 5 types of immersion with CMC in the anti de Sitter space. At the end of the paper we analyze the families of examples that can be extended to closed hypersurfaces.

  12. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  13. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  14. Entangling transformations in composite finite quantum systems

    International Nuclear Information System (INIS)

    Vourdas, A

    2003-01-01

    Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically

  15. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  16. An Update on Design Tools for Optimization of CMC 3D Fiber Architectures

    Science.gov (United States)

    Lang, J.; DiCarlo, J.

    2012-01-01

    Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.

  17. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  18. Timber-concrete composite floor systems

    NARCIS (Netherlands)

    Linden, M.L.R. van der; Blass, H.J.

    1996-01-01

    Timber-concrete composite (tcc) beams may be used for the renovation of old timber floors. Although these systems are a simple and practical solution, they are not widely adopted. One of the reasons for this is the lack of uniform design mies. In this research programme shear tests on four different

  19. Carboxymethyl cellulose (CMC whey product as protein source for growing pigs 

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1982-12-01

    Full Text Available A digestibility and balance trial was performed with three growing pigs to evaluate the nutritive value and protein utilization of a carboxymethyl cellulose(CMC whey product used to replace 50 % or 100 % of the dried skim supplement in a barley-based diet. The effect of CMC whey on clinical chemical blood parameters was also investigated. The CMC whey protein contained 39.6 % crude protein and 36.0 % true protein in DM. The proportion of CMC in the product was 18.3% of DM. CMC whey had high contents of lysine, cystine, methionine and threonine: 10.3, 2.9, 2.1 and 5.6 g/16 g N, respectively. NFE digestibility was lower on the CMC whey diet than on the skim milk diet (P < 0.05. Faecal excretion of CMC averaged 59.0 %. Protein utilization was effective on the CMC whey diet: 69.9 % of absorbed N was retained. Judging from the blood analyses, the CMC whey product did not have any detrimental effect on the metabolism or health of the pigs. The CMC whey product is well suited as a protein supplement in pig feeding because of its high contents of essential amino acids.

  20. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  1. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  2. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  3. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  4. Effect of the addition of CMC on the aggregation behaviour of proteins

    International Nuclear Information System (INIS)

    Yu, H.; Sabato, S.F.; D'Aprano, G.; Lacroix, M.

    2004-01-01

    The effect of carboxymethylcellulose (CMC) on the aggregation of formulation based on calcium caseinate, commercial whey protein (WPC), and a 1:1 mixture of soy protein isolate (SPI) and whey protein isolate (WPI) was investigated. Protein aggregation could be observed upon addition of CMC, as demonstrated by size-exclusion chromatography. This aggregation behaviour was enhanced by means of physical treatments, such as heating at 90 deg. C for 30 min or gamma-irradiation at 32 kGy. A synergy resulted from the combination of CMC to gamma-irradiation in Caseinate/CMC and SPI/WPI/CMC formulations. Furthermore, CMC prevented precipitation in irradiated protein solutions for a period of more than 3 months at 4 deg. C

  5. Effect of the addition of CMC on the aggregation behaviour of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.; Sabato, S.F.; D' Aprano, G.; Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca

    2004-10-01

    The effect of carboxymethylcellulose (CMC) on the aggregation of formulation based on calcium caseinate, commercial whey protein (WPC), and a 1:1 mixture of soy protein isolate (SPI) and whey protein isolate (WPI) was investigated. Protein aggregation could be observed upon addition of CMC, as demonstrated by size-exclusion chromatography. This aggregation behaviour was enhanced by means of physical treatments, such as heating at 90 deg. C for 30 min or gamma-irradiation at 32 kGy. A synergy resulted from the combination of CMC to gamma-irradiation in Caseinate/CMC and SPI/WPI/CMC formulations. Furthermore, CMC prevented precipitation in irradiated protein solutions for a period of more than 3 months at 4 deg. C.

  6. Overview of Cooperative Monitoring Concepts and the CMC

    International Nuclear Information System (INIS)

    Biringer, Kent L.

    1999-01-01

    Cooperative monitoring holds the promise of utilizing many technologies from conflicts of the past to implement agreements of peace in the future. Important approaches to accomplish this are to develop the framework for assessing monitoring opportunities and to provide education and training on the technologies and experience available for sharing with others. The Cooperative Monitoring Center (CMC) at Sandia National Laboratories is working closely with agencies throughout the federal government, academics at home and abroad, and regional organizations to provide the technical tools needed to assess, design, analyze, and implement these cooperative agreements. In doing so, the goals of building regional confidence and increasing trust and communication can be furthered

  7. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  8. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  9. Novel 3D C-SiC Composites for Hot Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA hypersonic vehicles offer a potential to incorporate advanced ceramic matrix composites (CMC). The key characteristics include excellent mechanical...

  10. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  11. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  12. Process and control systems for composites manufacturing

    Science.gov (United States)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  13. Preliminary study on application of Pd composite membrane in helium purification system of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cai Jianhua; Yang Xiaoyong; Wang Jie; Yu Suyuan

    2008-01-01

    Helium purification system (HPS) is the main part of the helium auxiliary system of high-temperature gas-cooled reactors (HTGR), also in fusion reactors. Some exploratory work was carried out on the application of Pd composite membrane in the separation of He and H 2 . A typical single stripper permeator with recycle (SSP) system was designed, based on the design parameters of a small scale He purification test system CIGNE in CADARACHE, CEA, France, and finite element analysis method was used to solve the model. The total length of membrane module is fixed to 0.5 m. The results show that the concentration of H 2 is found to reduce from 1 000 μL/L in feed gas to 5 μL/L in the product He (the upper limitation of HPS in HTGR). And the molar ratio of product He to feed gas is 96.18% with the optimized ratio of sweep gas to retentive gas 0. 3970. It's an exponential distribution of H 2 concentration along the membrane module. The results were also compared with the other two popular designs, two stripper in series permeator (TSSP) and continuous membrane column (CMC). (authors)

  14. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  15. Computer-Mediated Communication (CMC) in L2 Oral Proficiency Development: A Meta-Analysis

    Science.gov (United States)

    Lin, Huifen

    2015-01-01

    The ever growing interest in the development of foreign or second (L2) oral proficiency in a computer-mediated communication (CMC) classroom has resulted in a large body of studies looking at both the direct and indirect effects of CMC interventions on the acquisition of oral competences. The present study employed a quantitative meta-analytic…

  16. Preparation of crosslinked carboxymethylcellulose (CMC) by 60 Co γ-ray irradiation and its biodegradable properties

    International Nuclear Information System (INIS)

    Lim, Youn Mook; Lee, Joon Ho; Nho, Young Chang; Son, Tae Il

    2007-01-01

    Biodegradable and biocompatible carboxymethylcellulose (CMC) hydrogels for personal care products such as infants diapers and feminine hygiene products were prepared by a γ- irradiation crosslinking technique. Hydrogels were prepared as a function of the CMC concentration, total dose, and degree of substitution (DS), and their physical properties such as the gel fraction, swelling ratio, pH-responsibility and biodegradability were investigated. The irradiation of an aqueous CMC solution led to a gelation in an aqueous solution of more than 10 w%, and the gel percent increased as the CMC concentration, total dose and DS increased. The equilibrium swelling behaviors of the hydrogels prepared in various conditions were examined in an aqueous solution, and the pH-response at a pH of 1.2 and 6.8 was investigated. CMC hydrogels showed a high gelation at a high CMC concentration with DS 1.2. Lastly, the effects of the crosslinking degree of the CMC on the hydrolysis reaction were examined by cellulase from Trichoderma reseei. It was found that the degradable reaction depended on the degree of the crosslinking of the CMC. Intermolecular crosslinking reactions were confirmed by the ESR spectra

  17. MINEQL, Chemical Equilibrium Composition of Aqueous Systems

    International Nuclear Information System (INIS)

    Westall, John C.; Zachary, Joseph L.; Morel, Francois M.M.; Parsons, Ralph M.; Schweingruber, M.

    1994-01-01

    1 - Description of program or function: MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C. 2 - Method of solution: In MINEQL, the Gibbs free-energy function is minimized and mass balance chemical reaction equations are solved simultaneously. In MINEQL-EIR, the iteration scheme to solve the system of equations has been improved to make the probability of divergence very small. 3 - Restrictions on the complexity of the problem: MINEQL does not take into account mass transfer of water molecules

  18. A CMC conference-focus heads-up. Paper A

    International Nuclear Information System (INIS)

    Plourde, J.

    2011-01-01

    'Predictability' [definition - 'Dependable Outcomes Based on Pre-Verified Plans and Processes'] - is key to nuclear industry public and stakeholder confidence - predictability in public, employee, and environmental safety; in reliable production; in improvement and refurbishment project execution; and in overall financial performance. CMC 2011 addresses this by focusing on; Utility experience with optimally-managed outages in well-run plants, on the ways-of-working processes, tools and behaviors required by the industry to succeed; applying lessons-learned to hugely-complex and scope-expansion prone projects like refurbishments- and eventually new-build. Configuration management, operating chemistry, Utility/Service-Provider interfaces, and intelligent replication are explored along the way. (author)

  19. Analysis of cash flow ratios: A study on CMC

    Directory of Open Access Journals (Sweden)

    Somnath Das

    2018-01-01

    Full Text Available Cash flow ratios help financial users get relevant information about financial resources for a given time. Cash flow ratios are now used more than the traditional ones because it is more effective and justified. Cash flow based ratios are especially surprising because they do not only play a significant role in the credit rating of evaluation, but also forecast the failure of a corporation. In this study, we perform an empirical investigation on a company named CMC. From the study, it is clear that the liquidity and solvency positions of the company were moderate whereas the company maintained low profitability. On the other hand, the efficiency and sufficiency ratios of the study give us a new look on financial judgement.

  20. A CMC conference-focus heads-up. Paper A

    Energy Technology Data Exchange (ETDEWEB)

    Plourde, J. [J.A. Plourde Performance Ltd., Oshawa, Ontario (Canada)

    2011-07-01

    'Predictability' [definition - 'Dependable Outcomes Based on Pre-Verified Plans and Processes'] - is key to nuclear industry public and stakeholder confidence - predictability in public, employee, and environmental safety; in reliable production; in improvement and refurbishment project execution; and in overall financial performance. CMC 2011 addresses this by focusing on; Utility experience with optimally-managed outages in well-run plants, on the ways-of-working processes, tools and behaviors required by the industry to succeed; applying lessons-learned to hugely-complex and scope-expansion prone projects like refurbishments- and eventually new-build. Configuration management, operating chemistry, Utility/Service-Provider interfaces, and intelligent replication are explored along the way. (author)

  1. A qualitative study of health care providers' perceptions and experiences of working together to care for children with medical complexity (CMC).

    Science.gov (United States)

    Altman, Lisa; Zurynski, Yvonne; Breen, Christie; Hoffmann, Tim; Woolfenden, Susan

    2018-01-31

    Children with medical complexity (CMC) have a wide range of long term health problems and disabilities that have an adverse impact on their quality of life. They have high levels of family identified health care needs and health care utilisation. There is no Australian literature on the experiences of health care providers working in the Australian tertiary, secondary and primary health care system, whilst managing CMC. This information is essential to inform the design of integrated health care systems for these children. We address this knowledge gap by exploring the perceptions and experiences of health care providers on the provision of health care for CMC aged 0 to 18 years. A qualitative research study was undertaken. Stakeholder forums, group and individual in depth interviews were undertaken using a semi-structured interview guide. The stakeholder forums were audio recorded and transcribed verbatim. Field notes of the stakeholder forums, group and individual interviews were taken. Inductive thematic analysis was undertaken to identify key themes. One hundred and three providers took part in the stakeholder forums and interviews across 3 local health districts, a tertiary paediatric hospital network, and primary health care organisations. Providers expressed concern regarding family capacity to negotiate the system, which was impacted by the medical complexity of the children and psychosocial complexity of their families. Lack of health care provider capacity in terms of their skills, time and availability to manage CMC was also a key problem. These issues occurred within a health system that had impaired capacity in terms of fragmentation of care and limited communication among health care providers. When designing integrated care models for CMC, it is essential to understand and address the challenges experienced by their health care providers. This requires adequate training of providers, additional resources and time for coordination of care, improved

  2. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min; Zhang, Xuming; Chung, Suk-Ho

    2015-01-01

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a

  3. Leakage Testing for Different Adhesive Systems and Composites to ...

    African Journals Online (AJOL)

    2015-11-16

    Nov 16, 2015 ... resin composite, the fifth group – two‑stage SE adhesive applied and cavities filled with ... KEYWORDS: Adhesives, composite, evaluation, leakage ... the glass ionomers. ... systems are realized in one or two clinical step(s).[5].

  4. Portuguese food composition database quality management system.

    Science.gov (United States)

    Oliveira, L M; Castanheira, I P; Dantas, M A; Porto, A A; Calhau, M A

    2010-11-01

    The harmonisation of food composition databases (FCDB) has been a recognised need among users, producers and stakeholders of food composition data (FCD). To reach harmonisation of FCDBs among the national compiler partners, the European Food Information Resource (EuroFIR) Network of Excellence set up a series of guidelines and quality requirements, together with recommendations to implement quality management systems (QMS) in FCDBs. The Portuguese National Institute of Health (INSA) is the national FCDB compiler in Portugal and is also a EuroFIR partner. INSA's QMS complies with ISO/IEC (International Organization for Standardisation/International Electrotechnical Commission) 17025 requirements. The purpose of this work is to report on the strategy used and progress made for extending INSA's QMS to the Portuguese FCDB in alignment with EuroFIR guidelines. A stepwise approach was used to extend INSA's QMS to the Portuguese FCDB. The approach included selection of reference standards and guides and the collection of relevant quality documents directly or indirectly related to the compilation process; selection of the adequate quality requirements; assessment of adequacy and level of requirement implementation in the current INSA's QMS; implementation of the selected requirements; and EuroFIR's preassessment 'pilot' auditing. The strategy used to design and implement the extension of INSA's QMS to the Portuguese FCDB is reported in this paper. The QMS elements have been established by consensus. ISO/IEC 17025 management requirements (except 4.5) and 5.2 technical requirements, as well as all EuroFIR requirements (including technical guidelines, FCD compilation flowchart and standard operating procedures), have been selected for implementation. The results indicate that the quality management requirements of ISO/IEC 17025 in place in INSA fit the needs for document control, audits, contract review, non-conformity work and corrective actions, and users' (customers

  5. Composite system reliability evaluation by stochastic calculation of system operation

    Energy Technology Data Exchange (ETDEWEB)

    Haubrick, H -J; Hinz, H -J; Landeck, E [Dept. of Power Systems and Power Economics (Germany)

    1994-12-31

    This report describes a new developed probabilistic approach for steady-state composite system reliability evaluation and its exemplary application to a bulk power test system. The new computer program called PHOENIX takes into consideration transmission limitations, outages of lines and power stations and, as a central element, a highly sophisticated model to the dispatcher performing remedial actions after disturbances. The kernel of the new method is a procedure for optimal power flow calculation that has been specially adapted for the use in reliability evaluations under the above mentioned conditions. (author) 11 refs., 8 figs., 1 tab.

  6. Composition for use in scintillator systems

    International Nuclear Information System (INIS)

    Tarkkanen, V.

    1976-01-01

    A liquid scintillation counting composition of the type comprising an aromatic hydrocarbon solvent, an ethoxylated alkyl phenol surfactant, and a scintillation solute, containing a small amount of a substituted ethoxylated carboxylate acid and/or a tertiary amine salt or a quaternary ammonium salt of such acid is described. The free acid reduces chemiluminescence upon the addition of an alkaline sample to the composition, while the tertiary amine or quaternary ammonium salt enhances the water miscibility of the composition

  7. A compositional modelling framework for exploring MPSoC systems

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried ou...

  8. Drainage Behavior in Soap Films Above and Below the CMC

    Science.gov (United States)

    Berg, S.; Adelizzi, E. A.; Troian, S. M.

    2003-11-01

    We investigate through laser interferometry the drainage behavior of Newtonian soap films initially entrained on a fiber frame at small and constant capillary number. The initial film thickness is sufficiently small that gravitational drainage is presumed minimal. The drainage of rigid soap films by capillary forces alone should proceed according to h(t) ˜ t^- 1/2. Our experimental results show much more rapid drainage with exponents as large as -2, especially for those solutions whose surfactant concentrations are below the CMC. Video recordings of the entire film surface reveal a variety of structures during the drainage process, some attributable to marginal regeneration. Though still a controversial issue, this regeneration process is believed to be caused by surfactant accumulation in the meniscus region (1). We show that modification of the relevant capillary drainage equation to account for Marangoni effects through a course-grained slip condition at the air-liquid interface produces exponents in better agreement with experimental findings. (1) V. A. Nierstrasz and G. Frens, JCIS 215, 28 (1999).

  9. Peer Evaluation in CMC Learning Environment and Writing Skill

    Directory of Open Access Journals (Sweden)

    Morteza Mellati

    2014-09-01

    Full Text Available Peer evaluation and technology-based instruction as the various domains of language teaching perspectives might affect language development. Group work in a technology-based environment might be more successful when learners are involved in developing the assessment process particularly peer assessment. This study investigated the effectiveness of peer evaluation in technology-based language environment and its effects on English writing ability. To reach this goal, 70 Iranian learners were participated in English language writing context. They were divided into two groups, one group assigned to CMC (Computer-Mediated Communication language learning context and the other assigned to a traditional learning environment. Both groups were encouraged to evaluate their classmates’ writing tasks. In addition, interviews were conducted with two learners. Comparing these two groups provides comprehensive guidelines for teachers as well as curriculum designers to set adjusted writing language environment for more effective and creative language teaching and learning. E-collaboration classroom tasks have high intrinsic motivation as well as significant effects on learners’ outcomes. Cooperative tasks specifically in technology-based environment lead learners to group working and consequently group learning. Computer-Mediated Communication is meaningful, especially in contexts in which teachers stimulate group work activities.

  10. Electromagnetic form factors of composite systems

    International Nuclear Information System (INIS)

    Nowak, E.J.

    1978-01-01

    Electromagnetic form factors are examined for a spin-zero, two-body composite system with emphasis on the case of small momentum transfer and/or deep (relativistic) binding. Perturbation theory calculations are first performed using spin-zero and then spin-one-half constituents. A dispersion representation of the bound-state vertex function is conjectured first for scalar and then for fermion constituents. Then a relativistic effective range approximation (RERA) is developed for each case and applied to the calculation of the electromagnetic form factor. The approach is applied to the study of the charge radii of the K 0 and K + mesons. The K/sub l3/ form factor is calculated in the fermion constituent RERA model, and restrictions are imposed on the model parameters from available experimental data. With these restrictions the limits 0.24fm less than or equal to √[abs. value ( 2 >/sub K 0 /)] less than or equal to = 0.36fm and 0.66fm less than or equal to = √( 2 >/sub K + /) less than or equal to 0.79fm are obtained for the kaon charge radii, and -.22 less than or equal to xi less than or equal to -.13 is found for the ratio of the neutral to charged kaon charge radius squared

  11. Study of induced cross-linking by ionizing radiation of polyvinylpyrrolidone (PVP)/carboxymethylcellulose (CMC)

    International Nuclear Information System (INIS)

    Alcantara, Mara T.S.; Chirinos, Hugo; Amaral, Renata H.; Rogero, Sizue O.; Lugao, Ademar B.

    2005-01-01

    The polymeric hydrogels are materials with capacity to absorb great amount of water. They present interesting characteristics for many applications in the industry and as biomaterials. The hydrogel membrane with PVP, poly ethylene glycol and agar, crosslinked and sterilized simultaneously by radiation was introduced in the European market and now it is reaching other regions. In this work the hydrogel studied was synthesized with PVP and CMC and crosslinked by gamma radiation. It was applied factorial planning methodology using the gel fraction as basic parameter. Antagonistic interaction was observed between PVP and CMC. High concentrations of PVP help the crosslinking and the opposite with CMC. On the other hand, for low concentrations of PVP the dose influences considerable the gel fraction what it does not happen for high concentrations. From these results it was made an analysis of response surface allowing the optimization of the concentrations of the variables PVP and CMC. (author)

  12. A case study of learning writing in service-learning through CMC

    Science.gov (United States)

    Li, Yunxiang; Ren, LiLi; Liu, Xiaomian; Song, Yinjie; Wang, Jie; Li, Jiaxin

    2011-06-01

    Computer-mediated communication ( CMC ) through online has developed successfully with its adoption by educators. Service Learning is a teaching and learning strategy that integrates community service with academic instruction and reflection to enrich students further understanding of course content, meet genuine community needs, develop career-related skills, and become responsible citizens. This study focuses on an EFL writing learning via CMC in an online virtual environment of service places by taking the case study of service Learning to probe into the scoring algorithm in CMC. The study combines the quantitative and qualitative research to probe into the practical feasibility and effectiveness of EFL writing learning via CMC in service learning in China.

  13. Calibration of 3D Woven Preform Design Code for CMC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical and thermal performance of CMC components benefit from low part count, integrally fabricated designs of 3D woven reinforcement. The advantages of these...

  14. Statistical applications for chemistry, manufacturing and controls (CMC) in the pharmaceutical industry

    CERN Document Server

    Burdick, Richard K; Pfahler, Lori B; Quiroz, Jorge; Sidor, Leslie; Vukovinsky, Kimberly; Zhang, Lanju

    2017-01-01

    This book examines statistical techniques that are critically important to Chemistry, Manufacturing, and Control (CMC) activities. Statistical methods are presented with a focus on applications unique to the CMC in the pharmaceutical industry. The target audience consists of statisticians and other scientists who are responsible for performing statistical analyses within a CMC environment. Basic statistical concepts are addressed in Chapter 2 followed by applications to specific topics related to development and manufacturing. The mathematical level assumes an elementary understanding of statistical methods. The ability to use Excel or statistical packages such as Minitab, JMP, SAS, or R will provide more value to the reader. The motivation for this book came from an American Association of Pharmaceutical Scientists (AAPS) short course on statistical methods applied to CMC applications presented by four of the authors. One of the course participants asked us for a good reference book, and the only book recomm...

  15. Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of a Northern Hemisphere subset of the Canadian Meteorological Centre (CMC) operational global daily snow depth analysis. Data include daily...

  16. Proximity and Force Characteristics of CMC Touch Sensor with Square/Dome-shaped Sensor Elements

    International Nuclear Information System (INIS)

    Kawamura, T; Inaguma, N; Kakizaki, Y; Yamada, H; Tani, K

    2013-01-01

    A tactile sensor called Carbon Micro Coil (CMC) touch sensor was developed by CMC Technology Development Co., Ltd. The sensor's elements used in the experiments of this paper are made of silicon rubber containing CMCs several micrometers in diameter. One of the elements is molded into a square 30 mm on a side and 3 mm thick; the other is a dome 16 mm in diameter and 2 mm height. CMCs in the sensor element contribute to the electrical conductivity and the sensor element is considered to constitute an LCR circuit. When an object approaches to the sensor element or the sensor element is deformed mechanically, the impedance changes, and the CMC sensor detects the impedance changes by measuring the modulation of amplitude and phase of an input excitation signal to the sensor element. The CMC sensor also creates voltage signals of the R- and LC-components separately according to the amplitude and phase modulation. In this paper, the characteristics of the CMC sensor with respect to its proximity and force senses are investigated. First, the output of the CMC sensor with the square-shaped sensor element is measured when an object approaches to the sensor element. Next, the output of the CMC sensor with the dome-shaped sensor element is measured when fine deformations of 1 to 5 μm are applied to the sensor element under variable compression force. The results suggest that the CMC sensor can measure the force variance applied to the sensor element as well as the distance between the sensor element and an object.

  17. Assessment of ceramic composites for MMW space nuclear power systems

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  18. Inelastic two composite particle systems scattering at high energy

    International Nuclear Information System (INIS)

    Zhang Yushun.

    1986-11-01

    In this paper, by using the collective coordinate of Bohr and phenomenological deformed optical potentials, the scattering amplitudes of two composite particle systems can be obtained and the collective excitation for two composite particle systems in the scattering process is discussed. (author). 10 refs, 6 figs, 2 tabs

  19. A compositional proof system for the modal μ-calculus

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Stirling, C.; Winskel,, G.

    1994-01-01

    We present a proof system for determining satisfaction between processes in a fairly general process algebra and assertions of the modal μ-calculus. The proof system is compositional in the structure of processes. It extends earlier work on compositional reasoning within the modal μ-calculus and ...

  20. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  1. Composition for use in scintillator systems

    International Nuclear Information System (INIS)

    Tarkkanen, V.

    1976-01-01

    Reference is made to compositions for liquid scintillation counting of aqueous radioactive samples. A composition is described that reduces chemiluminescence on the addition of an alkaline material. Many common sample materials, for example body fluids, are inherently alkaline, whilst samples such as animal tissues are often dissolved in alkaline media. Another problem is water miscibility, and the object is to provide a scintillation counting composition that, when mixed with an aqueous sample, produces a single phase low viscosity mixture over a wide range of water contents and temperatures. The composition described includes a major amount of an aromatic hydrocarbon solvent, a minor amount of an ethoxylated alkyl phenol surfactant, a scintillation solute, an amount of a substituted ethoxylated carboxylic acid sufficient to reduce chemiluminescence, and an amount of a tertiary amine salt or a quaternary ammonium salt of the substituted ethoxylated carboxylic acid sufficient to enhance the water miscibility. The hydrocarbon solvent and the surfactant may be pre-treated with a reactive solid metal hydride to remove peroxides, and then subsequently pre-treated with SO 2 . Examples of the use of the composition are given. (U.K)

  2. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min Suk

    2015-09-03

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a high dielectric constant and a material having a low dielectric constant (e.g., a composition of a liquid having a high dielectric constant and a liquid having a low dielectric constant, a composition of a solid having a high dielectric constant and a liquid having a low dielectric constant, and similar compositions), and further systems and methods configured to produce materials, such as through material modification and/or material synthesis, in part, resulting from producing electrical discharges in compositions.

  4. Application of advanced composites in tokamak magnet systems

    International Nuclear Information System (INIS)

    Long, C.J.

    1977-11-01

    The use of advanced (high-modulus) composites in superconducting magnets for tokamak fusion reactors is discussed. The most prominent potential application is as the structure in the pulsed poloidal-field coil system, where a significant reduction in eddy currents could be achieved. Present low-temperature data on the advanced composites are reviewed briefly; they are too meager to do more than suggest a broad class of composites for a particular application

  5. EXPERIMENTAL SENSOR OF THE BENZOETHANOL COMPOSITION FOR ENGINE FUEL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Bgantsev

    2017-12-01

    Full Text Available An important aspect of the economy of internal combustion engine on benzoethanol is the accuracy of regulation of the fuel-air mixture composition. This task is complicated by fluctuations in the composition of benzoethanol, depending on the refueling of the vehicle at various filling stations. In this connection, there is a need to control the composition of benzoethanol in the fuel system of the engine and adjust the fuel supply system. With this purpose, fuel systems are equipped with special sensors that generate a signal, depending on the alcohol content of the mixed fuel. In the article one of the design solutions of the experimental sensor of the benzoethanol composition and the results of its testing with fuels of various composition are given.

  6. Assessment of NDE methods for detecting cracks and damage in environmental barrier coated CMC tested under tension

    Science.gov (United States)

    Abdul-Aziz, Ali; Wroblewski, Adam C.; Bhatt, Ramakrishna T.; Jaskowiak, Martha H.; Gorican, Daniel; Rauser, Richard W.

    2015-03-01

    For validating physics based analytical models predicting spallation life of environmental barrier coating (EBC) on fiber reinforced ceramic matrix composites, the fracture strength of EBC and kinetics of crack growth in EBC layers need to be experimentally determined under engine operating conditions. In this study, a multi layered barium strontium aluminum silicate (BSAS) based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC) specimen was tensile tested at room temperature. Multiple tests were performed on a single specimen with increasing predetermined stress levels until final failure. During loading, the damage occurring in the EBC was monitored by digital image correlation (DIC). After unloading from the predetermined stress levels, the specimen was examined by optical microscopy and computed tomography (CT). Results indicate both optical microscopy and CT could not resolve the primary or secondary cracks developed during tensile loading until failure. On the other hand, DIC did show formation of a primary crack at ~ 50% of the ultimate tensile strength and this crack grew with increasing stress and eventually led to final failure of the specimen. Although some secondary cracks were seen in the DIC strain plots prior to final failure, the existence of these cracks were not confirmed by other methods. By using a higher resolution camera, it is possible to improve the capability of DIC in resolving secondary cracks and damage in coated specimen tested at room temperature, but use of DIC at high temperature requires significant development. Based on the current data, it appears that both optical microscopy and CT do not offer any hope for detecting crack initiation or determining crack growth in EBC coated CMC tested at room or high temperatures after the specimen has been unloaded. Other methods such as, thermography and optical/SEM of the polished cross section of EBC coated CMC specimens stressed to

  7. Compositionality issues in discrete, continuous and hybrid systems

    NARCIS (Netherlands)

    van der Schaft, Arjan; Schumacher, J.M.

    2000-01-01

    Models of complex dynamical systems are often built by connecting submodels of smaller parts. The key to this method is the operation of ``interconnection'' or ``composition'' which serves to define the whole in terms of its parts. In the setting of smooth differential equations the composition

  8. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  9. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    Science.gov (United States)

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A behavioral framework for compositionality: linear systems, discrete event systems and hybrid systems

    NARCIS (Netherlands)

    Anak Agung Julius, A.A.J.; van der Schaft, Arjan

    2004-01-01

    In this paper we formulate a general framework based on the behavioral approach to dynamical systems, in which various issues regarding interconnection of systems can be addressed. The main part of the framework is that interconnections or compositions of systems can be modelled with interconnection

  11. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  12. Modern Nondestructive Test Methods for Army Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    Strand, Douglas J

    2008-01-01

    .... Ceramic matrix composites (CMC) are potentially good high-temperature structural materials because of their low density, high elastic moduli, high strength, and for those with weak interfaces, surprisingly good damage tolerance...

  13. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  14. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel

    International Nuclear Information System (INIS)

    Liu Pengfei; Peng Jing; Li Jiuqiang; Wu Jilan

    2005-01-01

    The slight radiation-crosslinked CMC-Na as a substitute for hydrogel was prepared by gamma irradiation below gelation dose. The effects of various parameters such as absorbed dose, concentration of inorganic salts, pH, swelling temperature and swelling time on the swelling ratio in water were investigated in detail. This kind of slight crosslinked CMC-Na showed good water absorption below 60 deg. C, whereas, it became solution when heated up to 70 deg. C. Such CMC-Na gel is different from the true gel that is insoluble in boiled water; nevertheless, it can be used as hydrogel at room temperature and produced at low dose. Due to its low cost, it might be useful for its application in agriculture or others

  15. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  16. Effect of CMC and arabic gum in the manufacture of jackfruit velva (Artocarpus heterophyllus)

    Science.gov (United States)

    Yudhistira, B.; Riyadi, N. H.; Pangestika, A. D.; Pertiwi, S. R.

    2018-03-01

    Velva is one type of frozen dessert which is made from fruit/vegetable with ice cream maker, low fat and high fiber content. Jackfruit is a raw material for the manufacture of velva because of the high fiber content of 2.31 gr. The use of a stabilizers combination of CMC and arabic gum in the manufacture of velva will provide a better gel mix than single use. The purpose of this research is to know the influence of variation of CMC and arabic gum stabilizer on the characteristics (physical, chemical, and sensory) of jackfruit velva (Artocarpus heterophyllus) and determine variations in the most appropriate combinations of stabilizers to produce jackfruit velva with the best quality. This research applied Completely Randomized Design consist of one factor which is the combination of CMC and arabic gum levels in the making of jackfruit velva with two replicates and two replications of the analysis. The data obtained then analyzed statistically using one way analysis of variance (ANOVA), when there is a significant difference, then followed by Duncan’s Multiple Range Test (DMRT) at significance level of 0.05. The results of this study concluded that the jackfruit velva with the addition of various concentrations of CMC and arabic gum is significantly affecting the taste, texture and overall parameters, but no significant difference on the color and flavor parameters of jackfruit velva. Based on the results of physical characteristics, chemical and sensory jackfruit velva with the addition of a stabilizing concentration of CMC and arabic gum 1: 1 result in best jackfruit velva. The best jackfruit velva with stabilizing the concentration of CMC and arabic gum 1: 1 contains a water content of 61.95%, dietary fiber 2.231%, total dissolved solids 20.38 °Brix, overrun 19.709%, meltdown 28.215 minutes. As for the color attribute score 3.72; Taste 4; flavor 3.60; Texture 3.68, and overall 3.88.

  17. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    Science.gov (United States)

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Use of the Materials Genome Initiative (MGI approach in the design of improved-performance fiber-reinforced SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-07-01

    Full Text Available New materials are traditionally developed using costly and time-consuming trial-and-error experimental efforts. This is followed by an even lengthier material-certification process. Consequently, it takes 10 to 20 years before a newly-discovered material is commercially employed. An alternative approach to the development of new materials is the so-called materials-by-design approach within which a material is treated as a complex hierarchical system, and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools and available material databases. In the present work, the materials-by-design approach is utilized to design a grade of fiber-reinforced (FR SiC/SiC ceramic matrix composites (CMCs, the type of materials which are currently being used in stationary components, and are considered for use in rotating components, of the hot sections of gas-turbine engines. Towards that end, a number of mathematical functions and numerical models are developed which relate CMC constituents’ (fibers, fiber coating and matrix microstructure and their properties to the properties and performance of the CMC as a whole. To validate the newly-developed materials-by-design approach, comparisons are made between experimentally measured and computationally predicted selected CMC mechanical properties. Then an optimization procedure is employed to determine the chemical makeup and processing routes for the CMC constituents so that the selected mechanical properties of the CMCs are increased to a preset target level.

  19. It's Just a Game, Right? Types of Play in Foreign Language CMC

    OpenAIRE

    Chantelle N. Warner

    2004-01-01

    This study focuses on the various playful uses of language that occurred during a semester-long study of two German language courses using one type of synchronous network-based medium, the MOO. Research and use of synchronous computer-mediated communication (CMC) have flourished in the study of second-language acquisition (SLA) since the late 1990s; however, the primary focus has been on the potential benefits of using CMC to increase the amount of communication (Beauvois, 1997; Kern, 1995; W...

  20. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  1. Compositional descriptor-based recommender system for the materials discovery

    Science.gov (United States)

    Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao

    2018-06-01

    Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.

  2. Compositional verification of real-time systems using Ecdar

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2012-01-01

    We present a specification theory for timed systems implemented in the Ecdar tool. We illustrate the operations of the specification theory on a running example, showing the models and verification checks. To demonstrate the power of the compositional verification, we perform an in depth case study...... of a leader election protocol; Modeling it in Ecdar as Timed input/output automata Specifications and performing both monolithic and compositional verification of two interesting properties on it. We compare the execution time of the compositional to the classical verification showing a huge difference...

  3. Shared Task System Description: Frustratingly Hard Compositionality Prediction

    DEFF Research Database (Denmark)

    Johannsen, Anders Trærup; Martinez Alonso, Hector; Rishøj, Christian

    2011-01-01

    , and the likelihood of long translation equivalents in other languages. Many of the features we considered correlated significantly with human compositionality scores, but in support vector regression experiments we obtained the best results using only COALS-based endocentricity scores. Our system was nevertheless......We considered a wide range of features for the DiSCo 2011 shared task about compositionality prediction for word pairs, including COALS-based endocentricity scores, compositionality scores based on distributional clusters, statistics about wordnet-induced paraphrases, hyphenation...

  4. Generic Formal Framework for Compositional Analysis of Hierarchical Scheduling Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Hyun Kim, Jin; Thi Xuan Phan, Linh

    We present a compositional framework for the specification and analysis of hierarchical scheduling systems (HSS). Firstly we provide a generic formal model, which can be used to describe any type of scheduling system. The concept of Job automata is introduced in order to model job instantiation...

  5. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods

    Science.gov (United States)

    Mitsionis, Anastasios I.; Vaimakis, Tiverios C.

    2012-09-01

    Critical micelle concentration (CMC) of two anionic surfactants in methanol was estimated using conductometry, viscometry and pyrene fluorescence spectroscopy methods. The surfactants used, were sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) and sodium dodecyl sulfate (SDS) dispersed in pure methanol. The CMC determination was evaluated in room temperature. The results have shown nearly similar concentrations.

  6. Effects of Synchronous and Asynchronous Computer-Mediated Communication (CMC) Oral Conversations on English Language Learners' Discourse Functions

    Science.gov (United States)

    AbuSeileek, Ali Farhan; Qatawneh, Khaleel

    2013-01-01

    This study aimed to explore the effects of synchronous and asynchronous computer mediated communication (CMC) oral discussions on question types and strategies used by English as a Foreign Language (EFL) learners. The participants were randomly assigned to two treatment conditions/groups; the first group used synchronous CMC, while the second…

  7. Preparation of crosslinked carboxymethylcellulose (CMC) by {sup 60} Co γ-ray irradiation and its biodegradable properties

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Youn Mook; Lee, Joon Ho; Nho, Young Chang [Radiation Research Center for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Son, Tae Il [Dept. of Biotechnology, College of Industrial Science, Graduate School, Chung Ang University, Seoul (Korea, Republic of)

    2007-05-15

    Biodegradable and biocompatible carboxymethylcellulose (CMC) hydrogels for personal care products such as infants diapers and feminine hygiene products were prepared by a γ- irradiation crosslinking technique. Hydrogels were prepared as a function of the CMC concentration, total dose, and degree of substitution (DS), and their physical properties such as the gel fraction, swelling ratio, pH-responsibility and biodegradability were investigated. The irradiation of an aqueous CMC solution led to a gelation in an aqueous solution of more than 10 w%, and the gel percent increased as the CMC concentration, total dose and DS increased. The equilibrium swelling behaviors of the hydrogels prepared in various conditions were examined in an aqueous solution, and the pH-response at a pH of 1.2 and 6.8 was investigated. CMC hydrogels showed a high gelation at a high CMC concentration with DS 1.2. Lastly, the effects of the crosslinking degree of the CMC on the hydrolysis reaction were examined by cellulase from Trichoderma reseei. It was found that the degradable reaction depended on the degree of the crosslinking of the CMC. Intermolecular crosslinking reactions were confirmed by the ESR spectra.

  8. Ni(0-CMC-Na Nickel Colloids in Sodium Carboxymethyl-Cellulose: Catalytic Evaluation in Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Abdallah Karim

    2011-01-01

    Full Text Available A recyclable catalyst, Ni(0-CMC-Na, composed of nickel colloids dispersed in a water soluble bioorganic polymer, sodium carboxymethylcellulose (CMC-Na, was synthesized by a simple procedure from readily available reagents. The catalyst thus obtained is stable and highly active in alkene hydrogenations.

  9. Modified quantum mechanics of small composite systems

    International Nuclear Information System (INIS)

    Wolters, G.F.

    1986-12-01

    Boundary conditions on radial wave functions are considered for a particle bound by a central potential. It is argued that the usual condition at the origin needs modification for systems of small intrinsic size. This affects s-states, especially the ground state. With the obtained modification the virial theorem is imposed rather than derived. As an illustration the central rectangular well potential is treated and applied to the nucleon. Its soft electromagnetic structure can be largely explained while quark confinement holds despite moderate strength of the potential. A discussion follows. (Auth.)

  10. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  11. Determination of Consciousness and Awareness of the Public in Lefka about the Cyprus Mining Corporation (CMC)

    Science.gov (United States)

    Gündüz, Serife; Erbulut, Can; Öznacar, Behcet; Bastas, Mert

    2016-01-01

    Supporting the increase of environmental consciousness with environmental education is always important in order to make healthy recommendations specific to the countries. Aim of this study is to determine the awareness and consciousness of the local community against the environmental pollution caused by the CMC mine by survey technique. 123…

  12. Language Learning Going Global: Linking Teachers and Learners via Commercial Skype-Based CMC

    Science.gov (United States)

    Terhune, N. M.

    2016-01-01

    This paper reports on students' use of face-to-face synchronous computer-mediated communication (CMC) for oral language learning. It describes a university English language class designed to prepare students for overseas study in which a Skype-based English conversation school was piloted. The study offers analysis of how students used the CMC…

  13. Persistence of oral coatings of CMC and starch-based custard desserts

    NARCIS (Netherlands)

    Wijk, de R.A.; Kapper, C.; Borsboom, P.; Prinz, J.F.

    2009-01-01

    Food coatings that remain after swallowing starch-based or CMC-based custard desserts were investigated for 19 subjects. Foods were orally processed for 5 s using a pre-defined protocol, after which the food was swallowed. The remaining food coating was assessed sensorially as well as instrumentally

  14. Communication Challenges Learners Face Online: Why Addressing CMC and Language Proficiency Will Not Solve Learners' Problems

    Science.gov (United States)

    Jung-Ivannikova, Liubov

    2016-01-01

    Computer-mediated communication (CMC) has been argued to cause (mis)communication issues. Research and practice suggest a range of tactics and strategies for educators focused on how to encourage and foster communication in a virtual learning environment (VLE) (eg, Salmon). However, while frameworks such as Salmon's support the effective…

  15. My First CMC Article Revisited: A Window on Spanish L2 Interlanguage

    Science.gov (United States)

    Blake, Robert

    2016-01-01

    The computer-assisted language learning (CALL) field seems to change overnight with new technological affordances. Blake revisits his 2000 "LLT" article on computer-mediation communication (CMC) in order to reflect on how the field has examined this topic over the past decade or so. While the Interaction Hypothesis continues to guide…

  16. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe 3 O 4 NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe 3 O 4 nanoparticles and Fe 3 O 4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl 2 ·4H 2 O and FeCl 3 ·6H 2 O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe 3 O 4 MNPs consisting of Fe 2+ and Fe 3+ ions with 543.3-mM −1 s −1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  17. Calorimetric Evidence about the Application of the Concept of CMC to Asphaltene Self-Association

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Andersen, Simon Ivar

    2005-01-01

    that asphaltenes may also have a concentration at which self-association occurs (CMC). This article presents evidence found by calorimetry and spectroscopic techniques, that suggest that this concept may not be adequate for asphaltene self-association in toluene solutions. Isothermal titration calorimetry has been...

  18. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  19. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  20. Investigation of cutting-induced damage in CMC bend bars

    Directory of Open Access Journals (Sweden)

    Neubrand A.

    2015-01-01

    Full Text Available Ceramic matrix composites (“CMC” with a strong fibre-matrix interface can be made damage-tolerant by introducing a highly porous matrix. Such composites typically have only a low interlaminar shear strength, which can potentially promote damage when preparing specimens or components by cutting. In order to investigate the damage induced by different cutting methods, waterjet cutting with and without abrasives, laser-cutting, wire eroding and cutoff grinding were used to cut plates of two different CMCs with a matrix porosity up to 35 vol.-%. For each combination of cutting method and composite, the flexural and interlaminar shear strength of the resulting specimens was determined. Additionally, the integrity of the regions near the cut surfaces was investigated by high-resolution x-ray computer tomography. It could be shown that the geometrical quality of the cut is strongly affected by the cutting method employed. Laser cut and waterjet cut specimens showed damage and delaminations near the cut surface leading to a reduced interlaminar shear strength of short bend bars in extreme cases.

  1. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  2. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  3. A LES-CMC formulation for premixed flames including differential diffusion

    Science.gov (United States)

    Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2018-05-01

    A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

  4. Effect of finishing system on carcass characteristics and composition ...

    African Journals Online (AJOL)

    Effect of finishing system on carcass characteristics and composition of Mubende goats and their Boer goat crossbreds. ... Dissectible lean and fat percentages varied in an ascending order of 66%, 72%, 72.6% and 8%, 14% and 16.5% for T1, T2 and T3, respectively. A reverse trend was observed for bone percentages with ...

  5. Computer program determines chemical composition of physical system at equilibrium

    Science.gov (United States)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  6. Geomorphological investigation of multiphase glacitectonic composite ridge systems in Svalbard

    Science.gov (United States)

    Lovell, Harold; Benn, Douglas I.; Lukas, Sven; Spagnolo, Matteo; Cook, Simon J.; Swift, Darrel A.; Clark, Chris D.; Yde, Jacob C.; Watts, Tom

    2018-01-01

    Some surge-type glaciers on the High-Arctic archipelago of Svalbard have large glacitectonic composite ridge systems at their terrestrial margins. These have formed by rapid glacier advance into proglacial sediments during the active surge phase, creating multicrested moraine complexes. Such complexes can be formed during single surge advances or multiple surges to successively less-extensive positions. The few existing studies of composite ridge systems have largely relied on detailed information on internal structure and sedimentology to reconstruct their formation and links to surge processes. However, natural exposures of internal structure are commonly unavailable, and the creation of artificial exposures is often problematic in fragile Arctic environments. To compensate for these issues, we investigate the potential for reconstructing composite ridge system formation based on geomorphological evidence alone, focusing on clear morphostratigraphic relationships between ridges within the moraine complex and relict meltwater channels/outwash fans. Based on mapping at the margins of Finsterwalderbreen (in Van Keulenfjorden) and Grønfjordbreen (in Grønfjorden), we show that relict meltwater channels that breach outer parts of the composite ridge systems are in most cases truncated upstream within the ridge complex by an inner pushed ridge or ridges at their ice-proximal extents. Our interpretation of this relationship is that the entire composite ridge system is unlikely to have formed during the same glacier advance but is instead the product of multiple advances to successively less-extensive positions, whereby younger ridges are emplaced on the ice-proximal side of older ridges. This indicates that the Finsterwalderbreen composite ridge system has been formed by multiple separate advances, consistent with the cyclicity of surges. Being able to identify the frequency and magnitude of former surges is important as it provides insight into the past behaviour of

  7. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Sayed, A.M., E-mail: ams06@fayoum.edu.eg

    2014-02-15

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ{sub ac} (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials.

  8. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    International Nuclear Information System (INIS)

    El Sayed, A.M.

    2014-01-01

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ ac (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials

  9. CMC blade with pressurized internal cavity for erosion control

    Science.gov (United States)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  10. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    Science.gov (United States)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to

  11. Automatic Generation of Supervisory Control System Software Using Graph Composition

    Science.gov (United States)

    Nakata, Hideo; Sano, Tatsuro; Kojima, Taizo; Seo, Kazuo; Uchida, Tomoyuki; Nakamura, Yasuaki

    This paper describes the automatic generation of system descriptions for SCADA (Supervisory Control And Data Acquisition) systems. The proposed method produces various types of data and programs for SCADA systems from equipment definitions using conversion rules. At first, this method makes directed graphs, which represent connections between the equipment, from equipment definitions. System descriptions are generated using the conversion rules, by analyzing these directed graphs, and finding the groups of equipment that involve similar operations. This method can make the conversion rules multi levels by using the composition of graphs, and can reduce the number of rules. The developer can define and manage these rules efficiently.

  12. Composite Socio-Technical Systems: A Method for Social Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); He, Fulin [Huazhong University of Science & Technology; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver; Zhang, Jun Jason [University of Denver; Wei, Jiaolong [Huazhong University of Science & Technology

    2017-12-01

    In order to model and study the interactions between social on technical systems, a systemic method, namely the composite socio-technical systems (CSTS), is proposed to incorporate social systems, technical systems and the interaction mechanism between them. A case study on University of Denver (DU) campus grid is presented in paper to demonstrate the application of the proposed method. In the case study, the social system, technical system, and the interaction mechanism are defined and modelled within the framework of CSTS. Distributed and centralized control and management schemes are investigated, respectively, and numerical results verifies the feasibility and performance of the proposed composite system method.

  13. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    Science.gov (United States)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the

  14. Refractory metal alloys and composites for space power systems

    International Nuclear Information System (INIS)

    Stephens, J.R.; Petrasek, D.W.; Titran, R.H.

    1994-01-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites will be discussed

  15. Compositional Verification of Multi-Station Interlocking Systems

    DEFF Research Database (Denmark)

    Macedo, Hugo Daniel dos Santos; Fantechi, Alessandro; Haxthausen, Anne Elisabeth

    2016-01-01

    pose a big challenge to current verification methodologies, due to the explosion of state space size as soon as large, if not medium sized, multi-station systems have to be controlled. For these reasons, verification techniques that exploit locality principles related to the topological layout...... of the controlled system to split in different ways the state space have been investigated. In particular, compositional approaches divide the controlled track network in regions that can be verified separately, once proper assumptions are considered on the way the pieces are glued together. Basing on a successful...... method to verify the size of rather large networks, we propose a compositional approach that is particularly suitable to address multi-station interlocking systems which control a whole line composed of stations linked by mainline tracks. Indeed, it turns out that for such networks, and for the adopted...

  16. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  17. Application of Composite Materials in the Fire Explosion Suppression System

    Institute of Scientific and Technical Information of China (English)

    REN Shah

    2012-01-01

    In order to lighten the weight of the special vehicles and improve their mobility and flexibility, the weight of all subsystems of the whole vehicle must be reduced in the general planning. A fire explosion suppression system is an important subsystem for the self-protection of vehicle, protection of crews and safety of a vehicle. The performances of the special vehicles determine their survival ability and combat capability. The composite bottle is made of aluminum alloy with externally wrapped carbon fiber ; it has been proven by a large number of tests that the new type explosion suppression fire distinguisher made of such composite materials applied in the special vehicle has reliable performance, each of its technical indexes is higher or equal to that of a steel distinguisher, and the composites can also optimize the assembly structure of the bottle, and improve the reliability and corrosion resistance. Most important is that the composite materials can effectively lighten the weight of the fire explosion suppression system to reach the target of weight reduction of the subsystem in general planning.

  18. Effective utilization of agro-waste by application of CMC dry-gel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. Processability of radial tires and heat resistance of wire/cable is improved by crosslinking technology. Polysaccharides such as starch/cellulose of natural polymers and their derivatives are typical degradable polymers. Molecular weight of polysaccharides was remarkably reduced at lower dose, 50 kGy. To expand application field of polysaccharides, it is essential to obtain crosslinking structure. It was found that polysaccharide derivatives such as carboxymethyl cellulose (CMC) and carboxymethyl chitosan undergo crosslinking at past-like condition and form hydrogels. Concentration of past-like condition to induce crosslinking should be more than 10%. High molecular weight (Mw) and high degree of substitution (DS) is preferable for crosslinking of polysaccharide derivatives. In this paper, treatment of agro waste and improvement of Japanese traditional paper by addition of CMC dry gel is reported. (author)

  19. Time evolution of pore system in lime - Pozzolana composites

    Science.gov (United States)

    Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin

    2017-11-01

    The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.

  20. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  1. Exploring the usefulness of comprehensive care plans for children with medical complexity (CMC: a qualitative study

    Directory of Open Access Journals (Sweden)

    Adams Sherri

    2013-01-01

    Full Text Available Abstract Background The Medical Home model recommends that Children with Special Health Care Needs (CSHCN receive a medical care plan, outlining the child’s major medical issues and care needs to assist with care coordination. While care plans are a primary component of effective care coordination, the creation and maintenance of care plans is time, labor, and cost intensive, and the desired content of the care plan has not been studied. The purpose of this qualitative study was to understand the usefulness and desired content of comprehensive care plans by exploring the perceptions of parents and health care providers (HCPs of children with medical complexity (CMC. Methods This qualitative study utilized in-depth semi-structured interviews and focus groups. HCPs (n = 15 and parents (n = 15 of CMC who had all used a comprehensive care plan were recruited from a tertiary pediatric academic health sciences center. Themes were identified through grounded theory analysis of interview and focus group data. Results A multi-dimensional model of perceived care plan usefulness emerged. The model highlights three integral aspects of the care plan: care plan characteristics, activating factors and perceived outcomes of using a care plan. Care plans were perceived as a useful tool that centralized and focused the care of the child. Care plans were reported to flatten the hierarchical relationship between HCPs and parents, resulting in enhanced reciprocal information exchange and strengthened relationships. Participants expressed that a standardized template that is family-centered and includes content relevant to both the medical and social needs of the child is beneficial when integrated into overall care planning and delivery for CMC. Conclusions Care plans are perceived to be a useful tool to both health care providers and parents of CMC. These findings inform the utility and development of a comprehensive care plan template as well as a model of how

  2. METHODOLOGICAL HURDLES IN CAPTURING CMC DATA: THE CASE OF THE MISSING SELF-REPAIR

    Directory of Open Access Journals (Sweden)

    Bryan Smith

    2008-02-01

    Full Text Available This paper reports on a study of the use of self-repair among learners of German in a task-based CMC environment. The purpose of the study was two-fold. The first goal sought to establish how potential interpretations of CMC data may be very different depending on the method of data collection and evaluation employed. The second goal was to explicitly examine the nature of CMC self-repair in the task-based foreign language CALL classroom. Paired participants (n=46 engaged in six jigsaw tasks over the course of one university semester via the chat function in Blackboard. Chat data were evaluated first by using only the chat log file and second by examining a video file of the screen capture of the entire interaction. Results show a fundamental difference in the interpretation of the chat interaction which varies as a function of the data collection and evaluation methods employed. The findings also suggest a possible difference in the nature of self-repair across face-to-face and SCMC environments. In view of the results, this paper calls for CALL researchers to abandon the reliance on printed chat log files when attempting to interpret SCMC interactional data.

  3. Quantum key distribution for composite dimensional finite systems

    Science.gov (United States)

    Shalaby, Mohamed; Kamal, Yasser

    2017-06-01

    The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.

  4. [Preparation of Coated CMC-Fe0 Using Rheological Phase Reaction Method and Research on Degradation of TCE in Water].

    Science.gov (United States)

    Fan, Wen-jing; Cheng, Yue; Yu, Shu-zhen; Fan, Xiao-feng

    2015-06-01

    The coated nanoscale zero-valent iron (coated CMC-Fe0) was synthesized with cheap and environment friendly CMC as the coating agent using rheological phase reaction. The sample was characterized by means of XRD, SEM, TEM and N2 adsorption-stripping and used to study reductive dechlorination of TCE. The experimental results indicated that the removal rate of TCE was about 100% when the CMC-Fe0 dosage was 6 g x L(-1), the initial TCE concentration was 5 mg x L(-1) and the reaction time was 40 h. The TCE degradation reaction of coated CMC-Fe0 followed a pseudo-first-order kinetic model. Finally, the product could be simply recovered.

  5. An online model composition tool for system biology models.

    Science.gov (United States)

    Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2013-09-05

    There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.

  6. Elemental composition at different points of the rainwater harvesting system

    International Nuclear Information System (INIS)

    Morrow, A.C.; Dunstan, R.H.; Coombes, P.J.

    2010-01-01

    Entry of contaminants, such as metals and non-metals, into rainwater harvesting systems can occur directly from rainfall with contributions from collection surfaces, accumulated debris and leachate from storage systems, pipes and taps. Ten rainwater harvesting systems on the east coast of Australia were selected for sampling of roof runoff, storage systems and tap outlets to investigate the variations in rainwater composition as it moved throughout the system, and to identify potential points of contribution to elemental loads. A total of 26 elements were screened at each site. Iron was the only element which was present in significantly higher concentrations in roof runoff samples compared with tank tap samples (P < 0.05). At one case study site, results suggested that piping and tap material can contribute to contaminant loads of harvested rainwater. Increased loads of copper were observed in hot tap samples supplied by the rainwater harvesting system via copper piping and a storage hot water system (P < 0.05). Similarly, zinc, lead, arsenic, strontium and molybdenum were significantly elevated in samples collected from a polyvinyl chloride pipe sampling point that does not supply household uses, compared with corresponding roof runoff samples (P < 0.05). Elemental composition was also found to vary significantly between the tank tap and an internal cold tap at one of the sites investigated, with several elements fluctuating significantly between the two outlets of interest at this site, including potassium, zinc, manganese, barium, copper, vanadium, chromium and arsenic. These results highlighted the variability in the elemental composition of collected rainwater between different study sites and between different sampling points. Atmospheric deposition was not a major contributor to the rainwater contaminant load at the sites tested. Piping materials, however, were shown to contribute significantly to the total elemental load at some locations.

  7. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  8. Study of wine tartaric acid salt stabilization by addition of carboxymethylcellulose (CMC: comparison with the « protective colloids » effect

    Directory of Open Access Journals (Sweden)

    Vincent Gerbaud

    2010-12-01

    Significance and impact of the study: The OIV-OENO 366-2009 and OIV-OENO 02/2008 resolutions recently authorized the use of CMC to prevent tartaric acid salt precipitation. With no impact on health, and stable under heating and in acid solution, CMC is an efficient candidate for tartaric stabilization. The optimal concentration of 20 mg.L-1 (2 g.hL-1 should however be adapted to local wine storage conditions and KHT crystallization risk.

  9. Characterization of ceramic matrix composite degradation using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Henry, Christine; Criner, Amanda Keck; Imel, Megan; King, Derek

    2018-04-01

    Data collected with a handheld Fourier Transform Infrared (FTIR) device is analyzed and considered as a useful method for detecting and quantifying oxidation on the surface of ceramic matrix composite (CMC) materials. Experiments examine silicon carbide (SiC) coupons, looking for changes in chemical composition before and after thermal exposure. Using mathematical, physical and statistical models for FTIR reflectance data, this research seeks to quantify any detected spectral changes as an indicator of surface oxidation on the CMC coupon.

  10. Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.

    Science.gov (United States)

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2015-09-01

    Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. © 2015 Institute of Food Technologists®

  11. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  12. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing clay content.

  13. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and. Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing ...

  14. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  15. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  16. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  17. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  18. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  19. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  20. Development of active and sensitive material systems based on composites

    Science.gov (United States)

    Asanuma, Hiroshi

    2002-07-01

    This paper describes new concepts proposed by the author to realize active and sensitive structural material systems. Two examples of multifunctional composites were fabricated and evaluated in this study as follows: (1) An active laminate of aluminum plate (works as muscle), epoxy film (as insulator), unidirectional CFRP prepreg (as bone and blood vessel) and copper foil electrode (to apply voltage on CFRP) was made with an embedded optical fiber multiply fractured in the CFRP layer (works as nerve), of which curvature change could be effectively monitored with the fractured optical fiber. (2) A stainless steel fiber/aluminum active composite with embedded Ti oxide/Ti composite fiber was fabricated. The Ti oxide/Ti fiber could work as a sensor for temperature by removing a part of the oxide before embedment to make a metallic contact between the embedded titanium fiber and aluminum matrix to be able to generate thermal electromotive force, and also could work as a sensor for strain and as a heater for actuation. In the both cases, the outputs from their embedded sensors can be used to control their actuations.

  1. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  2. Artificial immune system for effective properties optimization of magnetoelectric composites

    Science.gov (United States)

    Poteralski, Arkadiusz; Dziatkiewicz, Grzegorz

    2018-01-01

    The optimization problem of the effective properties for magnetoelectric composites is considered. The effective properties are determined by the semi-analytical Mori-Tanaka approach. The generalized Eshelby tensor components are calculated numerically by using the Gauss quadrature method for the integral representation of the inclusion problem. The linear magnetoelectric constitutive equation is used. The effect of orientation of the electromagnetic materials components is taken into account. The optimization problem of the design is formulated and the artificial immune system is applied to solve it.

  3. State determination for composite systems of two spatial qubits

    International Nuclear Information System (INIS)

    Lima, G; Torres-Ruiz, F A; Neves, L; Delgado, A; Saavedra, C; Padua, S

    2007-01-01

    In a recent letter [Phys. Rev. Lett. 94, 100501 (2005)], we presented a scheme for generating pure entangled states of spatial qudits using transverse correlations of parametric down-converted photons. Here we show how the modication of this scheme can be used to generate mixed states and we investigate the state determination for composite systems of two spatial qubits, motivated by the fact that quantum information protocols may be easier to be implemented for this case. By means of local operations on the twin photons we were able to perform the quantum tomography process to reconstruct the density matrix of a mixed state of two spatial qubits

  4. Concentrate composition for automatic milking systems - effect on milking frequency

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Weisbjerg, Martin Riis; Hvelplund, Torben

    2010-01-01

    The purpose of this study was to investigate the potential of affecting milking frequency in an Automatic Milking System (AMS) by changing ingredient composition of the concentrate fed in the AMS. In six experiments, six experimental concentrates were tested against a Standard concentrate all...... supplied in the amounts of 5 kg/cow/day. Fifteen cows were fed the experimental concentrate and another 15 cows the Standard concentrate for 14 days and then for the next 14 days the cows were fed the opposite diets to be their own control. The change from one mixture to the next was done over only one day...

  5. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  6. A new manganese-based oral contrast agent (CMC-001) for liver MRI. Pharmacological and pharmaceutical aspects

    International Nuclear Information System (INIS)

    Joergensen, Jan Troest; Rief, Matthias; Wagner, Moritz; Brismar, Torkel B.; Albiin, Nils

    2012-01-01

    Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D3, it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98 %, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed

  7. [Consideration about chemistry, manufacture and control (CMC) key problems in simplified registration of classical traditional Chinese medicine excellent prescriptions].

    Science.gov (United States)

    Wang, Zhi-Min; Liu, Ju-Yan; Liu, Xiao-Qian; Wang, De-Qin; Yan, Li-Hua; Zhu, Jin-Jin; Gao, Hui-Min; Li, Chun; Wang, Jin-Yu; Li, Chu-Yuan; Ni, Qing-Chun; Huang, Ji-Sheng; Lin, Juan

    2017-05-01

    As an outstanding representative of traditional Chinese medicine(TCM) prescriptions accumulated from famous TCM doctors' clinical experiences in past dynasties, classical TCM excellent prescriptions (cTCMeP) are the most valuable part of TCM system. To support the research and development of cTCMeP, a series of regulations and measures were issued to encourage its simplified registration. There is still a long-way to go because many key problems and puzzles about technology, registration and administration in cTCMeP R&D process are not resolved. Based on the analysis of registration and management regulations of botanical drug products in FDA of USA and Japan, and EMA of Europe, the possible key problems and countermeasures in chemistry, manufacture and control (CMC) of simplified registration of cTCMeP were analyzed on the consideration of its actual situation. The method of "reference decoction extract by traditional prescription" (RDETP) was firstly proposed as standard to evaluate the quality and preparation uniformity between the new developing product under simplified registration and traditional original usages of cTCMeP, instead of Standard Decoction method in Japan. "Totality of the evidence" approach, mass balance and bioassay/biological assay of cTCMeP were emphatically suggested to introduce to the quality uniformity evaluation system in the raw drug material, drug substance and final product between the modern product and traditional decoction. Copyright© by the Chinese Pharmaceutical Association.

  8. Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries

    Science.gov (United States)

    Holst, Michael; Meier, Caleb; Tsogtgerel, G.

    2018-01-01

    In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have

  9. Incorporating Cyber Layer Failures in Composite Power System Reliability Evaluations

    Directory of Open Access Journals (Sweden)

    Yuqi Han

    2015-08-01

    Full Text Available This paper proposes a novel approach to analyze the impacts of cyber layer failures (i.e., protection failures and monitoring failures on the reliability evaluation of composite power systems. The reliability and availability of the cyber layer and its protection and monitoring functions with various topologies are derived based on a reliability block diagram method. The availability of the physical layer components are modified via a multi-state Markov chain model, in which the component protection and monitoring strategies, as well as the cyber layer topology, are simultaneously considered. Reliability indices of composite power systems are calculated through non-sequential Monte-Carlo simulation. Case studies demonstrate that operational reliability downgrades in cyber layer function failure situations. Moreover, protection function failures have more significant impact on the downgraded reliability than monitoring function failures do, and the reliability indices are especially sensitive to the change of the cyber layer function availability in the range from 0.95 to 1.

  10. Problem of designing composite systems with allowance for reactions between phases

    International Nuclear Information System (INIS)

    Seredenko, V.N.; Yatsko, B.G.

    1986-01-01

    The authors study the effect of interphase chemical reactions on the formation of a composite, determine its corrected mechanical characteristics, and subsequently study the stress-strain state of the composite system in the presence of interphase structures. Specific examples of composite systems with a titanium matrix and reinforcing boron fibers are examined. Two cases are considered, the fibers have or do not have a coating of silicon carbide. Graphs illustrate the stress concentration for the boron-titanium composite system

  11. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  12. Influence of PVA and CMC on the Properties of Pigment Coating Colors and their Effects on Curtain Stability

    Directory of Open Access Journals (Sweden)

    Eun Heui Choi

    2015-09-01

    Full Text Available The influence of polyvinyl alcohol (PVA and carboxymethyl cellulose (CMC on the properties of ground calcium carbonate (GCC and clay coating colors, as well as its effect on curtain stability during the coating process was investigated. Based on the experimental results of the zeta potential, sediment porosity, rheological measurements, the floc formation mechanisms of the cobinders were proposed. The zeta potential decreased with an increase in the amount of added PVA, while it barely changed when CMC was added. This was attributed to the adsorption of PVA onto the pigment surface, while the adsorption of CMC was hindered by electrostatic repulsion. CMC cobinder increased the low-shear viscosity, but it resulted in relatively low viscosity under high-shear conditions, indicating the disruption of the formed flocs under high shear. The destabilization mechanism of the curtain coating differed depending on the type of cobinder. The PVA cobinder flocculates the coating color via a gelling mechanism, while the CMC cobinder flocculates the colors via a depletion flocculation mechanism.

  13. COMPOSITE METHOD OF RELIABILITY RESEARCH FOR HIERARCHICAL MULTILAYER ROUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. B. Tregubov

    2016-09-01

    Full Text Available The paper deals with the idea of a research method for hierarchical multilayer routing systems. The method represents a composition of methods of graph theories, reliability, probabilities, etc. These methods are applied to the solution of different private analysis and optimization tasks and are systemically connected and coordinated with each other through uniform set-theoretic representation of the object of research. The hierarchical multilayer routing systems are considered as infrastructure facilities (gas and oil pipelines, automobile and railway networks, systems of power supply and communication with distribution of material resources, energy or information with the use of hierarchically nested functions of routing. For descriptive reasons theoretical constructions are considered on the example of task solution of probability determination for up state of specific infocommunication system. The author showed the possibility of constructive combination of graph representation of structure of the object of research and a logic probable analysis method of its reliability indices through uniform set-theoretic representation of its elements and processes proceeding in them.

  14. Defense strategies for asymmetric networked systems under composite utilities

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nageswara S. [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Yau, David K. Y. [Singapore University of Technology and Design; Zhuang, Jun [University at Buffalo (SUNY)

    2017-11-01

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively. They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure

  15. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  16. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    Science.gov (United States)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  17. It's Just a Game, Right? Types of Play in Foreign Language CMC

    Directory of Open Access Journals (Sweden)

    Chantelle N. Warner

    2004-05-01

    Full Text Available This study focuses on the various playful uses of language that occurred during a semester-long study of two German language courses using one type of synchronous network-based medium, the MOO. Research and use of synchronous computer-mediated communication (CMC have flourished in the study of second-language acquisition (SLA since the late 1990s; however, the primary focus has been on the potential benefits of using CMC to increase the amount of communication (Beauvois, 1997; Kern, 1995; Warschauer, 1997, motivate students (Beauvois, 1997; Kern, 1995; Warschauer, 1997 and foster the exchange of ideas (Beauvois, 1997; Kern, 1995; von der Emde, Schneider, & Kötter, 2001; Warschauer, 1997. Only more recently has research within SLA begun to investigate the types of communication that occur online.1 An analysis of the transcripts from a second-semester German course and an upper-level German communication course reveal that a large portion of the language use online cannot be described using standard referential definitions of communication, but rather is playful in nature. Using research from SLA and theories on social interaction, this article investigates the different types of play that occurred within the online discussions and the possible implications of the presence of play in online discourse.

  18. Characterization of new multilayered composites for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Weps, M.; Kretzschmar, T. [Fraunhofer Institute for Mechanics of Materials, Halle (Saale) (Germany)

    2010-07-01

    The reduction of manufacturing costs and efficient usage of materials have highest priority in the solar industry and are a prerequisite for its further positive development. Common aluminum framed modules and double glass modules have a series of disadvantages. In context of a group project a new construction variant of lightweight photovoltaic modules and its realization with efficient manufacturing technologies is currently developed. An essential component of these new photovoltaic modules is an injection molded frame of fiber reinforced plastics. It serves to absorb mechanical loads caused by wind and snow loads. Thus, the usual aluminum frames can be omitted. Additionally, the stiff construction of the plastic frame allows the substitution of the glass pane by a lightweight plastic pane. The coupling between plastic frame and pane is achieved by a transparent chemical reactive system in which the solar cells are embedded. The characterization of this material combination is executed on multilayered composites. The used types of plastics for frame and pane are in the form of plates and glued together in a special tool. The adhesion between the layers is evaluated by different test methods and FEM-models. In this case the compression shear test plays an important role. An especially developed device is used to evaluate shear behavior of the multilayered composites. Based on the carried out tests statements about effects of surface modification of the plastic pane are given. (orig.)

  19. On hyperbolic-dissipative systems of composite type

    Science.gov (United States)

    Tan, Zhong; Wang, Yanjin

    2016-01-01

    The Shizuta-Kawashima condition plays the fundamental role in guaranteeing global stability for systems of hyperbolic-parabolic/hyperbolic with relaxation. However, there are many important physical systems not satisfying this coupling condition, which are of composite type with regard to dissipation. The compressible Navier-Stokes equations with zero heat conductivity and Euler equations of adiabatic flow through porous media are two typical examples. In this paper, we construct the global unique solution near constant equilibria to these two systems in three dimensions for the small Hℓ (ℓ > 3) initial data. Our proof is based on a reformation of the systems in terms of the pressure, velocity and entropy, a scaled energy estimates with minimal fractional derivative counts in conjunction with the linear L2-L2 decay estimates to extract a fast enough decay of velocity gradient, which is used to close the energy estimates for the non-dissipative entropy. We also include an application to certain two-phase models.

  20. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  1. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  2. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Schrama, J.W.; Kamstra, A.; Verreth, J.A.J.

    2014-01-01

    This study investigated the effect of dietary carbohydrate composition on the production, recovery and degradability of fecal waste from rainbow trout (Oncorhynchus mykiss) in recirculating aquaculture systems (RAS). Dietary carbohydrate composition was altered by substituting starch with non-starch

  3. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  4. Experimental study on beam for composite CES structural system

    Science.gov (United States)

    Matsui, Tomoya

    2017-10-01

    Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.

  5. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    Science.gov (United States)

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  6. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; Zhu, Dongming; Wiesner, Valerie Lynn; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2016-01-01

    Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment. Broadly speaking the two classes of materials are oxide-based CMCs and non-oxide based CMCs. The non-oxide CMCs are primarily silicon-based. Under conditions prevalent in the gas turbine hot section the water vapor formed in the combustion of gaseous or liquid hydrocarbons reacts with the surface-SiO2 to form volatile products. Progressive surface recession of the SiC-SiC CMC component, strength loss as a result of wall thinning and chemical changes in the component occur, which leads to the loss of structural integrity and mechanical strength and becomes life limiting to the equipment in service. The solutions pursued to improve the life of SiC-SiC CMCs include the incorporation of an external barrier coating to provide surface protection to the CMC substrate. The coating system has become known as an Environmental Barrier Coating (EBC). The relevant early coatings work was focused on coatings for corrosion protection of silicon-based monolithic ceramics operating under severely corrosive conditions. The development of EBCs for gas turbine hot section components was built on the early work for silicon-based monolithics. The first generation EBC is a three-layer coating, which in its simplest configuration consists of a silicon (Si) base coat applied on top of the CMC, a barium-strontium-aluminosilicate (BSAS) surface coat resistant to water vapor attack, and a mullite-based intermediate coating layer between the Si base coat and BSAS top coat. This system can be represented as Si-Mullite-BSAS. While this baseline EBC presented a significant improvement over the uncoated SiC-SiC CMC, for the very long durations of 3-4 years or more expected for industrial operation further improvements in coating durability are desirable. Also, for very demanding applications with higher component temperatures but shorter service lives more rugged EBCs

  7. Microleakage of hydrophilic adhesive systems in Class V composite restorations.

    Science.gov (United States)

    Amaral, C M; Hara, A T; Pimenta, L A; Rodrigues, A L

    2001-02-01

    To investigate the microleakage of four hydrophilic adhesive systems: one "multiple-bottles" (Scotchbond Multi-Purpose Plus); two "one-bottle" (Single Bond, Stae); and one self-etching (Etch & Prime 3.0). 120 bovine incisor teeth were divided into four groups (n = 30) and Class V cavities were prepared at the cemento-enamel junction. The cavities were restored with the adhesive systems and with Z100 composite. The teeth were thermocycled 1,000 times between 5+/-2 degrees C and 55+/-2 degrees C with a dwell time of 1 min, and then placed in a 2% methylene blue dye (pH 7.0) for 4 hrs, washed and sectioned vertically through the center of the restorations. The qualitative evaluation was made by three examiners who distributed pre-established scores (0-4) for each tooth using a stereomicroscope at x30 magnification. In enamel margins little microleakage was observed and the Kruskal-Wallis analysis did not show differences. In dentin margins the Kruskal-Wallis and multiple comparison analyses were applied: microleakage was significantly greater with Stae (median 3) and Scotchbond MP Plus (median 4). Single Bond (median 1) and Etch & Prime 3.0 (median 2) showed the best results in dentin margins, and the statistical analysis did not demonstrate differences in microleakage among these groups.

  8. Improved power transfer to wearable systems through stretchable magnetic composites

    Science.gov (United States)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  9. Language, mobile phones and internet : a study of SMS texting, email, IM and SNS chats in computer mediated communication (CMC) in Kenya

    NARCIS (Netherlands)

    Barasa, Sandra Nekesa

    2010-01-01

    This book examines the use of language in Computer Mediated Communication (CMC) genres in Kenya. It focuses on Short Messaging Service (SMS), Email, Instant Messages (IM) and Social Network Sites (SNS) genres. It presents an overview of the use and characteristics of Kenyan languages in CMC texts

  10. The Development of Environmental Barrier Coatings for SiCSiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  11. Comparison of two-step versus four-step composite finishing/polishing disc systems: evaluation of a new two-step composite polishing disc system.

    Science.gov (United States)

    da Costa, Juliana B; Goncalves, Flavia; Ferracane, Jack L

    2011-01-01

    The purpose of this study was to evaluate surface finish and gloss of a two-step composite finishing/polishing (F/P) disc system compared with two multistep systems on five composites. Seventy-five disc-shaped composite specimens (D=10.0 mm, 2 mm thick, n=15 per composite) were made of microfill (Durafill-D), nanofill (Filtek Supreme-FS), nanohybrid (Premise-PR), and microhybrids (Filtek Z250-FZ, Esthet-EX). One side of each specimen was initially finished with a carbide bur. Five specimens of each resin composite were randomly assigned to receive full F/P by each of the disc systems: two-step (Enhance Flex NST-EF) and four-step (Sof-Lex-SL, Super-Snap-SS). Surface gloss was measured with a glossmeter and surface roughness was measured with a profilometer. Results were analyzed by two-way analysis of variance (ANOVA)/Tukey's (αgloss was noted among the three F/P systems when used with D and EX; no difference between SL and EF when used with any composite, except for FS; and no difference between SL and SS when used with any composite. SL and EF showed similar surface roughness when used on all composites, except for EX. EF and SS showed similar surface roughness on PR. SL and SS showed similar surface roughness values on every composite, except for FZ. EF was capable of providing similar gloss and surface roughness to SL on four composites evaluated but was not able to produce as glossy or as smooth a surface as SS for three of the five composites.

  12. Nano-Composite Foam Sensor System in Football Helmets.

    Science.gov (United States)

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  13. Establishing an Empirical Link between Computer-Mediated Communication (CMC) and SLA: A Meta-Analysis of the Research

    Science.gov (United States)

    Lin, Huifen

    2014-01-01

    Drawing on interactionist and socio-cultural theories, tools provided in computer-mediated communication (CMC) environments have long been considered able to create an environment that shares many communicative features with face-to-face communication. Over the past two decades, researchers have employed a variety of strategies to examine the…

  14. Teasing apart the effect of visibility and physical co-presence to examine the effect of CMC on interpersonal attraction

    NARCIS (Netherlands)

    Croes, Emmelyn; Antheunis, Marjolijn; Schouten, Alexander; Krahmer, Emiel

    2016-01-01

    This study analyzed the possible difference in interpersonal attraction between communicators in cue-rich computer-mediated communication (CMC) and face-to-face (FtF) communication. The first aim was to determine whether physical co-presence and visibility may account for differences in

  15. Postoperative intra-abdominal collections using a sodium hyaluronate-carboxymethylcellulose (HA-CMC) barrier at the time of laparotomy for uterine or cervical cancers.

    Science.gov (United States)

    Leitao, Mario M; Byrum, Graham V; Abu-Rustum, Nadeem R; Brown, Carol L; Chi, Dennis S; Sonoda, Yukio; Levine, Douglas A; Gardner, Ginger J; Barakat, Richard R

    2010-11-01

    A prior analysis of patients undergoing laparotomy for ovarian malignancies at our institution revealed an increased rate of intra-abdominal collections using HA-CMC film during debulking surgery. The primary objective of the current study was to determine whether the use of HA-CMC is associated with the development of postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical malignancies. We retrospectively identified all laparotomies performed for these malignancies from 3/1/05 to 12/31/07. We identified cases involving the use of HA-CMC via billing records and operative reports. Intra-abdominal collections were defined as localized intraperitoneal fluid accumulations in the absence of re-accumulating ascites. We noted incidences of intra-abdominal collections, as well as other complications. Appropriate statistical tests were applied using SPSS 15.0. We identified 169 laparotomies in which HA-CMC was used and 347 in which HA-CMC was not used. The following were statistically similar in both cohorts: age, body mass index (BMI), primary site, surgery for recurrent disease, prior intraperitoneal surgery, and extent of current surgery. Intra-abdominal collections were seen in 6 (3.6%) of 169 HA-CMC cases compared to 10 (2.9%) of 347 non-HA-CMC cases (p=0.7). The rate of infected collections was similar in both groups (1.2% vs. 1.4%). In the subgroup that underwent tumor debulking, intra-abdominal collections were seen in 3 (11.5%) of 26 HA-CMC cases compared to 2 (5.4%) of 37 non-HA-CMC cases (p=0.6). HA-CMC use does not appear to be associated with postoperative intra-abdominal collections in patients undergoing laparotomy for uterine or cervical cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Achievement report (2/2) on R and D in fiscal 1999 on environment adaptive next-generation supersonic propulsion system. R and D of environment adaptive next-generation supersonic propulsion engine; 1999 nendo seika hokokusho. Kankyo tekigo gata jisedai choonsoku suishin system no kenkyu kaihatsu - Kankyo tekigo gata jisedai choonsokuki you enjin kaihatsu (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    With an objective to develop an environment adaptive next-generation supersonic propulsion system, research and development have been performed on noise reducing technologies, NOx exhaust reducing technologies, CO2 exhaust reducing technologies, and environment adaptive engine system technologies. This paper summarizes the achievements in fiscal 1999. In developing the CO2 exhaust reducing technologies, discussions were given on the following items as the researches on a technology to apply three-dimensional fiber-reinforced materials to large structures: application of metal-based composite materials (MMC) to the fan rotor; application of CMC, TiAl materials to turbine structural materials; TiAl shroud support, CMC shroud, high load turbine cascades supported by the composite materials, and application of the CMC, TiAl materials to the gas exhaust nozzle. In developing the environment adaptive engine system technologies, flows were established to judge the achievement of the project target of noise reduction, NOx exhaust reduction and CO2 exhaust suppression. Furthermore, in the demonstration and research of the engine integration, the setting was conducted on the engine test schedule, and so was the primary setting for criteria on parts to be assembled into the engine. (NEDO)

  17. Leakage testing for different adhesive systems and composites to ...

    African Journals Online (AJOL)

    The teeth were randomly assigned to six groups of 14 teeth each as follows: The first group – etch‑rinse adhesive applied and cavities filled with flowable composite, the second group – etch‑rinse adhesive applied and cavities filled with bulk‑fill resin composite, the third group – one‑stage self‑etch (SE) adhesive applied ...

  18. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  19. Gamma camera system with composite solid state detector

    International Nuclear Information System (INIS)

    Gerber, M.S.; Miller, D.W.

    1977-01-01

    A composite solid-state detector is described for utilization within gamma cameras. The detector's formed of an array of detector crystals, the opposed surfaces of each of which are formed incorporating an impedance-derived configuration for determining one coordinate of the location of discrete impinging photons upon the detector. A combined read-out for all detectors within the composite array is achieved through a row and column interconnection of the impedance configurations. Utilizing the read-outs for respective sides of the discrete crystals, a resultant time-constant characteristic for the composite detector crystal array remains essentially that of individual crystal detectors

  20. Holographic control of information and dynamical topology change for composite open quantum systems

    Science.gov (United States)

    Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.

    2017-12-01

    We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

  1. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  2. The Bulk Elemental Composition of any Terrestrial Planets in the Alpha Centauri System

    Science.gov (United States)

    Lineweaver, C. H.; Schonberger, B. F. G.; Robles, J. A.

    2010-04-01

    Based on the devolatilization patterns in the solar system, and on the differences in the chemical compositions of the Sun and Alpha Centauri, we make estimates of the chemical composition of any Earth-like planets in the Alpha Centauri system.

  3. Specification of Behavioural Requirements within Compositional Multi-Agent System Design

    OpenAIRE

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    1999-01-01

    In this paper it is shown how informal and formal specification of behavioural requirements and scenarios for agents and multi-agent systems can be integrated within multi-agent system design. In particular, it is addressed how a compositional

  4. CEMCAN Software Enhanced for Predicting the Properties of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    2000-01-01

    Major advancements are needed in current high-temperature materials to meet the requirements of future space and aeropropulsion structural components. Ceramic matrix composites (CMC's) are one class of materials that are being evaluated as candidate materials for many high-temperature applications. Past efforts to improve the performance of CMC's focused primarily on improving the properties of the fiber, interfacial coatings, and matrix constituents as individual phases. Design and analysis tools must take into consideration the complex geometries, microstructures, and fabrication processes involved in these composites and must allow the composite properties to be tailored for optimum performance. Major accomplishments during the past year include the development and inclusion of woven CMC micromechanics methodology into the CEMCAN (Ceramic Matrix Composites Analyzer) computer code. The code enables one to calibrate a consistent set of constituent properties as a function of temperature with the aid of experimentally measured data.

  5. "The refer less resolve more" initiative: A five-year experience from CMC Vellore, India

    Directory of Open Access Journals (Sweden)

    Jachin Velavan

    2012-01-01

    Full Text Available India′s one billion plus strong population presents huge health care needs. Presently, approximately 250,000 general practitioners and 30,000 Government doctors are a part of the Indian healthcare workforce, but 80% of them are based in urban India. Problems which plague healthcare delivery and attributed to physician practice may be enumerated as - physicians (1 lack competencies, (2 lack updating, (3 prescribe irrationally (pressures from pharmaceutical companies and patients, (4 practice unethically, (5 refer excessively to specialists and other clinical professionals, and (6 investigate for diseases without justification. A multi-competent Family Physician who could provide a single-window, ethical, and holistic healthcare to patients and families is the need of the hour. Therefore, training, equipping, and empowering these 250,000 doctors to become such physicians will reduce health costs considerably. Distance medical education using all the andragogic methods can be used to train large number of individuals without displacing them from their work-places. Distance learning provides a useful interface for rapidly developing a specialized pool of doctors practicing and advocating family medicine as most-needed discipline. This motivated CMC Vellore, a premier institution for medical education in India, to start a the "refer less resolve more initiative" by offering "two year family medicine diploma course" by distance mode. This is an innovatively-written program consisting of problem-based self-learning modules, video-lectures, video-conferencing, and face-to-face contact programs. Ten secondary level hospitals, across the country, under the supervision of national and international family medicine faculty form the pillars of this program. This distance learning program offered by CMC Vellore has become the platform for change as there is special focus is on ethics, rational prescribing, consultation skills, application of family medicine

  6. "The Refer Less Resolve More" Initiative: A Five-year Experience from CMC Vellore, India.

    Science.gov (United States)

    Velavan, Jachin

    2012-01-01

    India's one billion plus strong population presents huge health care needs. Presently, approximately 250,000 general practitioners and 30,000 Government doctors are a part of the Indian healthcare workforce, but 80% of them are based in urban India. Problems which plague healthcare delivery and attributed to physician practice may be enumerated as - physicians (1) lack competencies, (2) lack updating, (3) prescribe irrationally (pressures from pharmaceutical companies and patients), (4) practice unethically, (5) refer excessively to specialists and other clinical professionals, and (6) investigate for diseases without justification. A multi-competent Family Physician who could provide a single-window, ethical, and holistic healthcare to patients and families is the need of the hour. Therefore, training, equipping, and empowering these 250,000 doctors to become such physicians will reduce health costs considerably. Distance medical education using all the andragogic methods can be used to train large number of individuals without displacing them from their work-places. Distance learning provides a useful interface for rapidly developing a specialized pool of doctors practicing and advocating family medicine as most-needed discipline. This motivated CMC Vellore, a premier institution for medical education in India, to start a the "refer less resolve more initiative" by offering "two year family medicine diploma course" by distance mode. This is an innovatively-written program consisting of problem-based self-learning modules, video-lectures, video-conferencing, and face-to-face contact programs. Ten secondary level hospitals, across the country, under the supervision of national and international family medicine faculty form the pillars of this program. This distance learning program offered by CMC Vellore has become the platform for change as there is special focus is on ethics, rational prescribing, consultation skills, application of family medicine principles

  7. Detecting Lamb waves with broadband acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and lowest antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave disperison curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMCs, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  8. Compositional Verification of Interlocking Systems for Large Stations

    DEFF Research Database (Denmark)

    Fantechi, Alessandro; Haxthausen, Anne Elisabeth; Macedo, Hugo Daniel dos Santos

    2017-01-01

    -networks that are independent at some degree. At this regard, we study how the division of a complex network into sub-networks, using stub elements to abstract all the routes that are common between sub-networks, may still guarantee compositionality of verification of safety properties....... for networks of large size due to the exponential computation time and resources needed. Some recent attempts to address this challenge adopt a compositional approach, targeted to track layouts that are easily decomposable into sub-networks such that a route is almost fully contained in a sub......-network: in this way granting the access to a route is essentially a decision local to the sub-network, and the interfaces with the rest of the network easily abstract away less interesting details related to the external world. Following up on previous work, where we defined a compositional verification method...

  9. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW (Spent Fuel Composition Database System on WWW' released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  10. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  11. Effects of salinity, P H and temperature on CMC polymer and X C polymer performance

    International Nuclear Information System (INIS)

    Ghassem Alaskari, M. K.; Nickdel Teymoori, Reza

    2007-01-01

    The rheological and filtration properties of drilling mud under down-hole conditions may be very different from those measured at ambient pressures and temperatures at the surface. This paper presents the results of an experimental investigation into the temperature and salinity and p H effects on drilling mud rheological and filtration properties. Results are given from tests on water base mud containing CMC polymer and X C polymer. Drilling fluid was investigated at three different temperatures (21.1 d eg C , 48.9 d eg C , 80 d eg C ) containing 8.165 kg/b bl bentonite. The drilling mud salinities in this study were fresh water (Ahwaz water: ppm: 400, Hardness: 120). 2000 ppm, 4000 ppm, 8000 ppm and 40000 ppm. It was found that p H of drilling mud should be kept at range of 8-10, because increasing p H of drilling mud will increase its rheological properties. The salinity and temperature effects show that as the salinity and temperature of drilling mud are increased the effectiveness of polymers in drilling mud will decreased. Moreover, they have a negative effect on filtration properties of drilling mud. In suspensions of sodium montmorillonite that are well dispersed and have low gel strength, both plastic viscosity and yield point decrease with increasing temperature

  12. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  13. The effect of different polishing systems on surface roughness and gloss of various resin composites.

    Science.gov (United States)

    Da Costa, Juliana; Ferracane, Jack; Paravina, Rade D; Mazur, Rui Fernando; Roeder, Leslie

    2007-01-01

    The purpose of this in vitro study was to evaluate the surface finish and gloss of five direct resin composites polished with six polishing systems. One hundred and fifty disk-shaped composite specimens (D=10.0 mm, 2-mm-thick, N=30 per material) were made. One side of each specimen was finished with a 16-fluted carbide finishing bur and then polished. Five specimens of each resin composite were randomly assigned to one of the six polishing systems. The surface roughness and gloss were measured with a surface profilometer and a glossmeter. The results were analyzed by two-way analysis of variance and Tukey's t-test (pgloss values between the composites and the polishing systems (p gloss value was recorded for Supreme + Pogo; the lowest was recorded for Z100 + Jiffy. Pogo showed the highest gloss values for all composites. The nanofill (Supreme) and minifill (Esthet-X) composites presented a surface roughness comparable to a microfill (Durafill), independent of the polishing system used, and a gloss comparable to a microfill, when polished with a one-step system (Pogo). As compared with the multiple-step systems, the smoothest surfaces and the highest gloss values were achieved using the one-step system (Pogo) for all the evaluated composites.

  14. VEST: An Aspect-Based Composition Tool for Real-Time Systems

    Science.gov (United States)

    2003-01-01

    VEST: An Aspect-Based Composition Tool for Real - Time Systems * John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu Zhendong Yu Marty Humphrey...Composition Tool for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...it is obvious that designers of embedded real - time systems face many difficult problems. By working through various product scenarios with avionics

  15. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    OpenAIRE

    Brijesh Patel; Naveen Chhabra; Disha Jain

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of...

  16. CMC-coated Fe{sub 3}O{sub 4} nanoparticles as new MRI probes for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sitthichai, Sudarat [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pilapong, Chalermchai, E-mail: chalermchai.pilapong@cmu.ac.th [Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • Fe{sub 3}O{sub 4} nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe{sub 3}O{sub 4} NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe{sub 3}O{sub 4} nanoparticles and Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl{sub 2}·4H{sub 2}O and FeCl{sub 3}·6H{sub 2}O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe{sub 3}O{sub 4} MNPs consisting of Fe{sup 2+} and Fe{sup 3+} ions with 543.3-mM{sup −1} s{sup −1} high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  17. The effect of CMC and arabic gum stabilizer combination on the characteristics of soursop velva (Annona muricata L.)

    Science.gov (United States)

    Parnanto, N. H. R.; Yudhistira, B.; Pertiwi, S. R.; Pangestika, A.

    2018-03-01

    The aims of this study were to determine the effect of the combination of CMC and Arabic Gum stabilizer toward the soursop velva characteristics and to determine the best stabilizer combination of soursop velva. This study was performed using Completely Randomized Design (CRD) with one factor: combination of CMC and Arabic Gum stabilizer using two sample replications and the analysis was repeated three times. The result showed that the use of the combination of CMC and Arabic Gum stabilizer gave a significant effect on the overrun value, melting power, total dissolved solids, moisture content, dietary fiber, taste, texture and overalls. Moreover, there were no significant effect on color and flavor of the soursop velva. The experiment showed that soursop velva F4 (3:1) was the best formula with overrun value 9.93%, the melting power was 22 minutes 52 seconds, the total dissolved solids 19,10°Brix, the moisture content 71.508%, dietary fiber 3.301% and it has sensory values of color, taste, flavor, texture, overall at 3.66, 3.267, 3.33, 4.06, 3.10 respectively.

  18. Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods

    Directory of Open Access Journals (Sweden)

    Tetsuya Misawa

    2010-01-01

    Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.

  19. Design of Carbon Composite Driveshaft for Ultralight Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    R. Poul

    2006-01-01

    Full Text Available This paper deals with the design of the carbon fibre composite driveshaft. This driveshaft will be used for connection between piston engine and propulsor of the type of axial-flow fan. Three different versions of driveshaft were designed and produced. Version 1 if completely made of Al alloy. Version 2 is of hybrid design where the central part is made of high strength carbon composite and flanges are made of Al alloy. Adhesive bond is used for connection between flanges and the central CFRP tube. Version 3 differs from the version 2 by aplication of ultrahigh-strength carbon fibre on the central part. Dimensions and design conditions are equal for all three versions to obtain simply comparable results. Calculations of driveshafts are described in the paper. 

  20. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  1. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  2. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Single Vacuum Bagging and Autoclave Curing System Influence on Physical and Mechanical Properties of Phenolic Composites

    Directory of Open Access Journals (Sweden)

    M.A. Mirzapour

    2010-12-01

    Full Text Available Industrial production of thermoset composite components involves the application of a vacuum bagging and autoclave pressure to minimize void percentage, usually to less than 5%. Phenolic resin systems generate water as a reaction byproduct via condensation reactions during curing at elevated temperatures. In this paper, vacuum bagging and simple manufactured autoclave curing systems are used for manufacturing of asbestos/phenolic composites and the effects of processing conditions on manufactured composites are investigated. The traditional single-vacuum-bag process is unable to manage the volatiles effectively, resulting in inferior laminates having voids. The autoclave process cure cycle (temperature/pressure profiles for the selected composite system is designed to emit volatiles during curing reactions effectively and produce composites with low void contents and excellent mechanical properties. Laminate consolidation quality is characterized by optical photomicrography for the cross-sections and measurements of void content and mechanical properties. The void content of phenolic composites as opposed to other composites increases as pressure increases up to 3 bar and it is then decreased beyond it. A product of 124% lower void content, 13% higher density, 24% higher flexural strength and 27% higher flexural modulus can be fabricated in composites obtainedby autoclave processing.

  4. Surface Roughness and Gloss of Actual Composites as Polished With Different Polishing Systems.

    Science.gov (United States)

    Rodrigues-Junior, S A; Chemin, P; Piaia, P P; Ferracane, J L

    2015-01-01

    This in vitro study evaluated the effect of polishing with different polishing systems on the surface roughness and gloss of commercial composites. One hundred disk-shaped specimens (10 mm in diameter × 2 mm thick) were made with Filtek P-90, Filtek Z350 XT, Opallis, and Grandio. The specimens were manually finished with #400 sandpaper and polished by a single operator using three multistep systems (Superfix, Diamond Pro, and Sof-lex), one two-step system (Polidores DFL), and one one-step system (Enhance), following the manufacturer's instructions. The average surface roughness (μm) was measured with a surface profilometer (TR 200 Surface Roughness Tester), and gloss was measured using a small-area glossmeter (Novo-Curve, Rhopoint Instrumentation, East Sussex, UK). Data were analyzed by two-way analysis of variance and Tukey's test (α=0.05). Statistically significant differences in surface roughness were identified by varying the polishing systems (pGloss was influenced by the composites (pone-step system, Enhance, produced the lowest gloss for all composites. Surface roughness and gloss were affected by composites and polishing systems. The interaction between both also influenced these surface characteristics, meaning that a single polishing system will not behave similarly for all composites. The multistep systems produced higher gloss, while the one-step system produced the highest surface roughness and the lowest gloss of all.

  5. Elrotherm shielding systems. New pioneering material composites; Elrotherm-Abschirmsysteme. Neue Zukunftsweisende Materialkompositionen

    Energy Technology Data Exchange (ETDEWEB)

    Zika-Beyerlein, B [ElringKlinger (Germany). Geschaeftsbereich Abschirmtechnik

    2004-09-01

    Tightly packed engine compartments put special demands on thermal and acoustic shielding systems. With new material composites allowing for particularly thin-walled and light shielding parts, ElringKlinger is well equipped for the future. (orig.)

  6. Species composition, abundance and distribution of hydromedusae from Dharamtar estuarine system, adjoining Bombay Harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.; Tiwari, L.R.; Nair, V.R.

    Species composition, abundance and distribution of hydromedusae from Dharamtar estuarine system, adjoining Bombay Harbour, Maharashtra, India were investigated during 1984-1985. Twenty six species belonging to 19 genera were obtained from this area...

  7. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  8. Analysis of a carbon composite overwrap pipeline repair system

    Energy Technology Data Exchange (ETDEWEB)

    Duell, J.M.; Wilson, J.M. [Department of Mechanical Engineering, University of Tulsa, Tulsa, OK 74104 (United States); Kessler, M.R. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)], E-mail: mkessler@iastate.edu

    2008-11-15

    A relatively new method has been developed to stop external corrosion and structurally reinforce steel pipes by external wrapping of damaged sections using fibre reinforced polymer (FRP) materials. Several different defect geometries representing corrosion patches on steel pipe were characterized using finite-element analysis, by changing the circumferential length of the defect. Pipe vessels containing these defects along with the composite structural repairs were modeled and the results were compared to field tests to determine the effectiveness of the repairs. It was found that the defect width around the circumference had little impact on the ultimate rupture pressure of the repaired vessel, but influenced the stress state in the underlying pipe substrate.

  9. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    Science.gov (United States)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important

  10. Composite Control of the n–link Chained Mechanical Systems

    Czech Academy of Sciences Publication Activity Database

    Zikmund, Jiří

    2008-01-01

    Roč. 44, č. 5 (2008), s. 664-684 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/08/0186 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * exact linearization * underactuated mechanical systems Subject RIV: BC - Control Systems Theory Impact factor: 0.281, year: 2008

  11. Long-Acting Composite Systems Based on Powdered Medicinal Plants and Nanosilica

    Directory of Open Access Journals (Sweden)

    Turov, V.V.

    2017-03-01

    Full Text Available The state of water in the powdered plant materials (calendula, hibiscus and their composite systems with A-300 nanosilicas having different bulk density has been studied by low-temperature 1H NMR spectroscopy method. The change in bulk density has been found to significantly affect the radius of inner cavities in fibrillar space of plant components. The composite systems based on wetting-drying compaction of nanosilica and plant powder have been showed to form a mix with high interaction energy of heterogeneous particles. This results in the effective retention of plant bioactive complex by composite, which enables the development of long-acting herbal drugs.

  12. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  13. 5 CFR 293.504 - Composition of, and access to, the Employee Medical File System.

    Science.gov (United States)

    2010-01-01

    ... Employee Medical File System. 293.504 Section 293.504 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL RECORDS Employee Medical File System Records § 293.504 Composition of, and access to, the Employee Medical File System. (a) All employee occupational medical records...

  14. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  15. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  16. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  17. Compositional abstractions for long-run properties of stochastic systems

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2011-01-01

    its underlying Markov chain. However, this also leads to state space explosion problems as the number of components in the model increases, which severely limits the size of models we can analyse. Because of this, we look for abstraction techniques that allow us to analyse a smaller model that safely...... be reduced in size. Importantly, we do this compositionally, so that we bound each component of the model separately, and compose these to obtain a bound for the entire model. We present an algorithm for this, based on extending the algorithm by Fourneau et al. to deal with partially-ordered state spaces....... Finally, we present some results from our implementation, which forms part of the PEPA plug-in for Eclipse. We compare the precision and state space reduction with results obtained by computing long-run averages on a CTMDP-based abstraction....

  18. Design on a Composite Mobile System for Exploration Robot

    OpenAIRE

    Shang, Weiyan; Yang, Canjun; Liu, Yunping; Wang, Junming

    2016-01-01

    In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS) has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been st...

  19. System Abuse by Service Composition : Analysis and Prevention

    NARCIS (Netherlands)

    Pieters, W.; Banescu, S.E.; Posea, S.

    2012-01-01

    We know that several chemicals can be combined to form explosives. Therefore, we do not want these to end up in airplanes together. Similarly, in the architecture of complex systems, it is often possible to combine the results of several system services to acquire illegitimate benefits or disrupt

  20. Predicting glass-forming compositions in the Al-La and Al-La-Ni systems

    International Nuclear Information System (INIS)

    Gargarella, P.; de Oliveira, M.F.; Kiminami, C.S.; Pauly, S.; Kuehn, U.; Bolfarini, C.; Botta, W.J.; Eckert, J.

    2011-01-01

    Research highlights: → The glass-forming ability of the Al-La and Al-La-Ni systems was studied using the λ* and the λ.Δe criteria. → Both criteria predicted with just 1% at. of error the best glass-former verified so far in the Al-La system. → Four new glass-former compositions could be predicted in the Al-La-Ni system using the λ.Δe criterion. → The best glass-former reported so far in the Al-La-Ni system was found. - Abstract: In this work, a criterion considering the topological instability (λ) and the differences in the electronegativity of the constituent elements (Δe) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the λ.Δe criterion. A good agreement was found between the predictions of the λ.Δe criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (ΔT x ) coinciding with the best compositional region for amorphization indicated by the λ.Δe criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the λ.Δe criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions.

  1. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  2. Failure Detection of Composites with Control System Corrective Response in Drone System Applications

    Directory of Open Access Journals (Sweden)

    Mark Bowkett

    2018-04-01

    Full Text Available The paper describes a novel method for the detection of damage in carbon composites as used in drone frames. When damage is detected a further novel corrective response is initiated in the quadcopter flight controller to switch from a four-arm control system to a three-arm control system. This is made possible as a symmetrical frame is utilized, which allows for a balanced weight distribution between both the undamaged quadcopter and the fallback tri-copter layout. The resulting work allows for continued flight where this was not previously possible. Further developing work includes improved flight stability with the aid of an underslung load model. This is beneficial to the quadcopter as a damaged arm attached to the main body by the motor wires behaves as an underslung load. The underslung load works are also transferable in a dual master and slave drone system where the master drone transports a smaller slave drone by a tether, which acts as an underslung load.

  3. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  4. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  5. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition

    Directory of Open Access Journals (Sweden)

    Chi-Hua Tung

    2016-01-01

    Full Text Available Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.

  6. Development of on-line condition monitoring system in aerospace structures using advanced composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    2005-01-01

    This research aims to develop condition monitoring systems for advanced aerospace composite structures. To perform these functions successfully a smart system is required that could autonomously respond to environmental changes. The integrated structure senses the environments, conveys the message to central processing unit and reacts instantaneously to external stimuli. Such structures not only monitor their own health but also for warn about onset of failures, fatigue and impending disasters. This required development of methods for embedding optical fibers in composite panels for sensing given defect. The thick and cylindrical composite structures have layer waviness due to fiber microbend defect. Such kind of defect is characteristically hard to detect. It leads to delamination, cracking and deterioration of mechanical properties. The experimental investigation revealed correlation of the intensity of light with the microbend defect in composite structure. (author)

  7. Parametric study of laminated composite material shaft of high speed rotor-bearing system

    Science.gov (United States)

    Gonsalves, Thimothy Harold; Kumar, G. C. Mohan; Ramesh, M. R.

    2018-04-01

    In this paper some of the important parameters that influence the effectiveness of composite material shaft of high speed rotor-bearing system on rotor dynamics are analyzed. The type of composite material composition, the number of layers along with their stacking sequences are evaluated as they play an important role in deciding the best configuration suitable for the high-speed application. In this work the lateral modal frequencies for five types of composite materials shaft of a high-speed power turbine rotor-bearing system and stresses due to operating torque are evaluated. The results are useful for the selection of right combination of material, number of layers and their stacking sequences. The numerical analysis is carried out using the ANSYS Rotor dynamic analysis features.

  8. Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair

    International Nuclear Information System (INIS)

    Jiang Liuyun; Li Yubao; Zhang Li; Wang Xuejiang

    2009-01-01

    The composite biomaterial made from nano-hydroxyapatite(n-HA) and chitosan(CS) cross-linked with carboxymethyl cellulose(CMC) by a co-solution method has been studied. Fourier transform infrared absorption spectra (IR), X-ray diffraction (XRD), burn-out test, chemical analysis, transmission electron microscope(TEM) and universal material testing machine were used to test the properties of the composite. The experiment of SBF soaking for 8 weeks was used to investigate their degradation and bioactivity in vitro. The results show that the formation of composite is mainly contributed to the ionic cross-linking of CMC with CS, and n-HA particles in the form of nanometer grade short crystals are uniformly distributed in the organic network structure of polyelectrolyte complexes, which endows the composite with high compressive strength and good bioactivity. The compressive strength and degradation rate are concerned with the content of n-HA. It can be stated that the n-HA/CS/CMC composite whose weight ratio is 40/30/30 may be a potential candidate as one of novel bone repair materials because of its high compressive strength and acceptable degradation rate as well as good bioactivity, displaying a promising prospect of the clinical application of CMC-contained composite in the field of bone repair

  9. Enhancing SOEC system lifetime by controlling inlet gas composition

    DEFF Research Database (Denmark)

    2015-01-01

    In a method for enhancing the lifetime of a solid oxide electrolysis cell system by counteracting nitridation of the threads of the in-line electrical heaters of the system, the start-up, shut-down and trip operations are done in a humidified nitrogen atmosphere on the fuel side to achieve a dew ...... point between -70 DEG C and 23 DEG C, and in air or in carbon dioxide on the oxygen side, securing that sufficiently oxidizing conditions are always present across the whole surface of the cells on the oxygen side in the stack....

  10. Portable LIBS system for determining the composition of multilayer structures on objects of cultural value

    International Nuclear Information System (INIS)

    Moreira Osorio, Lesther; Ponce Cabrera, Luis V; Arronte Garcia, Miguel A; Flores Reyes, Teresa; Ravelo, Ivette

    2011-01-01

    This study presents the use of a portable Laser Induced Breakdown Spectroscopy (LIBS) prototype for determining the elemental composition of a metal jug. The system includes emission from a multiuse Q-switched Nd:YAG laser. By sampling at different points, the surface composition is determined. Furthermore, the presence of two layers of Pb and Cu and their thicknesses are determined through in-depth analysis.

  11. Spent fuel composition database system on WWW. SFCOMPO on WWW Ver.2

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroki [Japan Research Institute, Ltd., Tokyo (Japan); Suyama, Kenya; Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    'SFCOMPO on WWW Ver.2' is an advanced version of 'SFCOMPO on WWW' ('Spent Fuel Composition Database System on WWW') released in 1997. This new version has a function of database management by an introduced relational database software 'PostgreSQL' and has various searching methods. All of the data required for the calculation of isotopic composition is available from the web site of this system. This report describes the outline of this system and the searching method using Internet. In addition, the isotopic composition data and the reactor data of the 14 LWRs (7 PWR and 7 BWR) registered in this system are described. (author)

  12. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    OpenAIRE

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2014-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/S...

  13. Health and usage monitoring system for the small aircraft composite structure

    Science.gov (United States)

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin

    2017-07-01

    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  14. Predictive Local Composition Models for Solid/Liquid Equilibrium in n-Alkane Systems: Wilson Equation for Multicomponent Systems

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Stenby, Erling Halfdan

    1996-01-01

    The predictive local composition model is applied to multicomponent hydrocarbon systems with long-chain n-alkanes as solutes. The results show that it can successfully be extended to highorder systems and accurately predict the solid appearance temperature, also known as cloud point, in solutions...

  15. Model-based Compositional Design of Networked Control Systems

    Science.gov (United States)

    2013-12-01

    with event scheduling. In particular, the C++ source code for the ns-2 simulator scheduler is modi - fied to implement the time synchronization mechanism...pump: Security attacks and defenses for a diabetes therapy system. In: 2011 13th IEEE International Conference In e-Health Networking Applications and

  16. A compositional interchange format for hybrid systems : design and implementation

    NARCIS (Netherlands)

    Nadales Agut, D.E.

    2012-01-01

    The design of large industrial controlled systems is a difficult task, which calls for a modelbased design approach. For this, different formalisms exist. Each of these formalisms addresses a specific set of problems, and has its own set of features. Moreover, several formalisms and tools are used

  17. Ultrasound-accelerated synthesis of biphenyl compounds using novel Pd(0) nanoparticles immobilized on bio-composite.

    Science.gov (United States)

    Baran, Talat

    2018-07-01

    This study describes (i) an eco-friendly approach for design of Pd(0) nanoparticles on a natural composite, which is composed of carboxymethyl cellulose/agar polysaccharides (CMC/AG), without using any toxic reducing agents and (ii) development of ultrasound assisted simple protocol for synthesis of biphenyl compounds. Chemical characterization studies of Pd(0) nanoparticles (Pd NPs@CMC/AG) revealed that size of the particles were in the range of 37-55 nm. Catalytic performance of Pd NPs@CMC/AG was evaluated in synthesis of various biphenyl compounds by using the ultrasound-assisted method that was developed in this study. Pd NPs@CMC/AG exhibited excellent catalytic performance by producing high reaction yields. In addition, Pd NPs@CMC/AG was successfully used up to six reaction cycles without losing its catalytic activity, indicating high reproducibility of Pd NPs@CMC/AG. Additionally, compared to conventional the methods, new ultrasound-assisted synthesis technique that was followed in this study exhibited some advantages such as shorter reaction time, greener reaction conditions, higher yields and easier work-up. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  19. Harmonised information exchange between decentralised food composition database systems

    DEFF Research Database (Denmark)

    Pakkala, Heikki; Christensen, Tue; Martínez de Victoria, Ignacio

    2010-01-01

    documentation and by the use of standardised thesauri. Subjects/Methods: The data bank is implemented through a network of local FCD storages (usually national) under the control and responsibility of the local (national) EuroFIR partner. Results: The implementation of the system based on the Euro......FIR specifications is under development. The data interchange happens through the EuroFIR Web Services interface, allowing the partners to implement their system using methods and software suitable for the local computer environment. The implementation uses common international standards, such as Simple Object...... Access Protocol, Web Service Description Language and Extensible Markup Language (XML). A specifically constructed EuroFIR search facility (eSearch) was designed for end users. The EuroFIR eSearch facility compiles queries using a specifically designed Food Data Query Language and sends a request...

  20. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  1. Collateral Composition, Diversification Risk, and Systemically Important Merchant Banks

    Czech Academy of Sciences Publication Activity Database

    Derviz, Alexis

    2014-01-01

    Roč. 14, Special Issue (2014), s. 23-34 ISSN 1572-3089 R&D Projects: GA ČR GA13-11983S Institutional support: RVO:67985556 Keywords : collateral * systemic risk * merchant bank * CoCo Subject RIV: AH - Economics Impact factor: 1.506, year: 2014 http://library.utia.cas.cz/separaty/2014/E/derviz-0433271.pdf

  2. Fission of polonium, osmium, and erbium composite systems

    NARCIS (Netherlands)

    Plicht, J. van der; Britt, H.C.; Fowler, M.M.; Fraenkel, Z.; Gavron, A.; Wilhelmy, J.B.; Plasil, F.; Awes, T.C.; Young, G.R.

    1983-01-01

    Fission cross section excitation functions were measured from near threshold to ~10 MeV/nucleon using 9Be, 12C, 16,18O, 24,26Mg, 32S, and 64Ni beams. The systems studied included 210Po formed in 12C and 18O induced reactions; 186Os formed in 9Be, 12C, 16O, and 26Mg reactions; and 158Er formed in

  3. Design on a Composite Mobile System for Exploration Robot

    Directory of Open Access Journals (Sweden)

    Weiyan Shang

    2016-01-01

    Full Text Available In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been studied. Firstly, a simplified dynamic model has been established, and then by affecting factors analysis on ride performance, an optimization model for suspension parameters has been presented. Using NSGA-II method, a set of nondominated solutions for suspension parameters has been gotten, and by weighing the importance of the objective function, an optimal solution has been selected to be applied on suspension design. As the wheel-tracked exploration robot has been designed and manufactured, the property test has been conducted. By testing on physical prototype, the robot’s ability to surmount complex terrain has been verified. Design of the wheel-tracked robot will provide a stable platform for field exploration tasks, and in addition, the certain configuration and suspension parameters optimization method will provide reference to other robot designs.

  4. Practical use of CMC-amended rhizobial inoculant for Mucuna pruriens cultivation to enhance the growth and protection against Macrophomina phaseolina.

    Science.gov (United States)

    Aeron, Abhinav; Khare, Ekta; Kumar Arora, Naveen; Kumar Maheshwari, Dinesh

    2012-01-01

    In many parts of the world Mucuna pruriens is used as an important medicinal, forage and green manure crop. In the present investigation the effect of the addition of CMC in carrier during development of bioformulation on shelflife, plant growth promotive and biocontrol activity against Macrophomina phaseolina was screened taking M. pruriens as a test crop. Ensifer meliloti RMP6(Ery+Kan+) and Bradyrhizobium sp. BMP7(Tet+Kan+) (kanamycin resistance engineered by Tn5 transposon mutagenesis) used in the study showed production of siderophore, IAA, solubilizing phosphate and biocontrol of M. phaseolina. RMP6(Ery+Kan+) also showed ACC deaminase activity. The survival of both the strains in sawdust-based bioformulation was enhanced with an increase in the concentration of CMC from 0 to 1%. At 0% CMC Bradyrhizobium sp. BMP7(Tet+Kan+) showed more increase in nodule number/plant (500.00%) than E. meliloti RMP6(Ery+Kan+) (52.38%), over the control in M. phaseolina-infested soil. There was 185.94% and 59.52% enhancement in nodule number/plant by RMP6(Ery+Kan+) and BMP7(Tet+Kan+) with an increase in the concentration of CMC from 0% to 1% in the bioformulations. However further increase in concentration of CMC did not result in enhancement in survival of either the strains or nodule number/plant.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 38: Computer Mediated Communication (CMC) and the communication of technical information in aerospace

    Science.gov (United States)

    Murphy, Daniel J.; Pinelli, Thomas E.

    1994-01-01

    This paper discusses the use of computers as a medium for communication (CMC) used by aerospace engineers and scientists to obtain and/or provide technical information related to research and development activities. The data were obtained from a questionnaire survey that yielded 1006 mail responses. In addition to communication media, the research also investigates degrees of task uncertainty, environmental complexity, and other relevant variables that can affect aerospace workers' information-seeking strategies. While findings indicate that many individuals report CMC is an important function in their communication patterns, the research indicates that CMC is used less often and deemed less valuable than other more conventional media, such as paper documents, group meetings, telephone and face-to-face conversations. Fewer than one third of the individuals in the survey account for nearly eighty percent of the reported CMC use, and another twenty percent indicate they do not use the medium at all, its availability notwithstanding. These preliminary findings suggest that CMC is not as pervasive a communication medium among aerospace workers as the researcher expect a priori. The reasons underlying the reported media use are not yet fully known, and this suggests that continuing research in this area may be valuable.

  6. Optimization of formulation of cmc-na, xanthan gum and carrageenan affecting the physicochemical properties of papaya-wolfberry beverage using response surface methodology

    International Nuclear Information System (INIS)

    Geo, J.Z.H.; Zong, G.L.P.

    2013-01-01

    CMC-Na, xanthan gum and carrageenan are widely employed in food industry. They were used for its thickening properties of aqueous solutions or emulsifying abilities. The present work aims to optimize the formula of the three stabilizers in the process of papaya-wolfberry beverage by response surface methodology (RSM). The results showed that the models were significantly (p<0.05) fitted for describing the viscosity and cloudiness of papaya-wolfberry beverage. The results also indicated that the linear terms of CMC-Na and xanthan gum were the most significant (p<0.05) variables affecting the viscosity, while xanthan gum and carrageenan were the most significant (p<0.05) variable affecting the cloudiness. The interaction of CMC-Na and xanthan gum behaved extremely significant for viscosity. From the optimization procedure, the best formula for viscosity was obtained at the combined level of 0.0652% (w/w) CMC-Na, 0.1070% (w/w) xanthan gum and 0.1485% (w/w) carrageenan, and the other group of 0.0623% (w/w) CMC-Na, 0.1375% (w/w) xanthan gum and 0.1461% (w/w) carrageenan for cloudiness. The results of our study would be used to improve the quality of papaya-wolfberry beverage and increase its economic efficiency. (author)

  7. Magnetic proximity effects in nanoparticle composite systems and macrocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wilbs, Genevieve

    2017-07-01

    Assemblies of magnetic nanoparticles are of major interest for future applications e.g. in spintronic devices, high density data storage systems or biomedical applications. The reason is not only the obvious miniaturization, but also their novel properties emerging only at the nanoscale. Hence, arranging nanoparticles like atoms in a crystal enables the fabrication of a new class of materials. To gain in-depth understanding of these systems, it is necessary to investigate them on all length scales. The present work provides a novel and extensive contribution to the understanding of the selfassembly of iron oxide nanoparticle superstructures and their influence on polarizable matrix materials. Through the investigation of the samples at all stages of preparation, a comprehensive picture of the unique phenomena observed at the end is derived. For this purpose, oleic acid coated iron oxide nanoparticles were deposited on silicon substrates by spincoating to manufacture two-dimensional arrangements. Hereby, the influence of several parameters has been investigated and optimized. Afterwards, the organic surfactant shell was removed by oxygen plasma treatment. This process has been studied in detail, because it initiates a phase transformation that significantly influences the magnetic properties of the system (e.g. by reducing the blocking temperature). Thin palladium or platinum films were then respectively deposited to create a matrix material. Aside from magnetometry measurements, first order reversal curves were obtained in cooperation with the Max-Planck-Institute for Intelligent Systems, both revealing that the matrix materials significantly influence the inter-particle interaction and vice versa. However, only by performing X-ray magnetic circular dichroism experiments at the Advanced Photon Source of the Argonne National Laboratory, it could be evidenced unambiguously that platinum can be polarized by an oxide. Additionally, these systems were investigated

  8. Magnetic proximity effects in nanoparticle composite systems and macrocrystals

    International Nuclear Information System (INIS)

    Wilbs, Genevieve

    2017-01-01

    Assemblies of magnetic nanoparticles are of major interest for future applications e.g. in spintronic devices, high density data storage systems or biomedical applications. The reason is not only the obvious miniaturization, but also their novel properties emerging only at the nanoscale. Hence, arranging nanoparticles like atoms in a crystal enables the fabrication of a new class of materials. To gain in-depth understanding of these systems, it is necessary to investigate them on all length scales. The present work provides a novel and extensive contribution to the understanding of the selfassembly of iron oxide nanoparticle superstructures and their influence on polarizable matrix materials. Through the investigation of the samples at all stages of preparation, a comprehensive picture of the unique phenomena observed at the end is derived. For this purpose, oleic acid coated iron oxide nanoparticles were deposited on silicon substrates by spincoating to manufacture two-dimensional arrangements. Hereby, the influence of several parameters has been investigated and optimized. Afterwards, the organic surfactant shell was removed by oxygen plasma treatment. This process has been studied in detail, because it initiates a phase transformation that significantly influences the magnetic properties of the system (e.g. by reducing the blocking temperature). Thin palladium or platinum films were then respectively deposited to create a matrix material. Aside from magnetometry measurements, first order reversal curves were obtained in cooperation with the Max-Planck-Institute for Intelligent Systems, both revealing that the matrix materials significantly influence the inter-particle interaction and vice versa. However, only by performing X-ray magnetic circular dichroism experiments at the Advanced Photon Source of the Argonne National Laboratory, it could be evidenced unambiguously that platinum can be polarized by an oxide. Additionally, these systems were investigated

  9. Anchoring FRP Composite Armor in Flexible Offshore Riser Systems

    DEFF Research Database (Denmark)

    Costache, Andrei

    things, they serve for the transportation of hydrocarbons from the subsea facilities to the production and drilling equipment at the sea surface. Flexible risers are the prime choice for connecting floating production, storage and offloading facilities, because they are specially designed for dynamic...... counterpart. A new double grip design with flat faces is proposed, in which the loads are transferred through friction. The behavior of such grip is studied by means of experimental testing and finite element modeling. Several iterations of the grip system were evaluated over the course of the project...

  10. A Process Mining Based Service Composition Approach for Mobile Information Systems

    Directory of Open Access Journals (Sweden)

    Chengxi Huang

    2017-01-01

    Full Text Available Due to the growing trend in applying big data and cloud computing technologies in information systems, it is becoming an important issue to handle the connection between large scale of data and the associated business processes in the Internet of Everything (IoE environment. Service composition as a widely used phase in system development has some limits when the complexity of relationship among data increases. Considering the expanding scale and the variety of devices in mobile information systems, a process mining based service composition approach is proposed in this paper in order to improve the adaptiveness and efficiency of compositions. Firstly, a preprocessing is conducted to extract existing service execution information from server-side logs. Then process mining algorithms are applied to discover the overall event sequence with preprocessed data. After that, a scene-based service composition is applied to aggregate scene information and relocate services of the system. Finally, a case study that applied the work in mobile medical application proves that the approach is practical and valuable in improving service composition adaptiveness and efficiency.

  11. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pincompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.

    Science.gov (United States)

    Xu, Bin; Sun, Fuchun

    2018-02-01

    This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.

  13. Examination of decision support systems for composite CBA & MCDA assessments of transport infrastructure projects

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Jensen, Anders Vestergaard; Leleur, Steen

    This paper examines decision support systems (DSS) for composite appraisals of transport infrastructure projects comprising both cost-benefit analysis (CBA) and multi-criteria analysis (MCA). Two DSS are in this context examined and compared using a case study dealing with alternatives for a new...... for conducting composite appraisals of transport infrastructure projects, and research questions defining future work in the context of composite DSS and their use in decision making processes are set out....... high-speed railway line between the two cities, Norrköping and Bäckeby, in Sweden. Both systems are based on additive value functions and makes use of pair wise comparisons. The first system examined, which is widely used and based on acknowledged methods, comprises the REMBRANDT technique using pair...

  14. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  15. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Chengdong Xiong

    2009-07-01

    Full Text Available Abstract In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR, transmission electron microscope(TEM, scanning electron microscope(SEM, universal material testing machine and phosphate buffer solution (PBS soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.

  16. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Science.gov (United States)

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  17. Survey report for fiscal 1999. Report on basic survey on joint implementation of installing coal moisture control (CMC) facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of the COP3 joint implementation in fiscal 1999, a survey and discussions were given on installing coal moisture control (CMC) facilities in China. The possibility was discussed with the Jinan Steel Group Company and Shougang Company. The subject is a beehive coke furnace, in which coal containing 11% of water is sent to a fluidized bed dryer, and dried up to 6.6%. Stack gas in the coke furnace is used mainly as the drying heat source. The facility consists of a fluidized bed dryer, a dust collector, a coal transporter, and a stack gas recovering device. The energy saving effects made available to the above two companies are as remarkable as 19,868 tons/year and 12,189 tons/year, respectively, as converted to crude oil, and the greenhouse effect gas reduction effect as 61,476 tons/year and 37,715 tons/year, respectively. Because energy price is low in China, the investment recovery time period is set at six years or less as the limit for economic performance evaluation. As a result of the calculation, the recovery time periods for the above two companies were found to be 4.2 and 4.7 years, proving the CMC project highly promising. It is desired that the project will be moved forward once the issues of the fund raising and the discharge right of global warming gas are made clear. (NEDO)

  18. Potential of L-fucose isolated from Brown Seaweeds as Promising Natural Emulsifier compare to Carboxymethyl Cellulose (CMC)

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Lestari, F. P.; Desnasari, D.; Santoso, I. P. M.

    2018-02-01

    L-fucose has been understood as sulfated polysaccharides and it could be extracted and fractionated from brown algae. These polysaccharides contains carbohydrate, sulfate, and protein that may be used as emulsifier. This research was aimed to study the emulsification properties of L-fucose through the determination of total dissolved solids (TDS), color CIE L*a*b* and stability of oil-in-water emulsion. As much as 0.5% of high concentrated L-fucose and 0.5% of carboxymethyl cellulose (CMC) were used as emulsifier in a 10% (v/v) oil-in-water (O/W) emulsion. The emulsifier was added to O/W emulsions and then heated at 72°C. Result of stability emulsion and TDS showed that L-fucose was comparable to the CMC but remarkable changed the color of O/W emulsion. Heating process significantly reduced the stability O/W emulsion when L-fucose was applied. As conclusion, L-fucose might be used as natural emulsifier in O/W emulsion but in the low heat treatment of food processing. This study may provide valuable information for utilizing natural emulsifier from abundant resources from nature.

  19. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  20. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    Directory of Open Access Journals (Sweden)

    Laura AlveBastos

    2015-02-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE, the specific self-etching adhesive system (Adhesive System P90, 3M ESPE was used with and without pre-etching (Pre-etching/Silorane and Silorane groups. Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray, with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups, or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE (Three-step/Methacrylate group (n = 6. The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm, and coupled to a universal test machine (0.5 mm/min to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05. However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.

  1. Mathematical modeling and calculation of forced resonant vibrations of composite electromechanical system

    OpenAIRE

    Ластівка, Іван Олексійович

    2014-01-01

    Resonant vibrations of composite electromechanical symmetric three-element system “metal plate - piezoceramic cylindrical panels” are considered. Forced vibrations are made under the influence of external alternating electric field, supplied to the electrodes of piezoceramic segments of cylindrical panels, previously polarized in the tangential direction.Based on the improved theory, such as the S.P. Timoshenko’s, the system of differential equations of forced vibrations of the system, taking...

  2. Color recovery effect of different bleaching systems on a discolored composite resin.

    Science.gov (United States)

    Gul, P; Harorlı, O T; Ocal, I B; Ergin, Z; Barutcigil, C

    2017-10-01

    Discoloration of resin-based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite resin. Fifty disk-shaped dental composite specimens were prepared using A2 shade nanohybrid universal composite resin (3M ESPE Filtek Z550, St. Paul, MN, USA). Composite samples were immersed in coffee and turnip juice for 1 week in each. One laser activated bleaching (LB) (Biolase Laserwhite*20) and three conventional bleaching systems (Ultradent Opalescence Boost 40% (OB), Ultradent Opalescence PF 15% home bleaching (HB), Crest 3D White [Whitening Mouthwash]) were tested in this study. Distilled water was used as control group. The color of the samples were measured using a spectrophotometer (VITA Easy shade Compact, VITA Zahnfabrik, Bad Säckingen, Germany). Color changes (ΔE00) were calculated using the CIEDE2000 formula. Statistical analyses were conducted using paired samples test, one-way analysis of variance, and Tukey's multiple comparison tests (α = 0.05). The staining beverages caused perceptible discoloration (ΔE00 > 2.25). The color recovery effect of all bleaching systems was statistically determined to be more effective than the control group (P OB group was found as the most effective bleaching system, there was no statistically significant difference among HB, OB, and LB groups (P > 0.05). Within the limitation of this in vitro study, the highest recovery effect was determined in office bleaching system among all bleaching systems. However, home and laser bleaching systems were determined as effective as office bleaching system.

  3. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  4. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  5. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  6. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  7. DC conductivity and magnetic properties of piezoelectric–piezomagnetic composite system

    International Nuclear Information System (INIS)

    Hemeda, O.M.; Tawfik, A.; A-Al-Sharif; Amer, M.A.; Kamal, B.M.; El Refaay, D.E.; Bououdina, M.

    2012-01-01

    A series of composites (1−x) (Ni 0.8 Zn 0.2 Fe 2 O 4 )+x (BaTiO 3 ), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M–H loop of pure Ni 0.6 Zn 0.4 Fe 2 O 4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT–NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves. - Highlights: ► Studied composite has a high magnetoelectric coefficient compared with other composites. ► A p–n transition is observed for the composite with 80% BT and 100% BT content. ► Ni-ferrite can lead to a strong shift

  8. DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Tanta University, Faculty of Science, Physics Department (Egypt); Taif University, Faculty of Science, Physics Department (Saudi Arabia); Tawfik, A. [Taif University, Faculty of Science, Physics Department (Saudi Arabia); A-Al-Sharif [Moata University, Faculty of Science, Physics Department (Jordan); Amer, M.A. [Taif University, Faculty of Science, Physics Department (Saudi Arabia); Kamal, B.M.; El Refaay, D.E. [Suez Canal University, Faculty of Science, Physics Department (Egypt); Bououdina, M. [Nanotechnology Centre, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Department of Physics, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2012-11-15

    A series of composites (1-x) (Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4})+x (BaTiO{sub 3}), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 Degree-Sign C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni{sub 0.6} Zn{sub 0.4} Fe{sub 2}O{sub 4} composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves. - Highlights: Black-Right-Pointing-Pointer Studied composite has a high magnetoelectric coefficient compared with other composites. Black-Right-Pointing-Pointer A p-n transition is observed

  9. Grazing effects on forage production and botanical composition in a Quercus ithaburensis subs. macrolepis silvopastoral system

    Science.gov (United States)

    Pantera, A.; Papanastasis, V. P.

    2009-04-01

    Grazing is considered as a major factor affecting forage production as well as botanical composition of many silvopastoral systems. In order to study these effects, three pairs of grazed and protected plots were established in a Quercus ithaburensis subsp. macrolepis silvopastoral system. The experiment was carried out in western Greece, 15 km west of the city of Agrinion. Data were collected for two continuous years and included the determination of palatable and unpalatable to animals plant species as well as the botanical composition. The results suggest that heavy grazing decreased biomass production approximately threefold. Grazing also affected number of acorns, botanical composition as well as vegetation cover whereas had no effect on natural regeneration in the study period.

  10. Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries

    Science.gov (United States)

    Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song

    2017-09-01

    The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.

  11. An exploratory examination of the relationship between motivational factors and the degree to which the higher education faculty integrate computer-mediated communication (CMC) tools into their courses

    Science.gov (United States)

    Murage, Francis Ndwiga

    The stated research problem of this study was to examine the relationship between motivational factors and the degree to which the higher education faculty integrate CMC tools into their courses. The study population and sample involved higher education faculty teaching in science departments at one public university and three public colleges in the state of West Virginia (N = 153). A Likert-type rating scale survey was used to collect data based on the research questions. Two parts of the survey were adopted from previous studies while the other two were self-constructed. Research questions and hypothesis were analyzed using both descriptive and inferential analyses. The study results established a positive relationship between motivational factors and the degree the higher education faculty integrate CMC tools in their courses. The results in addition established that faculty are highly motivated to integrate CMC tools by intrinsic factors, moderately motivated by environmental factors and least motivated by extrinsic factors. The results also established that the most integrated CMC tools were those that support asynchronous methods of communication while the least integrated were those that support synchronous methods of communication. A major conclusion made was that members of higher education faculty are more likely to be motivated to integrate CMC tools into their courses by intrinsic factors rather than extrinsic or environmental factors. It was further concluded that intrinsic factors that supported and enhanced student learning as well as those that were altruistic in nature significantly influenced the degree of CMC integration. The study finally concluded that to larger extent, there is a relationship between motivational factors and the degree to which the higher education faculty integrate CMC tools in their courses. A major implication of this study was that institutions that wish to promote integration of CMC technologies should provide as much

  12. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    Science.gov (United States)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  13. Development of a knowledge-based system for the design of composite automotive components

    Science.gov (United States)

    Moynihan, Gary P.; Stephens, J. Paul

    1997-01-01

    Composite materials are comprised of two or more constituents possessing significantly different physical properties. Due to their high strength and light weight, there is an emerging trend to utilize composites in the automotive industry. There is an inherent link between component design and the manufacturing processes necessary for fabrication. To many designers, this situation may be intimidating, since there is frequently little available understanding of composites and their processes. A direct results is high rates of product scrap and rework. Thus, there is a need to implement a systematic approach to composite material design. One such approach is quality function deployment (QFD). By translating customer requirements into design parameters, through the use of heuristics, QFD supports the improvement of product quality during the planning stages prior to actual production. The purpose of this research is to automate the use of knowledge pertaining to the design and application of composite materials within the automobile industry. This is being accomplished through the development of a prototype expert system incorporating a QFD approach. It will provide industry designers with access to knowledge of composite materials that might not be otherwise available.

  14. AWSCS-A System to Evaluate Different Approaches for the Automatic Composition and Execution of Web Services Flows.

    Science.gov (United States)

    Tardiole Kuehne, Bruno; Estrella, Julio Cezar; Nunes, Luiz Henrique; Martins de Oliveira, Edvard; Hideo Nakamura, Luis; Gomes Ferreira, Carlos Henrique; Carlucci Santana, Regina Helena; Reiff-Marganiec, Stephan; Santana, Marcos José

    2015-01-01

    This paper proposes a system named AWSCS (Automatic Web Service Composition System) to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.

  15. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    Science.gov (United States)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  16. Principles of Linguistic Composition Below and Beyond the Clause—Elements of a semantic combinatorial system

    DEFF Research Database (Denmark)

    Bundgaard, Peer

    2006-01-01

    beyond the scope of the clause. To this end it exposes two major principles of semantic combination that are active through all levels of linguistic composition: viz. frame-schematic structure and narrative structure. These principles are considered as being components of a semantic combinatorial system...

  17. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams

  18. In-service performance evaluation and monitoring of a hybrid composite beam bridge system : final report.

    Science.gov (United States)

    2017-10-01

    The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. An HCB consists of a concrete tied arch encased in a fiber reinfor...

  19. A transformation framework for the compositional interchange format for hybrid systems

    NARCIS (Netherlands)

    Hendriks, D.; Schiffelers, R.R.H.; Hüfner, Martin; Sonntag, Christian

    2012-01-01

    The purpose of the Compositional Interchange Format for hybrid systems (CIF) is to establish inter-operability of a wide range of tools by means of model transformations - using the CIF as intermediate, the implementation of many bi-lateral translators between specific formalisms can be avoided.

  20. Verification of Large State/Event Systems using Compositionality and Dependency Analysis

    DEFF Research Database (Denmark)

    Lind-Nielsen, Jørn; Andersen, Henrik Reif; Hulgaard, Henrik

    2001-01-01

    A state/event model is a concurrent version of Mealy machines used for describing embedded reactive systems. This paper introduces a technique that uses compositionality and dependency analysis to significantly improve the efficiency of symbolic model checking of state/event models. It makes...

  1. Verification of Large State/Event Systems using Compositionality and Dependency Analysis

    DEFF Research Database (Denmark)

    Lind-Nielsen, Jørn; Andersen, Henrik Reif; Behrmann, Gerd

    1999-01-01

    A state/event model is a concurrent version of Mealy machines used for describing embedded reactive systems. This paper introduces a technique that uses \\emph{compositionality} and \\emph{dependency analysis} to significantly improve the efficiency of symbolic model checking of state/event models...

  2. Comparison of different finishing/polishing systems on surface roughness and gloss of resin composites.

    Science.gov (United States)

    Antonson, Sibel A; Yazici, A Rüya; Kilinc, Evren; Antonson, Donald E; Hardigan, Patrick C

    2011-07-01

    The aim of this study was to compare four finishing/polishing systems (F/P) on surface roughness and gloss of different resin composites. A total of 40 disc samples (15 mm × 3 mm) were prepared from a nanofill - Filtek Supreme Plus (FS) and a micro-hybrid resin composite - Esthet-X (EX). Following 24h storage in 37°C water, the top surfaces of each sample were roughened using 120-grit sandpaper. Baseline measurements of surface roughness (Ra, μm) and gloss were recorded. Each composite group was divided into four F/P disk groups: Astropol[AP], Enhance/PoGo[EP], Sof-Lex[SL], and an experimental disk system, EXL-695[EXL] (n=5). The same operator finished/polished all samples. One sample from each group was evaluated under SEM. Another blinded-operator conducted postoperative measurements. Results were analysed by two-way ANOVA, two interactive MANOVA and Tukey's t-test (p0.01). In gloss, FS composite with the EXL-695 system provided a significantly higher gloss (pgloss (pgloss. SEM evaluations revealed that the EX surface contained more air pockets but F/P systems were compatible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Spent fuel isotopic composition data base system on WWW. SFCOMPO on W3

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Spent Fuel Composition Data Base System `SFCOMPO` has been developed on IBM compatible PC. This data base system is not widely used, since users must purchase the data base software by themselves. `SFCOMPO on W3` is a system to overcome this problem. User can search and visualize the data in the data base by accessing WWW server through the Internet from local machine. Only a browsing software to access WWW should be prepared. It enables us to easily search data of spent fuel composition if we can access the Internet. This system can be operated on WWW server machine which supports use of Common Gateway Interface (CGI). This report describes the background of the development of SFCOMPO on W3 and is it`s user`s manual. (author)

  4. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control.

    Science.gov (United States)

    Mobayen, Saleh

    2018-06-01

    This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Spent fuel isotopic composition data base system on WWW. SFCOMPO on W3

    International Nuclear Information System (INIS)

    Suyama, Kenya

    1997-11-01

    Spent Fuel Composition Data Base System 'SFCOMPO' has been developed on IBM compatible PC. This data base system is not widely used, since users must purchase the data base software by themselves. 'SFCOMPO on W3' is a system to overcome this problem. User can search and visualize the data in the data base by accessing WWW server through the Internet from local machine. Only a browsing software to access WWW should be prepared. It enables us to easily search data of spent fuel composition if we can access the Internet. This system can be operated on WWW server machine which supports use of Common Gateway Interface (CGI). This report describes the background of the development of SFCOMPO on W3 and is it's user's manual. (author)

  6. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  7. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu

    2015-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  8. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  9. Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System

    OpenAIRE

    Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei

    2013-01-01

    The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...

  10. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies.

    Science.gov (United States)

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2015-02-01

    The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p adhesive system to dentin.

  11. Enhanced magnetoelectric coupling in a composite multiferroic system via interposing a thin film polymer

    Science.gov (United States)

    Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.

    2018-05-01

    Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.

  12. Exploration of a digital audio processing platform using a compositional system level performance estimation framework

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents the application of a compositional simulation based system-level performance estimation framework on a non-trivial industrial case study. The case study is provided by the Danish company Bang & Olufsen ICEpower a/s and focuses on the exploration of a digital mobile audio...... processing platform. A short overview of the compositional performance estimation framework used is given followed by a presentation of how it is used for performance estimation using an iterative refinement process towards the final implementation. Finally, an evaluation in terms of accuracy and speed...

  13. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  14. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    Science.gov (United States)

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK -1 ) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK -1 , which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK -1 ). Moreover, an 11.3-13.3 MV m -1 breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  15. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  16. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    Science.gov (United States)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  17. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    Science.gov (United States)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  18. Experimental research on the influence of system parameters on the composition shift for zeotropic mixture (isobutane/pentane) in a system occurring phase change

    International Nuclear Information System (INIS)

    Bao, Junjiang; Zhao, Li

    2016-01-01

    Highlights: • The influence of system parameters on the composition shift for zeotropic mixture is studied. • Zeotropic mixture isobutane/pentane is selected as the working fluids. • Circulating composition and charge have the inverse proportion relationship. • The relationship between circulating composition and charge composition is linear. - Abstract: Zeotropic mixture can improve the performance of the thermodynamic cycle ascribed to the better temperature match during the heat transfer process with the characteristics of temperature glide during evaporation and condensing processes. Another characteristic of zeotropic mixture is composition shift. Composition shift means that the circulating composition and charge composition is different and is mainly caused by the two-phase hold-up and different solubility in lubricating oil. The existence of composition shift will affect the design and operation of thermodynamic system. The previous study gave little information about the influence of system parameters on the composition shift in a system occurring phase change. This paper mainly discuss the influence of system parameters on the composition shift for zeotropic mixture in a system occurring phase change as well as the validation of the linear relationship between the circulating composition and the charge composition and the inverse proportion relationship between the circulating composition and the charge mass found based on our previous theory study (Zhao and Bao, 2014). With isobutane and pentane as the research object, the impact of the key system parameters (hot water temperature, mass flow rate of hot water, feed pump frequency, cold water temperature and evaporator length) on composition shift are experimentally carried out. The results show that when the hot water temperature, mass flow rate of hot water and evaporator length increase and cold water temperature decreases, circulating composition will increase. For feed pump frequency, when

  19. Fabrication of Ni-Al/diamond composite based on layered and gradient structures of SHS system

    Directory of Open Access Journals (Sweden)

    Lu Jiafeng

    2017-01-01

    Full Text Available In this paper layered and gradient structures of Ni-Al SHS system were adopted to manufacture Ni-Al/diamond composites. The effect of the layered and the diamond mesh gradient structures of Ni-Al/diamond on the SHS process and the microstructure of the composites were investigated. It is found that with the increasing of the number of layers, the combustion wave velocity is decreased. The combustion wave velocity for diamond mesh size gradient structure of Ni-Al SHS is faster than that for the layered structure. A well bonding can be formed between diamond and the matrix in layered and gradient structure Ni-Al/diamond composites due to the melt of Ni-Cr brazing alloy.

  20. DISCO: An object-oriented system for music composition and sound design

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, H. G.; Tipei, S.; Wright, J. M.

    2000-09-05

    This paper describes an object-oriented approach to music composition and sound design. The approach unifies the processes of music making and instrument building by using similar logic, objects, and procedures. The composition modules use an abstract representation of musical data, which can be easily mapped onto different synthesis languages or a traditionally notated score. An abstract base class is used to derive classes on different time scales. Objects can be related to act across time scales, as well as across an entire piece, and relationships between similar objects can replicate traditional music operations or introduce new ones. The DISCO (Digital Instrument for Sonification and Composition) system is an open-ended work in progress.

  1. Modeling of the Critical Micelle Concentration (CMC) of Nonionic Surfactants with an Extended Group-Contribution Method

    DEFF Research Database (Denmark)

    Mattei, Michele; Kontogeorgis, Georgios; Gani, Rafiqul

    2013-01-01

    , those compounds that exhibit larger correlation errors (based only on first- and second-order groups) are assigned to more detailed molecular descriptions, so that better correlations of critical micelle concentrations are obtained. The group parameter estimation has been performed using a data set......A group-contribution (GC) property prediction model for estimating the critical micelle concentration (CMC) of nonionic surfactants in water at 25 °C is presented. The model is based on the Marrero and Gani GC method. A systematic analysis of the model performance against experimental data...... concentration, and in particular, the quantitative structure−property relationship models, the developed GC model provides an accurate correlation and allows for an easier and faster application in computer-aided molecular design techniques facilitating chemical process and product design....

  2. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by

  3. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Das, N., E-mail: nirupamd@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Mittra, J. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Murty, B.S. [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Pabi, S.K. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur 721 302 (India); Kulkarni, U.D.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A methodology was proposed to predict amorphous forming compositions (AFCs). Black-Right-Pointing-Pointer Chemical contribution to enthalpy of mixing {proportional_to} enthalpy of amorphous for AFCs. Black-Right-Pointing-Pointer Accuracy in the prediction of AFC-range was noticed in Al-Ni-Ti system. Black-Right-Pointing-Pointer Mechanical alloying (MA) results of Al-Ni-Ti followed the predicted AFC-range. Black-Right-Pointing-Pointer Earlier MA results of Al-Ni-Ti also conformed to the predicted AFC-range. - Abstract: From the earlier works on the prediction of amorphous forming composition range (AFCR) using Miedema based model and also, on mechanical alloying experiments it has been observed that all amorphous forming compositions of a given alloy system falls within a linear band when the chemical contribution to enthalpy of the solid solution ({Delta}H{sup ss}) is plotted against the enthalpy of mixing in the amorphous phase ({Delta}H{sup amor}). On the basis of this observation, a methodology has been proposed in this article to identify the AFCR of a ternary system that is likely to be more precise than what can be obtained using {Delta}H{sup amor} - {Delta}H{sup ss} < 0 criterion. MA experiments on various compositions of Al-Ni-Ti system, producing amorphous, crystalline, and mixture of amorphous plus crystalline phases have been carried out and the phases have been characterized using X-ray diffraction and transmission electron microscopy techniques. Data from the present MA experiments and, also, from the literature have been used to validate the proposed approach. Also, the proximity of compositions, producing a mixture of amorphous and crystalline phases to the boundary of AFCR in the Al-Ni-Ti ternary has been found useful to validate the effectiveness of the prediction.

  4. Estimate of thermoelastic heat production from superconducting composites in pulsed poloidal coil systems

    International Nuclear Information System (INIS)

    Ballou, J.K.; Gray, W.H.

    1976-01-01

    In the design of the cryogenic system and superconducting magnets for the poloidal field system in a tokamak, it is important to have an accurate estimate of the heat produced in superconducting magnets as a result of rapidly changing magnetic fields. A computer code, PLASS (Pulsed Losses in Axisymmetric Superconducting Solenoids), was written to estimate the contributions to the heat production from superconductor hysteresis losses, superconductor coupling losses, stabilizing material eddy current losses, and structural material eddy current losses. Recently, it has been shown that thermoelastic dissipation in superconducting composites can contribute as much to heat production as the other loss mechanisms mentioned above. A modification of PLASS which takes into consideration thermoelastic dissipation in superconducting composites is discussed. A comparison between superconductor thermoelastic dissipation and the other superconductor loss mechanisms is presented in terms of the poloidal coil system of the ORNL Experimental Power Reactor design

  5. Surface roughness of novel resin composites polished with one-step systems.

    Science.gov (United States)

    Ergücü, Z; Türkün, L S

    2007-01-01

    This study: 1) analyzed the surface roughness of five novel resin composites that contain nanoparticles after polishing with three different one-step systems and 2) evaluated the effectiveness of these polishers and their possible surface damage using scanning electron microscope (SEM) analysis. The resin composites evaluated in this study include CeramX, Filtek Supreme XT, Grandio, Premise and Tetric EvoCeram. A total of 100 discs (20/resin composites, 10 x 2 mm) were fabricated. Five specimens/resin composites cured under Mylar strips served as the control. The samples were polished for 30 seconds with PoGo, OptraPol and One Gloss discs at 15,000 rpm using a slow speed handpiece. The surfaces were tested for roughness (Ra) with a surface roughness tester and examined with SEM. One-way ANOVA was used for statistical analysis (p = 0.05). For all the composites tested, differences between the polishing systems were found to be significant (p One Gloss applications. For Grandio, Mylar and PoGo created equally smooth surfaces, while OptraPol and One Gloss produced equally rougher surfaces. Tetric EvoCeram exhibited the roughest surface with OptraPol, while no significant differences were found between Premise and CeramX. According to SEM images, OptraPol and One Gloss scratched and plucked the particles away from the surface, while PoGo created a uniform finish, although the roughness values were not the same for each composite. Effectiveness of the polishers seems to be material dependent.

  6. WATER BINDING IN COMPOSITE SYSTEMS BASED ON MILLED MEDICINAL PLANTS AND NANOSILICA

    Directory of Open Access Journals (Sweden)

    V. V. Turov

    2017-04-01

    Full Text Available The aim of the study was to identify the influence of hydrodensified nanosilica particles on the binding of water by milled plant raw materials in neutral and acidic media. Flowers of Hibiscus sabdariffa and Calendula officinalis were used as the model materials. According to the microphotographs and low temperature 1H NMR spectroscopy data, the silica film forms on the surface of the milled plant particles, and it can significantly influence their hydration. According to the suggested scheme, some of the water from the inner cavities of plant raw materials moves (as evidenced by the decreasing radius of water-filled pores to the zone of contact of the composite components (the radius of clusters of adsorbed water increases. In studies of desorption of active substances from milled medicinal herbs and their composites by the initial and hydrodensified nanosilica, it has been shown that the formation of a composite significantly reduces the rate of desorption. Minimal desorption is observed in composites containing hydrodensified nanosilica. The studied composite systems are promising for biomedical researches.

  7. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  8. Effect of different polishing systems and drinks on the color stability of resin composite.

    Science.gov (United States)

    Berber, Asll; Cakir, Filiz Yalcin; Baseren, Meserret; Gurgan, Sevil

    2013-07-01

    The purpose of this study was to evaluate the color stability of resin composit using different finishing systems and drinks. Composit disks (5 mm diameter, 2 mm thickness) were prepared for each nanofilled composite using a brass mold. The specimens were divided into 5 finishing system groups Mylar strip (Mylar, DuPont, Wilmington, Del., USA), Soft Lex (3M(™) ESPE(™) St. Paul, MN, USA), Enhance (Dentsply-DeTrey GmbHD Konstanz, Germany), Hiluster (KerrHawe, Bioggio, Switzerland), Opti Disc (KerrHawe, Bioggio, Switzerland) and each group was divided into 10 subgroups (n = 10) and stored for 24 hours at 37°C in different drinks water coffee, coffee with sugar, tea, tea with sugar, diet coke, coke, light sour cherry juice or sour cherry juice. Color of all specimens was measured before and after exposure with a spectrophotometer using CIE L*a*b* relative, and color changes (ΔE*) were then calculated. The data were analyzed with a twoway analysis of variance (ANOVA), and mean values were compared by the Tukey HSD test (p = 0.05). For the drinks, the lowest ΔE* values were observed in the water and highest ΔE* values were observed in sour cherry juice. When drinks with and without sugar were compared, all groups with sugar demonstrated a higher color difference than without sugar. For the different finishing systems, Mylar strip group demonstrated significantly highest color change; Enhance groups demonstrated significantly lowest color change. Finishing treatments and storage solutions significantly affect the color stability of resin composite. The presence of sugar in drinks increased the color difference compared to drinks without composit. Polishing techniques and drinking drinks with sugar may affect the color of esthetic restorations.

  9. Calibration of 3D Woven Preform Design Code for CMC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future hypersonic vehicles will utilize thermal protection system (TPS) designs and propulsion system components that are capable of experiencing high temperatures...

  10. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  11. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  12. Healable Composites

    Science.gov (United States)

    2012-03-28

    oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects 5. Characterize the...composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (2) Polymer (1) Furan (1) Maleimide Healable Composites...Develop pre-preg system of oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects

  13. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Capacity of milk composition to identify the feeding system used to feed dairy cows.

    Science.gov (United States)

    Vicente, Fernando; Santiago, Carme; Jiménez-Calderón, José D; Martínez-Fernández, Adela

    2017-08-01

    This Research Paper addresses the hypothesis that is possible to identify the type of feed used for dairy cows by means of the analysis of milk composition and the fatty acid profile of milk fat. Sixteen dairy farms were monitored during 1 year with quarterly visits between summer 2014 and spring 2015. Rations varied throughout the year due to annual dynamic change of forage production, forage rotation, variation of nutrient requirements according to physiological state of the animal, etc. The ingredients of the rations were analysed by cluster identifying five feeding systems based on the main ingredient of the diet: grazing, maize silage, grass silage, dry forage and concentrate. Milk composition could explain up to 91·3% of the total variability among feeding systems, while fatty acid profile could explain only up to 61·2% of total variability. However, when the sum of types of fatty acids and their ratios are taken, up to 93·5% of total variability could be explained. The maize silage system had the greatest milk yield, protein, solid non-fat and urea proportions, as well as the highest proportion of saturated fatty acid and lowest concentration of trans11 18 : 1, cis9 18 : 1 and 18 : 3 n3. Principal component analysis distinguishes the maize silage system from other feeding systems, both from milk composition and milk fatty acid profile. Concentrate system overlapped partially with the grazing, grass silage and dry forage systems. The latter systems had the highest concentrations of cis9 18 : 1, trans11 18 : 1 and 18 : 3, but there was no clear differentiation among them.

  15. Konut Transformasyonu Bağlamında Lefke’deki CMC Evlerinin Zaman İçerisindeki Dönüşümü / The Gradual Transformation of CMC Houses in Lefke within the Context of Housing Transformation

    Directory of Open Access Journals (Sweden)

    Çağla Beyaz

    2017-06-01

    Full Text Available Abstract This study aims to determine the reflections of the factors affecting the gradual change of the houses constructed for the American mining company CMC (Cyprus Mines Corporation in Lefke between 1916 and 1974. Research has shown that such factors as life standards, needs, politics, environmental factors, climate, geography and cultural factors have changed the housing demand. Having taken all these factors into consideration, we have reached a conclusion regarding the transformation of the houses by analysing the collected data by field research techniques appropriate to CMC houses in Lefke. The field research has been conducted by taking samples from each category and analysing them; and the gradual transformation and the underlying environmental factors have been determined. The field research techniques used in the study are interviews, photos, relieves and archive research. In the result obtained from the general work; Along with the rapid development caused by the effects of the Industrial Revolution, religious, cultural, economical, political and architectural conditions have been shaped in different forms and values. Along with these circumstances, the changes and transformations that observed in the world and affecting the cities have also affected Cyprus Island. In the Lefke region, along with the establishment of the CMC, the positive and negative effects of the terraced houses, built for the first time in Cyprus in four different categories and their close surroundings, draw quite attention. In the study, the transformations of these houses until today and the factors affecting them have been also determined. Öz Çalışma, Lefke Bölgesinde 1916-1974 yılları arasında faaliyet gösteren Amerikan maden şirketi CMC (Cyprus Mines Corporation için yapılmış olan konutların zaman içerisindeki form değişimine etki eden faktörlerin, konut mekânına olan etkilerini saptamaya yöneliktir. Konut ihtiyacının, yaşam

  16. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    Science.gov (United States)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  17. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    Cabrero, J.

    2009-11-01

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  18. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters

  19. Durability of a low shrinkage TEGDMA/HEMA-free resin composite system in Class II restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    with a mean age of 53 years (range 29-82). Each participant received at random two, as similar as possible, Class II restorations. In the first cavity of each pair the TEGDMA/HEMA-free resin composite system was placed with its 3-step etch-and-rinse adhesive (cmf-els). In the second cavity a 1-step HEMA......Objective: The objective of this randomized controlled prospective trial was to evaluate the durability of a low shrinkage and TEGDMA/HEMA-free resin composite system in posterior restorations in a 6-year follow up. Material and methods: 139 Class II restorations were placed in 67 patients......-free self-etch adhesive was used (AdheSe One F). The restorations were evaluated using slightly modified USPHS criteria at baseline and then yearly during 6 years. Caries risk and parafunctional habits of the participants were estimated. Results: Three molar teeth showed mild post-operative sensitivity...

  20. Model-Based Compositional Reasoning for Complex Systems of Systems (SoS)

    Science.gov (United States)

    2016-11-01

    CONTAINING (# rows := StateSize, cols := 1, matrix := LAMBDA (i: below(StateSize), j: below(1)): zero_measurement #); BSizeMatrix...NONEMPTY_TYPE = Measurement_Mat(StateSize, ActuatorSize) CONTAINING (# rows := StateSize, cols := ActuatorSize, matrix := LAMBDA (i: below...however possible options include: • a composite of all consumer-provider contextual compatibility assessments, • a matrix of compatibility

  1. Deflection Control in Composite Building by Using Belt Truss and Outriggers Systems

    OpenAIRE

    S. Fawzia; T. Fatima

    2010-01-01

    The design of high-rise building is more often dictated by its serviceability rather than strength. Structural Engineers are always striving to overcome challenge of controlling lateral deflection and storey drifts as well as self weight of structure imposed on foundation. One of the most effective techniques is the use of outrigger and belt truss system in Composite structures that can astutely solve the above two issues in High-rise constructions. This paper investig...

  2. Chemical Composition of Selected Beetroot Juices in Relation to Beetroot Production System and Processing Technology

    OpenAIRE

    Renata KAZIMIERCZAK; Agata SIŁAKIEWICZ; Ewelina HALLMANN; Dominika ŚREDNICKA-TOBER; Ewa REMBIAŁKOWSKA

    2016-01-01

    Market offer of vegetable juices in Europe is growing, and the vegetable species and processing technologies used become more diversified resulting in a large range of juice types. At the same time consumers look for natural and safe products with pro-health properties. The aim of this study was to evaluate the nutritional composition of selected juices based on beetroots coming from different agricultural systems and processed according to different technologies. Research material consisted ...

  3. Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems

    International Nuclear Information System (INIS)

    Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.

    1995-01-01

    The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs

  4. Hot composite systems with a > 200 and T > 6 MeV

    International Nuclear Information System (INIS)

    Crema, E.; Bresson, S.; Doubre, H.; Galin, J.; Guerreau, D.; Morjean, M.; Piasecki, E.; Pouthas, J.; Saint-Laurent, F.; Sokolov, A.; Wang, X.M.; Gatty, B.; Jacquet, D.; Piasecki, E.; Crema, E.; Wang, X.M.

    1990-01-01

    Neutron multiplicities have been measured in coincidence with the light charged particles evaporated in the backward direction for the reaction 84 Kr+ 197 Au at 32 MeV/u. A method is presented which makes possible an evaluation of the recoil velocity, excitation energy and temperature of hot and thermalized heavy composite systems formed for different impact parameters. Temperatures larger than 6 MeV are found for the most dissipative collisions

  5. Active Vibration damping of Smart composite beams based on system identification technique

    Science.gov (United States)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  6. Effects of leached components from a hybrid resin composite on the reproductive system of male mice

    Directory of Open Access Journals (Sweden)

    Taher Akbari Saeed

    2012-01-01

    Full Text Available Background and Aims: There is concern that leached components from dental composites may cause adverse changes in the reproductive health. This study aimed to assess the effects of leached components from a hybrid resin composite on the reproductive system of male mice.Materials and Methods: In the present animal study, twenty adult Syrian male mice were divided into two groups of 10 mice each. In the test group, components which leached from samples made from Filtek Z250 resin composite into 75% ethanol were daily administered to the mice for 28 days. In the control group, the procedure was repeated in the same way as the test group but without placing composite samples in the solution. Then, the body weight, weights of paired testes, Gonado Somatic Index, sperm viability, sperm motility, epididymal sperm reserve and daily sperm production were recorded. Four male mice in each group were mated with untreated female mice for 10 days. After that, the number of pregnant females and number of infants were recorded. The data were analyzed using repeated measures ANOVA, Chi-square test and t-test.Results: There was a significant reduction in the sperm viability and sperm motility of male mice in the test group compared to the control group (P=0.001. There was no any significant differences in other parameters between two groups (P>0.05.Conclusion: This study showed that the leached components from resin composites cannot cause infertility but they could potentially cause some adverse effects on the reproductive system of male mice.

  7. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    Science.gov (United States)

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P OneGloss" (P OneGloss" and "Sof-Lex Spiral."

  8. Comparative evaluation of effect of different polishing systems on surface roughness of composite resin: An in vitro study.

    Science.gov (United States)

    Chour, Rashmi G; Moda, Aman; Arora, Arpana; Arafath, Muhmmed Y; Shetty, Vikram K; Rishal, Yousef

    2016-08-01

    Satisfactory composite restoration depends upon its smooth finish, quality of polishing agents, type of composite material used, and its composition. The present study evaluated the effect of different polishing systems on the surface roughness of composite resin. Forty discs of composite were prepared and equally subjected to different finishing and polishing procedures; (i) unpolished control group, (ii) sof-lex discs, (iii) diamond tips, and (iv) Astrobrush groups. Later, the surface roughness for the entire specimen was evaluated using Profilomotor. Data were tabulated and statistically analyzed using analysis of variance and Tukey's test at significance level of 0.001. Composite surface roughness after polishing was statistically significant between the groups. Sof-lex group produced lesser surface roughness compared to control, Astrobrush, and diamond group. The present study indicated that diamond tips can be used to remove rough surface whereas sof-lex can be used for final finish and polish of the composite restoration.

  9. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  10. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications.

    Science.gov (United States)

    Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi

    2018-06-01

    In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1  cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be

  11. Investigation of Carboxymethyl Cellulose (CMC on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films

    Directory of Open Access Journals (Sweden)

    Mahsa Tabari

    2017-05-01

    Full Text Available The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased (p < 0.05 and caused a reduction in the equilibrium moisture of these films. In the mechanical testing of the composite films, the tensile strength and Young’s modulus significantly increased and the elongation percent significantly decreased with the increase in the concentration of carboxymethyl cellulose. Considering the biodegradability of the films and the improvement of their mechanical properties by carboxymethyl cellulose, this kind of packaging can be used in different industries, especially the food industry, as an edible coating for packaging food and agricultural crops.

  12. Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

    International Nuclear Information System (INIS)

    RA Wolf

    2006-01-01

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed

  13. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  14. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  15. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  16. The system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb2Ln composition

    International Nuclear Information System (INIS)

    Badalova, M.A.; Chamanova, M.; Dodkhoev, E.S.; Badalov, A.; Abdusalyamova, M.N.

    2015-01-01

    Present article is devoted to system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb 2 Ln composition. The melting enthalpy was estimated. The temperature value was determined.

  17. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems

    Science.gov (United States)

    Nieuwenhuijsen, M. J.; Gómez-Perales, J. E.; Colvile, R. N.

    The aim of this study was to review and summarise the levels of particulate air pollution, its elemental composition, its determinants, and its potential health effects in metro systems. A number of studies have been conducted to assess the levels of particulate matter and its chemical composition in metro systems. The monitoring equipment used varied and may have led to different reporting and makes it more difficult to compare results between metro systems. Some of the highest average levels of particulate matter were measured in the London metro system. Whereas some studies have reported higher levels of particulate matter in the metro system (e.g. London, Helsinki, Stockholm) compared to other modes of transport (London) and street canyons (Stockholm and Helsinki), other studies reported lower levels in the metro system (e.g. Hong Kong, Guangzhou, and Mexico City). The differences may be due to different material of the wheel, ventilation levels and breaking systems but there is no good evidence to what extent the differences may be explained by this, except perhaps for some elements (e.g. Fe, Mn). The dust in the metro system was shown to be more toxic than ambient airborne particulates, and its toxicity was compared with welding dust. The higher toxicity may be due to the higher iron content. Although the current levels of particulate matter and toxic matter are unlikely to lead to any significant excess health effects in commuters, they should be reduced where possible. It will be difficult to introduce measures to reduce the levels in older metro systems, e.g. by introducing air conditioning in London, but certainly they should be part of any new designs of metro systems.

  18. Selective confinement of vibrations in composite systems with alternate quasi-regular sequences

    International Nuclear Information System (INIS)

    Montalban, A.; Velasco, V.R.; Tutor, J.; Fernandez-Velicia, F.J.

    2007-01-01

    We have studied the atom displacements and the vibrational frequencies of 1D systems formed by combinations of Fibonacci, Thue-Morse and Rudin-Shapiro quasi-regular stacks and their alternate ones. The materials are described by nearest-neighbor force constants and the corresponding atom masses, particularized to the Al, Ag systems. These structures exhibit differences in the frequency spectrum as compared to the original simple quasi-regular generations but the most important feature is the presence of separate confinement of the atom displacements in one of the sequences forming the total composite structure for different frequency ranges

  19. Selective confinement of vibrations in composite systems with alternate quasi-regular sequences

    Energy Technology Data Exchange (ETDEWEB)

    Montalban, A. [Departamento de Ciencia y Tecnologia de Materiales, Division de Optica, Universidad Miguel Hernandez, 03202 Elche (Spain); Velasco, V.R. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)]. E-mail: vrvr@icmm.csic.es; Tutor, J. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fernandez-Velicia, F.J. [Departamento de Fisica de los Materiales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28080 Madrid (Spain)

    2007-01-01

    We have studied the atom displacements and the vibrational frequencies of 1D systems formed by combinations of Fibonacci, Thue-Morse and Rudin-Shapiro quasi-regular stacks and their alternate ones. The materials are described by nearest-neighbor force constants and the corresponding atom masses, particularized to the Al, Ag systems. These structures exhibit differences in the frequency spectrum as compared to the original simple quasi-regular generations but the most important feature is the presence of separate confinement of the atom displacements in one of the sequences forming the total composite structure for different frequency ranges.

  20. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  1. Modification Of The Manufacturing Process Of A Composite Structure- From System Needs To Elementary Tests

    Science.gov (United States)

    Touzard, Jerome; Veilleraud, Frederic; Collias, Michael

    2012-07-01

    The SYLDA5 structure (SYstème de Lancement Double Ariane 5 - Ariane 5 dual launch system) is a lightweight carbon composite structure designed and manufactured by Astrium Space Transportation at Les Mureaux premises. In order to improve the manufacturing process of t he SYLDA5, a proposal was made by SYLDA5 technical team to change the manufacturing process of the composite sandwich parts. The SYLDA5 is however one of the main contributors in the dynamic behaviour of the upper part of Ariane 5 launcher and plays an important role in the qualification of the launcher. The present paper describes the overall qualification logic retained, from System requirements to material tests and to global System qualification, in a classical V- type design cycle. It demonstrates the necessity to take into account System needs when modifying a part of it, especially when the System is qualified with actual characteristics of t he parts that may not be defined in product’s initial requirements.

  2. On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems.

    Science.gov (United States)

    García-Valls, Marisol; Touahria, Imad Eddine

    2017-06-08

    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded

  3. Probabilistic Modeling of High-Temperature Material Properties of a 5-Harness 0/90 Sylramic Fiber/ CVI-SiC/ MI-SiC Woven Composite

    Science.gov (United States)

    Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh

    1998-01-01

    An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.

  4. Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades

    Science.gov (United States)

    Pawar, Prashant M.; Ganguli, Ranjan

    2007-07-01

    A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.

  5. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  6. A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems

    Science.gov (United States)

    Chan, Tony; Szeto, Tedd

    1994-03-01

    We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.

  7. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  8. Mechanical properties of Fe-Mn-Cu-Al alloy systems and optimization of their composition

    International Nuclear Information System (INIS)

    Tkachenko, I.F.; Baranov, A.A.

    1981-01-01

    Studied is the separate and combined effect of Cu and Al on mechanical properties of the Fe-Mn-Al-Cu system alloys using a simplex- lattice method of experiment planning. Heat treated specimens in the form of plates have been subjected to mechanical tests. It is shown that mechanical properties of studied alloys change sufficiently in the result of tempering in heterogeneous (α+γ) region. Studied alloys have the most favourable conbination of characteristics of strength, plasticity and impact strength after tempering at 630 deg C during 2 hours. Diagrams are obtained which characterizes dependence of mechanical properties of alloys on their composition. They permit to select optimum compositions of alloys with the necessary combination of strength, plasticity and impact strength [ru

  9. RAMONA-3B/MINET composite representation of BWR thermal-hydraulic systems

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.; Cazzoli, E.G.; Nepsee, T.C.; Guppy, J.G.

    1985-01-01

    The modification and interfacing of two computer codes, RAMONA-3B and MINET, for the thermal hydraulic transient analysis of a Boiling Water Reactor nuclear steam supply system, is described. The RAMONA-3B code provides for multi-channel thermal hydraulics and three-dimensional (or one-dimensional) neutron kinetics analysis of a boiling water reactor core. The RAMONA-3B system representation terminates at the end of the steam line and at the junction of the feedwater line at the vessel inlet. By interfacing RAMONA-3B with MINET, a generic balance-of-plant systems analysis code, a complete BWR systems code with detailed core modeling was obtained. The result is a code of particular importance to the analysis of transients such as ATWS. A comparison between the 3-D and 1-D neutronics representation is provided, along with a test case utilizing the composite RAMONA-3B/MINET code

  10. Failure criteria for low-temperature irradiated organic composite insulation systems

    International Nuclear Information System (INIS)

    Schutz, J.B.; Fabian, P.E.

    1997-01-01

    Composite insulation systems in fusion magnet applications are often subjected to conditions of combined through thickness compression and shear at varying stress ratios. Characterization of insulation system strength under these conditions requires unidirectional shear and compression tests, as well as biaxial shear/compression testing to define the systems failure envelope. An appropriate failure criteria would reduce the number of tests required to define this envelope, and would give designers a better estimate of material strengths at intermediate stress ratios. Biaxial shear/compression testing requires the use of metallic sandwich specimens, which are susceptible to activation during irradiation. A reliable failure criteria which eliminates the need for biaxial characterization would also reduce the difficulty and expense involved in radiation effects characterization while still providing a complete failure envelope. Several generalized failure criteria, taken from classical composites analysis, were reformulated for application in the shear/compression quadrant. The maximum stress and Tsai-Hill criteria were found to be inadequate to represent the biaxial failure envelope. The generalized Tsai-Wu tensor quadratic failure criterion was also examined. Application of this criterion requires through thickness tensile strength data. Through thickness tensile strengths of insulation systems have not been routinely characterized, but limited data are available. Utilizing unidirectional through thickness tension, compression, and interlaminar shear strength data, the Tsai-Wu failure criteria was found to agree well with biaxial shear/compression test data

  11. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hattan

    2013-01-01

    Full Text Available Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80 stainless steel crowns (SSCs were divided into four groups (20 each. Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group, Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany, and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength ( to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  12. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  14. A new system using NMR technology for measurement of body composition in experimental animals

    International Nuclear Information System (INIS)

    Suzuki, Jun; Nishikibe, Masaru

    2004-01-01

    Measurement of body composition (fat mass) is an important item in pathophysiological and pharmacological studies using small animals (mice) in the fields of obesity and diabetes. The existing methods are, however, difficult, time consuming, and require a shielding facility. Now a novel system using nuclear magnetic resonance (NMR) technique was developed for measurement of body composition in small animals (mice) that provides noninvasive and rapid measurement without anesthetics; we introduced and evaluated this system and tried another application of this system. First, we validated this system using canola oil, soft tissues (adipose and skeletal muscle), and various kinds of rodent chows. Accuracy, precision, and reproducibility of this system were demonstrated to be equal to those in standard chemical methods. A strong positive correlation (y=x) between the results of NMR and chemical methods was found. Secondly, we evaluated accuracy and assay range of the NMR method using live mice that were fasted overnight or fed high fat diet (HFD). In fasted mice, a small but quantitative decrease of fat mass (5.1% from 9.1%) was detected. Total decrease of fat and lean mass (5.0 g) in fasted mice was equivalent to the decrease of body weight (5.0 g). In mice fed the HFD, increase of fat mass with relative decrease of lean mass were qualitatively detected in a time-dependent manner. We would like to emphasize that operation of the system was actually easy and measurements were accomplished in a short time (1 minute). Thirdly, we tried to use the NMR system for determination of hepatic fat contents using mice fasted or treated with a peroxisome proliferator-activated receptor (PPAR)γ agonist; our results showed a quantitative increase in fat by fasting or in decrease in fat by the drug treatment. The changes of fat contents determined by the NMR method were well correlated with the changes in triglyceride and total cholesterol values obtained by the biochemical assays

  15. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  16. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  17. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity.

    Science.gov (United States)

    Basu Ray, Gargi; Chakraborty, Indranil; Moulik, Satya P

    2006-02-01

    The critical micellar concentration (cmc) of both ionic and non-ionic surfactants can be conveniently determined from the measurements of UV absorption of pyrene in surfactant solution. The results on a number of surfactants have agreed with that realized from pyrene fluorescence measurements as well as that obtained following conductometric, tensiometric and calorimetric methods. The absorbance vs [surfactant] profiles for all the major UV spectral peaks of pyrene have been found to be sigmoidal in nature which were analyzed according to Sigmoidal-Boltzmann equation (SBE) to evaluate the cmcs of the studied surfactants. The difference between the initial and the final asymptotes (a(i) and a(f), respectively) of the sigmoidal profile, Delta a = (a(f)-a(i)) and the slope of the sigmoid, S(sig) have been observed to depend on the type of the surfactant. The Delta a has shown a linear correlation with the ratio of the fluorescence intensities of the first and the third vibronic peaks, I1/I3 of pyrene which is considered as a measure of the environmental polarity (herein micellar interior) of the probe (pyrene). Thus, Delta a values have the prospect for use as another index for the estimation of polarity of micellar interior.

  18. Concrete compositions and methods

    Science.gov (United States)

    Chen, Irvin; Lee, Patricia Tung; Patterson, Joshua

    2015-06-23

    Provided herein are compositions, methods, and systems for cementitious compositions containing calcium carbonate compositions and aggregate. The compositions find use in a variety of applications, including use in a variety of building materials and building applications.

  19. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali; Li, Dong; Ouf, Mohamed; Drewes, Jorg

    2014-01-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil

  20. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  1. Comparative evaluation of microleakage of composite restorations using fifth and seventh generations of adhesive systems

    Directory of Open Access Journals (Sweden)

    Mitra Tabari

    2014-09-01

    Full Text Available Introduction: Simultaneous etching of enamel and dentin using the novel generation of adhesive systems with contracted operational steps, has shown a good clinical efficacy. The aim of this study was to evaluate the microleakage of composite restorations using the V and VII generations of adhesive systems on primary teeth. Methods: This study was performed on 45 human intact extracted primary teeth. Following class V cavity preparation, the samples were randomly divided into three groups included 15 teeth based on the type of bonding agent Single Bond 2, Clearfil S3 Bond or G Bond. After applying the bonding agents, the teeth filled with composite Z250. The microleakage values of incisal and gingival margins were separately scored by 2% basic fuchsine staining based on a 0-3 ordinal ranking system. The data were analyzed by using Kruskal Wallis and Mann_whitney U tests. Results: In overall, the score of microleakage at incisal (0.58±0.94 and gingival (1.06±0.19 edges did not have significant difference. Also, there was no significant difference between incisal and gingival microleakage considering the different types of bonding. Conclusion: Regarding to less operational steps and lower risk of salivary contamination, the VII generation of dentin bonding agents can be applied for filling the class V cavities of primary teeth.

  2. Measurement of the optical density of packable composites: comparison between direct and indirect digital systems

    Directory of Open Access Journals (Sweden)

    Graziottin Luiz Felipe Rodrigues

    2002-01-01

    Full Text Available The aim of this study was to measure the optical density of four packable composite resins with widths of 1, 2, 3 and 4 mm, by means of Digora® (direct and DentScan DentView® (indirect digital imaging systems, in order to compare both methods. Twenty acrylic plates, with the proposed thicknesses, were used, each one containing a sample of each resin. Each acrylic plate was radiographed three times, under a standardized technique. For the Digora® system, an optical plate was used under each resin sample, and, for the DentScan DentView® system, occlusal films were employed, totalizing 60 exposures for each system. Optical plates and films were scanned and three consecutive optical readouts were carried out, totalizing 1,440 readouts. The results were submitted to statistical analysis and revealed that the average optical density of the four resins always increased as thickness increased. Regarding the comparisons between the composite resins, in both analysis the resin with the greater optical density was SurefilTM followed by ProdigyTM Condensable, AlertTM and Solitaire®. The correlations between the results of Digora® and DentScan DentView® were significant for the different thicknesses and materials. The observed tendency is that as the values obtained with the Digora® system increase, so do the values obtained with DentScan DentView®. While thickness increased, the values of optical density in both Digora® and DentScan DentView® tended to approach each other. The Digora® system presented smaller amplitude between the results obtained in adjacent thicknesses.

  3. Composition of Cu/Al system constructed by means of dynamic atomic deposition

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2011-01-01

    Rutherford backscattering and RUMP simulation programme have been applied to investigate composition of Cu/Al system prepared using dynamic atomic deposition process when deposition of Cu thin film on Al substrate was assisted with 6 keV Ar + ions irradiation. It is estimated that thin ( ~15 nm) surface layer consists of ~50 at.% Cu, ~10 at.% Ar, ~4 at.% O and the remaining is Al. Dynamic deposition of Cu on Al substrate is accompanied with radiation enhanced diffusion of Cu, O, Ar atoms in substrate and out diffusion of Al atoms in deposited Cu coating. (authors)

  4. Glass transition and composite formation in InF{sub 3}-containing oxyfluoroniobate system

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, N. N.; Ignatieva, L. N.; Marchenko, Yu. V. [Institute of Chemistry FEB RAS, Vladivostok (Russian Federation); Bouznik, V. M. [All-Russian Scientific Research Institute of Aviation Materials (Russian Federation)

    2016-05-18

    The glasses in the system MnNbOF{sub 5}-BaF{sub 2}-InF{sub 3} have been firstly synthesized and studied. The thermal parameters of these glasses are analyzed. It was stated that glass of the composition 40MnNbOF{sub 5}-40BaF{sub 2}-20InF{sub 3} is the most thermal stable in the system under study. By X-ray analysis the compositions of the crystalline phases obtained at the glass thermal treatment were determined: the main phases are Ba{sub 3}In{sub 2}F{sub 12} and BaNbOF{sub 5}. By Raman and IR spectra analysis it was stated that the networks of glasses in the system are built by the structural type of the glasses in NbO{sub 2}F-BaF{sub 2} system: (NbO{sub n}F{sub m}) polyhedra joined oxygen bridges. Indium trifluoride forms InF{sub 6} polyhedra, which are embeded between oxyfluoroniobate ions, forming a common networks or forms its own layers from InF{sub 6} polyhedra. IR-spectroscopy method showed that at devitrification of the sample 30MnNbOF{sub 5}-50BaF{sub 2}-20InF{sub 3} the band position and shape change in going from glass state to crystalline. The bands in the range 900–700 cm{sup −1} shift into the low-frequency range and transformed into narrow peaks characteristic for the crystalline state. It was determined that for this sample the IR-spectroscopy method fixes the presence of the crystalline phases at 340°C without time of exposure, despite the fact that X-ray analysis shows an amorphous state for this sample at the same temperature. It was suggested, that controlling the composition and conditions of annealing of the glasses it can be obtain the transparent glass-ceramics of definite composition.

  5. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    Science.gov (United States)

    Valdez, Carlos A.; Vu, Alexander K.

    2017-10-17

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  6. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  7. Adhesive systems: important aspects related to their composition and clinical use

    Directory of Open Access Journals (Sweden)

    Mario Honorato Silva e Souza Junior

    2010-06-01

    Full Text Available This literature review article addresses the types and the main components of different etch-and-rinse and self-etch adhesive systems available in the market, and relates them to their function, possible chemical interactions and infuence of handling characteristics. Scanning electron microscopy (SEM images are presented to characterize the interface between adhesives and dentin. Adhesive systems have been recently classifed according to their adhesion approaches in etch-and-rinse, self-etch and glass ionomer. The etch-and-rinse systems require a specifc acid-etch procedure and may be performed in two or three steps. Self-etch systems employ acidic monomers that demineralize and impregnate dental substrates almost at the same time. These systems are separated in one or two steps. Some advantages and defciencies were noted for etch-and-rinse and self-etch approaches, mainly for the simplifed ones due to some chemical associations and interactions. The SEM micrographs illustrate different relationships between adhesive systems and dental structures, particularly dentin. The knowledge of composition, characteristics and mechanisms of adhesion of each adhesive system is of fundamental importance to permit the adoption of ideal bonding strategies under clinical conditions.

  8. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors; Amelioration de la conductivite thermique des composites a matrice ceramique pour les reacteurs de 4. generation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.

    2009-11-15

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  9. Carboxymethyl Cellulose (CMC) from Oil Palm Empty Fruit Bunch (OPEFB) in the new solvent Dimethyl Sulfoxide (DMSO)/Tetrabutylammonium Fluoride (TBAF)

    Science.gov (United States)

    Eliza, M. Y.; Shahruddin, M.; Noormaziah, J.; Rosli, W. D. Wan

    2015-06-01

    The surplus of Oil Palm is the most galore wastes in Malaysia because it produced about half of the world palm oil production, which contributes a major disposal problem Synthesis from an empty fruit bunch produced products such as Carboxymethyl Cellulose (CMC), could apply in diverse application such as for paper coating, food packaging and most recently, the potential as biomaterials has been revealed. In this study, CMC was prepared by firstly dissolved the bleached pulp from OPEFB in mixture solution of dimethyl sulfoxide(DMSO)/tetrabutylammonium fluoride (TBAF) without any prior chemical modification. It took only 30 minutes to fully dissolve at temperature 60°C before sodium hydroxide (NaOH) were added for activation and monochloroacetateas terrifying agent. The final product is appeared in white powder, which is then will be analyzedby FTIR analysis. FTIR results show peaks appeared at wavenumber between 1609 cm-1 to 1614 cm-1 proved the existence of carboxymethyl groups which substitute OH groups at anhydroglucose(AGU) unit. As a conclusion, mixture solution of DMSO/TBAF is the suitable solvent used for dissolved cellulose before modifying it into CMC with higher Degree of Substitution (DS). Furthermore, the dissolution of the OPEFB bleached pulp was easy, simple and at a faster rate without prior chemical modification at temperature as low as 60°C.

  10. System composition and operation of exposure dose registration and control system (Final report)

    International Nuclear Information System (INIS)

    1978-01-01

    Since November, 1976, the committee concerning the investigation of exposure dose registration and control system for employees in nuclear industries has discussed on the exposure dose registration and control system, issued the interim report (outline) in April, 1977, and continued to investigate the details organizing the working group. Here, the final report is presented. It describes first on the definition of the terms used and the basic concept of the exposure dose registration and control system, in which the name of that organization is decided as ''Central Registration Office for Radiation Works'', Radiation Influence Association, the foundational juridical person. Next, the works to be performed in the Center and nuclear energy enterprises are explained. The items concerning the business management at the time of practical execution are the major part of the report, and are over 22 items. These include the registration business, the official reporting business, inquiry and answer business about career, change and revision, and computer processing system. As the temporary measures for transfer ring to the new system, 10 items are also provided. Supplementary explanation of 9 important items is given in the appendix. (Wakatsuki, Y.)

  11. Saturation Recovery Myocardial T1 Mapping with a Composite Radiofrequency Pulse on a 3T MR Imaging System.

    Science.gov (United States)

    Morita, Kosuke; Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Matsubara, Takatoshi; Goto, Makoto; Okuaki, Tomoyuki; Yuki, Hideaki; Nagayama, Yasunori; Kidoh, Masafumi; Hirata, Kenichiro; Iyama, Yuij; Taguchi, Narumi; Hatemura, Masahiro; Hashida, Masahiro; Yamashita, Yasuyuki

    2018-01-10

    To evaluate the effect of a composite radiofrequency (RF) pulse on saturation recovery (SR) myocardial T 1 mapping using a 3T MR system. Phantom and in vivo studies were performed with a clinical 3T MR scanner. Accuracy and reproducibility of the SR T 1 mapping using conventional and composite RF pulses were first compared in phantom experiments. An in vivo study was performed of 10 healthy volunteers who were imaged with conventional and composite RF pulse methods twice each. In vivo reproducibility of myocardial T 1 value and the inter-segment variability were assessed. The phantom study revealed significant differences in the mean T 1 values between the two methods, and the reproducibility for the composite RF pulse was significantly smaller than that for the conventional RF pulse. For both methods, the correlations of the reference and measured T 1 values were excellent (r 2 = 0.97 and 0.98 for conventional and composite RF pulses, respectively). The in vivo study showed that the mean T 1 value for composite RF pulse was slightly lower than that for conventional RF pulse, but this difference was not significant (P = 0.06). The inter-segment variability for the composite RF pulse was significantly smaller than that for conventional RF pulse (P composite RF pulses (r = 0.83 and 0.29, respectively). SR T 1 mapping using composite RF pulse provides accurate quantification of T 1 values and can lessen measurement variability and enable reproducible T 1 measurements.

  12. Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark

    2002-07-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

  13. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system

    Science.gov (United States)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2015-11-01

    Refueling emissions from cars available on the Japanese market, which were not equipped with specific controlling devices, were investigated. For the composition analysis, a proton transfer reaction plus switchable reagent ion mass spectrometry (PTR + SRI-MS), which is capable of real-time measurement, was used. In addition, the performance of a vapor liquefied collection system (VLCS), which is a recently developed controlling device, was evaluated and compared with an onboard refueling vapor recovery (ORVR) system. The refueling emission factor of uncontrolled vehicles at 20 °C was 1.02 ± 0.40 g/L in the case dispensing 20 L of fuel. The results of composition analysis indicated that the maximum incremental reactivity (MIR) of refueling emissions in Japan was 3.49 ± 0.83. The emissions consist of 80% alkanes and 20% alkenes, and aromatics and di-enes were negligible. C4 alkene had the highest impact on the MIR of refueling emissions. The amounts of refueling emissions were well reproduced by a function developed by MOVE2010 in the temperature range of 5-35 °C. The compositions of the refueling emissions varied in this temperature range, but the change in MIR was negligible. The trapping efficiency of VLCS was the same level as that of the ORVR (over 95%). The MIRs of refueling and evaporative emissions were strongly affected by that of the test fuel. This study and our previous study indicated that MIRbreakthrough ≈ MIRrefueling ≈ MIRfuel + 0.5 and MIRpermeation ≈ MIRfuel. The real-world estimated average MIRfuel in Japan was about 3.0.

  14. Innovative SiC/SiC composite for nuclear applications

    International Nuclear Information System (INIS)

    Chaffron, L.; Sauder, C.; Lorrette, C.; Briottet, L.; Michaux, A.; Gelebart, L.; Coupe, A.; Zabiego, M.; Le Flem, M.; Seran, J. L.

    2013-01-01

    Among various refractory materials, SiC/SiC ceramic matrix composites (CMC) are of prime interest for fusion and advanced fission energy applications, due to their excellent irradiation tolerance and safety features (low activation, low tritium permeability,K). Initially developed as fuel cladding materials for the Fourth generation Gas cooled Fast Reactor (GFR), this material has been recently envisaged by CEA for different core structures of Sodium Fast Reactor (SFR) which combines fast neutrons and high temperature (500 deg.C). Regarding fuel cladding generic application, in the case of GFR, the first challenge facing this project is to demonstrate the feasibility of a fuel operating under very harsh conditions that are (i) temperatures of structures up to 700 deg.C in nominal and over 1600 deg.C in accidental conditions, (ii) irradiation damage higher than 60 dpa SiC , (iii) neutronic transparency, which disqualifies conventional refractory metals as structural core materials, (iv) mechanical behavior that guarantees in most circumstances the integrity of the first barrier (e.g.: ε> 0.5%), which excludes monolithic ceramics and therefore encourages the development of new types of fibrous composites SiC/SiC adapted to the fast reactor conditions. No existing material being capable to match all these requirements, CEA has launched an ambitious program of development of an advanced material satisfying the specifications [1]. This project, that implies many laboratories, inside and outside CEA, has permitted to obtain a very high quality compound that meets most of the challenging requirements. We present hereinafter few recent results obtained regarding the development of the composite. One of the most relevant challenges was to make a gas-tight composite up to the ultimate rupture. Indeed, multi-cracking of the matrix is the counterpart of the damageable behavior observed in these amazing compounds. Among different solutions envisaged, an innovative one has been

  15. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Sun, Denghao; Takeda, Nobuo

    2014-01-01

    This study combines our hierarchical fiber-optic-based delamination detection system with a microvascular self-healing material to develop the first autonomous sensing-healing system applicable to large-scale composite structures. In this combined system, embedded vascular modules are connected through check valves to a surface-mounted supply tube of a pressurized healing agent while fiber-optic-based sensors monitor the internal pressure of these vascular modules. When delamination occurs, the healing agent flows into the vascular modules breached by the delamination and infiltrates the damage for healing. At the same time, the pressure sensors identify the damaged modules by detecting internal pressure changes. This paper begins by describing the basic concept of the combined system and by discussing the advantages that arise from its hierarchical nature. The feasibility of the system is then confirmed through delamination infiltration tests. Finally, the hierarchical system is validated in a plate specimen by focusing on the detection and infiltration of the damage. Its self-diagnostic function is also demonstrated. (paper)

  16. Composition dependency of the glass forming ability (GFA) in Mg-Ni-Si system by mechanical alloying

    International Nuclear Information System (INIS)

    Xie Haowen; Lin Jianguo; Li Yuncang; Hodgson, Peter D.; Wen Cuie

    2007-01-01

    The pure elemental powder mixtures with the compositions of Mg 65 Ni x Si 35-x (x = 10, 20, 25, 33 at.%) were subject to high-energy ball mill, and the structures of the mixtures at different intervals of milling were characterised by X-ray diffraction (XRD). The compositional dependency of the glass forming ability (GFA) in Mg-Ni-Si system was evaluated based on the experimental results and the theoretical calculation. The compositional dependency of GFA in Mg-Ni-Si system can be understood well by comparing the enthalpies of the crystalline and amorphous phases based on the Miedema's theory for the formation enthalpy of alloys. Increasing the Ni/Mg ratio and/or decreasing Si content can improve the amorphous formability. The calculation results might be of great help in optimising the composition with high GFA in Mg-Ni-Si system

  17. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Science.gov (United States)

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.

    2005-02-01

    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  18. All-automatic swimmer tracking system based on an optimized scaled composite JTC technique

    Science.gov (United States)

    Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.

    2016-04-01

    In this paper, an all-automatic optimized JTC based swimmer tracking system is proposed and evaluated on real video database outcome from national and international swimming competitions (French National Championship, Limoges 2015, FINA World Championships, Barcelona 2013 and Kazan 2015). First, we proposed to calibrate the swimming pool using the DLT algorithm (Direct Linear Transformation). DLT calculates the homography matrix given a sufficient set of correspondence points between pixels and metric coordinates: i.e. DLT takes into account the dimensions of the swimming pool and the type of the swim. Once the swimming pool is calibrated, we extract the lane. Then we apply a motion detection approach to detect globally the swimmer in this lane. Next, we apply our optimized Scaled Composite JTC which consists of creating an adapted input plane that contains the predicted region and the head reference image. This latter is generated using a composite filter of fin images chosen from the database. The dimension of this reference will be scaled according to the ratio between the head's dimension and the width of the swimming lane. Finally, applying the proposed approach improves the performances of our previous tracking method by adding a detection module in order to achieve an all-automatic swimmer tracking system.

  19. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  20. Magnesium isotope compositions of Solar System materials determined by double spiking

    Science.gov (United States)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e

  1. AWSCS-A System to Evaluate Different Approaches for the Automatic Composition and Execution of Web Services Flows.

    Directory of Open Access Journals (Sweden)

    Bruno Tardiole Kuehne

    Full Text Available This paper proposes a system named AWSCS (Automatic Web Service Composition System to evaluate different approaches for automatic composition of Web services, based on QoS parameters that are measured at execution time. The AWSCS is a system to implement different approaches for automatic composition of Web services and also to execute the resulting flows from these approaches. Aiming at demonstrating the results of this paper, a scenario was developed, where empirical flows were built to demonstrate the operation of AWSCS, since algorithms for automatic composition are not readily available to test. The results allow us to study the behaviour of running composite Web services, when flows with the same functionality but different problem-solving strategies were compared. Furthermore, we observed that the influence of the load applied on the running system as the type of load submitted to the system is an important factor to define which approach for the Web service composition can achieve the best performance in production.

  2. X-ray fluorescence system for thin film composition analysis during deposition

    International Nuclear Information System (INIS)

    Formica, Sarah P.; Lee, Susanne M.

    2005-01-01

    A fast-response-time X-ray fluorescence (XRF) system was designed with a monolithic polycapillary focusing optic for in situ composition profiling during materials deposition. The polycapillary optic produced 10 5 times more intensity at the sample than a pinhole, allowing the detector placement to be outside most deposition chambers. The resultant XRF signals were so strong that measurement times were comparable to monolayer growth times. XRF line scans from Ge 1-x Sn x thin films were used to map Sn concentration versus surface position with a 10 μm resolution. The extrapolated instrumental detection limit using a 20 W Cu source was 10 12 atoms (ng). XRF from a 100-nm ion-implanted Ge 0.72 Sn 0.28 sample demonstrated the system's ability to monitor initial growth stages during deposition

  3. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  4. Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel

    Directory of Open Access Journals (Sweden)

    Wenjie Peng

    2014-01-01

    Full Text Available The exact closed-form expressions regarding the outage probability and capacity of distributed MIMO (DMIMO systems over a composite fading channel are derived. This is achieved firstly by using a lognormal approximation to a gamma-lognormal distribution when a mobile station (MS in the cell is in a fixed position, and the so-called maximum ratio transmission/selected combining (MRT-SC and selected transmission/maximum ratio combining (ST-MRC schemes are adopted in uplink and downlink, respectively. Then, based on a newly proposed nonuniform MS cell distribution model, which is more consistent with the MS cell hotspot distribution in an actual communication environment, the average outage probability and capacity formulas are further derived. Finally, the accuracy of the approximation method and the rationality of the corresponding theoretical analysis regarding the system performance are proven and illustrated by computer simulations.

  5. Relativistic instant-form approach to the structure of two-body composite systems

    International Nuclear Information System (INIS)

    Krutov, A.F.; Troitsky, V.E.

    2002-01-01

    An approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is the method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for the lepton decay constant of pions

  6. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    Science.gov (United States)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  7. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  8. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  9. Improvement of mechanical properties of polymeric composites: Experimental methods and new systems

    Science.gov (United States)

    Nguyen, Felix Nhanchau

    Filler- (e.g., particulate or fiber) reinforced structural polymers or polymeric composites have changed the way things are made. Today, they are found, for example, in air/ground transportation vehicles, sporting goods, ballistic barrier applications and weapons, electronic packaging, musical instruments, fashion items, and more. As the demand increases, so does the desire to have not only well balanced mechanical properties, but also light weight and low cost. This leads to a constant search for novel constituents and additives, new fabrication methods and analytical techniques. To achieve new or improved composite materials requires more than the identification of the right reinforcements to be used with the right polymer matrix at the right loading. Also, an optimized adhesion between the two phases and a toughened matrix system are needed. This calls for new methods to predict, modify and assess the level of adhesion, and new developments in matrix tougheners to minimize compromises in other mechanical/thermal properties. Furthermore, structural optimization, associated with fabrication (e.g., avoidance of fiber-fiber touching or particle aggregation), and sometimes special properties, such as electrical conductivity or magnetic susceptibility are necessary. Finally, the composite system's durability, often under hostile conditions, is generally mandatory. The present study researches new predictive and experimental methods for optimizing and characterizing filler-matrix adhesion and develops a new type of epoxy tougheners. Specifically, (1) a simple thermodynamic parameter evaluated by UNIFAC is applied successfully to screen out candidate adhesion promoters, which is necessary for optimization of the physio-chemical interactions between the two phases; (2) an optical-acoustical mechanical test assisted with an acoustic emission technique is developed to de-convolute filler debonding/delamination among many other micro failure events, and (3) novel core

  10. Analysis of an emergency diesel generator control system by compositional model checking. MODSAFE 2010 work report

    International Nuclear Information System (INIS)

    Lahtinen, J.; Bjoerkman, K.; Valkonen, J.; Frits, J.; Niemelae, I.

    2010-12-01

    Digital instrumentation and control (I and C) systems containing programmable logic controllers are challenging to verify. They enable complicated control functions and the state spaces (number of distinct values of inputs, outputs and internal memory) of the designs easily become too large for comprehensive manual inspection. Model checking is a formal method that can be used for verifying that systems have been correctly designed. A number of efficient model checking systems are available which provide analysis tools that are able to determine automatically whether a given state machine model satisfies the desired safety properties. The practical case analysed in this research project is called an 'emergency diesel generator control system' and its purpose is to provide reserve power to critical devices and computers that must be available without interruption. This report describes 1) the development of a compositional approach for checking the models in large system designs, 2) the development of a modular model checking approach for modelling function block diagrams with the Uppaal model checker and 3) the experience of utilising the new modelling approaches in practice. (orig.)

  11. Determination of Critical Parameters of Carbon Dioxide+ Butyraldehyde System with Different Compositions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-chang; GAO Xi-xin; CAO Wei-liang

    2005-01-01

    Supercritical carbon dioxide( SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ), which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0%to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.

  12. Species composition of a soil invertebrate multi-species test system determines the level of ecotoxicity

    International Nuclear Information System (INIS)

    Sechi, Valentina; D'Annibale, Alessandra; Maraldo, Kristine; Johansen, Anders; Bossi, Rossana; Jensen, John; Krogh, Paul Henning

    2014-01-01

    A soil multi-species, SMS, experimental test system consisting of the natural microbial community, five collembolan species and a predatory mite along with either Enchytraeus crypticus or the earthworm Eisenia fetida were exposed to α-cypermethrin. A comparison of the performance of these two types of SMSs is given to aid the development of a standard test system. E. fetida had a positive effect on the majority of the species, reducing the negative insecticide effect. E. fetida affected the species sensitivity and decreased the degradation of the insecticide due to the organic matter incorporation of earthworm food. After 8 weeks, the EC50 was 0.76 mg kg −1 for enchytraeids and ranged between 2.7 and 18.9 mg kg −1 for collembolans, more sensitive than previously observed with single species. Changes observed in the community structure and function illustrates the strength of a multi-species test system as an ecotoxicological tool compared to single species tests. -- Highlights: • Degradation of alpha-cypermethrin was faster with enchytraeids than with earthworms. • Lumbricid castings and bioturbation explains bioavailability of α-cypermethrin. • Pesticide effects on soil arthropods alter with the community composition. • Multispecies test systems are feasible with either an enchytraeid or a lumbricid. • Collembolans are more sensitive to cypermethrin with enchytraeids than with earthworms. -- Soil ecotoxicological fate and effects in multispecies test systems are affected by earthworm activity

  13. Synthesis of molybdenum and tungsten modified composite systems based on bisorbent from rice husk

    Directory of Open Access Journals (Sweden)

    Duisek Haisagalievich Kamysbaev

    2017-12-01

    Full Text Available The article presents results of the synthesis of a new composite material modified with polyvalent metals. Rice husk was chosen as a raw material for obtaining a carrier – a bisorbent consisting of carbon and amorphous silicon oxide. The sorption material was obtained from the products of thermal decomposition of rice husks. Further it was modified with ammonium salts of molybdenum and tungsten: (NH46Mo7O24·4H2O and (NH42O·12WO3·5H2O in Mo/W ratios: 5/5 wt. %, 10/5 wt. % and reducted by heating in a stream of hydrogen. The registration of the voltammetric curves in the medium of 1-methyl-4-piperidone was carried out in various background electrolytes: 0.2 M Li2SO4, pH = 6.36 and 0.1 M KOH, pH = 13, 2,5·10–2 M K2HPO4 + 2,5·10–2 M NaH2PO4, pH = 6.86. Differential voltammetric curves were analyzed. The electrochemical activity of the obtained modified composites in the potential range from -1.2 V to 0.5 V was determinated. The mechanism of the proceeding electrochemical processes on these modified electrode materials has been studied. The possibility of further use of synthesized composite systems based on bisorbents from the rice husk for the electrochemical reduction of 1-methyl-4-piperidone was shown.

  14. Degradation of corn stalk by the composite microbial system of MC1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradatioin by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 effeciently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation , and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3-methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.

  15. Application of the British Food Standards Agency nutrient profiling system in a French food composition database.

    Science.gov (United States)

    Julia, Chantal; Kesse-Guyot, Emmanuelle; Touvier, Mathilde; Méjean, Caroline; Fezeu, Léopold; Hercberg, Serge

    2014-11-28

    Nutrient profiling systems are powerful tools for public health initiatives, as they aim at categorising foods according to their nutritional quality. The British Food Standards Agency (FSA) nutrient profiling system (FSA score) has been validated in a British food database, but the application of the model in other contexts has not yet been evaluated. The objective of the present study was to assess the application of the British FSA score in a French food composition database. Foods from the French NutriNet-Santé study food composition table were categorised according to their FSA score using the Office of Communication (OfCom) cut-off value ('healthier' ≤ 4 for foods and ≤ 1 for beverages; 'less healthy' >4 for foods and >1 for beverages) and distribution cut-offs (quintiles for foods, quartiles for beverages). Foods were also categorised according to the food groups used for the French Programme National Nutrition Santé (PNNS) recommendations. Foods were weighted according to their relative consumption in a sample drawn from the NutriNet-Santé study (n 4225), representative of the French population. Classification of foods according to the OfCom cut-offs was consistent with food groups described in the PNNS: 97·8 % of fruit and vegetables, 90·4 % of cereals and potatoes and only 3·8 % of sugary snacks were considered as 'healthier'. Moreover, variability in the FSA score allowed for a discrimination between subcategories in the same food group, confirming the possibility of using the FSA score as a multiple category system, for example as a basis for front-of-pack nutrition labelling. Application of the FSA score in the French context would adequately complement current public health recommendations.

  16. A novel processed food classification system applied to Australian food composition databases.

    Science.gov (United States)

    O'Halloran, S A; Lacy, K E; Grimes, C A; Woods, J; Campbell, K J; Nowson, C A

    2017-08-01

    The extent of food processing can affect the nutritional quality of foodstuffs. Categorising foods by the level of processing emphasises the differences in nutritional quality between foods within the same food group and is likely useful for determining dietary processed food consumption. The present study aimed to categorise foods within Australian food composition databases according to the level of food processing using a processed food classification system, as well as assess the variation in the levels of processing within food groups. A processed foods classification system was applied to food and beverage items contained within Australian Food and Nutrient (AUSNUT) 2007 (n = 3874) and AUSNUT 2011-13 (n = 5740). The proportion of Minimally Processed (MP), Processed Culinary Ingredients (PCI) Processed (P) and Ultra Processed (ULP) by AUSNUT food group and the overall proportion of the four processed food categories across AUSNUT 2007 and AUSNUT 2011-13 were calculated. Across the food composition databases, the overall proportions of foods classified as MP, PCI, P and ULP were 27%, 3%, 26% and 44% for AUSNUT 2007 and 38%, 2%, 24% and 36% for AUSNUT 2011-13. Although there was wide variation in the classifications of food processing within the food groups, approximately one-third of foodstuffs were classified as ULP food items across both the 2007 and 2011-13 AUSNUT databases. This Australian processed food classification system will allow researchers to easily quantify the contribution of processed foods within the Australian food supply to assist in assessing the nutritional quality of the dietary intake of population groups. © 2017 The British Dietetic Association Ltd.

  17. Fabrication processes of C/Sic composites for high temperature components in energy systems and investigation of their oxidation behavior

    International Nuclear Information System (INIS)

    El-Hakim, E.

    2004-01-01

    Carbon fibre-reinforced ceramic matrix composite are promising candidate materials for high temperature applications such as structural components in energy systems, fusion reactors and advanced gas turbine engines. C/C composites has low oxidation resistance at temperatures above 500degree. To overcome this low oxidation resistance a coating should be applied. Tenax HTA 5131 carbon fibres impregnated with phenolic resin and reinforced silicon carbide were modified by the addition of a coating layer of boron oxide, (suspended in Dyansil-40) for improving anti-oxidation properties of the composites.The oxidation behavior of carbon-silicon carbide composites coated with B 2 O 3 , as an protective layer former, in dry air has been studied in the temperature range 800- 1000 degree for 8 hrs and 16 hrs. The results show that the oxidation rates of the uncoated composites samples are higher than those of the coated composites. The uncoated samples exhibit the highest oxidation rate during the initial stages of oxidation. The composite coated with B 2 O 3 had a significantly improved oxidation resistance due to the formation of a barrier layer for oxygen diffusion. This improvement in the oxidation resistance is attributed to the blocking of the active sites for oxygen diffusion. The oxidation resistance of the coated composite is highly improved; the weight loss percentage of casted samples is 4.5-16% after 16-hrs oxidation in air while the weight loss of uncoated samples is about 60%. The results are supported by scanning electron microscopy

  18. Effect of Dental Restorative Material Type and Shade on Characteristics of Two-Layer Dental Composite Systems

    Directory of Open Access Journals (Sweden)

    Atefeh Karimzadeh

    Full Text Available Abstract The purpose of this study was to investigate the effects of shade and material type and shape in dental polymer composites on the hardness and shrinkage stress of bulk and two-layered restoration systems. For this purpose, some bulk and layered specimens from three different shades of dental materials were prepared and light-cured. The experiments were carried out on three types of materials: conventional restorative composite, nanohybrid composite and nanocomposite. Micro-indentation experiment was performed on the bulk and also on each layer of layered restoration specimens using a Vicker's indenter. The interface between the two layers was studied by scanning electron microscopy (SEM. The results revealed significant differences between the values of hardness for different shades in the conventional composite and also in the nanohybrid composite. However, no statistically significant difference was observed between the hardness values for different shades in the nanocomposite samples. The layered restoration specimens of different restorative materials exhibited lower hardness values with respect to their bulk specimens. The reduction in the hardness value of the layered conventional composite samples was higher than those of the nanocomposite and nanohybrid composite specimens indicating more shrinkage stresses generated in the conventional composite restorations. According to the SEM images, a gap was observed between the two layers in the layered restorations.

  19. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  20. The insulin like growth factor system in cirrhosis. Relation to changes in body composition following adrenoreceptor blockade

    DEFF Research Database (Denmark)

    Bonefeld, Karen; Hobolth, Lise; Juul, Anders

    2012-01-01

    OBJECTIVE: Circulating levels of IGF-I and IGFBP-3 are low in cirrhosis and are related to liver dysfunction. Metabolic disturbances include malnutrition with altered body composition and osteopenia. Since the effects of IGF-I may be associated to changes in body composition and bone mineral...... content (BMC) in cirrhotic patients, we investigated the relations between changes in the IGF-system and body composition and the effects of long-term alpha- and beta-blockade. DESIGN: The study was designed as a combined cross-sectional and prospective randomised controlled study of 62 patients...

  1. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  2. Sequential fault diagnosis for mechatronics system using diagnostic hybrid bond graph and composite harmony search

    Directory of Open Access Journals (Sweden)

    Ming Yu

    2015-12-01

    Full Text Available This article proposes a sequential fault diagnosis method to handle asynchronous distinct faults using diagnostic hybrid bond graph and composite harmony search. The faults under consideration include fault mode, abrupt fault, and intermittent fault. The faults can occur in different time instances, which add to the difficulty of decision making for fault diagnosis. This is because the earlier occurred fault can exhibit fault symptom which masks the fault symptom of latter occurred fault. In order to solve this problem, a sequential identification algorithm is developed in which the identification task is reactivated based on two conditions. The first condition is that the latter occurred fault has at least one inconsistent coherence vector element which is consistent in coherence vector of the earlier occurred fault, and the second condition is that the existing fault coherence vector has the ability to hide other faults and the second-level residual exceeds the threshold. A new composite harmony search which is capable of handling continuous variables and binary variables simultaneously is proposed for identification purpose. Experiments on a mobile robot system are conducted to assess the proposed sequential fault diagnosis algorithm.

  3. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    International Nuclear Information System (INIS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-01-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  4. Energy-dissipating and self-repairing SMA-ECC composite material system

    International Nuclear Information System (INIS)

    Li, Xiaopeng; Li, Mo; Song, Gangbing

    2015-01-01

    Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events. (paper)

  5. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  6. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kenya, Suyama; Hiroshi, Okuno [Japan Atomic Energy Research Institute, Tokyo (Japan)

    2001-05-01

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account.

  7. Data Quality Indicators Composition and Calculus: Engineering and Information Systems Approaches

    Directory of Open Access Journals (Sweden)

    Leon REZNIK

    2015-02-01

    Full Text Available Big Data phenomenon is a result of novel technological developments in sensor, computer and communication technologies. Nowadays more and more data are produced by nanoscale photonic, optoelectronic and electronic devices. However, their quality characteristics could be very low. The paper proposes new methods of the data management with huge data amounts that is based on associating of data quality indicators with each data entity. To achieve this goal, one needs to define the composition of the data quality indicators and to develop their integration calculus. As data quality evaluation involves multi-disciplinary research, various metrics have been investigated. The paper describes two major approaches in assigning the data quality indicators and developing their integration calculus. The information systems approach employs traditional high-level metrics like data accuracy, consistency and completeness. The engineering approach utilizes signal characteristics processed with the probability based calculus. The data quality metrics composition and calculus are discussed. The tools developed to automate the metrics selection and calculus procedures are presented. The user- friendly interface examples are provided.

  8. Profilometric analysis of two composite resins' surface repolished after tooth brush abrasion with three polishing systems.

    Science.gov (United States)

    Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen

    2013-07-01

    To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing.

  9. Particulate organic matter composition in a semi-enclosed Periantarctic system: the Straits of Magellan

    Directory of Open Access Journals (Sweden)

    M. Fabiano

    1999-12-01

    Full Text Available The elemental and biochemical composition of particulate organic matter (POM was investigated in the Straits of Magellan during February-March 1991. Twenty-two stations were selected in order to identify different areas of the Magellan ecosystem from a trophic point of view. The Strait of Magellan can be divided into three subsystems characterized by different hydrological and geomorphological conditions. Seston concentrations were mostly constrained by physical events, particularly the influence of oceanic and land run-off water inputs and the strong vertical mixing and resuspension events. POM composition displayed quali-quantitative differences between the three areas. In the first subsystem, influenced by Pacific waters, the low seston and POM concentrations and the high POC/Chl-a ratio values indicated the general predominance of the detrital and heterotrophic fractions. In the second subsystem, characterized by superficial stratification, higher seston and organic matter concentrations and lower values of POC/Chl-a ratio were found, indicating that this subsystem was influenced by an active autotrophic component. Shallow waters with intense tidal regime and strong vertical mixing characterized the third subsystem, connected to the Atlantic Ocean, which displayed an increasing importance of the inorganic fraction (values of the POC/TSM ratio lower than in the other systems. Moreover, the third subsystem showed higher values of the RNA/DNA ratio, possibly indicating that resuspension events may enhance the metabolic state of the organic particles mainly dominated by heterotrophic components.

  10. Grapevine yield components and composition of Isabel grape produced according to the organic and conventional systems

    Directory of Open Access Journals (Sweden)

    Miele Alberto

    2016-01-01

    Full Text Available There is an increasing demand for organic grapes by the juice industry of Serra Gaúcha, Brazil. This region presents a humid and hot summer, ideal climatic conditions for the development of a number of diseases. To control such diseases and problems brought about by other organisms, growers apply pesticides on the grapevines which may leave residues in grapes. However, in general, grapes produced by organic system have lower yield, but there is a lack of research data on this subject. Thus, an experiment was carried out over three years in order to compare the yield components and the physicochemical composition of the must of Isabel grapes conducted in both production systems. When the grapes were ripe, variables related to yield components were evaluated, such as the number of clusters/vine, yield/vine and weight/cluster. Then the grapes were sampled and taken to the laboratory where they were crushed and the musts were centrifuged and analyzed. The 3-year data mean were submitted to correlation analysis and Principal Component Analysis. The results show that conventional grapevines produced 2.18 times more than organic. However, the grapes from the organic system had higher density, Brix, pH, Brix/titratable acidity ratio, P and Mg but lower K, and Ca varied little between both production systems.

  11. Investigation of Structure and Physico-Mechanical Properties of Composite Materials Based on Copper - Carbon Nanoparticles Powder Systems

    Directory of Open Access Journals (Sweden)

    Kovtun V.

    2015-04-01

    Full Text Available Physico-mechanical and structural properties of electrocontact sintered copper matrix- carbon nanoparticles composite powder materials are presented. Scanning electron microscopy revealed the influence of preliminary mechanical activation of the powder system on distribution of carbon nanoparticles in the metal matrix. Mechanical activation ensures mechanical bonding of nanoparticles to the surface of metal particles, thus giving a possibility for manufacture of a composite with high physico-mechanical properties.

  12. On determination of melt composition by liquidus curves for a number of oxide systems for crystal formation

    International Nuclear Information System (INIS)

    Soboleva, L.V.

    1991-01-01

    Consideration is given to liquidus curves in 31 phase diagrams of a series of borate, aluminate, silicate, germanate, titanate and other systems with unlimited mutual solubility in liquid state. Proposed optimal compositions of melts for preparation of crystals of compounds, forming in these systems, were calculated

  13. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles

    Directory of Open Access Journals (Sweden)

    Inyoung Choi

    2017-06-01

    Full Text Available Biopolymer films based on apple skin powder (ASP and carboxymethylcellulose (CMC were developed with the addition of apple skin extract (ASE and tartaric acid (TA. ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR, optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film.

  14. Enhanced Damage Tolerance High Temperature Composite Using a Biomimetic Toughening System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight composite structures are required to provide space vehicles with increased thrust-to-weight ratio and durability. New methods for toughening composites...

  15. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  16. FoodCASE: A system to manage food composition, consumption and TDS data.

    Science.gov (United States)

    Presser, Karl; Weber, David; Norrie, Moira

    2018-01-01

    Food and nutrition scientists, nowadays, need to manage an increasing amount of data regarding food composition, food consumption and Total Diet Studies (TDS). The corresponding datasets can contain information about several thousand different foods, in different versions from different studies. FoodCASE is a system that has been developed to manage these different datasets. It also support flexible means of linking between datasets and generally provide support for the different processes involved in the acquisition, management and processing of data. In this paper, the most important concepts to implement existing guidelines and standards for proper food data management are presented, as well as different use cases of data import and proofs of concepts demonstrating the ability to manage data in FoodCASE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact test characterization of carbon-carbon composites for the thermoelectric space power system

    International Nuclear Information System (INIS)

    Romanoski, G.R.; Pih, Hui.

    1995-01-01

    Thirty-eight unique carbon-carbon composite materials of cylindrical architecture were fabricated by commercial vendors for evaluation as alternative impact shell materials for the modular heat source of the thermoelectric space power system. Characterization of these materials included gas gun impact tests where cylindrical specimens containing a mass simulant were fired at 55 m/s to impact a target instrumented to measure force. The force versus time output was analyzed to determine: peak force, acceleration, velocity, and displacement. All impact tests exhibited an equivalence between preimpact momentum and measured impulse. In addition, energy was conserved based on a comparison of preimpact kinetic energy and measured work. Impact test results showed that the currently specified material provided impact energy absorption comparable to the best alternatives considered to date

  18. Strong and Weak Convergence Criteria of Composite Iterative Algorithms for Systems of Generalized Equilibria

    Directory of Open Access Journals (Sweden)

    Lu-Chuan Ceng

    2014-01-01

    Full Text Available We first introduce and analyze one iterative algorithm by using the composite shrinking projection method for finding a solution of the system of generalized equilibria with constraints of several problems: a generalized mixed equilibrium problem, finitely many variational inequalities, and the common fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense and infinitely many nonexpansive mappings in a real Hilbert space. We prove a strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm involving no shrinking projection method and derive its weak convergence under mild assumptions. Our results improve and extend the corresponding results in the earlier and recent literature.

  19. Deep inelastic scattering in the formalism with the wave functions of composite systems at rest

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.; Sisakyan, A.N.

    1987-01-01

    A deep inelastic process of lepton-hadron scattering is studied in the bound-state rest frame. A new version of expansion of structure functions over an interaction constant is proposed, each term in it having spectral properties. It is shown that the impulse approximation is insufficient for a correct description of the elastic limit in the composite particle rest frame in contrast with the system of infinite momentum P Z → ∞. The leading asymptotics of the structure functions as x Bj → 1 can be obtained by allowing for the interaction of consituents in a final state. Using as an example a bound state ot two and three particles it is shown that the results of calculations of the relevant diagrams in the QCD model are in agreement with those obtained in th formalism P Z → ∞

  20. Stable chlorine isotope compositions in waters from the Kusatsu-Shirane volcanic system, Japan

    International Nuclear Information System (INIS)

    Musashi, Masaaki

    1999-01-01

    Chlorine stable isotope compositions (δ 37 Cl, per-mil: per mille, vs. a standard sea water, SMOC) of six waters collected in 1984 from Kusatsu area (three springs), Manza area (two springs), and a crater lake Yugama, in the Kusatsu-Shirane volcanic system, Japan, are analysed with the overall precision of 0.12 per mille (2σ). The δ 37 Cl values range between -0.05 per mille and +0.20 per mille (the mean, +0.04 per mille), and are nearly equal to that of the sea water. And the values are not significantly different between the Kusatsu and Manza areas, although their thermal features have a strong chemical and geological variations with a geographical separation of over 8 km between the two areas. (author)

  1. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Directory of Open Access Journals (Sweden)

    Annah S Rolig

    2017-02-01

    Full Text Available Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS, a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  2. Networks of dissipative systems compositional certification of stability, performance, and safety

    CERN Document Server

    Arcak, Murat; Packard, Andrew

    2016-01-01

    This book addresses a major problem for today’s large-scale networked systems: certification of the required stability and performance properties using analytical and computational models. On the basis of illustrative case studies, it demonstrates the applicability of theoretical methods to biological networks, vehicle fleets, and Internet congestion control. Rather than tackle the network as a whole —an approach that severely limits the ability of existing methods to cope with large numbers of physical components— the book develops a compositional approach that derives network-level guarantees from key structural properties of the components and their interactions. The foundational tool in this approach is the established dissipativity theory, which is reviewed in the first chapter and supplemented with modern computational techniques. The book blends this theory with the authors’ recent research efforts at a level that is accessible to graduate students and practising engineers familiar with only th...

  3. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  4. Compositional dependence of physical properties in Se-Sb-In glassy system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shaveta, E-mail: shaveta.sharma1987@yahoo.com; Sharma, Rita; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India)

    2015-08-28

    The growing interest in the investigation of the properties of chalcogenide glasses stems from their potential application as phase change recording media and photoconductive elements in solid state devices.In the present work, the different theoretical parameters viz. coordination number, constraints, number of lone pair electrons, bond energy, heat of atomization, mean bond energy and glass transition temperature for Se{sub 75-x}Sb{sub 25}In{sub x} (x= 0, 1, 3, 5, 7, 9, 11) chalcogenide system have been calculated and their composition variation has been discussed. It has been found that average heat of atomization increases with In content. The glass transition temperature and mean bond energy increases with In. An attempt has been made to explain the varying trend of various parameters with increasing In content.

  5. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.

    Science.gov (United States)

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Peralta, Ignacio; Alonso, Maria Rosario; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2018-05-07

    A detailed study of biomaterials is mandatory to comprehend their feasible biomedical applications in terms of drug delivery and tissue regeneration. Particularly, mucoadhesive biopolymers such as chitosan (chi) and carboxymethylcellulose (CMC) have become interesting biomaterials regards to their biocompatibility and non-toxicity for oral mucosal drug delivery. In this work, pH-responsive biopolymer-silica composites (Chi-SiO 2 , Chi-CMC-SiO 2 ) were developed. These two types of composites presented a different swelling behavior due to the environmental pH. Moreover, the nanocomposites were loaded with aqueous Larrea divaricata Cav. extract (Ld), a South American plant which presents antioxidant properties suitable for the treatment of gingivoperiodontal diseases. Chi-CMC-SiO 2 composites showed the highest incorporation and reached the 100% of extract release in almost 4 days while they preserved their antioxidant properties. In this study, thermal and swelling behavior were pointed out to show the distinct water-composite interaction and therefore to evaluate their mucoadhesivity. Furthermore, a cytotoxicity test with 3T3 fibroblasts was assessed, showing that in both composites the addition of Larrea divaricata Cav. extract increased fibroblast proliferation. Lastly, preliminary in vitro studies were performed with simulated body fluids. Indeed, SEM-EDS analysis indicated that only chi-SiO 2 composite may provide an environment for possible biomineralization while the addition of CMC to the composites discouraged calcium accumulation. In conclusion, the development of bioactive composites could promote the regeneration of periodontal tissue damaged throughout periodontal disease and the presence of silica nanoparticles could provide an environment for biomineralization. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nutrient composition and respiration characteristics of silkworms in the Bioregenerative Life Support System

    Science.gov (United States)

    Tong, Ling; Yu, Xiaohui; Liu, Hong

    As the appropriate space animal candidate, silkworm(Bombyx Mori L.) can supply animal food for taikonauts and consume inedible parts of plants in Bioregenerative Life Support Sys-tem(BLSS). Due to the features of BLSS, the silkworm breeding method in the system differ-ent from the conventional one is feeding the silkworm in the first three developing stages with mulberry leaves and with lettuce leaves in the latter two developing stages. Therefore, it is nec-essary to investigate the biochemical components and respiration characteristics of silkworms raised with this method to supply data bases for the inclusion of silkworms in the system to conduct system experiments. The nutrient compositions of silkworm powder (SP) which are the grinded and freeze-dried silkworm on the 3rd day in the fifth developing stage containing protein, fat, vitamins, minerals and fatty acids were determined with international standard analyzing methods in this study. The results showed that SP was rich in protein and amino acids. There were twelve kinds of essential vitamins, nine kinds of minerals and twelve kinds of fatty acids in SP. In contrast, SP had much better nutrient components than snail, fish, chicken, beef and pork as animal food for crew members. Moreover, 359 kCal can be generated per 100g of SP (dry weight). The respirations of silkworm during its whole growing process under two main physiological statuses which were eating and non-eating leaves were studied. According to the results measured by the animal respiration measuring system, there were much difference among the respirations of silkworms under the two main physiological statuses. The amounts of O2 inhaled and CO2 exhaled by the silkworms when they were eating leaves were more than those under the non-eating status. Even under the same status, the respiration characteristics of silkworms in five different developing stages were also different from one an-other. The respiratory quotients of silkworms under two

  7. INFRARED IMAGING OF CARBON AND CERAMIC COMPOSITES: DATA REPRODUCIBILITY

    International Nuclear Information System (INIS)

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-01-01

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  8. Infrared Imaging of Carbon and Ceramic Composites: Data Reproducibility

    Science.gov (United States)

    Knight, B.; Howard, D. R.; Ringermacher, H. I.; Hudson, L. D.

    2010-02-01

    Infrared NDE techniques have proven to be superior for imaging of flaws in ceramic matrix composites (CMC) and carbon silicon carbide composites (C/SiC). Not only can one obtain accurate depth gauging of flaws such as delaminations and layered porosity in complex-shaped components such as airfoils and other aeronautical components, but also excellent reproducibility of image data is obtainable using the STTOF (Synthetic Thermal Time-of-Flight) methodology. The imaging of large complex shapes is fast and reliable. This methodology as applied to large C/SiC flight components at the NASA Dryden Flight Research Center will be described.

  9. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    Science.gov (United States)

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. © 2014 Japanese Society of Animal Science.

  10. A geometric Hamiltonian description of composite quantum systems and quantum entanglement

    Science.gov (United States)

    Pastorello, Davide

    2015-05-01

    Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.

  11. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  12. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil

    Directory of Open Access Journals (Sweden)

    ESF Medeiros

    Full Text Available In most ecological field research, appropriate sampling is critical for the understanding of processes underlying fish populations and communities, and is even more important in heterogeneous environments such as the aquatic systems of the semi-arid region of Brazil. This study intends to make a contribution to the development of sampling programs and gear selection in aquatic systems of semi-arid Brazil by evaluating the effects of different fishing techniques on the assessment of richness and composition of the fish fauna in selected aquatic environments. Six sites were selected to represent typical artificial (reservoirs and natural (intermittent streams environments and four different types of sampling gear were applied to each site during four occasions. The present study shows that when selecting sampling techniques to be used in aquatic systems in semi-arid Brazil, one must consider the objectives of the study, e.g. ecological or taxonomic, in order to decide on inclusion of rare species in the sampling population. Also, the effect of the sampling gear on natural abundances of fish must be considered given that some sampling techniques are highly detrimental to fish population numbers.

  13. On the MIMO Capacity for Distributed System under Composite Rayleigh/Rician Fading and Shadowing

    Directory of Open Access Journals (Sweden)

    Santiago González-Aurioles

    2015-01-01

    Full Text Available Wireless channels are commonly affected by short-term fading and long-term fading (shadowing. The shadowing effects must be taken into account also when mobility is present in the wireless scenario. Using a composite fading model, the total channel capacity can be studied for a scenario with short-term Rayleigh fading along with shadowing. This work provides quantitative results for these kinds of scenarios with Rayleigh fading and shadowing, considering also multiple-input and multiple-output systems, which have not been previously reported. In addition, the channel capacity has been studied in depth in its relation with the shadowing level, signal to noise ratio, and the number of elements in the multiple-input and multiple-output system. Moreover, the channel performance with shadowing has been compared to the one without it. Furthermore, Rician model with shadowing is studied and its results are reported. In addition, correlated and experimental results are provided. It is identified that the distributed MIMO systems can benefit from shadowing in Rician channels. This advantage has not been reported previously. This type of fading is proposed for massive MIMO by others and our results open the door to emulate massive MIMO on a reverberation chamber.

  14. NEW METHOD OF OBTAINING GELATINE-SiO₂ COMPOSITE SYSTEMS USING 3-GLYCIDOXYPROPYLTRIMETHOXYSILANE AND 3-CHLOROPROPYLTRIMETHOXYSILANE

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2017-09-01

    Full Text Available Composite materials based on biopolymers are an attractive alternative to conventional composites because of their high biocompatibility, biodegradability and unique functional characteristics. The method developed for the synthesis of material using glycidoxypropyltrimethoxysilane and chloropropyltrimethoxysilane is based on sol-gel processes making possible enhanced control over the final properties of the composite, such as water absorption and the hydrophobic or hydrophilic properties. Thermal studies of the composite show significant complexity of the formation process of the composite, and the possibility of the controlled carbonization into ceramic material.

  15. An assessment of composite repair system in offshore platform for corroded circumferential welds in super duplex steel pipe

    Directory of Open Access Journals (Sweden)

    Silvio de Barros

    2018-04-01

    Full Text Available The main aim of this study is to assess the effectiveness of a composite repair system in severely corroded circumferential welds in super duplex stainless steel pipes as a preventive measure against the premature corrosion damage at the welds. Artificial defects were fabricated on the super duplex steel tube in order to reproduce the localized corrosion damage defects found in real welded joints. Three kinds of through thickness defects were considered: 25%, 50% and 96% of the perimeter of the pipe. The performance of the repaired pipe was assessed by hydrostatic tests as per ISO 24817 standard. The results showed that the composite repair system can sustain the designed failure pressure even for the pipe damaged with through-wall defect up to 96% of the perimeter of the pipe. Hence, the composite repair system can be used as a preliminary tool to protect the unexpected or premature failure at the welds and maintain an adequate level of mechanical strength for a given operating pressure. This composite repair system can assure that the pipe will not leak until a planned maintenance of the line. Nevertheless, further work is still desirable to improve the confidence in the long-term performance of bonded composite

  16. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Análisis psicométrico del Cuestionario de Motivos del Consumo de Alcohol (CMC en escolares de la ciudad de Bogotá

    Directory of Open Access Journals (Sweden)

    Leonardo Pardo Jaime

    2016-07-01

    Full Text Available El objetivo del presente estudio consistió en analizar las propiedades psicométricas del Cuestionario de Motivos del Consumo de Alcohol (CMC en escolares de la ciudad de Bogotá. Para ello, se contó con 206 participantes, a quienes se les aplicó el cuestionario. Los resultados fueron objeto de un análisis factorial exploratorio por medio de la extracción de componentes principales, con rotación Varimax, así como de un análisis de confiabilidad por alfa de Cronbach. Los mismos muestran 4 factores con apropiada carga factorial tanto por factor como por reactivo, explicando el 73,359% de la varianza, y un índice de confiabilidad de ,945. Así entonces, el Cuestionario de Motivos del Consumo de Alcohol (CMC presenta una estructura similar a otros estudios, lo que indica que es una escala con adecuada validez de constructo y, por lo tanto, confiable para utilizarse en escolares bogotanos. Abstract The objective of this psychometric study is to analyze the psychometric properties of the Drinking Motives Questionnaire (DMQ in school children in Bogotá city. For this, there were chosen 206 sample participants who were administered the questionnaire, applying an exploratory factor analysis by using a principal component extraction with Varimax rotation, and a Cronbach’s alpha reliability analysis was also performed. The results show four factors with an appropriate factor load, by factor and by reactive, explaining a variance of 73.359% , and a reliability index of 945. The results show that the Drinking motives Questionnaire (CMC show a similar structure in comparison with surveys made in other countries. This indicates an appropriate construct validity, and reliability for its use in school children in Bogotá city.

  18. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  19. A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate/medical stone superabsorbent composite with enhanced swelling and responsive properties

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Free-radical graft copolymerization among sodium carboxymethylcellulose (CMC, partially neutralized acrylic acid (NaA, medical stone (MS and crosslinker N,N'-methylene-bis-acrylamide (MBA was performed to prepare new carboxymethylcellulose-g-poly(sodium acrylate/medical stone (CMC-g-PNaA/MS superabsorbent composites. Fourier transform infrared (FTIR spectra, thermogravimetry- differential scanning calorimetry (TG-DSC and field emission scanning electromicrsocopic (FESEM analysis confirmed that NaA had been grafted onto CMC backbone and MS participated in polymerization, and the thermal stability and surface morphologies were improved by the addition of MS. Energy dispersive spectrometer (EDS and elemental map (EM analyses revealed the better distribution of MS in the CMC-g-PNaA matrix. The incorporation of 20 wt% MS clearly enhanced the water absorption by 100% (from 317 to 634 g/g. The developed composites showed enhanced swelling rate and On-Off switching swelling characteristics in various pH solutions, saline solutions and hydrophilic organic solvents, which represented interesting and reversible pH-, saline- and hydrophilic organic solvent-responsive characteristics. In addition, the composite exhibited intriguing time-dependent kinetic swelling properties in various heavy metal solutions.

  20. An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition

    Science.gov (United States)

    Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H.

    2013-09-01

    Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA) to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS) has guided geospatial data processing in a Service Oriented Architecture (SOA) platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.