Chirality, nongauge couplings and compositeness
International Nuclear Information System (INIS)
Suzuki, Mahiko
1985-01-01
We study from a phenomenological viewpoint what constraints exist on a possible scale of compositeness for W, Z, leptons, and quarks. A few critical arguments are presented about excited fermions and spinless partners of W and Z. It is argued that irrespective of a compositeness scale, the coupling of an excited fermion to a ground state light fermion is likely to be maximally parity violating. Besides chirality breaking interactions of light fermions, gauge noninvariant, dimensionless, unrenormalizable couplings are specially interesting in many classes of composite theories. The deviation of the W magnetic moment from the standard theory (g = 2) is such an example. We relate the ''g-2'' of W to a compositeness scale through an unitarity argument and make a guess on its effect on the muon g-2 for a given compositeness scale. The present experimental data on the W-Z mass ratio is already accurate enough to indicate that if a compositeness scale is larger than 0(1 TeV), gauge noninvariant couplings of W and Z should be negligibly small and a composite theory is hardly distinguishable from an elementary particle theory at the electroweak energy scale (≅ 250 GeV). However, a compositeness scale close to the electroweak scale can not be ruled out for W and Z at present. (author)
DSAM lifetime measurements for the chiral pair in {sup 194}Tl
Energy Technology Data Exchange (ETDEWEB)
Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)
2016-02-15
Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)
Independent control of the vortex chirality and polarity in a pair of magnetic nanodots
Energy Technology Data Exchange (ETDEWEB)
Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong
2017-08-01
Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.
Charge Aspects of Composite Pair Superconductivity
Flint, Rebecca
2014-03-01
Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.
Energy Technology Data Exchange (ETDEWEB)
Krueger, Thomas
2016-10-19
The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We
Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field
International Nuclear Information System (INIS)
Suganuma, Hideo; Tatsumi, Toshitaka.
1993-01-01
We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)
Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states
Poilblanc, Didier
2017-09-01
A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
International Nuclear Information System (INIS)
Zhang, J; Gu, Q; Lörscher, C; Klemm, R A
2014-01-01
We calculate the temperature T and angular (θ, ϕ) dependencies of the upper critical induction B c2 (θ, ϕ, T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg–Klemm (SK) state B c2 (θ, ϕ, T) exceeds that of the chiral Anderson–Brinkman–Morel (ABM) state and exhibits a kink at θ = θ * (T, ϕ), indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Applicabilities to Sr 2 RuO 4 , UCoGe and the candidate topological superconductor Cu x Bi 2 Se 3 are discussed. (fast track communication)
Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix
Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua
2017-01-01
Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538
Chiral composite fermions without U(1)'s
International Nuclear Information System (INIS)
Nelson, A.E.
1986-01-01
Some models are discussed which seem likely to produce composite fermions with masses protected only by nonabelian global symmetries. A subgroup of the original global symmetries can be weakly gauged to produce small masses for the fermions. A new feature of these models is that the original global symmetries contain no abelian factors and below the confinement scale there are neither exactly massless fermions nor Goldstone bosons. A candidate is given for a potentially realistic model with up to six families of quarks and leptons. (orig.)
Jang, Iksu; Kim, Ki-Seok
2018-04-01
Anomaly cancellation has been shown to occur in broken time-reversal symmetry Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of broken inversion symmetry Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancellation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in broken inversion symmetry Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either "quantized" spin Hall or valley Hall effects, which corresponds to the "quantized" version of the charge Hall effect in broken time-reversal symmetry Weyl metals.
Imai, Yoshiki; Sigrist, Manfred
2018-05-01
Motivated by recent experiments on Sr2RuO4, the effect of uniaxial strain on the chiral p-wave superconductor is discussed. We study particularly the relation between the topological indices and different pairing states in the superconducting phase through the thermal Hall conductivity, which is proportional to temperature and the Chern number in the very low-temperature limit. We show that the temperature-dependence of the thermal Hall conductivity under uniaxial strain depends strongly on the form of the pairing state. The obtained result may provide a possible experimental probe for the pairing structure in Sr2RuO4.
Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine
Directory of Open Access Journals (Sweden)
Shah Nasrullah
2016-09-01
Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.
Composite mesons in self-confining chiral solitons
International Nuclear Information System (INIS)
Tandy, P.C.; Frank, M.R.
1991-01-01
Most quark-meson models for formation of a baryon as a bag or soliton solution begin with elementary local meson fields including a classical scalar configuration that provides repulsion of valence quarks from the vacuum. This presentation explores aspects of the very different formation mechanism that operates in a model where chiral effective meson fields are composite objects generated from bilocal qq-bar fluctuation fields and the dynamical quark mass can be self-confining. The focus is on the dynamical self-energy for quarks and the related distributed vertex for quark meson coupling. Initial numerical work to explore the practical consequences of these features is presented in the context of a static mean-field soliton. The particular method employed to identify the energy functional at the mean field or Hartree level is to obtain the standard effective action from the Legendre transformation with the help of a chemical potential constraint for the baryon number. The purpose of this approach is two-fold. First, a possible future consideration of radiative corrections might be undertaken by systematically continuing with the loop expansion beyond the lowest level. A second, more practical reason, is that in the presence of a general space-time dependent dynamical self-energy for quarks there are wavefunction renormalisation effects and energy self-consistencies to be defined and maintained for the valence quark states and eigenvalues. Speculations are made on whether this point of view can motivate meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 29 refs., 5 figs
Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature
Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.
2018-05-01
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Chirality detection of enantiomers using twisted optical metamaterials
Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea
2017-01-01
Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825
A DSC analysis of inverse salt-pair explosive composition
Energy Technology Data Exchange (ETDEWEB)
Babu, E. Suresh; Kaur, Sukhminder [Central Forensic Science Laboratory, Explosives Division, Ramanthapur, Hyderabad 500013 (India)
2004-02-01
Alkali nitrates are used as an ingredient in low explosive compositions and pyrotechnics. It has been suggested that alkali nitrates can form inverse salt-pair explosives with the addition of ammonium chloride. Therefore, the thermal behavior of low explosive compositions containing potassium nitrate mixed with ammonium chloride has been studied using Differential Scanning Calorimetry (DSC). Results provide information about the ion exchange reaction between these two chemical substances and the temperature region at which the formation of a cloud of salt particles of potassium chloride takes place. Furthermore, the addition of ammonium chloride quenches the flame of deflagrating compositions and causes the mixture to undergo explosive decomposition at relatively low temperatures. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Directory of Open Access Journals (Sweden)
Wen-Bin Yang
2011-02-01
Full Text Available A series of aldo-bis-indole derivatives (aldo-BINs was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM at high pH (pH 9.0. The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-β-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.
An Ultraviolet Chiral Theory of the Top for the Fundamental Composite (Goldstone) Higgs
DEFF Research Database (Denmark)
Cacciapaglia, Giacomo; Sannino, Francesco
2016-01-01
We introduce a scalar-less anomaly free chiral gauge theory that serves as natural ultraviolet completion of models of fundamental composite (Goldstone) Higgs dynamics. The new theory is able to generate the top mass and furthermore features a built-in protection mechanism that naturally suppresses...... the bottom mass. At low energies the theory predicts new fractionally charged fermions, and a number of four-fermion operators that, besides being relevant for the generation of the top mass, also lead to an intriguing phenomenology for the new states predicted by the theory....
An ultraviolet chiral theory of the top for the fundamental composite (Goldstone) Higgs
Energy Technology Data Exchange (ETDEWEB)
Cacciapaglia, Giacomo, E-mail: g.cacciapaglia@ipnl.in2p3.fr [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL, 4 rue Enrico Fermi, F-69622 Villeurbanne Cedex (France); Sannino, Francesco, E-mail: sannino@cp3.dias.sdu.dk [CP" 3-Origins and the Danish IAS, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)
2016-04-10
We introduce a scalar-less anomaly free chiral gauge theory that serves as natural ultraviolet completion of models of fundamental composite (Goldstone) Higgs dynamics. The new theory is able to generate the top mass and furthermore features a built-in protection mechanism that naturally suppresses the bottom mass. At low energies the theory predicts new fractionally charged fermions, and a number of four-fermion operators that, besides being relevant for the generation of the top mass, also lead to an intriguing phenomenology for the new states predicted by the theory.
1994-06-30
above please provide a graphical abstract of the paper ar, return it to the Editorial Office as soon as possible. 4oeg0 o F-99S or TS A& I DTI•’ I J. u1...TCLSICAON 2.LIMITATION OF ABSTRAC •F oFPORT OF THIS PAGE OF ABSTRACT . unclass ified Graphical Abstracts for Perkin Txans. 1 Example TITLE GRAPHICAL ... ABSTRACT AUTHORS’ N AMES Template (S)-II Chiral recognition in molecular and . -- macromolecular pairs of (S)- and -- (R)-i-cyano-2-methyipropyl 4’-{[4
Chiral Recognition by Fluorescence: One Measurement for Two Parameters
Directory of Open Access Journals (Sweden)
Shanshan Yu
2014-01-01
Full Text Available This outlook describes two strategies to simultaneously determine the enantiomeric composition and concentration of a chiral substrate by a single fluorescent measurement. One strategy utilizes a pseudoenantiomeric sensor pair that is composed of a 1,1′-bi-2-naphthol-based amino alcohol and a partially hydrogenated 1,1′-bi-2-naphthol-based amino alcohol. These two molecules have the opposite chiral configuration with fluorescent enhancement at two different emitting wavelengths when treated with the enantiomers of mandelic acid. Using the sum and difference of the fluorescent intensity at the two wavelengths allows simultaneous determination of both concentration and enantiomeric composition of the chiral acid. The other strategy employs a 1,1′-bi-2-naphthol-based trifluoromethyl ketone that exhibits fluorescent enhancement at two emission wavelengths upon interaction with a chiral diamine. One emission responds mostly to the concentration of the chiral diamine and the ratio of the two emissions depends on the chiral configuration of the enantiomer but independent of the concentration, allowing both the concentration and enantiomeric composition of the chiral diamine to be simultaneously determined. These strategies would significantly simplify the practical application of the enantioselective fluorescent sensors in high-throughput chiral assay.
ΛΛ pairing in NΛ composite matter
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2002-01-01
ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
ΛΛ pairing in NΛ composite matter
International Nuclear Information System (INIS)
Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi
2003-01-01
ΛΛ pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological ΛΛ interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the ΛΛ pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
{lambda}{lambda} pairing in N{lambda} composite matter
Energy Technology Data Exchange (ETDEWEB)
Tanigawa, Tomonori [Japan Society for the Promotion of Science, Tokyo (Japan); Matsuzaki, Masayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Chiba, Satoshi [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan)
2002-09-01
{lambda}{lambda} pairing correlation in binary mixed matter of nucleons and lambdas is studied within the relativistic Hartree-Bogoliubov model. {lambda} hyperons to be paired up are immersed in background nucleons in normal state. A phenomenological {lambda}{lambda} interaction, which is derived relativistically from the Lagrangian of the system, is adopted to the gap equation. It is found that increasing the nucleon density makes the {lambda}{lambda} pairing gap suppressed. This result suggests a mechanism, specific to relativistic models, of its dependence on the nucleon density. (author)
Excitons and Cooper pairs two composite bosons in many-body physics
Combescot, Monique
2015-01-01
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or grad...
THE USE OF PAIR COMPOSITION METHOD ON STUDENTS’ DESCRIPTIVE WRITING SKILL
Directory of Open Access Journals (Sweden)
Maya Nurmayanti
2014-06-01
Full Text Available This research was aimed to find out roles of pair composition method on students’ behaviour in learning processes and their writing assessment, and also to find out students’ attitude toward learning process of pair composition method in writing descriptive text in the classroom. Descriptive qualitative method was used in this research. The participants were 33 students of X grade of Senior High School. The data were collected from observation, the result of analysis showed that 66% of the seriousness of students during learning process was high, 78% of enthusiasm of students in doing task was high, and 58% of students’ participation was high. The increasing of students’ assessment was 18,7 from the average score before. The data collected from interview and questionnaire indicated that pair composition method provided the opportunities for sharing ideas, developing text, corresting writing errors, motivating students being active, and 50% students strongly agreed that pair composition method on writing descriptive text was lively and enjoyable.
Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems
International Nuclear Information System (INIS)
Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.
1995-01-01
The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs
Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai
2014-01-21
A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.
Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.
Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter
2018-05-11
Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
National Oceanic and Atmospheric Administration, Department of Commerce — The Electron Density Profile, N(h), data set contains both individual profiles and composite months. The data consist of virtual height/frequency pairs from a...
Wan, Hao; Li, Xiaofeng; Zhang, Liang; Li, Xiaopeng; Liu, Pengfei; Jiang, Zhiguo; Yu, Zhong-Zhen
2018-02-14
Rapidly responsive and flexible photonic papers are manufactured by coassembly of cellulose nanocrystals (CNCs) and waterborne polyurethane (WPU) latex for fully taking advantage of the chiral nematic structure of CNCs and the flexibility of WPU elastomer. The resulting CNC/WPU composite papers exhibit not only tunable iridescent colors by adjusting the helical pitch size, but also instant optical responses to water and wet gas, ascribed to the easy chain movement of the elastomeric WPU that does not restrict the fast water absorption-induced swelling of CNCs. By choosing water or NaCl aqueous solutions as inks, the colorful patterns on the CNC/WPU photonic paper can be made temporary, durable, or even disguisable. In addition, the photonic paper is simultaneously rewritable for all these three types of patterns, and the disguisable patterns, which are invisible at normal times and show up under stimuli, exhibit a quick reveal conversion just by exhaling on the paper. The rewritability, rapid responsibility, easy fabrication, and the eco-friendly nature of the inks make the flexible photonic paper/ink combination highly promising in sensors, displays, and photonic circuits.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).
Lubomirsky, Ester; Padró, Juan M; Di Loreto, Héctor; Castells, Cecilia B
2017-08-01
We used a permethyl-β-cyclodextrin chiral stationary phase under reversed-phase conditions for the chiral separation of four aryloxyphenoxy-propionate herbicides (fenoxaprop-p-ethyl, quizalofop-p-ethyl and tefuryl, and haloxyfop-p-methyl) with mixtures of methanol, ethanol, 2-propanol, n-propanol, tert-butanol, or acetonitrile and water as mobile phases and investigated the influence of mobile phase composition and column temperature (from 0 to 50°C) on the separation. The retention factors (k) and selectivity factors (α) of all the herbicides investigated decreased with increasing temperature. The lnα versus 1/T and lnk versus 1/T plots for the enantiomers of the chiral pesticides were linear within the range of 0-50°C with all alcohol/water mixtures constituting the mobile phase, but the lnk versus 1/T plots were nonlinear for all the enantiomers chromatographed in acetonitrile/water mixtures. The thermodynamic parameters based on linear van't Hoff plots were calculated. The influence of temperature and mobile phase composition on the enantioseparation of the solutes has rarely been considered simultaneously. The temperature and the solvents used in the mobile phase, however, were found to have a profound effect on the enantioseparation of these herbicides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Chirality invariance and 'chiral' fields
International Nuclear Information System (INIS)
Ziino, G.
1978-01-01
The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)
Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.
Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin
2014-01-21
A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.
Energy Technology Data Exchange (ETDEWEB)
Desai, Meera Jay [Iowa State Univ., Ames, IA (United States)
2004-01-01
The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude. Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for flexibility in method development. For APCI, lower flow rates did not increase sensitivity as significantly as was previously found for ESI-MS detection. The chiral analysis of native amino acids was evaluated using both APCI and ESI sources. For free amino acids and small peptides, APCI was found to have better sensitivities over ESI at high flow rates. For larger peptides, however, sensitivity was greatly improved with the use of electrospray. Additionally, sensitivity was enhanced with the use of non-volatile additives, This optimized method was then
Chiral Biomarkers in Meteorites
Hoover, Richard B.
2010-01-01
The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be
Directory of Open Access Journals (Sweden)
Alexis Marsol-Vall
2017-01-01
Full Text Available Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging from 52.7% in lemon to 94.0% in tangerine flesh. Noncitrus fibres showed more variable compositions, with the predominant classes being aldehydes in apple (57.5% and peach (69.7%, esters (54.0% in pear, and terpenoids (35.3% in carrot fibres. In addition, enantioselective analysis of some of the chiral terpenoids present in the fibre revealed that the enantiomeric ratio for selected compounds was similar to the corresponding volatile composition of raw fruits and vegetables and some derivatives, with the exception of terpinen-4-ol and α-terpineol, which showed variation, probably due to the drying process. The processing to which fruit residues were submitted produced fibres with low volatile content for noncitrus products. Otherwise, citrus fibres analysed still presented a high volatile composition when compared with noncitrus ones.
Kahle, Kimberly A; Foley, Joe P
2007-06-01
The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.
Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng
2014-01-01
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Bellomo, Enrico Giuseppe
2005-07-01
chiral macroporous hybrid silica-polypeptide composites. The mineralization of organic templates has been investigated as an effective way to control the size and structure of inorganic frameworks. Hybrid structures incorporating polypeptide with silica have been prepared and characterized using X-ray scattering, TGA, SEM and TEM. The results support the interaction between silica and polymer to form ordered chiral macroporous structures that can be easily controlled by polymer molecular weight and volume fraction.
International Nuclear Information System (INIS)
Plum, Eric; Zheludev, Nikolay I.
2015-01-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media
Zhou, Qing; Li, Ziyin
2015-01-01
The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545
Zhao, Ze; Wang, Shuang
2018-03-01
The main purpose of this work is to distinguish various holographic type dark energy (DE) models, including the ΛHDE, HDE, NADE, and RDE model, by using various diagnostic tools. The first diagnostic tool is the Statefinder hierarchy, in which the evolution of Statefinder hierarchy parmeter S (1) 3( z) and S (1) 4( z) are studied. The second is composite null diagnostic (CND), in which the trajectories of { S (1) 3, ɛ} and { S (1) 4, ɛ} are investigated, where ɛ is the fractional growth parameter. The last is w-w' analysis, where w is the equation of state for DE and the prime denotes derivative with respect to ln a. In the analysis we consider two cases: varying current fractional DE density Ω de0 and varying DE model parameter C. We find that: (1) both the Statefinder hierarchy and the CND have qualitative impact on ΛHDE, but only have quantitative impact on HDE. (2) S (1) 4 can lead to larger differences than S (1) 3, while the CND pair has a stronger ability to distinguish different models than the Statefinder hierarchy. (3) For the case of varying C, the { w,w'} pair has qualitative impact on ΛHDE; for the case of varying Ω de0, the { w, w'} pair only has quantitative impact; these results are different from the cases of HDE, RDE, and NADE, in which the {w,w'} pair only has quantitative impact on these models. In conclusion, compared with HDE, RDE, and NADE, the ΛHDE model can be easily distinguished by using these diagnostic tools.
Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission
International Nuclear Information System (INIS)
Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel
2013-01-01
We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)
Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere
Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes
2018-05-01
We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.
International Nuclear Information System (INIS)
Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.
2010-01-01
We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.
Zhou, Qing; Li, Ziyin
2015-11-01
γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.
Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.
2018-03-01
The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.
Ju, Zhe; Wang, Shi-Yun
2018-04-22
As one of the most important and common protein post-translational modifications, citrullination plays a key role in regulating various biological processes and is associated with several human diseases. The accurate identification of citrullination sites is crucial for elucidating the underlying molecular mechanisms of citrullination and designing drugs for related human diseases. In this study, a novel bioinformatics tool named CKSAAP_CitrSite is developed for the prediction of citrullination sites. With the assistance of support vector machine algorithm, the highlight of CKSAAP_CitrSite is to adopt the composition of k-spaced amino acid pairs surrounding a query site as input. As illustrated by 10-fold cross-validation, CKSAAP_CitrSite achieves a satisfactory performance with a Sensitivity of 77.59%, a Specificity of 95.26%, an Accuracy of 89.37% and a Matthew's correlation coefficient of 0.7566, which is much better than those of the existing prediction method. Feature analysis shows that the N-terminal space containing pairs may play an important role in the prediction of citrullination sites, and the arginines close to N-terminus tend to be citrullinated. The conclusions derived from this study could offer useful information for elucidating the molecular mechanisms of citrullination and related experimental validations. A user-friendly web-server for CKSAAP_CitrSite is available at 123.206.31.171/CKSAAP_CitrSite/. Copyright © 2017. Published by Elsevier B.V.
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Introduction to chiral symmetry
International Nuclear Information System (INIS)
Koch, V.
1996-01-01
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented
Chiral discotics; expression and amplification of chirality
Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.
2003-01-01
In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic
Mori, Taizo; Sharma, Anshul; Hegmann, Torsten
2016-01-26
Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle
Cook, Jamie E.
2012-01-01
Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
On chiral and non chiral 1D supermultiplets
International Nuclear Information System (INIS)
Toppan, Francesco
2011-01-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1987-01-01
An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown
The ''closed'' chiral symmetry and its application to tetraquark
International Nuclear Information System (INIS)
Chen, Hua-Xing
2012-01-01
We investigate the chiral (flavor) structure of tetraquarks, and study chiral transformation properties of the ''non-exotic'' [(anti 3, 3)+(3, anti 3)] and [(8,1)+(1,8)] tetraquark chiral multiplets. We find that as long as this kind of tetraquark states contains one quark and one antiquark having the same chirality, such as q L q L anti q L anti q R + q R q R anti q R anti q L , they transform in the same way as the lowest level anti q q chiral multiplets under chiral transformations. There is only one [(anti 3, 3)+(3, anti 3)] chiral multiplet whose quark-antiquark pairs all have the opposite chirality (q L q L anti q R anti q R + q R q R anti q L anti q L ), and it transforms differently from others. Based on these studies, we construct local tetraquark currents belonging to the ''non-exotic'' chiral multiplet [(anti 3, 3)+(3, anti 3)] and having quantum numbers J PC =1 -+ . (orig.)
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Mechanical separation of chiral dipoles by chiral light
International Nuclear Information System (INIS)
Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W
2013-01-01
We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)
Directory of Open Access Journals (Sweden)
Md Mehedi Hasan
Full Text Available Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in 10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/.
Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F
2012-09-01
Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.
On chiral-odd Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)
2010-07-01
The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis
Directory of Open Access Journals (Sweden)
Mireia Oromí-Farrús
2012-01-01
Full Text Available The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α=3.00 and 2-hexyl acetates (α=1.95. This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.
Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon
2012-01-01
The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.
Intrinsic Chirality Origination in Carbon Nanotubes.
Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R
2017-10-24
Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.
Molecular-level Design of Heterogeneous Chiral Catalysts
Energy Technology Data Exchange (ETDEWEB)
Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside
2013-04-28
Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111
Nucleon and delta masses in twisted mass chiral perturbation theory
International Nuclear Information System (INIS)
Walker-Loud, Andre; Wu, Jackson M.S.
2005-01-01
We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking
Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic
2017-09-15
Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun
2017-11-01
Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Broken chiral symmetry and the structure of hadrons
International Nuclear Information System (INIS)
Spence, W.L.
1982-01-01
The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown
Siegel's chiral boson and the chiral Schwinger model
International Nuclear Information System (INIS)
Berger, T.
1992-01-01
In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model
Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang
2018-01-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Zhu, Hanyu
2018-02-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir
2016-05-15
Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.
Chiral Spirals from Discontinuous Chiral Symmetry
Kojo, Toru
2014-09-01
Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.
DEFF Research Database (Denmark)
Nazmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.
2016-01-01
We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster r...... reacting. Investigations of the chirality using electron-transfer theory combined with quantum-chemical and statistical-mechanical calculations showed that chirality is solely in inter-reactant interaction and electronic overlap.......We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster...
Geometrical approach to central molecular chirality: a chirality selection rule
Capozziello, S.; Lattanzi, A.
2004-01-01
Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...
International Nuclear Information System (INIS)
Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho
2012-01-01
Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones
Chiral algebras in Landau-Ginzburg models
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen
2016-12-01
The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Topa, Dan; Makovicky, Emil; Paar, Werner H.
2002-01-01
geology, bismuthinite-aikinite derivatives, composition ranges, exsolution, replacement, miscibility gaps, scheelite deposit, Felbertal, Austria......geology, bismuthinite-aikinite derivatives, composition ranges, exsolution, replacement, miscibility gaps, scheelite deposit, Felbertal, Austria...
International Nuclear Information System (INIS)
Musakhanov, M.M.
1980-01-01
The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data
Energy Technology Data Exchange (ETDEWEB)
Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)
2016-03-23
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Patterns of symmetry breaking in chiral QCD
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
Chiral near-fields around chiral dolmen nanostructure
International Nuclear Information System (INIS)
Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue
2017-01-01
Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)
Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.
Zeng, Chenjie; Jin, Rongchao
2017-08-04
Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poladian, L; Straton, M; Docherty, A; Argyros, A
2011-01-17
We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.
Relativistic Chiral Kinetic Theory
International Nuclear Information System (INIS)
Stephanov, Mikhail
2016-01-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Relativistic Chiral Kinetic Theory
Energy Technology Data Exchange (ETDEWEB)
Stephanov, Mikhail
2016-12-15
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].
Energy Technology Data Exchange (ETDEWEB)
Becher,
2002-08-08
After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.
Czech Academy of Sciences Publication Activity Database
Iwan, A.; Sikora, A.; Hamplová, Věra; Bubnov, Alexej
2015-01-01
Roč. 42, č. 7 (2015), s. 964-972 ISSN 0267-8292 R&D Projects: GA MŠk 7AMB13PL041; GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA MŠk 7AMB13PL038 Grant - others:AVČR(CZ) M100101204 Institutional support: RVO:68378271 Keywords : AFM * chiral liquid crystal * organic solar cells * azo compounds * photovoltaic s Subject RIV: JJ - Other Materials Impact factor: 2.244, year: 2015
Generalized chiral perturbation theory
International Nuclear Information System (INIS)
Knecht, M.; Stern, J.
1994-01-01
The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs
Generalized chiral membrane dynamics
International Nuclear Information System (INIS)
Cordero, R.; Rojas, E.
2003-01-01
We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)
International Nuclear Information System (INIS)
Sharpe, S.R.
1992-04-01
I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang
2012-07-01
The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autoamplification of molecular chirality through the induction of supramolecular chirality
van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.
2014-01-01
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
Chiral anomalies; gauge theories; bundles; connections; quantum ﬁeld ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a ﬁxed background connection. ... Current Issue : Vol.
Silver Films with Hierarchical Chirality.
Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai
2017-07-17
Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral anomalies and differential geometry
International Nuclear Information System (INIS)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references
Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP.
Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O; Schmidt, Marcus; Grushin, Adolfo G; Bardarson, Jens H; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai
2016-05-17
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.
Chiral meta-atoms rotated by light
International Nuclear Information System (INIS)
Liu Mingkai; Powell, David A.; Shadrivov, Ilya V.
2012-01-01
We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.
Chiral meta-atoms rotated by light
Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.
2012-07-01
We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.
Chiral Synthons in Pesticide Syntheses
Feringa, Bernard
1988-01-01
The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the
Holographic Chiral Magnetic Spiral
International Nuclear Information System (INIS)
Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung
2010-06-01
We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)
Molecular [(Fe3)–(Fe3)] and [(Fe4)–(Fe4)] coordination cluster pairs as single or composite arrays.
Sañudo, E Carolina; Uber, Jorge Salinas; Pons Balagué, Alba; Roubeau, Olivier; Aromí, Guillem
2012-08-06
The synthesis of molecular cluster pairs is a challenge for coordination chemists due to the potential applications of these species in molecular spintronics or quantum computing. The ligand H(4)L, 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene, has been successfully used to obtain a series of such complexes using the basic Fe(III) trinuclear carboxylates as starting materials. Synthetic control has allowed the isolation of the two molecular cluster pairs that form the composite [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2)[Fe(3)O(PhCO(2))(5)(py)(H(2)L)](2) (1). The dimers of trinuclear units, [Fe(3)O(PhCO(2))(5)(H(2)O)(H(2)L)](2) (2) and [Fe(3)O(o-MePhCO(2))(5)(H(2)L)(py)](2) (3), and the dimers of tetranuclear units, [Fe(4)O(2)(PhCO(2))(6)(H(2)L)(pz)](2) (4) and [Fe(4)O(2)(o-MePhCO(2))(6)(H(2)L)(pz)](2) (5), are presented here. The magnetic properties of the reported aggregates show that they are pairs of semi-independent clusters weakly interacting magnetically as required for two-qubit quantum gates.
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
International Nuclear Information System (INIS)
Cuypers, F.
1990-01-01
Chiral colour is considered in a general framework where the coupling constants associated with each SU(3) component are allowed to be different. To reproduce QCD at low energy, gluons and axigluons cannot then be maximally mixed. Present data form e + e - colliders contrains the axigluon mass to values between 50 GeV and 375 GeV whilst the mixing angle is bounded by 13deg and 45deg. The lower limit of the axigluon mass is a definite bound at 90% C.L., whereas the upper limit only applies if chiral colour is to explain the anomalously high rates of hadron production at TRISTAN. (orig.)
Realization of chiral symmetry in the ERG
International Nuclear Information System (INIS)
Echigo, Yoshio; Igarashi, Yuji
2011-01-01
We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)
Chirality: from QCD to condensed matter
International Nuclear Information System (INIS)
Kharzeev, D.
2015-01-01
This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Critical constraints on chiral hierarchies
International Nuclear Information System (INIS)
Chivukula, R.S.; Golden, M.; Simmons, E.H.
1993-01-01
Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Mohan, R.
1992-01-01
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Chirality in molecular collision dynamics
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
Insight into the chiral induction in supramolecular stacks through preferential chiral salvation
George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.
2011-01-01
Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation
Hadronic interactions from effective chiral Lagrangians of quarks and gluons
International Nuclear Information System (INIS)
Krein, G.
1996-06-01
We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs
Detecting the chirality for coupled quantum dots
International Nuclear Information System (INIS)
Cao Huijuan; Hu Lian
2008-01-01
We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots
Chirality in distorted square planar Pd(O,N)2 compounds.
Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi
2013-10-01
Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.
Three-dimensional Majorana fermions in chiral superconductors.
Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang
2016-12-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
Wang, Yuanqing; Yan, Jianye; Li, Shunxiang; Wang, Wei; Cai, Xiong; Huang, Dan; Gong, Limin; Li, Xin
2016-01-01
Angelica sinensis and Aurantii fructu used in a pair, named Danggui-Zhiqiao herb-pair (DZHP), which was rich in essential oil and has been adopted to promote blood circulation, dispel blood stasis, and relieve pain in traditional Chinese medicine (TCM). To analyze the composition and pharmacological effects of essential oil from DZHP. The composition of the essential oil from DZHP was analyzed by gas chromatography/mass spectrometry (GC/MS). Its analgesic activity was evaluated by acetic acid-induced writhing test and hot plate test. The hemorheology test was carried out to evaluate the effect on hemorheology in rats with blood stasis syndrome. Twenty-eight components were identified and the main components were α -pinene (3.07%), β -pinene (2.0%), β -myrcene (3.71%), D-limonene (49.28%), γ -terpinen (9.53%), α -terpinolene (1.80%), α -terpineol (2.02%), β -bisabolene (1.13%), butylidenephthalide (1.43%), and Z-ligustilide (16.08%). The pharmacology test showed that the essential oil significantly inhibited the number of writhes induced by acetic acid with inhibition rate of 44.64% and significantly increased hot-plate latency compared with control group from 30 to 90 min after oral administration of drugs in mice. It could significantly decrease plasma viscosity, whole blood relative index at high and low shear rate, whole blood reduced viscosity at high and low shear rate, and erythrocyte rigidity index in hemorheology test. The composition of the essential oil of DZHP was determined successfully and it had analgesic and promoting blood circulation activities. Angelica sinensis and Aurantii fructu used in a pair, named Danggui-Zhiqiao herb-pair (DZHP), which was rich in Essential oil and has been adopted to promote blood circulation, dispel blood stasis and relieve pain in traditional Chinese medicine (TCM).Twenty-eight components were identified and the main components were α -pinene (3.07%), β -pinene (2.0%), β -myrcene (3.71%), D-limonene (49.28%),
One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.
Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro
2015-07-31
We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.
Non-uniform chiral phase in effective chiral quark models
International Nuclear Information System (INIS)
Sadzikowski, M.; Broniowski, W.
2000-01-01
We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)
Sagan, Bruce E.; Savage, Carla D.
2012-01-01
We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...
Chiral magnetic effect of light
Hayata, Tomoya
2018-05-01
We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.
Chiral Responsive Liquid Quantum Dots.
Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing
2017-08-01
How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Cuypers, F.
1989-01-01
The authors studies the phenomenological implications of the Chiral Colour model which allow him to derive experimental bounds on the axigluon mass or to predict deviations from the Standard Model. After a short introduction to the theory, the author examines the way it modifies the standard decay of quarkonium. Comparison with the observed lifetime of the upsilon allows him to exclude the existence of axigluons lighter than 9 GeV. (Others have since extended the work and were able to increase this limit to 25 GeV.) He then studies the Chiral Colour contribution to the hadronic cross-section in the electron-positron scattering and derive a conservative lower bound of 50 GeV for the axigluon mass. Finally, he predicts observable enhancements of the lifetime and rare decay channels of the Z O in the presence of light axigluons
International Nuclear Information System (INIS)
Bastianelli, F.
1991-01-01
We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4
Identifying chiral bands in real nuclei
International Nuclear Information System (INIS)
Shirinda, O.; Lawrie, E.A.
2012-01-01
The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Chirality-selected phase behaviour in ionic polypeptide complexes
Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew
2015-01-01
Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861
Non-leptonic weak decay of hadrons and chiral symmetry
International Nuclear Information System (INIS)
Suzuki, Katsuhiko
2000-01-01
We review the non-leptonic weak decay of hyperons and ΔI=1/2 rule with a special emphasis on the role of chiral symmetry. The soft-pion theorem provides a powerful framework to understand the origin of ΔI=1/2 rule qualitatively. However, quantitative description is still incomplete in any model of the hadrons. Naive chiral perturbation theory cannot explain the parity-conserving and violating amplitudes simultaneously, and convergence of the chiral expansion seems to be worse. We demonstrate how the non-leptonic weak decay amplitudes are sensitive to the quark-pair correlation in the baryons, and show the importance of the strong quark correlation in the spin-0 channel to reproduce the experimental data. We finally remark several related topics. (author)
He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir
2018-01-19
Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.
Luo, Xiaolong
2016-01-12
A novel homochiral zeolite-like metal-organic framework (ZMOF), [(Cu4I4) (dabco)2]·[Cu2(bbimb)]·3DMF (JLU-Liu23, dabco =1,4-diazabicyclo[2.2.2]-octane, H2bbimb =1,3-bis(2-benzimidazol)benzene, DMF = N,N-dimethylformamide), has been successfully constructed to host unprecedented DNA-like [Cu2(bbimb)]n polymers with double-helicity. The host-guest chirality interplay permitted the induced formation of an unusual gyroid MOF with homochirality and helical channels in the framework for the first time, JLU-Liu23. Importantly, the enantiomeric pairs (23P, 23M) can be promoted and isolated in the presence of appropriate chiral inducing agents, affording enantioselective separation of chiral molecules as well as small gas molecules. © 2016 American Chemical Society.
Simplified chiral superfield propagators for chiral constant mass superfields
International Nuclear Information System (INIS)
Srivastava, P.P.
1983-01-01
Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt
Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth
Konstantinov, Konstantin K.; Konstantinova, Alisa F.
2018-03-01
Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.
Chiral anomaly and anomalous finite-size conductivity in graphene
Shen, Shun-Qing; Li, Chang-An; Niu, Qian
2017-09-01
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.
Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan
2015-12-01
The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral nanophotonics chiral optical properties of plasmonic systems
Schäferling, Martin
2017-01-01
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .
Chirality Characterization of Dispersed Single Wall Carbon Nanotubes
Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.
2005-01-01
Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.
Spontaneous chiral symmetry breaking in early molecular networks
Directory of Open Access Journals (Sweden)
Markovitch Omer
2010-05-01
Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.
The combination of high Q factor and chirality in twin cavities and microcavity chain
Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin
2014-01-01
Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881
Marsol i Vall, Alexis; Sgorbini, Barbara; Cagliero, Cecilia; Bicchi, Carlo; Eras i Joli, Jordi; Balcells Fluvià, Mercè
2017-01-01
Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging...
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Nuclear matter from chiral effective field theory
International Nuclear Information System (INIS)
Drischler, Christian
2017-01-01
-ordering method to finite temperatures. Calculations of asymmetric matter require in addition reliable fit values for the low-energy couplings that contribute to the 3N forces. This was not the case for N 3 LO calculations. We present a novel Monte-Carlo framework for perturbative calculations with two-, three-, and four-nucleon interactions, which, including automatic code generation, allows to compute successive orders in MBPT as well as chiral EFT in an efficient way. The performance is such that it can be used for optimizing next-generation chiral potentials with respect to saturation properties. As a first step in this direction, we study nuclear matter based on chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. We then explore new chiral interactions up to N 3 LO, where simultaneous fits to the triton and to saturation properties can be achieved with natural 3N low-energy couplings. We perform a comprehensive Weinberg eigenvalue analysis of a representative set of modern local, semilocal, and nonlocal chiral NN potentials. Our detailed comparison of Weinberg eigenvalues provides various insights into idiosyncrasies of chiral potentials for different orders and partial waves. We demonstrate that a direct comparison of numerical cutoff values of different interactions is in general misleading due to the different analytic form of regulators. This shows that Weinberg eigenvalues also can be used as a helpful monitoring scheme when constructing new interactions. Furthermore, we present solutions of the BCS gap equation in the channels 1 S 0 and 3 P 2 - 3 F 2 in neutron matter. Our studies are based on nonlocal NN plus 3N interactions up to N 3 LO as well as the aforementioned local and semilocal chiral NN interactions up to N 2 LO and N 4 LO, respectively. In particular, we investigate the impact of N 3 LO 3N forces on pairing gaps and also derive uncertainty estimates by taking into account results at different orders in the
Nuclear matter from chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Drischler, Christian
2017-11-15
normal-ordering method to finite temperatures. Calculations of asymmetric matter require in addition reliable fit values for the low-energy couplings that contribute to the 3N forces. This was not the case for N{sup 3}LO calculations. We present a novel Monte-Carlo framework for perturbative calculations with two-, three-, and four-nucleon interactions, which, including automatic code generation, allows to compute successive orders in MBPT as well as chiral EFT in an efficient way. The performance is such that it can be used for optimizing next-generation chiral potentials with respect to saturation properties. As a first step in this direction, we study nuclear matter based on chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. We then explore new chiral interactions up to N{sup 3}LO, where simultaneous fits to the triton and to saturation properties can be achieved with natural 3N low-energy couplings. We perform a comprehensive Weinberg eigenvalue analysis of a representative set of modern local, semilocal, and nonlocal chiral NN potentials. Our detailed comparison of Weinberg eigenvalues provides various insights into idiosyncrasies of chiral potentials for different orders and partial waves. We demonstrate that a direct comparison of numerical cutoff values of different interactions is in general misleading due to the different analytic form of regulators. This shows that Weinberg eigenvalues also can be used as a helpful monitoring scheme when constructing new interactions. Furthermore, we present solutions of the BCS gap equation in the channels {sup 1}S{sub 0} and {sup 3}P{sub 2}-{sup 3}F{sub 2} in neutron matter. Our studies are based on nonlocal NN plus 3N interactions up to N{sup 3}LO as well as the aforementioned local and semilocal chiral NN interactions up to N{sup 2}LO and N{sup 4}LO, respectively. In particular, we investigate the impact of N{sup 3}LO 3N forces on pairing gaps and also derive uncertainty
Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.
Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya
2018-05-01
We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Erny, Guillaume L.; Cifuentes, Alejandro
2006-01-01
Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc, of pharmaceuticals. In this manuscript, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including e.g., antiinflammatories, antihypertensives, relaxants, etc, by liquid chromatography-mass spectrometry and ...
Nanoscale chirality in metal and semiconductor nanoparticles.
Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M
2016-10-18
The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Short-distance Schwinger-mechanism and chiral symmetry
DEFF Research Database (Denmark)
McGady, David A.; Brogård, Jon
2017-01-01
rates depend only on the ratio between the capacitor plate separation, $\\ell$, and the length-scale of the force-field, $\\ell_F$. Chirality ensures that fermion production smoothly vanishes with $\\ell/\\ell_F$. Scalar pair production though diverges exponentially quickly in this limit. The same limit...... of the smooth tanh-potential does not diverge; divergences seem tied to singularities in current and charge densities....
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Chiral plaquette polaron theory of cuprate superconductivity
Tahir-Kheli, Jamil; Goddard, William A., III
2007-07-01
Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a
Chiral recognition in separation science: an overview.
Scriba, Gerhard K E
2013-01-01
Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.
New remarks on chiral bosonization
International Nuclear Information System (INIS)
Souza Dutra, A. de
1992-01-01
We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)
Vector mesons and chiral symmetry
International Nuclear Information System (INIS)
Ecker, G.
1989-01-01
The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)
Nonlinear spectroscopic studies of chiral media
International Nuclear Information System (INIS)
Belkin, Mikhail Alexandrovich
2004-01-01
Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies
Energy Technology Data Exchange (ETDEWEB)
Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1991-04-18
We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Switching of chirality by light
Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.
1996-01-01
Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction
Chiral dynamics with (nonstrange quarks
Directory of Open Access Journals (Sweden)
Kubis Bastian
2017-01-01
Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Chiral topological insulator of magnons
Li, Bo; Kovalev, Alexey A.
2018-05-01
We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.
Review of chiral perturbation theory
Indian Academy of Sciences (India)
Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Lu, Yang Young; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu
2017-03-15
The advent of next-generation sequencing technologies enables researchers to sequence complex microbial communities directly from the environment. Because assembly typically produces only genome fragments, also known as contigs, instead of an entire genome, it is crucial to group them into operational taxonomic units (OTUs) for further taxonomic profiling and down-streaming functional analysis. OTU clustering is also referred to as binning. We present COCACOLA, a general framework automatically bin contigs into OTUs based on sequence composition and coverage across multiple samples. The effectiveness of COCACOLA is demonstrated in both simulated and real datasets in comparison with state-of-art binning approaches such as CONCOCT, GroopM, MaxBin and MetaBAT. The superior performance of COCACOLA relies on two aspects. One is using L 1 distance instead of Euclidean distance for better taxonomic identification during initialization. More importantly, COCACOLA takes advantage of both hard clustering and soft clustering by sparsity regularization. In addition, the COCACOLA framework seamlessly embraces customized knowledge to facilitate binning accuracy. In our study, we have investigated two types of additional knowledge, the co-alignment to reference genomes and linkage of contigs provided by paired-end reads, as well as the ensemble of both. We find that both co-alignment and linkage information further improve binning in the majority of cases. COCACOLA is scalable and faster than CONCOCT, GroopM, MaxBin and MetaBAT. The software is available at https://github.com/younglululu/COCACOLA . fsun@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Chirality-controlled crystallization via screw dislocations.
Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric
2018-04-11
Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment
Energy Technology Data Exchange (ETDEWEB)
Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)
2016-07-01
Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.
Chiral current generation in QED by longitudinal photons
Directory of Open Access Journals (Sweden)
J.L. Acosta Avalo
2016-08-01
Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
Chiral current generation in QED by longitudinal photons
Energy Technology Data Exchange (ETDEWEB)
Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)
2016-08-15
We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Chirality in adsorption on solid surfaces.
Zaera, Francisco
2017-12-07
In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral
Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates
Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.
2010-01-01
Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the
Directory of Open Access Journals (Sweden)
Sheng Zhi-Ya
2008-02-01
Full Text Available Abstract Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM. When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%. When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor. Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP
Effects of chirality and surface stresses on the bending and buckling of chiral nanowires
International Nuclear Information System (INIS)
Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng
2014-01-01
Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
International Nuclear Information System (INIS)
Rahaman, Anisur
2015-01-01
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Chirality: a relational geometric-physical property.
Gerlach, Hans
2013-11-01
The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.
Extreme chirality in Swiss roll metamaterials
International Nuclear Information System (INIS)
Demetriadou, A; Pendry, J B
2009-01-01
The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Quark fragmentation function and the nonlinear chiral quark model
International Nuclear Information System (INIS)
Zhu, Z.K.
1993-01-01
The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results
Parafermionic wires at the interface of chiral topological states
Santos, Luiz; Hughes, Taylor
We discuss a scenario where local interactions form one-dimensional gapped interfaces between a pair of distinct chiral two-dimensional topological states such that each gapped region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that this type of T-junction supports point-like fractionalized excitations obeying parafermion statistics, thus implying that the one-dimensional gapped interface forms an effective topological parafermionic wire possessing a non-trivial ground state degeneracy. The physical properties of the anyon condensate that gives rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to behave as a type of anyon ``Andreev reflector'' in the bulk, whereby anyons from one phase, upon hitting the interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces, the interfaces are themselves topological.
Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents
International Nuclear Information System (INIS)
Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.
2002-01-01
In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions
C2-symmetric bisamidines: Chiral Brønsted bases catalysing the Diels-Alder reaction of anthrones
Directory of Open Access Journals (Sweden)
2008-08-01
Full Text Available C2-symmetric bisamidines 8 have been tested as chiral Brønsted bases in the Diels-Alder reaction of anthrones and N-substituted maleimides. High yields of cycloadducts and significant asymmetric inductions up to 76% ee are accessible. The proposed mechanism involves proton transfer between anthrone and bisamidine, association of the resulting ions and finally a cycloaddition step stereoselectively controlled by the chiral ion pair.
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Quenched Chiral Perturbation Theory to one loop
Colangelo, G.; Pallante, E.
The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral
Variational approach to chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira
1987-03-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.
A variational approach to chiral quark models
International Nuclear Information System (INIS)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.
1987-01-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)
Chirality plays important roles in radiopharmaceuticals
International Nuclear Information System (INIS)
Shen Yumei
2006-01-01
The paper introduces the basic concept of chirality, target specific selectivity and their relationship in radiopharmaceuticals. If the ligands labeled by radionuclides have chiral center, the enantiomers must be separated, or the target specific selectivity will not be good. Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals. (authors)
International Nuclear Information System (INIS)
Rho, M.
1982-01-01
As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Chiral interaction and biomolecular evolution
International Nuclear Information System (INIS)
Gilat, G.
1992-01-01
Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)
Characteristics of chiral anomaly in view of various applications
Fujikawa, Kazuo
2018-01-01
In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.
Intrinsic and Extrinsic Origins of the Polar Kerr Effect in a Chiral p-WAVE Superconductor
Goryo, Jun
Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + ipy-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsic (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.
Chiral soliton models for baryons
International Nuclear Information System (INIS)
Weigel, H.
2008-01-01
This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)
Surface defects and chiral algebras
Energy Technology Data Exchange (ETDEWEB)
Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)
2017-05-26
We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.
Asymmetric Synthesis via Chiral Aziridines
DEFF Research Database (Denmark)
Tanner, David Ackland; Harden, Adrian; Wyatt, Paul
1996-01-01
A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Chiral separation and enantioselective degradation of vinclozolin in soils.
Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng
2014-03-01
Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.
Reversible optical transcription of supramolecular chirality into molecular chirality
Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard
2004-01-01
In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which
International Nuclear Information System (INIS)
Ziino, G.
1989-01-01
We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too
Oscillation damping of chiral string loops
International Nuclear Information System (INIS)
Babichev, Eugeny; Dokuchaev, Vyacheslav
2002-01-01
Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations
Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang
2015-08-01
Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.
Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.
Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun
2018-05-16
Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard
2014-01-01
Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....
Chirality effect in disordered graphene ribbon junctions
International Nuclear Information System (INIS)
Long Wen
2012-01-01
We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)
No chiral truncation of quantum log gravity?
Andrade, Tomás; Marolf, Donald
2010-03-01
At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.
Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis
Liu, Chen; Zhu, Qiang; Huang, Kuo-Wei; Lu, Yixin
2011-01-01
A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.
Primary amine/CSA ion pair: A powerful catalytic system for the asymmetric enamine catalysis
Liu, Chen
2011-05-20
A novel ion pair catalyst containing a chiral counteranion can be readily derived by simply mixing cinchona alkaloid-derived diamine with chiral camphorsulfonic acid (CSA). A mixture of 9-amino(9-deoxy)epi-quinine 8 and (-)-CSA was found to be the best catalyst with matching chirality, enabling the direct amination of α-branched aldehydes to proceed in quantitative yields and with nearly perfect enantioselectivities. A 0.5 mol % catalyst loading was sufficient to catalyze the reaction, and a gram scale enantioselective synthesis of biologically important α-methyl phenylglycine has been successfully demonstrated. © 2011 American Chemical Society.
Feringa, Bernard
2001-01-01
One of the great mysteries in science is the homochirality (single handedness) of the essential molecules of life. Natural sugars are almost exclusively right-handed; natural amino acids are almost exclusively left-handed. Current life forms could not exist without the uniform chirality of these
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
Carneiro, C.E.I.; McDougall, N.A.
1984-01-01
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Instantons and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)
1984-10-22
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.
Status of chiral perturbation theory
International Nuclear Information System (INIS)
Ecker, G.
1996-10-01
A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)
Principles of chiral perturbation theory
International Nuclear Information System (INIS)
Leutwyler, H.
1995-01-01
An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
Descendants of the Chiral Anomaly
Jackiw, R.
2000-01-01
Chern-Simons terms are well-known descendants of chiral anomalies, when the latter are presented as total derivatives. Here I explain that also Chern-Simons terms, when defined on a 3-manifold, may be expressed as total derivatives.
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
Energy Technology Data Exchange (ETDEWEB)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer
Nuclear chiral dynamics and thermodynamics
Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram
2013-11-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.
Directory of Open Access Journals (Sweden)
Hiroshi Yao
2016-10-01
Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of
Disoriented chiral condensates and anomalous production of pions
International Nuclear Information System (INIS)
Martinis, M.; Mikuta-Martinis, V.; Crnugelj, J.
1999-01-01
The leading-particle effect and the factorization property of the scattering amplitude in the impact parameter space are used to study semiclassical production of pions in the central region. The mechanism is related to the isospin-uniform solution of the nonlinear σ-model coupled to quark degrees of freedom. The multipion exchange potential between two quarks is derived. It is shown that the soft chiral pion Bremsstrahlung also leads to anomalously large fluctuations in the ratio of neutral to charged pion.. We show that only direct production of pions in the form of an isoscalar coherent pulse without isovector pairs can lead to large neutral-charged fluctuations. (Authors)
Spontaneous Hall effect in a chiral p-wave superconductor
Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred
2001-08-01
In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.
Alternative method for determination of contaminated heparin using chiral recognition.
Szekely, J; Collins, M; Currie, C A
2014-05-15
Since 2008 a significant amount of work has focused on the development of methods to analyze contaminated heparin. This work focuses on utilizing heparin's ability to serve as a chiral selector as a means for determining contamination. Specifically, the effect of contamination on the separation of pheniramine and chloroquine enantiomers was explored. Separations were conducted using heparin contaminated with chondroitin sulfate at varying levels. For each pair of enantiomers, electrophoretic mobility and resolution were calculated. For pheniramine enantiomers, an increase in contamination leads to a decrease in the electrophoretic mobility and resolution. A linear relationship between contamination level and electrophoretic mobility of the pheniramine enantiomers was observed for the entire contamination range. A linear relationship was also found between contamination level and resolution of the enantiomers between 0 and 70 percent contamination. For the separation of chloroquine enantiomers, it was found that at low levels of contamination, the resolution of enantiomers was increased due to the secondary interaction between the chloroquine enantiomers and the chondroitin sulfate. Results of this study illustrate the potential of using chiral recognition as a means to determine heparin contamination as well as the improvement of the chiral resolution of chloroquine with the additional of low levels of chondroitin sulfate A. Copyright © 2014 Elsevier B.V. All rights reserved.
Timoshenko beam model for chiral materials
Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.
2018-06-01
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.
Photoexcitation circular dichroism in chiral molecules
Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.
2018-05-01
Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.
Distribution of volatile composition in 'marion' ( rubus species hyb) blackberry pedigree.
Du, Xiaofen; Finn, Chad; Qian, Michael C
2010-02-10
The distribution of volatile constituents in ancestral genotypes of 'Marion' blackberry's pedigree was investigated over two growing seasons. Each genotype in the pedigree had a specific volatile composition. Red raspberry was dominated by norisoprenoids, lactones, and acids. 'Logan' and 'Olallie' also had a norisoprenoid dominance but at much lower concentrations. The concentration of norisoprenoids in other blackberry genotypes was significantly lower. Terpenes and furanones were predominant in wild 'Himalaya' blackberry, whereas terpenes were the major volatiles in 'Santiam'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amount. The chiral isomeric ratios of 11 pairs of compounds were also studied. Strong chiral isomeric preference was observed for most of the chiral compounds, and each cultivar had its unique chiral isomeric distribution. An inherent pattern was observed for some volatile compounds in the 'Marion' pedigree. Raspberry and 'Logan' had a very high concentration of beta-ionone, but was reduced by half in 'Olallie' and by another half in 'Marion' as the crossing proceeded. A high content of linalool in 'Olallie' and a low content in 'Chehalem' resulted in a moderate content of linalool in their progeny 'Marion'. However, the concentration of furaneol in 'Marion' was higher than in its parents. A high content of (S)-linalool in 'Olallie' and a racemic content of (S)-,(R)-linalool in 'Chehalem' resulted in a preference for the (S)-form in 'Marion'.
The Role Seemingly of Amorphous Silica Gel Layers in Chiral Separations by Planar Chromatography
Directory of Open Access Journals (Sweden)
Teresa Kowalska
2007-12-01
Full Text Available In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 g-1 and relatively simple active sites (silanol groups, Si-OH. The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analyte’s migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD and the data thereof confirmed that the ‘chromatographic’ silica gels are not amorphous but microcrystalline, contributing to the (partial horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers.
The role seemingly of amorphous silica gel layers in chiral separations by planar chromatography
International Nuclear Information System (INIS)
Sajewicz, M.; Kowalska, T.
2007-01-01
In planar chromatography, silica gel appears as the most frequently used adsorbent. Its preference as planar chromatographic stationary phase is due to its high specific surface area (ca. 700 m2 gl) and relatively simple active sites (silanol groups =Si-OH). The high specific surface area of silica gel and a high density of coverage of its surface with the silanol active sites contribute jointly to an excellent separation performance of this adsorbent. In our experiments on chiral separation of the enantiomer pairs by planar chromatography, contradictory behavior of the silica gel layers versus the chiral compounds was observed. The migration tracks of chiral compounds in the ascending planar chromatographic mode were not vertical but bent on either side being a function of analyte chirality. This deviation of the analytes migration track was noticed, when using the densitometric scanner to quantify the respective chromatograms. In order to confirm the hypothesis as to the microcrystalline nature of silica gel used in liquid chromatography, it was further investigated through circular dichroism (CD) and the data thereof confirmed that the chromatographic silica gels are not amorphous but microcrystalline, contributing to the (partial) horizontal enantioseparation of the antimer pairs. This paper summarizes the results of our investigation on the microcrystalline nature of silica gels used in planar chromatography and their impact on enantioseparation of the selected pairs of antimers. (author)
International Nuclear Information System (INIS)
Stoks, V.G.J.
1997-01-01
We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media
International Nuclear Information System (INIS)
Chernodub, M.N.
2016-01-01
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.
Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets
International Nuclear Information System (INIS)
Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi
2007-01-01
Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent
Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.
Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M
2017-05-31
Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.
International Nuclear Information System (INIS)
Kasen, M.B.
1983-01-01
This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures
Geometry and Mechanics in the Opening of Chiral Seed Pods
Armon, Shahaf; Efrati, Efi; Kupferman, Raz; Sharon, Eran
2011-09-01
We studied the mechanical process of seed pods opening in Bauhinia variegate and found a chirality-creating mechanism, which turns an initially flat pod valve into a helix. We studied configurations of strips cut from pod valve tissue and from composite elastic materials that mimic its structure. The experiments reveal various helical configurations with sharp morphological transitions between them. Using the mathematical framework of “incompatible elasticity,” we modeled the pod as a thin strip with a flat intrinsic metric and a saddle-like intrinsic curvature. Our theoretical analysis quantitatively predicts all observed configurations, thus linking the pod’s microscopic structure and macroscopic conformation. We suggest that this type of incompatible strip is likely to play a role in the self-assembly of chiral macromolecules and could be used for the engineering of synthetic self-shaping devices.
QCD and the chiral critical point
International Nuclear Information System (INIS)
Gavin, S.; Gocksch, A.; Pisarski, R.D.
1994-01-01
As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point
Asymmetric synthesis using chiral-encoded metal
Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander
2016-08-01
The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.
Nucleon parton distributions in chiral perturbation theory
International Nuclear Information System (INIS)
Moiseeva, Alena
2013-01-01
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .
Viel, Quentin; Delbreilh, Laurent; Coquerel, Gérard; Petit, Samuel; Dargent, Eric
2017-08-17
A dielectric relaxation spectroscopy (DRS) study was performed to investigate the molecular mobility of amorphous chiral diprophylline (DPL). For this purpose, both racemic DPL and a single enantiomer of DPL were considered. After fast cooling from the melt at very low temperature (-140 °C), progressive heating below and above the glass transition (T g ≈ 37 °C) induces two secondary relaxations (γ- and δ-) and primary relaxations (α-) for both enantiomeric compositions. After chemical purification of our samples by means of cooling recrystallization, no γ-process could be detected by DRS. Hence, it was highlighted that the molecular mobility in the glassy state is influenced by the presence of theophylline (TPH), the main impurity in DPL samples. We also proved that the dynamic behavior of a single enantiomer and the racemic mixture of the same purified compound are quasi-identical. This study demonstrates that the relative stability and the molecular mobility of chiral amorphous drugs are strongly sensitive to chemical purity.
Bootstrapping N=2 chiral correlators
Lemos, Madalena; Liendo, Pedro
2016-01-01
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Bootstrapping N=2 chiral correlators
Energy Technology Data Exchange (ETDEWEB)
Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP
2015-12-15
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Bootstrapping N=2 chiral correlators
Energy Technology Data Exchange (ETDEWEB)
Lemos, Madalena [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-01-07
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Chiral Tunnelling in Twisted Graphene Bilayer
He, Wen-Yu; Chu, Zhao-Dong; He, Lin
2013-01-01
The perfect transmission in graphene monolayer and the perfect reflection in Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in twisted graphene bilayer shows adjustable probability of chiral tunnelling for normal incidence: they can be changed fr...
Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.
Zhang, Ying; Ye, Jing; Liu, Min
2017-01-01
Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs
Supersymmetry and the chiral Schwinger model
International Nuclear Information System (INIS)
Amorim, R.; Das, A.
1998-01-01
We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society
Probing chirality with a femtosecond reaction microscope
Directory of Open Access Journals (Sweden)
Janssen M. H. M.
2013-03-01
Full Text Available Detection of molecular chirality with high sensitivity and selectivity is important for many analytical and practical applications. Photoionization has emerged as a very sensitive probe of chirality in molecules. We show here that a table top setup with a femtosecond laser and a single imaging detector for both photoelectrons and photoions enables detection of chirality up to 3 orders of magnitude better than the existing conventional absorption based techniques.
A spectral route to determining chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....
Higher derivative regularization and chiral anomaly
International Nuclear Information System (INIS)
Nagahama, Yoshinori.
1985-02-01
A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)
Chiral anomaly, bosonization and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Rego Monteiro, M.A. do.
1984-01-01
A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Chiral anomaly, bosonization, and fractional charge
International Nuclear Information System (INIS)
Mignaco, J.A.; Monteiro, M.A.R.
1985-01-01
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators
Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Suganuma, Hideo
1990-01-01
We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)
Staggered chiral random matrix theory
International Nuclear Information System (INIS)
Osborn, James C.
2011-01-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
Homogenization of resonant chiral metamaterials
Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...
Chiral Lagrangians and the SSC
International Nuclear Information System (INIS)
Dawson, S.
1991-09-01
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Ciattoni, Alessandro; Rizza, Carlo
2015-05-01
We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.
Is there chirality in atomic nuclei?
International Nuclear Information System (INIS)
Meng Jie
2009-01-01
Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Self-inductance of chiral conducting nanotubes
International Nuclear Information System (INIS)
Miyamoto, Yoshiyuki; Rubio, Angel; Louie, Steven G.; Cohen, Marvin L.
1998-01-01
Chiral conductivity in nanotubes has recently been predicted theoretically. The realization and application of chiral conducting nanotubes can be of great interest from both fundamental and technological viewpoints. These chiral currents, if they are realized, can be detected by measuring the self-inductance. We have treated Maxwell's equations for chiral conducting nanotubes (nanocoils) and find that the self-inductance and the resistivity of nanocoils should depend on the frequency of the alternating current even when the capacitance of the nanocoils is not taken into account. This is in contrast to elementary treatment of ordinary coils. This fact is useful to distinguish nanocoils by electrical measurements
Erny, G L; Cifuentes, A
2006-02-24
Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.
van Elburg, P.A.; Honig, G.W.N.; Reinhoudt, David
1987-01-01
Chiral four-membered cyclic nitrones were synthesized by the asymmetric (4+2)-cycloaddition of nitroalkenes 1 and chiral ynamines 2. The subsequent stereoselective addition of nucleophiles to these nitrones enabled the synthesis of chiral N-hydroxyazetidines.
Chiral ferrocenes in asymmetric catalysis: synthesis and applications
National Research Council Canada - National Science Library
Dai, Li-Xin; Hou, Xue-Long
2010-01-01
.... It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral...
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2011-01-01
Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...
DEFF Research Database (Denmark)
2014-01-01
Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...
Inhomogeneous chiral symmetry breaking in isospin-asymmetric strong-interaction matter
Energy Technology Data Exchange (ETDEWEB)
Nowakowski, Daniel
2017-07-01
In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous chiral symmetry breaking phases, which are characterized by spatially modulated quarkantiquark condensates. In order to determine the relevance of such phases for the phase diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used to study the properties of the ground state of the system. Confirming the presence of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to more complicated shapes and study the effects of different degrees of flavor-mixing on the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from which we determine the influence of crystalline phases on a quark star by calculating mass-radius sequences. Finally, our model is extended through color-superconducting phases and we study the interplay of these phases with inhomogeneous chiral-symmetry breaking at non-vanishing isospin asymmetry, before we discuss our findings.
Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals
Directory of Open Access Journals (Sweden)
D. I. Pikulin
2016-10-01
Full Text Available Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b. For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a “topological coaxial cable.” This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e. These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd_{3}As_{2} and Na_{3}Bi and Weyl semimetals with unbroken time-reversal symmetry.
Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals
Pikulin, D. I.; Chen, Anffany; Franz, M.
2016-10-01
Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b . For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a "topological coaxial cable." This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e . These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3 As2 and Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.
Gu, Zhigang
2014-06-17
Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.
2014-01-01
Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wsól, V; Fell, A F; Kvasnicková, E; Hais, I M
1997-02-07
The major metabolite of a novel non-steroidal anti-inflammatory drug, DL-4-(2',4'-difluorobiphenyl-4-yl)-2-oxo-2-methylbutanoic acid (flobufen, I), namely 4-(2',4'-difluorobiphenyl-4-yl)-2-methyl-gamma-butyrolactone (4-dihydroflobufen lactone, III), has four stereoisomers consisting of two racemic pairs of enantiomers. Of three chiral stationary phases tested, Cyclobond I beta-RSP (Astec) (beta-cylodextrin derivatized with R,S-hydroxypropyl) was best able to separate the (+2)(--) racemate, with a liquid phase containing acetonitrile as modifier and triethylamine acetate as buffer. Using the Box-Wilson Central Composite Design for three factors, an optimum combination of pH and concentrations of the modifier and buffer was eventually obtained. A chromatographic response function based on a combination of the Kaiser peak separation function, Pi, and retention time of the second eluting enantiomer, tRL, served as a response criterion for the process of optimization. The optimum conditions developed for the (+2)(--) racemate were also found to be suitable for separating the (+-)(-+) racemate, for which earlier studies had shown the separation to be more facile. Separation of the four stereoisomers of III, for which the chiral chromatographic system optimized in this study is proposed as the second stage, is targeted at a biochemical study of the stereoisomeric metabolism of I.
Chirality transfer technique between liquid crystal microdroplets using microfluidic systems
Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun
2018-02-01
Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
Massive states in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)
1995-08-01
It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)
LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY
VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A
1995-01-01
We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.
Orientation-Dependent Handedness and Chiral Design
Directory of Open Access Journals (Sweden)
Efi Efrati
2014-01-01
Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.
Chiral gravity, log gravity, and extremal CFT
International Nuclear Information System (INIS)
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-01-01
We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Chirality in nonlinear optics and optical switching
Meijer, E.W.; Feringa, B.L.
1993-01-01
Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical
On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
Chiral bosonization on a Riemann surface
International Nuclear Information System (INIS)
Eguchi, Tohru; Ooguri, Hirosi
1987-01-01
We point out that the basic addition theorem of θ-functions, Fay's identity, implies an equivalence between bosons and chiral fermions on Riemann surfaces with arbitrary genus. We present a rule for a bosonized calculation of correlation functions. We also discuss ghost systems of n and (1-n) tensors and derive formulas for their chiral determinants. (orig.)
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
DEVELOPMENT AND REGISTRATION OF CHIRAL DRUGS
WITTE, DT; ENSING, K; FRANKE, JP; DEZEEUW, RA
1993-01-01
In this review we describe the impact of chirality on drug development and registration in the United States, Japan and the European Community. Enantiomers may have differences in their pharmacological profiles, and, therefore, chiral drugs ask for special analytical and pharmacological attention
Chiralities of spiral waves and their transitions.
Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong
2013-06-01
The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.
Insights on some chiral smectic phases
Indian Academy of Sciences (India)
journal of. August 2003 physics pp. 285–295. Insights on some chiral ... Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... molecules are more or less packed in layers and smectic phases can be seen ..... (imaging plate or CCD camera) which was located at about 300 mm from the sample.
Timmermans, Adriana J; Harmsen, Hermie J M; Bus-Spoor, Carien; Buijssen, Kevin J D A; van As-Brooks, Corina; de Goffau, Marcus C; Tonk, Rudi H; van den Brekel, Michiel W M; Hilgers, Frans J M; van der Laan, Bernard F A M
2016-04-01
The most frequent cause of voice prosthesis failure is microbial biofilm formation on the silicone valve, leading to destruction of the material and transprosthetic leakage. The Provox ActiValve valve is made of fluoroplastic, which should be insusceptible to destruction. The purpose of this study was to determine if fluoroplastic is insusceptible to destruction by Candida species. Thirty-three dysfunctional Provox ActiValves (collected 2011-2013). Biofilm analysis was performed with Illumina paired-end sequencing (IPES), assessment of biofilm-material interaction with fluorescence in situ hybridization (FISH), and confocal laser scanning microscopy (CLSM). IPES (n = 10) showed that Candida albicans and Candida tropicalis are dominant populations on fluoroplastic and silicone. Microbial diversity is significantly lower on fluoroplastic. Lactobacillus gasseri is the prevalent bacterial strain on most voice prostheses. FISH and CLSM (n = 23): in none of the cases was ingrowth of Candida species present in the fluoroplastic. Fluoroplastic material of Provox ActiValve seems insusceptible to destruction by Candida species, which could help improve durability of voice prostheses. © 2015 Wiley Periodicals, Inc. Head Neck 38: E432-E440, 2016. © 2015 Wiley Periodicals, Inc.
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
Chiral tunneling in a twisted graphene bilayer.
He, Wen-Yu; Chu, Zhao-Dong; He, Lin
2013-08-09
The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.
Hadron properties in chiral sigma model
International Nuclear Information System (INIS)
Shen Hong
2005-01-01
The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)
Cosmic chirality both true and false.
Barron, Laurence D
2012-12-01
The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life. Copyright © 2012 Wiley Periodicals, Inc.
Elastomeric composites with tuned electromagnetic characteristics
International Nuclear Information System (INIS)
Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V; Nemat-Nasser, Sia
2013-01-01
This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5–12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ∼18% change in axial chirality. (paper)
Genetically programmed chiral organoborane synthesis
Kan, S. B. Jennifer; Huang, Xiongyi; Gumulya, Yosephine; Chen, Kai; Arnold, Frances H.
2017-12-01
Recent advances in enzyme engineering and design have expanded nature’s catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus (Rma cyt c) were found to form carbon-boron bonds in the presence of borane-Lewis base complexes, through carbene insertion into boron-hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h-1, a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems.
Principal chiral model on superspheres
International Nuclear Information System (INIS)
Mitev, V.; Schomerus, V.; Quella, T.
2008-09-01
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Nuclear forces and chiral theories
International Nuclear Information System (INIS)
Friar, J.L.; Washington Univ., Seattle, WA
1995-01-01
Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
Chiral discrimination in nuclear magnetic resonance spectroscopy
Lazzeretti, Paolo
2017-11-01
Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.
Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water
DEFF Research Database (Denmark)
Zepik, H.; Shavit, E.; Tang, M.
2002-01-01
from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...
Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD
International Nuclear Information System (INIS)
Garcia, J.C.M.
1987-01-01
Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt
International Nuclear Information System (INIS)
Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H.; Carrasco, Javier; Michaelides, Angelos
2016-01-01
The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our
Energy Technology Data Exchange (ETDEWEB)
Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H., E-mail: charles.sykes@tufts.edu [Department of Chemistry, Tufts University, Medford, Massachusetts 02155 (United States); Carrasco, Javier [CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava (Spain); Michaelides, Angelos [Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2016-03-07
The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our
Synthesis and characterization of mixed ligand chiral nanoclusters
Guven, Zekiye P.
2016-06-22
Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.
Synthesis and characterization of mixed ligand chiral nanoclusters
Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge
2016-01-01
Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.
Nitrile ylides: diastereoselective cycloadditions using chiral oxazolidinones without Lewis acid.
Sibi, Mukund P; Soeta, Takahiro; Jasperse, Craig P
2009-12-03
Lewis acid complexation is generally required for chiral-auxiliary-controlled stereoselectivity, and chiral Lewis acid catalysis is frequently optimal for introducing asymmetry. In this work, we show that nitrile ylide cycloadditions to electron-poor acceptors attached to chiral auxiliaries proceed in high yield and stereoselectivity in the absence of Lewis acids. In contrast, chiral Lewis acids are inferior in these cycloadditions.
Chiral symmetry breaking and cooling in lattice QCD
International Nuclear Information System (INIS)
Woloshyn, R.M.; Lee, F.X.
1995-08-01
Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs
A Review on Chiral Chromatography and its Application to the ...
African Journals Online (AJOL)
MoZarD
amounts of material and is for measuring the relative proportions of ... the stationary phase must themselves be made chiral, giving differing ... electrophoretic medium that change it to chiral mobile phase (Eliel, et ... column containing a chiral stationary phase is also called a chiral ... densitometry, and a TLC method for the.
Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.
Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K
2018-02-27
Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.
On the chiral phase transition in the linear sigma model
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa
2003-01-01
The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)
Nucleic acids, proteins, and chirality
Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.
1984-01-01
The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.
Hierarchical chirality transfer in the growth of Towel Gourd tendrils
Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua
2013-01-01
Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2014-01-01
Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...
Supersymmetric chiral electrodynamics as a renormalized theory
International Nuclear Information System (INIS)
Ansel'm, A.A.; Iogansen, A.A.
1991-01-01
It is well know that the QED of chiral fermions is a nonrenormalizable theory, inasmuch as the gauge current in it is not conserved because of the presence of an anomaly. It is evident that in this theory unitarity is also violated. The principal object of investigation in the present paper is supersymmetric chiral QED, supersymmetric QED is a renormalizable theory. This happens because the radiative corrections generate here a charged current of a chiral fermion that appears in the chiral (i.e., longitudinal) part of the vector supermultiplet. At first sight, the chiral part of the vector multiplet is unphysical and contains only supergauge degrees of freedom. However, this is valid only at the classical level, whereas, because of the anomaly, the radiative corrections lead to nonconservation of the gauge current, as a result of which the degrees of freedom associated with the chiral part of the vector multiplet become physical. On the other hand, owing to the nonconservation of the gauge charge, the apparently neutral fermion appearing int he chiral (longitudinal) part of the vector superfield becomes charged
Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking
International Nuclear Information System (INIS)
Alexandru, Andrei; Horv, Ivan
2013-01-01
It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .
A study of composite models at LEP with ALEPH
International Nuclear Information System (INIS)
Badaud, F.
1992-04-01
Tests of composite models are performed in e + e - collisions in the vicinity of the Z 0 pole using the ALEPH detector. Two kinds of substructure effects are searched for: deviations of differential cross section for reactions e + e - → l + l - and e + e - → γ γ from standard model predictions, and direct search for excited neutrino. A new interaction, parametrized by a 4-fermion contact term, cell, is studied in lepton pair production reactions, assuming different chiralities of the currents. Lower limits on the compositeness scale Λ are obtained by fitting model predictions to the data. They are in the range from 1 to a few TeV depending on model and lepton flavour. Researches for the lightest excited particle that could be the excited neutrino, are presented
The paradigm of Pseudodual Chiral Models
International Nuclear Information System (INIS)
Zachos, C.K.; Curtright, T.L.
1994-01-01
This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory
Recent status of the chiral bag model
International Nuclear Information System (INIS)
Hosaka, Atsushi; Toki, Hiroshi.
1995-01-01
In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)
A nonlocal model of chiral dynamics
International Nuclear Information System (INIS)
Holdom, B.; Terning, J.; Verbeek, K.
1989-01-01
We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)
Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds.
Ma, Gaoyuan; Deng, Jun; Sibi, Mukund P
2014-10-27
Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4-dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
Cai, Pengfei; Wu, Datong; Zhao, Xiaoyong; Pan, Yuanjiang
2017-08-07
A novel task-specific ionic liquid derived from l-phenylalaninol was prepared as an enantioselective fluorescent sensor for the first time. Fluorescent chiral ionic liquid 1 (FCIL1) is found to exhibit highly enantioselective fluorescence enhancements toward both aromatic and non-aromatic chiral amino alcohols. When (S)-FCIL1 was treated with the enantiomers of phenylalaninol, a great fluorescence enhancement at 349 nm could be observed and the value of the enantiomeric fluorescence difference (ef) is 5.92. This demonstrated that the chiral sensor (S)-FCIL1 exhibited an excellent enantioselective response behaviour to d-phenylalaninol. Besides that, both the fluorescence intensity at 349 nm (I 349 ) and the ratio of I 349 to I 282 depend linearly on the concentration of amino alcohols. Both the concentration and the enantiomeric composition could be determined by using the chiral ionic liquid. Differently, the sensor treated with the enantiomers of 2-amino-1-butanol showed an opposite result: the fluorescence intensity of the S-enantiomer is higher than that of the R-enantiomer. Furthermore, the size of the substituents on the chiral carbon might be important for the enantioselective fluorescent response.
Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks
2017-06-01
The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)
2017-06-15
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran; Murchikova, Elena
2017-01-01
In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids
Directory of Open Access Journals (Sweden)
Tigran Kalaydzhyan
2017-06-01
Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.
Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten
2016-09-21
A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override
Probing the Chiral Anomaly via Nonlocal Transport in Weyl Semimetals
Parameswaran, Siddharth; Grover, Tarun; Vishwanath, Ashvin
2013-03-01
Weyl semimetals are three-dimensional analogs of graphene in which a pair of bands touch at points in momentum space, known as Weyl nodes. Electrons originating from a single Weyl node possess a definite topological charge, the chirality. Consequently, they exhibit the Adler-Jackiw-Bell anomaly, which in this condensed matter realization implies that application of parallel electric (E) and magnetic fields (B) pumps electrons between nodes of opposite chirality at a rate proportional to E . B . We argue that this pumping is measurable via transport experiments, in the limit of weak internode scattering. Specifically, we show that injecting a current in a Weyl semimetal subject to an E . B term leads to nonlocal features in transport. We acknowledge support of the Simons Foundation, NSF Grant PHY-1066293 and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Determining chiral couplings at NLO
International Nuclear Information System (INIS)
Rosell, Ignasi
2007-01-01
We present a general method that allows to estimate the low-energy constants of Chiral Perturbation Theory up to next-to-leading corrections in the 1/N C expansion, that is, keeping full control of the renormalization scale dependence. As a first step we have determined L 8 and C 38 , the couplings related to the difference of the two-point correlation functions of two scalar and pseudoscalar currents, L 8 r (μ 0 ) = (0.6±0.4)·10 -3 and C 38 r (μ 0 ) = (2±6)·10 -6 , with μ 0 0.77 GeV. As in many effective approaches, one of the main ingredients of this method is the matching procedure: some comments related to this topic are presented here
Dynamics of inhomogeneous chiral condensates
Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago
2018-01-01
We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.
Chiral equations and fiber bundles
International Nuclear Information System (INIS)
Mateos, T.; Becerril, R.
1992-01-01
Using the hypothesis g = g (lambda i ), the chiral equations (rhog, z g -1 ), z -bar + (rhog, z -barg -1 ), z = 0 are reduced to a Killing equation of a p-dimensional space V p , being lambda i lambda i (z, z-bar) 'geodesic' parameters of V p . Supposing that g belongs to a Lie group G, one writes the corresponding Lie algebra elements (F) in terms of the Killing vectors of V p and the generators of the subalgebra of F of dimension d = dimension of the Killing space. The elements of the subalgebras belong to equivalence classes which in the respective group form a principal fiber bundle. This is used to integrate the matrix g in terms of the complex variables z and z-bar ( Author)
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Algebraic structure of chiral anomalies
International Nuclear Information System (INIS)
Stora, R.
1985-09-01
I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories
Biaxiality of chiral liquid crystals
International Nuclear Information System (INIS)
Longa, L.; Trebin, H.R.; Fink, W.
1993-10-01
Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab
Symmetry properties of chiral carbon nanotubes
International Nuclear Information System (INIS)
Jishi, R.A.; Venkataraman, L.; Dresselhaus, M.S.; Dresselhaus, G.
1995-01-01
The method of zone folding is applied to the calculation of the phonon mode frequencies in carbon nanotubules. The Raman and infrared-active mode frequencies are determined for nanotubules of different diameters and chiralities
Parity doublers in chiral potential quark models
International Nuclear Information System (INIS)
Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.
2007-01-01
The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated
Chiral Selectivity as a Bridge to Homochirality
Burton, A. S.; Berger, E. L.
2017-07-01
We investigate the transition from racemic, abiotic chemistry to homochiral polymers used in proteins; exploring the polymerization behavior of chiral amino acids to determine if they show a preference for homochiral or heterochiral polymerization.
Functional chiral hydrogen-bonded assemblies
Mateos timoneda, Miguel
2005-01-01
In this thesis different aspects of functional hydrogen-bonded (double and tetrarosette) assemblies are described. The functions were inspired by naturally occurring mechanisms such as molecular recognition, supramolecular chirality and its origin, and biostrategies for the correct folding of
Chiral Pesticide Pharmacokinetics: A Range of Values
Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...
Chiral dynamics with (non)strange quarks
International Nuclear Information System (INIS)
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Chiral dynamics with (non)strange quarks
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...
Unified Chiral models of mesons and baryons
International Nuclear Information System (INIS)
Mendez-Galain, R.; Ripka, G.
1990-01-01
Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed
Quark matter in a chiral chromodielectric model
International Nuclear Information System (INIS)
Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.
1989-03-01
Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)
Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T
2012-04-13
Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.
Chiral symmetry breaking and confinement - solutions of relativistic wave equations
International Nuclear Information System (INIS)
Murugesan, P.
1983-01-01
In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Analytic progress on exact lattice chiral symmetry
International Nuclear Information System (INIS)
Kikukawa, Y.
2002-01-01
Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
On the covariantization of the Chiral constraints
International Nuclear Information System (INIS)
Wotzasek, Clovis; Abreu, E.M.C. de; Neves, C.
1994-01-01
We show that a complete covariantization of the chiral constraint in the Floreanini-Jackiw necessitates an infinite number of auxiliary Wess-Zumino fields otherwise the covariantization is only partial and unable to remove the nonlocality in the chiral boson operator. We comment on recent works that claim to obtain covariantization through the use of Batalin-Fradklin-Tyutin method, that uses just one Wess-Zumino field. (author)
Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates
Directory of Open Access Journals (Sweden)
Ramesh N. Patel
2004-01-01
Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-09-01
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
Enantiomeric profiling of a chemically diverse mixture of chiral pharmaceuticals in urban water
International Nuclear Information System (INIS)
Evans, S.; Bagnall, J.; Kasprzyk-Hordern, B.
2017-01-01
Due to concerns regarding the release of pharmaceuticals into the environment and the understudied impact of stereochemistry of pharmaceuticals on their fate and biological potency, we focussed in this paper on stereoselective transformation pathways of selected chiral pharmaceuticals (16 pairs) at both microcosm (receiving waters and activated sludge wastewater treatment simulating microcosms) and macrocosm (wastewater treatment plant (WWTP) utilising activated sludge technology and receiving waters) scales in order to test the hypothesis that biodegradation of chiral drugs is stereoselective. Our monitoring programme of a full scale activated sludge WWTP and receiving environment revealed that several chiral drugs, those being marketed mostly as racemates, are present in wastewater and receiving waters enriched with one enantiomeric form (e.g. fluoxetine, mirtazapine, salbutamol, MDMA). This is most likely due to biological metabolic processes occurring in humans and other organisms. Both activated sludge and receiving waters simulating microcosms confirmed our hypothesis that chiral drugs are subject to stereoselective microbial degradation. It led, in this research, to preferential degradation of S-(+)-enantiomers of amphetamines, R-(+)-enantiomers of beta-blockers and S-(+)-enantiomers of antidepressants. In the case of three parent compound – metabolite pairs (venlafaxine – desmethylvenlafaxine, citalopram – desmethylcitalopram and MDMA - MDA), while parent compounds showed higher resistance to both microbial metabolism and photodegradation, their desmethyl metabolites showed much higher degradation rate both in terms of stereoselective metabolic and non-stereoselective photochemical processes. It is also worth noting that metabolites tend to be, as expected, enriched with enantiomers of opposite configuration to their parent compounds, which might have significant toxicological consequences when evaluating the metabolic residues of chiral pollutants
Symmetries of Ginsparg-Wilson chiral fermions
International Nuclear Information System (INIS)
Mandula, Jeffrey E.
2009-01-01
The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.
Chirality and chiroptical properties of amyloid fibrils.
Dzwolak, Wojciech
2014-09-01
Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.
Illuminating the chirality of Weyl fermions
Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Hsin; Jia, Shuang; Lee, Patrick; Gedik, Nuh; Jarillo-Herrero, Pablo
In particle physics, Weyl fermions (WF) are elementary particles that travel at the speed of light and have a definite chirality. In condensed matter, it has been recently realized that WFs can arise as magnetic monopoles in the momentum space of a novel topological metal, the Weyl semimetal (WSM). Their chirality, given by the sign of the monopole charge, is the defining property of a WSM, since it directly serves as the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Moreover, the two chiralities, analogous to the two valleys in 2D materials, lead to a new degree of freedom in a 3D crystal, suggesting novel pathways to store and carry information. By shining circularly polarized light on the WSM TaAs, we illuminate the chirality of the WFs and achieve an electrical current that is highly controllable based on the WFs' chirality. Our results open up a wide range of new possibilities for experimentally studying and controlling the WFs and their associated quantum anomalies by optical and electrical means, which suggest the exciting prospect of ``Weyltronics''.
The role of chirality in the origin of life
International Nuclear Information System (INIS)
Salam, A.
1990-09-01
We reemphasize the role of chirality in the theories which determine the origin of life - in particular the fact that almost all amino acids, utilized in living systems, are of L-type. Starting from Z 0 -interactions, we speculate on an explanation of the above fact in terms of quantum mechanical cooperative and condensation phenomena (possibly in terms of an e-n condensate where the e-n system has the same status as Cooper-pairing) which could give rise to second order phase transitions (including D to L transformations) below a critical temperature T c . As a general rule, T c is a low temperature. From this, it is conceivable that the earth provided too small a location for the production of L-amino acids. We suggest laboratory testing of these ideas by looking for the appropriate phase transitions. (author). 33 refs
Vector meson decays in the chiral bag model
International Nuclear Information System (INIS)
Maxwell, O.V.; Jennings, B.K.
1985-01-01
Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)
International Nuclear Information System (INIS)
Shen Kun; Qiu Zhongping
1993-01-01
Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature
Are quarks and leptons composite
International Nuclear Information System (INIS)
Harari, H.
1982-01-01
The possibility that quarks and leptons are composite was studied. A line of reasoning was pursued which followed several steps. The standard model was assumed and the need to go beyond it was demonstrated. Different classes of ideas were considered. The notion of compositeness and its general difficulties, mainly the scale problem, were studied. A connection between composite massless fermions and an unbroken chiral symmetry was assumed. A general framework based on hypercolor and a chiral symmetry was established. The general requirements for a candidate model were established. A minimal scheme was found and its successes and failures were studied. (HK)
Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming
2018-03-07
Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.
International Nuclear Information System (INIS)
Dick, Viktor
2016-04-01
In this work, the spectrum of the overlap Dirac operator has been computed and analyzed on configurations that had been created using highly improved staggered quarks. Although the overlap operator is expensive to compute, it has the advantage that it fully implements chiral symmetry in the same way as the continuum QCD Dirac operator even at finite lattice spacings. This opened the possibility to investigate chiral aspects of QCD and, in particular, the question if the axial anomaly is suppressed at the chiral transition temperature T c . The obtained results indicate that the axial anomaly is still present at T c and even at 1.5 T c as evidenced by a splitting in the integrated pion and delta susceptibilities. The spectrum shows a peak in the near-zero region consisting of zero modes and pairs of near-zero modes. The breaking of the axial symmetry was identified as being caused by these infrared modes. It was discussed how this infrared contribution might change in the thermodynamic, continuum, and chiral limits. The obtained data supports the expectation that the peak becomes narrower with decreasing quark masses, resulting in a Dirac-delta peak in the chiral limit. The area under the peak was found to decrease with decreasing lattice spacing, so in order to resolve how much of it survives the continuum limit further investigations are needed, in particular ones where already for the generation of gauge configurations chiral fermions are used. The infrared modes were investigated and found to be highly localized, supporting the picture of QCD at high temperatures as a dilute instanton gas. The instantons were found to have an average size of 0.239(4) fm and a density of 0.154(5) fm -4 at 1.5 T c . Near-zero modes were found to be induced by instanton-anti-instanton molecules, which are weakly bound. At temperatures closer to T c , this picture becomes more complicated but these features sometimes still can be recognized. In conclusion, in QCD at temperatures
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Magnetoelectronic properties of chiral carbon nanotubes and tori
International Nuclear Information System (INIS)
Shyu, F L; Tsai, C C; Lee, C H; Lin, M F
2006-01-01
Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy
Witte, van de P.; Neuteboom, E.E.; Brehmer, M.; Lub, Johan
1999-01-01
A method for the production of polarization sensitive recordings in liquid crystalline polymers is presented. The system is based on local modification of the twist angle of chiral nematic polymer films. The twist angle of the polymer film is varied by modifying the chemical structure of the chiral
International Nuclear Information System (INIS)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu
2010-01-01
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Sensitive criterion for chirality; Chiral doublet bands in 104Rh59
International Nuclear Information System (INIS)
Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.
2003-01-01
A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh
Energy Technology Data Exchange (ETDEWEB)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)
2010-04-23
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Maeda, Katsuhiro; Yashima, Eiji
2017-08-01
Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.
Cell Chirality Drives Left-Right Asymmetric Morphogenesis.
Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji
2018-01-01
Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.
Symmetry, structure, and dynamics of monoaxial chiral magnets
International Nuclear Information System (INIS)
Togawa, Yoshihiko; Kousaka, Yusuke; Inoue, Katsuya; Kishine, Jun-ichiro
2016-01-01
Nontrivial spin orders with magnetic chirality emerge in a particular class of magnetic materials with structural chirality, which are frequently referred to as chiral magnets. Various interesting physical properties are expected to be induced in chiral magnets through the coupling of chiral magnetic orders with conduction electrons and electromagnetic fields. One promising candidate for achieving these couplings is a chiral spin soliton lattice. Here, we review recent experimental observations mainly carried out on the monoaxial chiral magnetic crystal CrNb_3S_6 via magnetic imaging using electron, neutron, and X-ray beams and magnetoresistance measurements, together with the strategy for synthesizing chiral magnetic materials and underlying theoretical backgrounds. The chiral soliton lattice appears under a magnetic field perpendicular to the chiral helical axis and is very robust and stable with phase coherence on a macroscopic length scale. The tunable and topological nature of the chiral soliton lattice gives rise to nontrivial physical properties. Indeed, it is demonstrated that the interlayer magnetoresistance scales to the soliton density, which plays an essential role as an order parameter in chiral soliton lattice formation, and becomes quantized with the reduction of the system size. These interesting features arising from macroscopic phase coherence unique to the chiral soliton lattice will lead to the exploration of routes to a new paradigm for applications in spin electronics using spin phase coherence. (author)
Secure pairing with biometrics
Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.
Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.
2011-01-01
Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
Chiral properties of baryon interpolating fields
International Nuclear Information System (INIS)
Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.
2008-01-01
We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)
Chiral dynamics and peripheral transverse densities
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
International Nuclear Information System (INIS)
Timar, J.; Nyako, B.M.; Berek, G.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Zolnai, L.
2007-01-01
Complete text of publication follows. The existence of nuclear chirality is one of the most intriguing questions of contemporary high-spin nuclear structure studies. Rotational doublet-band candidates for chiral structures have been observed mostly in two regions of the nuclear chart: around 134 Pr, and around 104 Rh. In this second region chirality in the Rh isotopes are rather well studied, chiral doubling have also been observed in 100 Tc, however, results obtained for chirality in the studied Ag nuclei ( 105 Ag and 106 Ag) look rather contradictory. Thus, it is interesting to study these doublet bands in the nearby higher-mass Ag nuclei. In order to search for a chiral-candidate partner band to the yrast πg 9/2 v(h 11/2 ) 2 band in 109 Ag, high-spin states of this nucleus have been studied using the 96 Zr( 18 O,p4n) reaction. The experiment was performed at iThemba LABS using 8 Clover detectors of the AFRODITE array and the DIAMANT charged-particle array to detect the γ-rays and the charged particles, respectively. Altogether ∼140 million γγ-coincidence events were collected. Approximately 10 million events of them correspond to the reaction channel producing 109 Ag. No chiral candidate partner band has been found to the πg 9/2 v(h 11/2 ) 2 band with this statistics, however, the level scheme could be extended by several new levels and γ-transitions. A preliminary level scheme of 109 Ag obtained from the ongoing data analysis is shown in Fig. 1
International Nuclear Information System (INIS)
Valles, James
2008-01-01
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
DEFF Research Database (Denmark)
Dalgas, Karina Märcher
2015-01-01
pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...
Chiral ionic liquids in chromatographic and electrophoretic separations.
Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C
2014-10-10
This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
A web site for calculating the degree of chirality.
Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David
2011-01-01
The web site, http://www.csm.huji.ac.il/, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures. Copyright © 2009 Wiley-Liss, Inc.
Macroscopic chirality of a liquid crystal from nonchiral molecules
International Nuclear Information System (INIS)
Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.
2001-01-01
The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment
Enantioselective catalytic syntheses of alpha-branched chiral amines
DEFF Research Database (Denmark)
Brase, S.; Baumann, T.; Dahmen, S.
2007-01-01
Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
Kutschera, M.
1990-12-01
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
Chirality - The forthcoming 160th Anniversary of Pasteur's Discovery
Molčanov, K.; Kojić-Prodić., B.
2007-01-01
The presented review on chirality is dedicated to the centennial birth anniversary of Nobel laureate Vladimir Prelog and 160 years of Pasteur's discovery of chirality on tartrates. Chirality has been recognized in nature by artists and architects, who have used it for decorations and basic constructions, as shown in the Introduction. The progress of science through history has enabled the gathering of knowledge on chirality and its many ways of application. The key historical discoveries abou...
Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Braun, Christopher
2014-07-29
Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f{sub 1}{sup q}(x), the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g{sub 1}{sup q}(x) and the transversity distribution h{sub 1}{sup q}(x). The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro-magnetic probes off (un)polarized nucleons at fixed-target experiments. This only gives access to f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x), while the chiral-odd nature of the transversity distribution prevents a measurement without detecting the final hadronic states. However, h{sub 1}{sup q}(x) can be observed in semi-inclusive DIS (SIDIS) in combination with another chiral-odd function like the dihadron fragmentation function H{sub 1} {sup angle} {sup q} in the production of a hadron-pair. The resulting experimental challenge is the reason why f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x) have been investigated for almost four decades, while h{sub 1}{sup q}(x) is still subject to recent measurements and analyses. The 160 GeV/c polarized muon beam of CERN's M2 beamline allows the COMPASS experiment to investigate spin effects using polarized solid-state targets. Since the year 2002 COMPASS has collected unique data sets on transversely polarized targets of lithium
Quaternion analysis of generalized electromagnetic fields in chiral media
International Nuclear Information System (INIS)
Bisht, P. S. . Email. ps_bisht123@rediffmail.com
2007-01-01
The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)
Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip
Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng
2018-03-01
The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.
Structure of the vacuum in the color dielectric model: confinement and chiral symmetry
International Nuclear Information System (INIS)
Mazzolo, A.
1992-01-01
Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied
Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides
Directory of Open Access Journals (Sweden)
Ryota Miyaji
2017-08-01
Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.
Chiral Topological Orders in an Optical Raman Lattice (Open Source)
2016-03-01
PAPER • OPEN ACCESS Chiral topological orders in an optical Raman lattice To cite this article: Xiong-Jun Liu et al 2016 New J. Phys. 18...... chiral spin liquid Abstract Wefind an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two
The chiral bosonization in non-Abelian gauge theories
International Nuclear Information System (INIS)
Andrianov, A.A.; Novozhilov, Y.
1985-01-01
The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)
Boundary Lax pairs from non-ultra-local Poisson algebras
International Nuclear Information System (INIS)
Avan, Jean; Doikou, Anastasia
2009-01-01
We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.
Magnetic test of chiral dynamics in QCD
International Nuclear Information System (INIS)
Simonov, Yu.A.
2014-01-01
Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions
Attosecond-resolved photoionization of chiral molecules.
Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y
2017-12-08
Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Analysis of chiral symmetry breaking mechanism
International Nuclear Information System (INIS)
Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST
1997-01-01
The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking
Chiral symmetry and strangeness at SIS energies
International Nuclear Information System (INIS)
Lutz, M.F.M.
2003-11-01
In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Chiral battery, scaling laws and magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)
2017-07-01
We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.
Chiral crossover transition in a finite volume
Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi
2018-02-01
Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)
Self-assembly of chiral molecular polygons.
Jiang, Hua; Lin, Wenbin
2003-07-09
Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Investigations into nuclear pairing
International Nuclear Information System (INIS)
Clark, R.M.
2006-01-01
This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)
Sheshenev, Andrey E; Boltukhina, Ekaterina V; Grishina, Anastasiya A; Cisařova, Ivana; Lyapkalo, Ilya M; Hii, King Kuok Mimi
2013-06-17
A family of new chiral zwitterionic phosphorus-containing heterocycles (zPHC) have been derived from methylene-bridged bis(imidazolines). These structures were unambiguously determined, including single-crystal XRD analysis for two compounds. The stability, acid/base and electronic properties of these dipolar phosphorus heterocycles were subsequently investigated. zPHCs can be successfully employed as a new class of chiral solvating agents for the enantiodifferentiation of chiral carboxylic and sulfonic acids by NMR spectroscopy. The stoichiometry and binding constants for the donor-acceptor complexes formed were established by NMR titration methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien
2016-01-01
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Chiral surface waves for enhanced circular dichroism
Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo
2017-06-01
We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
Chirality sensing with stereodynamic biphenolate zinc complexes.
Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian
2015-10-01
Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.
SU(3) chiral symmetry for baryons
International Nuclear Information System (INIS)
Dmitrasinovic, V.
2011-01-01
Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.
Disoriented chiral condensate: Theory and phenomenology
International Nuclear Information System (INIS)
Bjorken, J.D.
1997-12-01
These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC
Low-energy meson physics (chiral theory)
International Nuclear Information System (INIS)
Volkov, M.K.; Pervushin, V.N.
1976-01-01
A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Physical properties of the chiral quantum baryon
International Nuclear Information System (INIS)
Mignaco, A.J.; Wulck, S.
1989-01-01
It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author) [pt
Speciation and gene flow between snails of opposite chirality.
Directory of Open Access Journals (Sweden)
Angus Davison
2005-09-01
Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be
Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review
Directory of Open Access Journals (Sweden)
Cláudia Ribeiro
2017-10-01
Full Text Available In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF is crucial since it gives insights about: (i environmental fate (i.e., occurrence, distribution, removal processes and (biodegradation; (ii illicit discharges; (iii consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides; and (iv enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs and polycyclic musks (PCMs. Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents and direct methods (chiral stationary phases. The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.
West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan
2017-05-26
Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.
Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J
2016-02-24
Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SIMP model at NNLO in chiral perturbation theory
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2015-10-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.
γ-hadron families sensitivity to disoriented chiral condensates
International Nuclear Information System (INIS)
Navia, C.E.; Augusto, C.R.; Pinto, F.A.; Barroso, S.L.; Shibuya, E.H.
1997-01-01
Presented in this study is a possible coherent emission of pions from a large domain of disoriented chiral condensate (DCC) in the leading particle region, through their influence on the development of the γ-hadron families, initiated by cosmic ray particles in the atmosphere. The production rate of DCC's is obtained by using a phenomenological framework in the quenching approximation and is included in a Monte Carlo code. In this context, we have found, under the assumption of a ''normal'' proton dominant composition in the primary flux, that the anomalous hadron-rich families, observed in the experimental data, can be reproduced. However, the production rate of DCC's obtained here is not enough to describe the global characteristics, such as the family flux, observed at mountain altitudes. The implications of these results are here discussed. copyright 1997 The American Physical Society
Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Directory of Open Access Journals (Sweden)
Hironori Izawa
2010-07-01
Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
[Paired kidneys in transplant].
Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús
2009-02-01
Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.
Topological chiral phonons in center-stacked bilayer triangle lattices
Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa
2018-06-01
Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.
Chiral symmetry breaking is permitted in supersymmetric QED
International Nuclear Information System (INIS)
Walker, M.
2000-01-01
Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result
Chiral Rayleigh particles discrimination in dynamic dual optical traps
International Nuclear Information System (INIS)
Carretero, Luis; Acebal, Pablo; Blaya, Salvador
2017-01-01
Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory
Mueller, Niklas; Venugopalan, Raju
2018-03-01
In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.
Goldstone bosons in a crystalline chiral phase
Energy Technology Data Exchange (ETDEWEB)
Schramm, Marco
2017-07-24
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Chiral damping of magnetic domain walls
Jué , Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2015-01-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Vortex in the chiral quark model
Hadasz, Leszek
1995-02-01
We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).
Goldstone bosons in a crystalline chiral phase
International Nuclear Information System (INIS)
Schramm, Marco
2017-01-01
The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, translational and rotational symmetry are broken as well, in a two flavor Nambu--Jona-Lasinio model. The main goal of this work is to describe the Goldstone bosons in this phase, massless excitations that occur for spontaneously broken symmetries. We take one of the simplest possible modulations, the chiral density wave, and show how to derive the quark propagator of the theory analytically, by means of transformations in chiral and momentum space. We apply this to a test case for the gap equation. We show the derivation of Nambu-Goldstone modes in the inhomogeneous phase and find, that for our case only three different modes have to be taken into account. We proceed to calculate the Goldstone boson related to the breaking of spatial symmetry, which can be related to the neutral pion. By evaluating a Bethe-Salpeter equation, we can show, that we have indeed found a Goldstone boson and give its dispersion relation in terms of momenta perpendicular, as well as parallel to the mass modulation.
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
amit@fs.rri.local.net (Amit Kumar Agarwal)
our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...
Separation of Chiral Active Pharmaceutical Ingredients
DEFF Research Database (Denmark)
Chaaban, Joussef Hussein
is regarded as a first step towards a fully continuous PC process. The current knowledge of the importance of crystallization processes in the pharmaceutical industry and the complex thermodynamic and kinetic phenomena accompanied with the separation of chiral compounds are addressed. The experimental work...
Anion-π Catalysts with Axial Chirality.
Wang, Chao; Matile, Stefan
2017-09-04
The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Orientifold Planar Equivalence: The Chiral Condensate
DEFF Research Database (Denmark)
Armoni, Adi; Lucini, Biagio; Patella, Agostino
2008-01-01
The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...
Hamiltonian formulation of anomaly free chiral bosons
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.; Devecchi, F.P.; Zadra, A.
1988-01-01
Starting out of an anomaly free Lagrangian formulation for chiral scalars, which a Wess-Zumino Term (to cancel the anomaly), we formulate the corresponding hamiltonian problem. Ther we use the (quantum) Siegel invariance to choose a particular, which turns out coincide with the obtained by Floreanini and Jackiw. (author) [pt
Mirror fermions in chiral gauge theories
International Nuclear Information System (INIS)
Montvay, I.
1992-06-01
Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Chiral discrimination in biomimetic systems: Phenylalanine
Indian Academy of Sciences (India)
Chiral discrimination and recognition is important in peptide biosynthesis, amino acid synthesis and drug designing. Detailed structural information is available about the peptide synthesis in ribosome. However, no detailed study is available about the discrimination in peptide synthesis. We study the conformational energy ...
Theory of conductivity of chiral particles
International Nuclear Information System (INIS)
Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim
2013-01-01
In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)
Junctionless Cooper pair transistor
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)
2017-02-15
Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.
Chirality and angular momentum in optical radiation
Coles, Matt M.; Andrews, David L.
2012-06-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.
Quenched QED in the chiral limit
International Nuclear Information System (INIS)
Vandermark, S.W.
1993-01-01
The main goal in this project has been to understand, through analytical methods, whether there could be a continuum limit for QED. This possibility is motivated by recent lattice simulations on quenched QED which apparently exhibit a chiral phase transition at strong coupling in the chiral limit. Another goal is to develop a novel perturbation expansion which may also be usefully applied to other theories. The author begins with the general expression for the chiral order parameter, (bar ψψ), in the quenched limit of euclidean QED, where the number of fermion flavors goes to zero, using the path integral formulation. A cutoff scale, Λ, is introduced into the photon propagator and a new expansion, the open-quotes wormhole expansion,close quotes in powers of Λ 2 /m 2 , where m is the fermion mass, is derived. Graphical rules for the wormhole expansion of left-angle bar ψψ right-angle are described in detail. The author then devises algorithms to generate recursively the graphs at each successive order and to perform the loop momentum integral and γ matrix trace involved in the evaluation of each graph. These algorithms are implemented in Mathmatica and the left-angle bar ψψ right-angle expansion is carried out to order (Λ 2 / m 2 ) 6 . The author employs pade techniques to extrapolate this expansion to the chiral limit (Λ 2 /m 2 → ∞) and looks for a singularity at strong coupling to signal a phase transition. Indications have been found that there may be a phase transition but apparently there are not enough terms in the wormhole expansion to attain stability in our pade analysis. The author therefore cannot conclude that there is a chiral phase transition, although the results are consistent with the existence of one
Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders
Energy Technology Data Exchange (ETDEWEB)
Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)
2015-10-06
We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.
Pair interactions of heavy vortices in quantum fluids
Pshenichnyuk, Ivan A.
2018-02-01
The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.
Directory of Open Access Journals (Sweden)
Gabriel Hancu
2015-03-01
Full Text Available Purpose: Amlodipine is a long acting, dihydropyridine type calcium channel blocker frequently used in the treatment of hypertension and coronary insufficiency. The calcium channel blocking activity resides primarily in the S-amlodipine enantiomer, while R-amlodipine is a potent inhibitor of smooth muscle cell migration. Methods: In this study capillary electrophoresis was applied for the enantiomeric separation of amlodipine using different native and derivatized; neutral and charged cyclodextrines as chiral selectors. The effects of pH and composition of the background electrolyte, concentration and type of chiral selector, capillary temperature, running voltage and injection parameters have been investigated. Results: Stereoselective interactions were observed when using α-CD, β-CD, HP-β-CD, RAMEB, CM-β-CD and SBE-β-CD. Optimized separation conditions consisted on a 50 mM phosphate buffer, pH – 3.0, 20 mM RAMEB as chiral selector, + 25 kV applied voltage, 15°C temperature and UV detection at 238 nm. Using the optimized electrophoretic conditions we succeeded the chiral separation of amlodipine enantiomers in approximately 6 minute, the order of migration being R-amlodipine followed by S-amlodipine. The method was successfully applied for the determination of amlodipine enantiomers from commercially available pharmaceuticals. The linearity range, limits of detection and quantification, precision and accuracy were determined and the results obtained confirmed that the method was suitable for this purpose. Conclusion: It can be concluded that the proposed capillary electrophoresis methods can be useful for routine pharmaceutical applications with benefits of its effectivity, simplicity, short analysis time and low consumption of analytes, solvents and chiral selectors.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.
DEFF Research Database (Denmark)
Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel
2015-01-01
In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...
Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.
2013-01-01
We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of
Energy Technology Data Exchange (ETDEWEB)
Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)
2001-02-01
Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es
Energy Technology Data Exchange (ETDEWEB)
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
International Nuclear Information System (INIS)
Knippschild, Bastian
2012-01-01
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises whether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m ud MS (2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point. In
Role of helical edge modes in the chiral quantum anomalous Hall state.
Mani, Arjun; Benjamin, Colin
2018-01-22
Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.
On the chirality of the SM and the fermion content of GUTs
Directory of Open Access Journals (Sweden)
Renato M. Fonseca
2015-08-01
Full Text Available The Standard Model (SM is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (∼100 GeV. Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs. It is known for example that three copies of the representations 5¯+10 of SU(5 or three copies of the 16 of SO(10 can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups — for example, the 171 representation of SU(19 may decompose as 3(16+120+3(1 under SO(10.
Light-front realization of chiral symmetry breaking
International Nuclear Information System (INIS)
Itakura, Kazunori; Maedan, Shinji
2001-01-01
We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Dirac operator, chirality and random matrix theory
International Nuclear Information System (INIS)
Pullirsch, R.
2001-05-01
Quantum Chromodynamics (QCD) is considered to be the correct theory which describes quarks and gluons and, thus, all strong interaction phenomena from the fundamental forces of nature. However, important properties of QCD such as the physical mechanism of color confinement and the spontaneous breaking of chiral symmetry are still not completely understood and under extensive discussion. Analytical calculations are limited, because in the low-energy regime where quarks are confined, application of perturbation theory is restricted due to the large gluon coupling. A powerful tool to investigate numerically and analytically the non-perturbative region is provided by the lattice formulation of QCD. From Monte Carlo simulations of lattice QCD we know that chiral symmetry is restored above a critical temperature. As the chiral condensate is connected to the spectral density of the Dirac operator via the Banks-Casher relation, the QCD Dirac spectrum is an interesting object for detailed studies. In search for an analytical expression of the infrared limit of the Dirac spectrum it has been realized that chiral random-matrix theory (chRMT) is a suitable tool to compare with the distribution and the correlations of the small Dirac eigenvalues. Further, it has been shown that the correlations of eigenvalues on the scale of mean level spacings are universal for complex physical systems and are given by random-matrix theory (Rm). This has been formulated as the Baghouse-Giannoni-Schmit conjecture which states that spectral correlations of a classically chaotic system are given by RMT on the quantum level. The aim of this work is to analyze the relationship between chiral phase transitions and chaos to order transitions in quantum field theories. We study the eigenvalues of the Dirac operator for Quantum Electrodynamics (QED) with compact gauge group U(1) on the lattice. This theory shows chiral symmetry breaking and confinement in the strong coupling region. Although being
Multi-pair states in electron–positron pair creation
Energy Technology Data Exchange (ETDEWEB)
Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.
2016-09-10
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Multi-pair states in electron–positron pair creation
International Nuclear Information System (INIS)
Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.
2016-01-01
Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.
Molecular-Level Design of Heterogeneous Chiral Catalysis
International Nuclear Information System (INIS)
Zaera, Francisco
2012-01-01
The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)
2010-07-01
We describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. A phenomenology of single and double spin observables emerges from the unusual features of this amplitude (Phys.Rev.Lett.103:072002,2009). (authors)
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li
2013-01-01
A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.
Fernandes, Carla; Tiritan, Maria Elizabeth; Cass, Quezia; Kairys, Visvaldas; Fernandes, Miguel Xavier; Pinto, Madalena
2012-06-08
A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong
2016-05-24
Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.
The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests
International Nuclear Information System (INIS)
Dalla Brida, Mattia
2016-03-01
The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Stochastic Field evolution of disoriented chiral condensates
International Nuclear Information System (INIS)
Bettencourt, Luis M.A.
2003-01-01
I present a summary of recent work [1] where we describe the time-evolution of a region of disoriented chiral condensate via Langevin field equations for the linear σ model. We analyze the model in equilibrium, paying attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counter-parts. We use results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a ultraviolet cutoff independent theory that reproduces quantitatively the expected equilibrium behavior of pion and σ quantum fields. We also estimate the viscosity η(T), which controls the dynamical timescale in the Langevin equation, so that the near equilibrium dynamical response agrees with theoretical expectations
Chirality of Modern Antidepressants: An Overview
Directory of Open Access Journals (Sweden)
Monica Budău
2017-12-01
Full Text Available The majority of modern antidepressants (selective serotonin reuptake inhibitors and selective serotonin and norepinephrine reuptake inhibitors have one or two centers of asymmetry in their structure; resulting in the formation of enantiomers which may exhibit different pharmacodynamic and pharmacokinetic properties. Recent developments in drug stereochemistry has led to understanding the role of chirality in modern therapy correlated with increased knowledge regarding the molecular structure of specific drug targets and towards the possible advantages of using pure enantiomers instead of racemic mixtures. The current review deals with chiral antidepressant drugs; presenting examples of stereoselectivity in the pharmacological actions of certain antidepressants and their metabolites and emphasizing the differences between pharmacological actions of the racemates and pure enantiomers.
A primer for Chiral Perturbative Theory
International Nuclear Information System (INIS)
Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
Active control of chirality in nonlinear metamaterials
International Nuclear Information System (INIS)
Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang
2015-01-01
An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm 2 weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors
Instantons, monopoles and chiral symmetry breaking
International Nuclear Information System (INIS)
Feurstein, M.; Markum, H.; Thurner, S.
1996-01-01
We analyze the interplay of topological objects in four dimensional QCD. The distributions of color magnetic monopoles obtained in the maximum abelian gauge are computed around instantons in both pure and full QCD. We find an enhanced probability of encountering monopoles inside the core of an instanton. We show this by means of local correlation functions of the topological variables. For specific gauge field configurations we visualize the situation graphically. Motivated by the fact that a fermion in the field of a static monopole has an energy zero mode we investigate how monopole loops and instantons are locally correlated with the chiral condensate. The observed correlations suggest that monopoles are involved in the mechanism of breaking of chiral symmetry. (orig.)
Chiral charge flux and electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko
1995-06-01
By treating CP-violating interaction of the electroweak bubble wall as a perturbative term, chiral charge flux through the bubble wall is estimated. It is found that the absolute value of the flux F{sub Q} has a sharp peak at m{sub 0} - a - T with F{sub Q}/(uT{sup 3}) - 10{sup -3}(Q{sub L}-Q{sub R}){Delta}{theta}. Here m{sub 0} is the fermion mass, 1/a is the wall thickness, T is the temperature at which the bubbles are growing, u is the wall velocity, Q{sub L(R)} is the chiral charge of the relevant left (right)-handed fermion and {Delta}{theta} is the measure of CP violation. (author).
Pattern production through a chiral chasing mechanism
Woolley, Thomas E.
2017-09-01
Recent experiments on zebrafish pigmentation suggests that their typical black and white striped skin pattern is made up of a number of interacting chromatophore families. Specifically, two of these cell families have been shown to interact through a nonlocal chasing mechanism, which has previously been modeled using integro-differential equations. We extend this framework to include the experimentally observed fact that the cells often exhibit chiral movement, in that the cells chase, and run away, at angles different to the line connecting their centers. This framework is simplified through the use of multiple small limits leading to a coupled set of partial differential equations which are amenable to Fourier analysis. This analysis results in the production of dispersion relations and necessary conditions for a patterning instability to occur. Beyond the theoretical development and the production of new pattern planiforms we are able to corroborate the experimental hypothesis that the global pigmentation patterns can be dependent on the chirality of the chromatophores.
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
Mass generation and chiral symmetry breaking by pseudoparticles
International Nuclear Information System (INIS)
Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.
1978-01-01
Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
Energy Technology Data Exchange (ETDEWEB)
Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2017-09-10
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.