WorldWideScience

Sample records for composite chemical wastewater

  1. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  2. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  3. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    Science.gov (United States)

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L -1 , phosphorus 430 mg L -1 and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH 4 :PO 4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  4. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens

    2002-01-01

    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...

  5. Application of three tailing-based composites in treating comprehensive electroplating wastewater.

    Science.gov (United States)

    Liu, Hongbo; Zhu, Mengling; Gao, Saisai

    2014-01-01

    Heavy metals and chemical oxygen demand (COD) are major challenging pollutants for most electroplating wastewater treatment plants. A novel composite material, prepared with a mixture of calcium and sodium compounds and tailings, was simply mixed by ratios and used to treat a comprehensive electroplating wastewater with influent COD, total copper (T-Cu), and total nickel (T-Ni) respectively as 690, 4.01, and 20.60 mg/L on average. Operational parameters, i.e. the contact time, pH, mass ratio of calcium and sodium compounds and tailings, were optimized as 30 min, 10.0, and 4:2:1. Removal rates for COD, T-Cu, and T-Ni could reach 71.8, 90.5, and 98.1%, respectively. No significant effect of initial concentrations on removal of T-Cu and T-Ni was observed for the composite material. The adsorption of Cu(II) and Ni(II) on the material fitted Langmuir and Freundlich isotherms respectively. Weight of waste sludge from the calcium/sodium-tailing system after reaction was 10% less than that from the calcium-tailing system. The tailing-based composite is cost-effective in combating comprehensive electroplating pollution, which shows a possibility of applying the tailings in treating electroplating wastewater.

  6. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Rao, N. Chandrasekhara; Sarma, P.N.

    2007-01-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  7. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: vmohan_s@yahoo.com; Rao, N. Chandrasekhara [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Biotechnologies and Process Engineering for the Environment, Universite de Savoie Technolac, Chambery, 73376 Le Bourget Du Lac Cedex (France); Sarma, P.N. [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2007-06-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio {approx}0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes.

  8. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems.

    Science.gov (United States)

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2018-05-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules

  9. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  10. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    OpenAIRE

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chlorid...

  11. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  12. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  13. Treatment of Arctic Wastewater by Chemical Coagulation, UV and Peracetic Acid Disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus

    2017-01-01

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency...... of physico-chemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli...... of heterotrophic bacteria by applying 6 mg/L and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 kWh/m3 and 2.10 kWh/m3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physico-chemical treatment of raw wastewater followed...

  14. Chemical Characterisation of Printed Circuit Board Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sobri, S; Ali, A H M, E-mail: eeza@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    Manufacturing of PCBs is highly complicated and involves many processes. Recycling of PCB wastewater receives wide concerns as the recent international growth in the electronics industry has generated a drastic increase in the amount of waste PCBs with profound environmental impacts such as soil and groundwater contamination. This paper reports on the chemical characterization of PCB wastewater as the initial investigation for selective metal recovery.

  15. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Chemical changes in the soil and production of oat fertilized with treated wastewater

    Directory of Open Access Journals (Sweden)

    Paulo Fortes Neto

    2013-12-01

    Full Text Available The purpose of this project was to ensure the quality and impact of the application of treated sewage wastewater on the chemical properties of Dystrophic Yellow Argisol and on biomass and grain production of white oat (Avena sativa, L. After the wastewater was chemically characterized, it was applied to the soil in concentrations of 0, 30, 60 and 90 m3 ha-1 in plots of 200 m2. Doses of water were compared with mineral fertilizer doses recommended for oat. The experimental design was a split plot with four randomized blocks. The wastewater had chemical qualities useful for grain cultivation. The values of calcium, CTC, V, pH increased and acidity potential decreased in the soil after the wastewater was applied. Doses of the wastewater provided increments in biomass production and oat grains similar to that obtained with chemical fertilizers. We conclude that wastewater can be used to correct soil acidity and replace or supplement chemical fertilizers.

  17. Removal of chemical oxygen demand from textile wastewater using a natural coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Ramavandi, Bahman [Bushehr University of Medical Sciences, Bushehr (Iran, Islamic Republic of); Farjadfard, Sima [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-01-15

    A biomaterial was successfully synthesized from Plantago ovata by using an FeCl{sub 3}-induced crude extract (FCE). The potential of FCE to act as a natural coagulant was tested for the pretreatment of real textile wastewater. Tests were performed to evaluate the effects of FCE quantity, salt concentration, and wastewater pH on chemical oxygen demand (COD) reduction during a coagulation/flocculation process. Experimental results indicated that the wastewater could be effectively treated by using a coagulation/flocculation process, where the BOD{sub 5}/COD ratio of the effluent was improved to 0.48. A low coagulant dose, 1.5mg/L, achieved a high COD removal percentage, 89%, at operational conditions of neutral pH and room temperature. The experimental data revealed that the maximum COD removal occurred at water pH<8. Increasing the salt promoted the COD removal. The settling and filterability characteristics of the sludge were also studied. Scanning electron microscopy and energy dispersive spectroscopy studies were conducted to determine the sludge structure and composition, respectively. Overall, FCE as an eco-friendly biomaterial was revealed to be a very efficient coagulant and a promising option for the removal of COD from wastewaters.

  18. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  19. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  20. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    Science.gov (United States)

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  1. Integrated aerobic biological-chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate.

    Science.gov (United States)

    Solís, Rafael R; Rivas, Francisco Javier; Ferreira, Leonor C; Pirra, Antonio; Peres, José A

    2018-01-28

    The oxidation of Winery Wastewater (WW) by conventional aerobic biological treatment usually leads to inefficient results due to the presence of organic substances, which are recalcitrant or toxic in conventional procedures. This study explores the combination of biological and chemical processes in order to complete the oxidation of biodegradable and non-biodegradable compounds in two sequential steps. Thus, a biological oxidation of a diluted WW is carried out by using the activated sludge process. Activated sludge was gradually acclimated to the Diluted Winery Wastewater (DWW). Some aspects concerning the biological process were evaluated (kinetics of the oxidation and sedimentation of the sludge produced). The biological treatment of the DWW led to a 40-50% of Chemical Oxygen Demand (COD) removal in 8 h, being necessary the application of an additional process. Different chemical processes combining UVA-LEDs radiation, monoperoxysulfate (MPS) and photocatalysts were applied in order to complete the COD depletion and efficient removal of polyphenols content, poorly oxidized in the previous biological step. From the options tested, the combination of UVA, MPS and a novel LaCoO 3 -TiO 2 composite, with double route of MPS decomposition through heterogeneous catalysis and photocatalysis, led to the best results (95% of polyphenol degradation, and additional 60% of COD removal). Initial MPS concentration and pH effect in this process were assessed.

  2. Physical-chemical pretreatment as an option for increased sustainability of municipal wastewater treatment plants

    NARCIS (Netherlands)

    Mels, A.

    2001-01-01

    Keywords : municipal wastewater treatment, physical-chemical pretreatment, chemically enhanced primary treatment, organic polymers, environmental sustainability

    Most of the currently applied municipal wastewater treatment plants in The Netherlands are

  3. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  4. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  5. Process evaluation and treatability study of wastewater in a textile dyeing industry

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Debabrata [Civil Engineering Department, Bengal Engineering and Science University, Shibpur, P.O. - Botanic Garden, Horah, West Bengal - 711 103 (India)

    2011-07-01

    The process was investigated in a textile dying unit and subsequently wastewater generation profile was studied for the development of a viable treatment. The dyeing unit under the study generated a considerable volume of wastewater containing inorganic chemicals and organic reactive green dye. Chemical oxygen demand (COD) resulting from all the chemically oxidizible substances and the residual color of the dye were targeted for removal. The wastewater samples were collected from different sub-processes and then characterized for the parameters viz. pH, Total solid, Suspended solid, Dissolved solid, COD and Alkalinity. A composite wastewater sample was prepared according to the measured wastewater discharge from various unit operations and used for treatability study. In the first stage, coagulation-flocculation with alum and chemical oxidation with bleaching powder were performed separately. Subsequently, adsorption study was conducted with crushed burnt coal (C.B.C.) on the composite wastewater, initially treated with 10% bleaching powder solution. After several trials, this combination was found to be effective for a C.B.C. content of 10% under a contact period of 90 minutes, which showed 100% colour and about 95% COD removal.

  6. REUSE IN EXHAUST DYEING PROCESSES OF TEXTILE WASTEWATERS

    OpenAIRE

    P. Monllor; J.F. Sanz; R. Vicente; M. Bonet

    2013-01-01

    Textile dyeing and wet finishing wastewaters are considered a major concern because of the necessity of removing colour and pollutants before their discharge into the environment. Their chemical composition is diverse depending mainly on fashion, material and process. After the homogenization of all the wastewaters coming from the different textile processes, the generally used multi-stage technology for their treatment and purification combines physico-chemical and biological processes. Howe...

  7. SELECTION OF CHEMICAL TREATMENT PROGRAM FOR OILY WASTEWATER

    Directory of Open Access Journals (Sweden)

    Miguel Díaz

    2017-04-01

    Full Text Available When selecting a chemical treatment program for wastewater to achieve an effective flocculation and coagulation is crucial to understand how individual colloids interact. The coagulation process requires a rapid mixing while flocculation process needs a slow mixing. The behavior of colloids in water is strongly influenced by the electrokinetic charge, where each colloidal particle carries its own charge, which in its nature is usually negative. Polymers, which are long chains of high molecular weight and high charge, when added to water begin to form longer chains, allowing removing numerous particles of suspended matter. A study of physico-chemical treatment by addition of coagulant and flocculant was carried out in order to determine a chemical program for oily wastewater coming from the gravity separation process in a crude oil refinery. The tests were carried out in a Jar Test equipment, where commercial products: aluminum polychloride (PAC, aluminum sulfate and Sintec D50 were evaluated with five different flocculants. The selected chemical program was evaluated with fluids at three temperatures to know its sensitivity to this parameter and the mixing energy in the coagulation and flocculation. The chemical program and operational characteristics for physico-chemical treatment with PAC were determined, obtaining a removal of more than 93% for suspended matter and 96% for total hydrocarbons for the selected coagulant / flocculant combination.

  8. Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater

    International Nuclear Information System (INIS)

    Bailly, Emilie; Levi, Yves; Karolak, Sara

    2013-01-01

    The Polar Organic Chemical Integrative Sampler (POCIS) is a new tool for the sampling of organic pollutants in water. We tested this device for the monitoring of pharmaceuticals in hospital wastewater. After calibration, a field application was carried out in a French hospital for six pharmaceutical compounds (Atenolol, Prednisolone, Methylprednisolone, Sulfamethoxazole, Ofloxacin, Ketoprofen). POCIS were calibrated in tap water and wastewater in laboratory conditions close to relevant environmental conditions (temperature, flow velocity). Sampling rates (R s ) were determined and we observed a significant increase with flow velocity and temperature. Whatever the compound, the R s value was lower in wastewater and the linear phase of uptake was shorter. POCIS were deployed in a hospital sewage pipe during four days and the estimated water concentrations were close to those obtained with twenty-four hour composite samples. -- Highlights: ► Calibration of POCIS for the monitoring of pharmaceuticals in hospital wastewater. ► Uptake profile presents a shorter linear phase in wastewater than in tap water. ► Influence of R s values by temperature, flow velocity and bio-fouling. ► Correlation between concentrations estimated from POCIS or measured in TWA samples. ► Deployment period should be no longer than five days. -- After calibration in tap water and hospital wastewater, POCIS were used to monitor pharmaceuticals in hospital sewage and were compared to TWA sampling

  9. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    Science.gov (United States)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  10. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  11. The assessment of treated wastewater quality and the effects of mid-term irrigation on soil physical and chemical properties (case study: Bandargaz-treated wastewater)

    Science.gov (United States)

    Kaboosi, Kami

    2017-09-01

    This study was conducted to investigate the characteristics of inflow and outflow wastewater of the Bandargaz wastewater treatment plant on the basis of the data collection of operation period and the samples taken during the study. Also the effects of mid-term use of the wastewater for irrigation (from 2005 to 2013) on soil physical and chemical characteristics were studied. For this purpose, 4 samples were taken from the inflow and outflow wastewater and 25 quality parameters were measured. Also, the four soil samples from a depth of 0-30 cm of two rice field irrigated with wastewater in the beginning and middle of the planting season and two samples from one adjacent rice field irrigated with fresh water were collected and their chemical and physical characteristics were determined. Average of electrical conductivity, total dissolved solids, sodium adsorption ratio, chemical oxygen demand and 5 days biochemical oxygen demand in treated wastewater were 1.35 dS/m, 707 ppm, 0.93, 80 ppm and 40 ppm, respectively. Results showed that although some restrictions exist about chlorine and bicarbonate, the treated wastewater is suitable for irrigation based on national and international standards and criteria. In comparison with fresh water, the mid-term use of wastewater caused a little increase of soil salinity. However, it did not lead to increase of soil salinity beyond rice salinity threshold. Also, there were no restrictions on soil in the aspect of salinity and sodium hazard on the basis of many irrigated soil classifications. In comparison with fresh water, the mid-term use of wastewater caused the increase of total N, absorbable P and absorbable K in soil due to high concentration of those elements in treated wastewater.

  12. Effect of Irrigation with Wastewater on Certain Soil Physical and Chemical properties

    Directory of Open Access Journals (Sweden)

    Farzad Rohani Shahraki

    2005-03-01

    Full Text Available Depending on effluent characteristics, irrigation with wastewater plant effluent can be either beneficial or harmful. To investigate the effects of nine years of irrigation with North Isfahan Wastewater Treatment Plant effluent on physical and chemical properties of soil, a study was carried out using a randomized complete block design with three replications. Treatments included: 1 raw wastewater; 2 effluent from primary settling basin; 3 final plant effluent and 4 well water. To investigate soil physical and chemical properties, samples were taken from depths of 0-5 cm and 5-10 cm from each plot. The results showed that raw wastewater COD and SS were higher than the Iranian Standard limits for use in irrigation. So were BOD5 and turbidity of effluent from primary sedimentation tanks. From the results obtained, the raw wastewater may be considered to be of medium quality. However, regarding other parameters such as EC, SAR, Na and Pb, the quality of the raw wastewater was considerably higher than that of well water. All treatments showed medium infiltrability with respect to chloride concentration. The concentration of lead in well water was higher than in treated wastewater. It should be noted that lead concentration in all samples was less than the standard limits. The average soil bulk density and percentage of moisture in FC did not follow any specific trend. The results indicate that the soil irrigated with effluent over the nine years had a lower bulk density, a higher percentage of moisture, and a lower infiltration compared to adjacent soil not irrigated with wastewater. Analysis of variance for all results did not confirm any significant differences among treatments.

  13. Removal of Procion Red MX-5B from songket's industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite

    Directory of Open Access Journals (Sweden)

    Poedji Loekitowati Hariani

    2018-07-01

    Full Text Available Songket is traditional costume in South Sumatra, Indonesia. This study investigates the feasibility of using activated carbon-Fe3O4 composite to adsorb the Procion Red MX-5B dye from songket's industrial wastewater. The adsorbent was characterized using the surface area analyzer, X ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Analysis, Fourier Transform Infrared and Vibrating Sample Magnetometer. The effects of pH, weight of composite and the contact time were evaluated to determine the adsorption efficiency. The kinetic and isotherm were carried out to evaluate the adsorption behavior of composite. The toxicity level of songket's industrial wastewater was measured using Tilapia fishes as the biological indicator. The 24-h LC50 was calculated using Probit analysis method. The results show that the adsorption process of Procion Red MX-5B using activated carbon-Fe3O4 composite follows a pseudo first order kinetic and the experimental data show a good correlation with Freundlich isotherm. Songket's industrial wastewater has the 24-h LC50 for Tilapia of 5.6% ± 0.6. After treatment using activated carbon-Fe3O4 composite at pH 6 and contact time of 50 min, the adsorbent can reduce concentration of the Procion Red MX-5B by 94% and chemical oxygen demand by 96%. The experimental results indicate that the activated carbon-Fe3O4 composite is effective as an adsorbent for the treatment of songket's industrial wastewater.

  14. Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil.

    Science.gov (United States)

    Chevremont, A-C; Boudenne, J-L; Coulomb, B; Farnet, A-M

    2013-04-15

    Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  16. Removal of Lead from Wastewater Contaminated with Chemical Synthetic Dye by Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Lamyai Neeratanaphan

    2015-07-01

    Full Text Available Novel isolated microorganisms have been demonstrated to efficiently remove lead from wastewater contaminated with chemical synthetic dye. In this study, the physical and chemical parameters of wastewater samples (including Pb concentrations were analyzed before and after treatment with microorganisms. The highest Pb concentration detected in wastewater was 0.788 mg/l. Investigations of the Pb tolerance and removal capacities of microorganism strains isolated from the wastewater sediment resulted in the selection of three fungal isolates (F102, F203 and F302. Interestingly, isolate F203 had a Pb tolerance of up to 100 mg/l. Using DNA barcoding and morphological characteristics, fungal isolate F203 was identified as Aspergillus terreus. Wastewater characteristics before treatment included a grayish black color with pH, TDS, BOD, COD and Pb concentrations higher than the Thailand standard values. Wastewater qualities after treatment with A. terreus showed definite improvement; however, the values of certain parameters were still higher than the allowed values based on the Thailand standard. The only improvement that fell within the allowed standard was the Pb concentration. Next, A. terreus was used for Pb adsorption in wastewater with an initial Pb concentration of 0.788 mg/l at time points corresponding to 0, 24, 48, 72, 96, 120, 144 and 168 h of incubation. The results showed that A. terreus could adsorb and remove higher amounts of Pb from wastewater than the other fungal isolates. Time course adsorption analysis showed the remaining Pb concentrations as 0.788, 0.213, 0.162, 0.117, 0.100, 0.066, 0.042 and 0.032 mg/l, respectively; the percentage of Pb removal could be estimated as 0, 72.97, 79.44, 85.15, 87.31, 91.62, 94.67 and 95.94%, respectively. In conclusion, A. terreus possessed the ability to adsorb up to 96% of Pb from chemical synthetic dye within 168 h. Thus, A. terreus might be suitable for adaptation and use in Pb treatment.

  17. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    Science.gov (United States)

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  18. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    Science.gov (United States)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  19. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters

    Directory of Open Access Journals (Sweden)

    Bruno R. S. Lemos

    2012-05-01

    Full Text Available In this work, new magnetic amphiphilic composites were prepared by chemical vapor deposition with ethanol on the surface of hydrophilic natural chrysotile matrix containing Fe catalyst. XRD, Raman, Mössbauer and SEM analyses suggest the formation of a complex nanostructured material composed of hydrophobic carbon nanotubes/nanofibers grown on the hydrophilic surface of the MgSi fiber mineral and the presence of Fe metallic nanoparticles coated by carbon. These nanostructured particles show amphiphilic properties and interact very well with both oil and aqueous phases. When added to emulsions the amphiphilic particles locate on the oil/water interface and, under a magnetic field, the oil droplets collapsed leading to the separation of the aqueous and oil phases. Preliminary work showed excellent results on the use of these particles to break wastewater emulsions in the biodiesel process.

  20. Chemical procedures to detect carcinogenic compound in domestic wastewater

    International Nuclear Information System (INIS)

    Abd Manan T S; Malakahmad A

    2013-01-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  1. The effect of three holding tank chemicals on anaerobic wastewater treatment

    OpenAIRE

    Howard, Samuel Clarence

    1988-01-01

    Sewage-holding tanks aboard recreational boats store human wastes, thereby preventing the direct discharge of wastewater to the aquatic environment. Water-conserving toilets and limited holding tank volumes produce a highly concentrated waste that must be periodically dumped to a wastewater treatment system. Prior to disposal, many boat operators add commercial preparations to control odors produced in their chemical toilets and holding tanks. The objective of this study was to determine t...

  2. Removal of indicator organisms by chemical treatment of wastewater.

    Science.gov (United States)

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  3. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Jin, S.H.

    2010-01-01

    This study presents a screening protocol to evaluate the applicability of the ZVI pretreatment to various industrial wastewaters of which major constituents are not identified. The screening protocol consisted of a sequential analysis of UV-vis spectrophotometry, high-performance liquid chromatograph (HPLC), and bioassay. The UV-vis and HPLC analyses represented the potential reductive transformation of unknown constituents in wastewater by the ZVI. The UV-vis and HPLC results were quantified using principal component analysis (PCA) and Euclidian distance (ED). The short-term bioassay was used to assess the increased biodegradability of wastewater constituents after ZVI treatment. The screening protocol was applied to seven different types of real industrial wastewaters. After identifying one wastewater as the best candidate for the ZVI treatment, the benefit of ZVI pretreatment was verified through continuous operation of an integrated iron-sequencing batch reactor (SBR) resulting in the increased organic removal efficiency compared to the control. The iron pretreatment was suggested as an economical option to modify some costly physico-chemical processes in the existing wastewater treatment facility. The screening protocol could be used as a robust strategy to estimate the applicability of ZVI pretreatment to a certain wastewater with unknown composition.

  4. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  5. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  6. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays.

    Science.gov (United States)

    Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan

    2011-05-01

    The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  8. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  9. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-01-01

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L -1 ). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  10. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  12. Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

    Directory of Open Access Journals (Sweden)

    Tóth András József

    2016-10-01

    Full Text Available The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

  13. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh

    2009-01-01

    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  14. Physio-chemical characteristics and bacterial diversity in copper ...

    African Journals Online (AJOL)

    The effects of seasonal change in temperature on the chemical compositions of water and bacterial diversity in copper mining wastewater reservoir (CMWR) located in Jiangxi province, China, was investigated. Wastewater samples were collected collected in December 2008 and May 2009 from different points of CMWR ...

  15. Effect of cassava wastewater on physicochemical characteristics and fatty acids composition of meat from feedlot-finished lambs

    Directory of Open Access Journals (Sweden)

    Jose Adelson Santana Neto

    2017-09-01

    Full Text Available This study aimed to evaluate the effects of includingcassava wastewater (0.0, 0.5, 1.0, or 1.5 L animal-1 day-1 in diets of feedlot-finished lambs on the physicochemical characteristics and fatty acid composition of their meat. Thirty-two uncastrated lambs atan average age of 167 days and an average body weight of 24.76 ± 3.00 kg were distributed into four groups in a completely randomized design with eight animals per group for each treatment. Inclusion of cassava wastewater linearly reduced cooking losses, shear force, and yellow intensity and linearly increased the fat content of the meat. The amounts of myristic, stearic, linoleic, and total fatty acids were changed. Additionally, an effect of cassava wastewater was observed on the amounts of saturated fatty acids, polyunsaturated fatty acids, desirable fatty acids, and n-6:n-3ratio. A positive quadratic effect was observed for the following nutritional quality indices: Δ9 desaturase 16, elongase, at herogenicity, and thrombogenicity. Cassava wastewater changesthe physicochemical characteristics and fatty acid composition of lamb meat. Furtherstudies should be carried outto more accurately determine the fatty acid composition of cassava wastewater to better understand its effectson animal nutrition.

  16. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2003-01-01

    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...... on continuous measurement of the reactants allowing the kinetics to be determined at varying reactant concentrations during the course of the experiment. The kinetics determined was simulated by a rate equation. The precision of the method was assessed in terms of the standard deviation of the kinetic...

  17. Performance Assessment of Chemical Coagulation Together with Advanced Oxidation Peroxone Regarding Dye Wastewater Treatment of Appliance Factories

    Directory of Open Access Journals (Sweden)

    A R Shahriyari Farfani

    2016-01-01

    Full Text Available Abstract Introduction: Considering the important role of industry in polluting the environment, the present study aimed to evaluate the performance of chemical coagulation together with advanced oxidation (peroxone regarding dye wastewater treatment of appliance factories. Methods: This study was experimental, which it’s pilot-scale was conducted on the wastewater of the painting appliance Factory. The sample was selected via the combined sampling procedure. The processes used in the present study consisted of chemical coagulation and advanced oxidation (peroxone processes and 250 samples were analyzed. MgCl2, PAC and FeCl3, Bentonite, Cationic Polymer were used for chemical coagulation. The used equipments consisted of Spectrophotometer DR 2000, Jar taste and a ozonation reactor. COD and dye of samples were measured according to standard method. Results: The results revealed that each of the coagulants in its optimal pH were able to arrange the magnesium chloride 86.85%, poly aluminum chloride 88.47% and ferric chloride 85.41% in removal of COD. Poly aluminum chloride achieved the highest dye removal 90.92%. Furthermore, the highest COD removal efficiency was related to the combination of magnesium chloride (1.4 mg/l, poly aluminum chloride (0.6 mg/l and cationic polymers (0.4 mg/l with an efficiency of 89.11%, which managed to remove the dye up to 93.38%. COD removal efficiency reached to 99.67% using advanced oxidation process by peroxone method on pretreated wastewater (with chemical coagulation. Conclusions: For better performance of peroxone treatment, the wastewater should be pretreated for removal of dissolved solids. As a result, due to its suspension status of using peroxone method together chemical coagulation has a high capability to remove COD and dye from appliance Factore ,s wastewater.

  18. Chemical and Microbiological Analysis of Certain Water Sources and Industrial Wastewater Samples in Dakahlia Governorate

    International Nuclear Information System (INIS)

    El-Fadaly, H.; El-Defrawy, M.M.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The chemical analysis included quantitative measurement of electrical conductivity, alkalinity , hardness sulphate, ph, total dissolved solids, chloride, as well as dissolved oxygen was carried out. The microbiological examination for different water sources and industrial wastewater samples was also conducted. some of heavy metals, Co 2+ Cu 2+ Fe 3+ and Mn 2+ were determined in fresh water, while other metals, such as Cr 6+ , Co 2+ , Zn 2+ and Ni 2+ were measured in industrial wastewater. Results of the chemical analysis showed that all measured parameters were found within the limitation either national or international law, except some samples which showed higher values than the permissible limits for some measured parameters. The microbiological analysis exhibited presence of yeasts, fungi and bacteria. Most bacterial isolates were short rod, spore formers as well as coccoid shaped bacteria. The efficiency of water treatment process on the reduction of microbial load was also calculated. Regarding the pathogenic bacteria, data showed that neither water samples nor industrial wastewater contain pathogens when using specific cultivation media for the examination. Furthermore, data proved the possibility of recycling of the tested industrial wastewater on which some microorganisms can grow. Data showed that the percent of heavy metals removal can reach to more than 70% in some cases as a result to bacterial treatment of industrial wastewater

  19. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  20. Treatment of wastewater and sludge, and decomposition of endocrine disrupting chemicals with radiation

    International Nuclear Information System (INIS)

    Kudo, Hisaaki

    2006-01-01

    This country report describes the past and current research activities in Japan on radiation treatment of wastewater and sludge carried out by early 90s, and decomposition of endocrine disrupting chemicals that is going-on. (author)

  1. Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater

    Directory of Open Access Journals (Sweden)

    Heber Martins de Paula

    2016-01-01

    Full Text Available Wastewater from concrete plants has a high pH and a high concentration of suspended solids, necessitating treatment before reuse or discharge into the environment. The objective of this study is to evaluate the efficiency of two chemical coagulants, aluminum sulfate (Al2(SO43 and iron chloride (FeCl3, and a natural coagulant, Moringa oleifera (MO, all in their soluble forms, in the treatment of wastewater from concrete plants. To this end, the efficiencies of the three coagulants, in combinations with different proportions, were tested. The quality parameters of the wastewater obtained after the treatments were compared to the limit values for non-potable water. The use of coagulants in their soluble form potentiates their effect, especially when preparing the MO extract, i.e., greater amounts of the protein responsible for the coagulation is extracted. A mixture with MO and Al2(SO43 in a 20:80 proportion showed the best results, with 97.5% of the turbidity removed at 60 min. of sedimentation, allowing the treated water to be used for washing vehicles and flushing toilets. The FeCl3 treatment produced a high concentration of chlorides, which could cause corrosion problems, and is therefore not recommended for concrete wastewater treatment.

  2. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  3. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    Directory of Open Access Journals (Sweden)

    Mara Suyane Marques Dantas

    2014-01-01

    Full Text Available The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA, located in Vitória de Santo Antão. The experimental design was randomized blocks with 6×5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1; and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater, with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers.

  4. Chemical properties of a Haplustalf soil under irrigation with treated wastewater and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Leda V. B. D. Silva

    2016-04-01

    Full Text Available ABSTRACT The objective of this research was to investigate the effects of irrigation with treated wastewater and nitrogen (N fertilization on the chemical characteristics of a Haplustalf soil cultivated with cotton. An experiment was conducted in a greenhouse in a completely randomized design with four replicates, and arranged in a 5 x 4 factorial. Five doses of N fertilization (0, 45, 90, 135 and 180 kg ha-1 and four sources of irrigation water (freshwater, wastewater treated by an anaerobic reactor, wastewater treated by an anaerobic reactor and post-treated by intermittent sand filter in series, wastewater treated in a septic tank and post-treated by an intermittent sand filter were tested. Irrigation was daily performed from July 2011 to January 2012 according to the water demand of cotton resulting in a water depth of 620 mm. It was found that, compared with the conventional management with freshwater irrigation, treated wastewater provides greater accumulation of micronutrient, potassium and sodium in the soil, increasing the risk of sodification in irrigated areas.

  5. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  6. Construction of Industrial Electron Beam Plant for Wastewater Treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2004-01-01

    A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government

  7. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    Science.gov (United States)

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  8. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  9. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  10. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  11. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini

    2008-01-01

    ) were compared to the theoretical methane yields (Bo,th) in order to evaluate the biodegradability of the tested wastewaters and the influence of their physico-chemical characteristics. The analytical method applied to quantify the wastewaters’ organic content proved to influence the estimation...... of their theoretical yields. The substrate:inoculum ratio as well as the dilution factor of the wastewaters influenced the ultimate practical methane yields differently in each of the wastewaters assessed. Substrate chemical oxygen demand (COD) concentrations did not present any influence on ultimate practical methane...... yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  12. Comparison of Some Rural Wastewater Refining Systems Considering Chemical Properties and Heavy Metals

    Directory of Open Access Journals (Sweden)

    Najme Yazdanpanah

    2016-02-01

    compared to the value of the same variable at the inlet. Also, the percentage change of wastewater properties at the outlet ratio to the inlet values in the refining systems was calculated. Meanwhile, the efficiency was evaluated using permissible values reported by the Environmental Protection Organization of Iran. Results and Discussion: The results showed that after purification, the amounts of DO, Cd and Mo were not significantly different among the studied systems, while, the other parameters were found to be similar. In almost all the cases, the amounts of pollutants decreased at the outlets, nevertheless considering the permissible standards, just in few cases the pollution was reduced. Moreover, in comparison to the standard values, the amount of TP increased, while Turbidity decreased. Additionally, the amount of DO was higher than the threshold values. As a result of purification in all the studied systems, the concentrations of Cd and Pb were reduced, whereas the concentration of Ni increased. Also, the concentrations of heavy metals, except Mo were less than the standard values. Conclusion: It was concluded that the selected refining systems had limited performance in the purification of wastewater in the studied rural areas. However, the amounts of pollutants showed some reductions at the outlets, based on the permissible standards reported by the Environmental Protection Organization of Iran. In just a few cases the pollution indices were reduced. In fact, the septic tank systems could not remove the chemical pollutants from wastewaters, although the best performance was observed for TSS and Turbidity, which were reduced with respect to permissible levels. The amounts of BOD and COD were higher than the standard values, indicating low efficiency of the refining systems in removal of chemical and biological agents. Also, the concentration of TP was found to be higher than the permissible level. The entrance of phosphorous into the surface runoff and water

  13. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    Science.gov (United States)

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Removal of Cr(VI and Toxic Ions from Aqueous Solutions and Tannery Wastewater Using Polymer-Clay Composites

    Directory of Open Access Journals (Sweden)

    Abd El-Azeem Sallam

    2017-10-01

    Full Text Available Polymer-clay composites were prepared by natural zeolite (clinoptilolite or naturally local clay deposits in an N,N-methylene-bis-acrylamide as cross-linked. The resultant composites were used for the removal of Cr(VI from an aqueous solution. Additionally, their effects on soluble ions of tannery wastewater were investigated. The produced composites were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. The results showed that Cr(VI removal is dependent upon initial concentrations and pH. The adsorption quantity of Cr(VI onto the polymerized clay deposit followed by polymerized zeolite exhibited higher values than their original samples. The polymer-clay composite of clay deposit showed the highest removal of 76.3–100% overall initial concentrations of 10–50 mg L−1 and at initial pH of 2. Kinetics of Cr(VI removal by various sorbents was predicted using a pseudo–second order model. Our findings showed that the levels of salinity and various soluble ions (Cr2+, Na+, Cl− and SO42− in tannery wastewater are very high, and their levels were reduced after treatment, especially by polymerized sorbents. It could be concluded that the polymer-clay composites may be employed as a highly efficient sorbent for the removal of Cr(VI and toxic ions from the wastewater.

  15. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  16. The chemical and biological characteristics of coke-oven wastewater by ozonation

    International Nuclear Information System (INIS)

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.

    2008-01-01

    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  17. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  18. Long-term Effects of Different Irrigation Methods with Treated Wastewater on Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    P. Najafi

    2016-02-01

    Full Text Available Introduction: Reuse of wastewater for agricultural irrigation is increasing due to an increased demand for water resources in different parts of the world. Almost 70% of deviated water from rivers and pumped groundwater is used for agriculture. If wastewater is used for irrigation in agriculture, then the amount of discharged water from natural sources will be decreased and the flow of wastewater to the environment and its ensuing pollution will be prevented. Using wastewater in applications such as irrigation of agricultural lands has caused an increase of some exchangeable ions, salts and suspended solids (organic and mineral in the soil and has significantly affected physical, chemical and biological features. Therefore, paying attention to the soil health is important during use of wastewater when it is the source of irrigation water. In such cases, there will be some worries about pollution of harvested products, contact of farm workers with pathogenes and environmental issues in the farm. In these conditions, attention to irrigation methods along with consideration of environmental protection standards is important. Materials and Methods: In this study, the effects of treated wastewater (TW irrigation were tested on some chemical properties of soil for three years under five different irrigation treatments. The treatments were as follows: surface furrow irrigation (FI, surface drip irrigation (SDI, subsurface drip irrigation in 30 cm depth (SDI30, subsurface drip irrigation in 60 cm depth (SDI60 and bubbler irrigation (BI. At the end of the experiment, soil samples were collected from a depth of 0-30, 30-60 and 60-90 cm in order to measure the electrical conductivity (EC, pH, sodium adsorption ratio (SAR, organic matter (OM and calcium carbonate equivalent (CaCO3. Results and Discussion: According to the results of soil analysis, the soil became more saline than the beginning by applying the treatments. Generally, in two plots of urban and

  19. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China

    International Nuclear Information System (INIS)

    Chen Feng; Ying Guangguo; Kong Lingxiao; Wang Li; Zhao Jianliang; Zhou Lijun; Zhang Lijuan

    2011-01-01

    This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils. - Highlights: → Some EDCs and PPCPs were detected in the wastewater irrigated soils. → Application of reclaimed water could lead to accumulation of some compounds. → Groundwater has been contaminated by some compounds. → Triclocarban posed high risks to soil organisms. - Application of reclaimed wastewater on agricultural land could lead to the presence or accumulation of wastewater-related contaminants in soils.

  20. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chen [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.com [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Lingxiao, Kong [Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Science, Baoding 07100 (China); Li, Wang; Jianliang, Zhao; Lijun, Zhou; Lijuan, Zhang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-06-15

    This study investigated the occurrence of 43 emerging contaminants including 9 endocrine-disrupting chemicals and 34 pharmaceuticals in three sites in Hebei Province, north China. Each site has a wastewater irrigated plot and a separate groundwater irrigated plot for comparison purpose. The results showed that the concentrations of the target compounds in the wastewater irrigated soils were in most cases higher than those in the groundwater irrigated soils. Among the 43 target compounds, nine compounds bisphenol-A, triclocarban, triclosan, 4-nonylphenol, salicylic acid, oxytetracycline, tetracycline, trimethoprim and primidone were detected at least once in the soils. Preliminary environmental risk assessment showed that triclocarban might pose high risks to terrestrial organisms while the other detected compounds posed minimal risks. Irrigation with wastewater could lead to presence or accumulation of some emerging contaminants to some extent in irrigated soils. - Highlights: > Some EDCs and PPCPs were detected in the wastewater irrigated soils. > Application of reclaimed water could lead to accumulation of some compounds. > Groundwater has been contaminated by some compounds. > Triclocarban posed high risks to soil organisms. - Application of reclaimed wastewater on agricultural land could lead to the presence or accumulation of wastewater-related contaminants in soils.

  1. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  2. APPLICATION OF MEMBRANES FROM POLYACRYLONITRITE DOPPED WITH GRAPHEN OXIDE IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Tomasz Turek

    2017-08-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped with graphene oxide (GO to remove contaminations of galvanic wastewater. Membranes were obtained using phase inversion method from PAN and GO solution in N,N-dimethylformamide (DMF. Wastewater was pre-treated with the flocculant Magnafloc®336. Next, ultrafiltration of the treated wastewater was carried out in the ultrafiltration cell AMICON on the previously prepared PAN/GO composite membranes. Physico-chemical properties and composition of solutions before and after integrated purification process were analyzed by UV-Vis spectrophotometer and atomic absorption spectrometry (AAS. As a result of flocculation from wastewater there have been removed phosphates (97%, chlorides (5,2%, sulfates (5,9% and iron (82%. In addition, as a result of ultrafiltration was complete removal of phosphate anions (100% and iron (~91-92%, zinc (68÷84%, lead (65-98% and cadmium (~67%.

  3. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  4. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    Science.gov (United States)

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  5. SEM analysis of particle size during conventional treatment of CMP process wastewater

    International Nuclear Information System (INIS)

    Roth, Gary A.; Neu-Baker, Nicole M.; Brenner, Sara A.

    2015-01-01

    Engineered nanomaterials (ENMs) are currently employed by many industries and have different physical and chemical properties from their bulk counterparts that may confer different toxicity. Nanoparticles used or generated in semiconductor manufacturing have the potential to enter the municipal waste stream via wastewater and their ultimate fate in the ecosystem is currently unknown. This study investigates the fate of ENMs used in chemical mechanical planarization (CMP), a polishing process repeatedly utilized in semiconductor manufacturing. Wastewater sampling was conducted throughout the wastewater treatment (WWT) process at the fabrication plant's on-site wastewater treatment facility. The goal of this study was to assess whether the WWT processes resulted in size-dependent filtration of particles in the nanoscale regime by analyzing samples using scanning electron microscopy (SEM). Statistical analysis demonstrated no significant differences in particle size between sampling points, indicating low or no selectivity of WWT methods for nanoparticles based on size. All nanoparticles appeared to be of similar morphology (near-spherical), with a high variability in particle size. EDX verified nanoparticles composition of silicon- and/or aluminum-oxide. Nanoparticle sizing data compared between sampling points, including the final sampling point before discharge from the facility, suggested that nanoparticles could be released to the municipal waste stream from industrial sources. - Highlights: • The discrete treatments of a semiconductor wastewater treatment system were examined. • A sampling scheme and method for analyzing nanoparticles in wastewater was devised. • The wastewater treatment process studied is not size-selective for nanoparticles

  6. Chemical composition of Chinese palm fruit and chemical properties ...

    African Journals Online (AJOL)

    ... chemical properties and could be used as edible oils and for industrial applications. ... on it, which can provide useful information for Chinese oil palm industry. Key words: Chemical composition, palm fruit, palm oil, palm kernel oil, chemical ...

  7. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  8. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  9. Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms.

    Science.gov (United States)

    Wang, Yanjie; Lan, Huachun; Li, Lin; Yang, Kaixiong; Qu, Jiuhui; Liu, Junxin

    2018-06-19

    Sampling was conducted from biochemical reaction tanks of six municipal wastewater treatment plants in the Yangtze River and Zhujiang deltas and the Jing-Jin-Ji region to assess their morphology, level, and composition. Morphological observations suggested that particles were scattered amorphously with C, O, and Si as the major elements. Bioaerosols are composed of spatially varying levels of microorganisms and chemicals. As the sampling height increased, the level of the components in the bioaerosols decreased. Wastewater in the biochemical reaction tanks was identified as an important source of bioaerosols using SourceTracker analysis. The aerosolization of film drops produced by bursting of bubbles was the main reason for the generation of bioaerosols. Increasing the aeration rate of water may promote bioaerosol generation. Relative humidity, temperature, wind speed, and solar illumination influenced the survival of bioaerosols. Large particle sedimentation and wind diffusion significantly decreased the atmospheric aerosol concentration. When the sampling point height increased from 0.1 m to 3.0 m, the concentrations of the microorganisms and total suspended particles decreased by 23.71% and 38.74%, respectively. Considerable attention should be paid to the control of total suspended particles and microorganisms in bioaerosols.

  10. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  11. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2016-01-01

    Full Text Available The performance of a laboratory scale upflow anaerobic sludge blanket (UASB reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%, biochemical oxygen demand (BODT (93.98%, chemical oxygen demand (COD (95.59%, total suspended solid (TSS (95.98%, ammonia (80.68%, nitrite (79.71%, nitrate (71.16%, phosphorous (44.77%, total coliform (TC (99.9%, and fecal coliform (FC (99.9% was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM, X-ray fluorescence spectrum (XRF, and Fourier transforms infrared spectroscopy (FTIR. Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  12. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  13. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    Science.gov (United States)

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  14. Condutivity effect in electro-coagulation-flotation applied to physico-chemical wastewater treatment

    OpenAIRE

    Francisco Javier Cuba Terán; Mário Luiz Rodrigues Foco

    2007-01-01

    This study reports on the effect of conductivity on the simultaneous applicability of water electrolysis , chemical coagulation and flotation fundamentals in the treatment of wastewater with large amounts of suspended matter, characterizing electro-coagulation-flotation (ECF) . Results from experiments carried out in a pilot study implanted and operated in the Laboratory of Environment Control (LCA), at the State University of Campinas in Limeira are presented. ECF was developed in an electro...

  15. Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil

    Directory of Open Access Journals (Sweden)

    Vanessa Ribeiro Urbano

    2015-11-01

    Full Text Available The current water crisis underlines the importance of improving water management. The use of effluent from secondary treatment in agriculture can reduce the discharge of effluent into natural bodies and provide nutrients to crops. This study evaluated the physical and chemical properties of a Dusky Red Latosol soil that had been irrigated with treated wastewater. Conducted at the Center of Agricultural Sciences (CCA of Federal University of São Carlos (UFSCar, in Araras/São Paulo/Brazil, 18 undisturbed soil samples were collected and deposited on a constant-head permeameter in order to simulate the irrigation of five growth cycles of lettuce (Lactuca sativa L., organized in five different treatments and one control group. For each treatment 0.58 L, 1.16 L, 1.74 L, 2.32 L, and 2.90 L of treated wastewater and distilled water were applied . The treated wastewater came from a domestic waste treatment plant. After the water filtered through the soil, samples of treated wastewater were collected for analyses of electrical conductivity (EC, sodium adsorption ratio (SAR, turbidity, pH, Na, K, Mg, P and Ca and, in the soil the granulometry, complete fertility, exchangeable sodium percentage (ESP and saturated hydraulic conductivity (Ksat. The Ksat decreased, but did not alter the infiltration of water and nutrients in the soil. The concentration of nutrients in the soil increased, including Na, which raises the need for monitoring soil’s salinity. In conclusion, the application of wastewater did not cause damage to the physical properties of the soil, but resulted in a tendency towards salinization.

  16. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    KAUST Repository

    Khan, Muhammad; Busch, Markus; Molina, Veró nica Garcí a; Emwas, Abdul-Hamid M.; Aubry, Cyril; Croue, Jean-Philippe

    2014-01-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. © 2014 Elsevier Ltd.

  17. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    KAUST Repository

    Khan, Muhammad

    2014-08-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. © 2014 Elsevier Ltd.

  18. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Linares-Hernandez, Ivonne [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico)]. E-mail: cbarrera@uaemex.mx; Roa-Morales, Gabriela [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, PO Box 305310, Denton, TX 76203-5310 (United States); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico)

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m{sup -2} current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD{sub 5}) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  19. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    International Nuclear Information System (INIS)

    Linares-Hernandez, Ivonne; Barrera-Diaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Urena-Nunez, Fernando

    2007-01-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m -2 current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD 5 ) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  20. Effect of Chemical Washing Pre-treatment of Empty Fruit Bunch (EFB) biochar on Characterization of Hydrogel Biochar composite as Bioadsorbent

    Science.gov (United States)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Wan, W. A.; Ghani, Ab Karim

    2018-05-01

    Hydrogel biochar composite (HBC) is a recent interest among researchers because of the hydrophilic characteristic which can adsorb chemical fluid and showed a versatile potential as adsorbent in removing hazardous material in wastewater and gas stream. In this study, the effect of chemical washing pre-treatment by using two different type of chemical agent Hydrochloric Acid (HCL) and Hydrogen Peroxide (H2O2) was analysed and investigated. The raw EFB biochar was prepared using microwave assisted pyrolysis under 1000W for 30 min under N2 flow with 150 mL/min. To improve the adsoprtion ability, the EFB biochar has been chemical washed pre-treatment with Hydrochloric Acid (HCl) and Hydrogen Peroxide (H2O2) before polymerization process with acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The characterization has studied by using Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). FTIR result shows that, the formation of Raw EFB to Hydrogel Biochar Composite (Raw EFB > EFB Biochar > Treated Biochars (HCl & H2O2) > Hydrogel Biochar Composite) have changed in functional group. For DSC result it shows that the thermal behaviour of all samples is endothermic process and have high thermal resistance.

  1. Characterization and study of correlations among major pollution parameters in textile wastewater

    International Nuclear Information System (INIS)

    Hyder, S.; Bari, A.

    2011-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a textile mill in Lahore, Punjab. The results of this study demonstrated that the composition of textile wastewater could change continuously due to inherent nature of textile operations. In general, textile wastewater was high in temperature and alkaline in nature. It was highly polluted in terms of solids and organic content. Most of the portion of solids and organic load was in the soluble form. On the basis of mean values, temperature, pH, TDS (Total Dissolved Solids), BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) were above the limits set by NEQS (National Environmental Quality Standards) while chlorides and sulfates were below the limits set by NEQS. Prior neutralization of wastewater with an acid and addition of phosphorus and nitrogen is imperative for its effective treatment. (author)

  2. Assessing the ecological long-term impact of wastewater irrigation on soil and water based on bioassays and chemical analyses.

    Science.gov (United States)

    Richter, Elisabeth; Hecht, Fabian; Schnellbacher, Nadine; Ternes, Thomas A; Wick, Arne; Wode, Florian; Coors, Anja

    2015-11-01

    The reuse of treated wastewater for irrigation and groundwater recharge can counteract water scarcity and reduce pollution of surface waters, but assessing its environmental risk should likewise consider effects associated to the soil. The present study therefore aimed at determining the impact of wastewater irrigation on the habitat quality of water after soil passage and of soil after percolation by applying bioassays and chemical analysis. Lab-scale columns of four different soils encompassing standard European soil and three field soils of varying characteristics and pre-contamination were continuously percolated with treated wastewater to simulate long-term irrigation. Wastewater and its percolates were tested for immobilization of Daphnia magna and growth inhibition of green algae (Pseudokirchneriella subcapitata) and water lentils (Lemna minor). The observed phytotoxicity of the treated wastewater was mostly reduced by soil passage, but in some percolates also increased for green algae. Chemical analysis covering an extensive set of wastewater-born organic pollutants demonstrated that many of them were considerably reduced by soil passage, particularly through peaty soils. Taken together, these results indicated that wastewater-born phytotoxic substances may be removed by soil passage, while existing soil pollutants (e.g. metals) may leach and impair percolate quality. Soils with and without wastewater irrigation were tested for growth of plants (Avena sativa, Brassica napus) and soil bacteria (Arthrobacter globiformis) and reproduction of collembolans (Folsomia candida) and oligochaetes (Enchytraeus crypticus, Eisenia fetida). The habitat quality of the standard and two field soils appeared to be deteriorated by wastewater percolation for at least one organism (enchytraeids, plants or bacteria), while for two pre-contaminated field soils it also was improved (for plants and/or enchytraeids). Wastewater percolation did not seem to raise soil concentrations

  3. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    Science.gov (United States)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  4. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi

    2017-06-01

    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  5. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  6. Impact of winery wastewater irrigation on soil, grape nutrition, and grape and wine quality

    Science.gov (United States)

    Winery wastewater (WW) reuse has the potential to provide more sustainable vineyard irrigation. This study investigated the effects of WW irrigation on grape and wine chemical composition and sensory attributes in vineyards in Napa and Sonoma Counties. The life cycle of the grape/wine production was...

  7. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  8. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis.

    Science.gov (United States)

    König, Maria; Escher, Beate I; Neale, Peta A; Krauss, Martin; Hilscherová, Klára; Novák, Jiří; Teodorović, Ivana; Schulze, Tobias; Seidensticker, Sven; Kamal Hashmi, Muhammad Arslan; Ahlheim, Jörg; Brack, Werner

    2017-01-01

    Complex mixtures of micropollutants, including pesticides, pharmaceuticals and industrial chemicals emitted by wastewater effluents to European rivers may compromise the quality of these water resources and may pose a risk to ecosystem health and abstraction of drinking water. In the present study, an integrated analytical and bioanalytical approach was applied to investigate the impact of untreated wastewater effluents from the city of Novi Sad, Serbia, into the River Danube. The study was based on three on-site large volume solid phase extracted water samples collected upstream and downstream of the untreated wastewater discharge. Chemical screening with liquid chromatography high resolution mass spectrometry (LC-HRMS) was applied together with a battery of in vitro cell-based bioassays covering important steps of the cellular toxicity pathway to evaluate effects on the activation of metabolism (arylhydrocarbon receptor AhR, peroxisome proliferator activated receptor gamma PPARγ), specific modes of action (estrogen receptor ERα, androgen receptor AR) and adaptive stress responses (oxidative stress, inflammation). Increased effects, significantly changed contamination patterns and higher chemical concentrations were observed downstream of the wastewater discharge. A mass balance approach showed that enhanced endocrine disruption was in good agreement with concentrations of detected hormones, while only a smaller fraction of the effects on xenobiotic metabolism (<1%) and adaptive stress responses (0-12%) could be explained by the detected chemicals. The chemical and effects patterns observed upstream of the discharge point were fairly re-established at about 7 km downstream, demonstrating the enormous dilution capacity of this large river. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Wastewater treatment plant effluents change abundance and composition of ammonia-oxidizing microorganisms in mediterranean urban stream biofilms.

    Science.gov (United States)

    Merbt, Stephanie N; Auguet, Jean-Christophe; Blesa, Alba; Martí, Eugènia; Casamayor, Emilio O

    2015-01-01

    Streams affected by wastewater treatment plant (WWTP) effluents are hotspots of nitrification. We analyzed the influence of WWTP inputs on the abundance, distribution, and composition of epilithic ammonia-oxidizing (AO) assemblages in five Mediterranean urban streams by qPCR and amoA gene cloning and sequencing of both archaea (AOA) and bacteria (AOB). The effluents significantly modified stream chemical parameters, and changes in longitudinal profiles of both NH(4)(+) and NO(3)(-) indicated stimulated nitrification activity. WWTP effluents were an allocthonous source of both AOA, essentially from the Nitrosotalea cluster, and mostly of AOB, mainly Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira spp. changing the relative abundance and the natural composition of AO assemblages. Under natural conditions, Nitrososphaera and Nitrosopumilus AOA dominated AO assemblages, and AOB were barely detected. After the WWTP perturbation, epilithic AOB increased by orders of magnitude whereas AOA did not show quantitative changes but a shift in population composition to dominance of Nitrosotalea spp. The foraneous AOB successfully settled in downstream biofilms and probably carried out most of the nitrification activity. Nitrosotalea were only observed downstream and only in biofilms exposed to either darkness or low irradiance. In addition to other potential environmental limitations for AOA distribution, this result suggests in situ photosensitivity as previously reported for Nitrosotalea under laboratory conditions.

  10. Development of chemical flocculant for wastewater treatment

    International Nuclear Information System (INIS)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S.

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C ∼ -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 ∼ 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD

  11. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  12. Treatment of wastewaters from manufactured gas plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocheci, V.; Bogatu, C.; Radovan, C. [Technical University of Timisoara, Timisoara (Romania)

    1995-12-31

    The treatment of wastewaters with high concentrations of organic compounds often represents a difficult problem. In some cases, for the destruction and removal of toxic compounds using processes like biological and chemical oxidation were proposed. Wastewaters from manufactured gas plants contain high concentrations of organic pollutants and ammonia. In this paper a technology for the treatment of these wastewaters is proposed. The experiments were realized with wastewaters from two Romanian manufactured gas plants. The process consists of the following steps: polycondensation-settling-stripping-biological treatment-electrocoagulation-electrochemical oxidation, or chemical oxidation. 6 refs., 4 tabs.

  13. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium.

    Science.gov (United States)

    Magro, Clinei D; Deon, Maitê C; De Rossi, Andreia; Reinehr, Christian O; Hemkemeier, Marcelo; Colla, Luciane M

    2012-01-01

    The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.

  14. Recovery of useful chemicals from palm oil mill wastewater

    Science.gov (United States)

    Ratanaporn, Yuangsawad; Duangkamol, Na-Ranong; Teruoki, Tago; Takao, Masuda

    2017-11-01

    A two-step process consisting of pyrolysis of dried sludge and catalytic upgrading of pyrolysed liquid was proposed. Wastewater from a palm oil mill was separated to solid cake and liquid by filtration. The solid cake was dried and pyrolysed at 773 K. Liquid product obtained from the pyrolysis had two immiscible aqueous and oil phases (PL-A and PL-O). Identification of chemicals in PL-A and PL-O indicated that both phases contained various chemicals with unsaturated bonds, such as carboxylic acids and alcohols, however, most of the chemicals could not be identified. Catalytic upgrading of PL-A and PL-O over ZrO2·FeOx were separately performed using a fixed bed reactor at various conditions, T = 513-723 K and mass of catalyst to feed rate = 0.25-10 h. The main components in the liquid products of PL-A upgrading were methanol and acetone whereas they were acetone and phenol in the case of PL-O upgrading. More than 15% of carbon in raw material was deposited on the catalyst. To reduce the carbon deposition, the used catalyst was treated with air at 823 K. This simple treatment could reasonably regenerate the catalyst only for the case of PL-A catalytic upgrading.

  15. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S

    2000-12-01

    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  16. Potential of Hibiscus Sabdariffa and Jatropha Curcas as Natural Coagulants in the Treatment of Pharmaceutical Wastewater

    Directory of Open Access Journals (Sweden)

    Sibartie Sheena

    2018-01-01

    Full Text Available Pharmaceutical wastewater is one of the most difficult wastewater to treat due to the presence of pharmaceutical compounds resulting in high concentration of organic matter, high turbidity and Chemical Oxygen Demand (COD. Chemical-based coagulation is a common method used to treat wastewater. However, the issue that has been raised with the use of chemical coagulants is their presence in water after treatment that can cause risks to the human health such as Alzheimer and cancer. Natural coagulants can be used as a safe alternative to these chemicals instead. Therefore, the objective of this experiment was to study the effect of H. Sabdariffa and J. Curcas as natural coagulants, separately and as a combination, on the treatment of pharmaceutical wastewater. Jar test experiment were carried out where beakers of 0.5L wastewater were mixed with the coagulants. The pH of the wastewater was varied from 2 to 12 while the coagulant dosage was varied from 40 to 200 mg/L. It was found that H. Sabdariffa works best at pH 4 and at a coagulant dosage of 190 mg/L with a highest turbidity removal of 35.8% and a decrease of COD by 29%. J. Curcas was found to perform best at pH 3 and with a coagulant dosage of 200 mg/L with a highest turbidity removal of 51% and a decrease of COD by 32%. When J. Curcas and H. Sabdariffa were used in combination, the optimum composition was found to be 80% J. Curcas and 20% H. Sabdariffa by weight with a maximum turbidity removal of 46.8% and a decrease in COD by 46%. In comparison between the two natural coagulants, J. Curcas is found to be a better and more suited coagulative agent for the treatment of pharmaceutical wastewater. The same experiment was carried with alum at pH 6 and coagulant dosage of 750 mg/L and a turbidity removal of 48% and a decrease in COD by 38% were recorded. In comparison with alum, J. Curcas was a better coagulant in treating the pharmaceutical wastewater. This shows that natural coagulants can be

  17. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    Science.gov (United States)

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  18. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  19. Physico-chemical technologies for nitrogen removal from wastewaters: a review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2015-07-01

    Full Text Available The paper examines the main physico-chemical processes for nitrogen removal from wastewaters, considering both those that have been long known and still widely applied at the industrial scale, and those that are still at the research level. Special attention is paid to the latest technological developments, as well as to operational problems and fields of application. The processes considered are briefly summarized as follows: ammonia air and steam stripping; ammonia vacuum distillation; ammonia precipitation as struvite; ammonia and nitrate removal by selected ion exchange; breakpoint chlorination; chloramine removal by selected activated carbon; ammonia adsorption on charcoal; chemical reduction of nitrate; advanced oxidation processes to convert ammonia and organic-N into nitrogen gas or nitrate. Special attention is given to advanced oxidation processes, as great research efforts are currently addressed to their implementation. These specifically include ozonation, peroxon oxidation, catalytic wet air oxidation, photo-catalytic oxidation and electrochemical oxidation.

  20. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  1. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  2. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  3. Chemical composition and strength of dolomite geopolymer composites

    Science.gov (United States)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  4. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    Science.gov (United States)

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  5. physico-chemical evaluation of wastewater in katsina metropolis ...

    African Journals Online (AJOL)

    pc

    associated sludge and grey water kitchen and bathroom wastewater or the mixture of domestic wastewater from commercial establishments and institutions ... oil mill Ltd and Katsina steel rolling company Ltd. K/Durbi:- It is located on latitude. 59'44.10”N and. 37'00.73”E, the midpoint of the water and irrigational activities ...

  6. Rice hull/MnFe2O4 composite: Preparation, characterization and its rapid microwave-assisted COD removal for organic wastewater

    International Nuclear Information System (INIS)

    Lv Shuangshuang; Chen Xuegang; Ye Ying; Yin Suhang; Cheng Jipeng; Xia Meisheng

    2009-01-01

    Adsorbent/ferrite composites can adsorb and degrade organics in the organic wastewater treatment. In this study, a rice hull/MnFe 2 O 4 composite (RHM) was prepared via calcination under nitrogen atmosphere and was used to treat organic wastewater with the assistance of microwave radiation. Rice hull was pyrolysed to a porous substrate that consisted of silica and activated carbon under high temperature. Monodisperse spinel MnFe 2 O 4 nanoparticles whose mean diameter is around 59 nm are distributed on the substrate. With the assistance of microwave radiation, RHM was motivated to a hotspot of adsorption and catalysis which could remove more than 70% COD of wastewater within 6 min. The maximum COD removal was 73.5% when the concentration of RHM was 15 mg mL -1 and the irradiation time of microwave radiation was 6 min. Although the BET surface area and iodine value of RHM are half of rice hull ash (RHA), the COD removal of RHM is 7-20% higher than that of RHA. It is attributed to the presence of MnFe 2 O 4 , which enhances the catalytic activity of RHM. RHM can be regenerated via water washing. However, the surface area and the maximum COD removal of RHM decrease for each regeneration cycle. With the advantages of low cost and rapid processing, this novel rice hull/MnFe 2 O 4 composite could gain promising application in wastewater treating-agent.

  7. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    Science.gov (United States)

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  9. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  10. Mixing zone and drinking water intake dilution factor and wastewater generation distributions to enable probabilistic assessment of down-the-drain consumer product chemicals in the U.S.

    Science.gov (United States)

    Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu

    2015-06-15

    Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national

  11. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    Ting Teo Ming; Kim, Tak Hyun; Lee, Myun Joo

    2007-01-01

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  12. Ultraviolet disinfection of treated municipal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Vander Laan, H; Cairns, B

    1993-12-31

    A wastewater disinfection system developed by a Canadian company, Trojan Technologies Inc., was discussed. Disinfection for pathogen reduction prior to discharge of treated municipal wastewater back into rivers and lakes has been either ignored or treated by the use of chemicals. In 1979 the first pilot ultraviolet (UV) wastewater disinfection system was established. Since then, over 500 municipal UV installations have been commissioned. The largest installation can process 212 million gallons of water per day. The advantages of UV as a disinfectant are: (1) It is more effective than chlorine. (2) There are no mutagenic/carcinogenic byproducts formed with UV. (3) No toxic chemical residuals are discharged. (4) UV is safe to both the operators and the public. (5) It is cost effective. Europe has not been as active in wastewater disinfection as has North America. One result of the absence of wastewater disinfection in Europe is that the Rhine River, for example, carries 50 million salmonella per second. Disinfection of wastewater effluents is, of course, indispensable in protecting our drinking water supply. 2 figs.

  13. Condutivity effect in electro-coagulation-flotation applied to physico-chemical wastewater treatment

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cuba Terán

    2007-03-01

    Full Text Available This study reports on the effect of conductivity on the simultaneous applicability of water electrolysis , chemical coagulation and flotation fundamentals in the treatment of wastewater with large amounts of suspended matter, characterizing electro-coagulation-flotation (ECF . Results from experiments carried out in a pilot study implanted and operated in the Laboratory of Environment Control (LCA, at the State University of Campinas in Limeira are presented. ECF was developed in an electrolytic reactor where water passed through aluminum electrodes connected to a power supply. Electrochemical reactions promoted Al3+ ions emission from anode, neutralizing repulsive pollutant forces, forming flakes. An evolution of micro hydrogen bubbles occurred, carrying the flakes to the top of the solution, causing flotation and polluter removal. System monitoring aimed at reaching optimal operation conditions regarding time of liquid permanence in the reactor, influence of the NaC1 addition on the increase of affluent conductivity, and influence of polarity inversion over cathodic passivation. Results from carwash wastewater treatment reported 86% efficiency rate for color, 90,15% for turbidity and 85,43% for oil and axle-grease removal.

  14. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge

    OpenAIRE

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2013-01-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerpri...

  15. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  16. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    Science.gov (United States)

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.

  17. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    Science.gov (United States)

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Recent Advances in the Use of Chemical Markers for  Tracing Wastewater Contamination in Aquatic  Environment: A Review

    Directory of Open Access Journals (Sweden)

    Fang Yee Lim

    2017-02-01

    Full Text Available There has been increasing research focus on the detection and occurrence of wastewater contamination in aquatic environment. Wastewater treatment plants receive effluents containing various chemical pollutants. These chemicals may not be fully removed during treatment and could potentially enter the receiving water bodies. Detection of these chemical pollutants and source identification could be a challenging research task due to the diversified chemical and functional groups, concentration levels and fate and transportation mechanisms of these pollutants in the environment. Chemical markers such as pharmaceuticals and personal care products, artificial sweeteners, fluorescent whitening agents, sterols and stanols, and nitrate and nitrogen isotopics have been widely used by most research as markers. These markers served as indicators of wastewater contamination to the receiving bodies due to their frequent usage, resistance to biodegradability and, more importantly, anthropogenic origin. These markers are commonly used in combination to identify the contaminant source of different origins. This article discusses the main chemical markers that are used to identify wastewater contamination in receiving bodies, the current trends, and approach to select suitable chemical markers.

  19. Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters.

    Science.gov (United States)

    Berto, Josiani; Rochenbach, Gisele Canan; Barreiros, Marco Antonio B; Corrêa, Albertina X R; Peluso-Silva, Sandra; Radetski, Claudemir Marcos

    2009-05-01

    Hospital wastewater is considered a complex mixture populated with pathogenic microorganisms. The genetic constitution of these microorganisms can be changed through the direct and indirect effects of hospital wastewater constituents, leading to the appearance of antibiotic multi-resistant bacteria. To avoid environmental contamination hospital wastewaters must be treated. The objective of this study was to evaluate the efficiency of hospital wastewater treated by a combined process of biological degradation (septic tank) and the Fenton reaction. Thus, after septic tank biodegradation, batch Fenton reaction experiments were performed in a laboratory-scale reactor and the effectiveness of this sequential treatment was evaluated by a physico-chemical/microbiological time-course analysis of COD, BOD(5), and thermotolerant and total coliforms. The results showed that after 120min of Fenton treatment BOD(5) and COD values decreased by 90.6% and 91.0%, respectively. The BOD(5)/COD ratio changed from 0.46 to 0.48 after 120min of treatment. Bacterial removal efficiency reached 100%, while biotests carried out with Scenedesmus subspicatus and Daphnia magna showed a significant decrease in the ecotoxicity of hospital wastewater after the sequential treatment. The use of this combined system would ensure that neither multi-resistant bacteria nor ecotoxic substances are released to the environment through hospital wastewater discharge.

  20. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses.

    Science.gov (United States)

    Leusch, Frederic D L; Khan, Stuart J; Gagnon, M Monique; Quayle, Pam; Trinh, Trang; Coleman, Heather; Rawson, Christopher; Chapman, Heather F; Blair, Palenque; Nice, Helen; Reitsema, Tarren

    2014-03-01

    We investigated water quality at an advanced water reclamation plant and three conventional wastewater treatment plants using an "ecotoxicity toolbox" consisting of three complementary analyses (chemical analysis, in vitro bioanalysis and in situ biological monitoring), with a focus on endocrine disruption. The in vitro bioassays were chosen to provide an appropriately wide coverage of biological effects relevant to managed aquifer recharge and environmental discharge of treated wastewater, and included bioassays for bacterial toxicity (Microtox), genotoxicity (umuC), photosynthesis inhibition (Max-I-PAM) and endocrine effects (E-SCREEN and AR-CALUX). Chemical analysis of hormones and pesticides using LCMSMS was performed in parallel to correlate standard analytical methods with the in vitro assessment. For two plants with surface water discharge into open drains, further field work was carried out to examine in situ effects using mosquitofish (Gambusia holbrooki) as a bioindicator species for possible endocrine effects. The results show considerable cytotoxicity, phytotoxicity, estrogenicity and androgenicity in raw sewage, all of which were significantly reduced by conventional wastewater treatment. No biological response was detected to RO water, suggesting that reverse osmosis is a significant barrier to biologically active compounds. Chemical analysis and in situ monitoring revealed trends consistent with the in vitro results: chemical analysis confirmed the removal trends observed by the bioanalytical tools, and in situ sampling did not reveal any evidence of endocrine disruption specifically due to discharge of treated wastewater (although other sources may be present). Biomarkers of exposure (in vitro) and effect (in vivo or in situ) are complementary and together provide information with a high level of ecological relevance. This study illustrates the utility of combining multiple lines of evidence in the assessment of water quality. Copyright

  1. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  2. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  3. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.

    Science.gov (United States)

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-03-01

    In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    In the present work, we studied the chemical composition of the essential oil of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. The essential oils were obtained by hydrodistillation and their chemical composition was analysed using gas chromatography- mass spectrometry (GC–MS). Camphene, borneol ...

  5. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  6. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali

    2014-04-01

    Emerging trace organic chemicals (TOrCs) released into the environment via discharge of wastewater effluents have been detected in rivers and lakes worldwide, raising concerns due to their potential persistence, toxicity and bioaccumulation. This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling events. All samples were analyzed for a wide range of TOrC encompassing pharmaceuticals, personal care products and household chemicals. Treatment and capacities of the plants varied from non-nitrifying to full biological nutrient removal providing a representative cross section of different types of plants operational within the country. A comparison of TOrC occurrence in effluents in Saudi Arabia with respective effluent qualities in the United States revealed similar levels for most TOrC. Overall, the occurrence of TOrC was higher at two of the plants. The higher TOrC concentrations at WWTP 1 are likely due to the non-nitrifying biological treatment process. The unique TOrC occurrence observed in the WWTP 3 effluent was unlike any other plant and was attributed to the influence of a large number of international visitors in its sewershed. The occurrence of TOrC in this plant was not expected to be representative of the occurrence elsewhere in the country. Bimodal diurnal variation expected for a range of TOrC was not observed, though some hourly variation in TOrC loading was noted for WWTP 3. Since water reclamation and reuse have received increasing interest in Saudi Arabia within the last few years, results from this study provide a good foundation in deciding whether advanced treatment is necessary to attenuate TOrC deemed to be of concern in effluents, or if natural treatment such as managed aquifer recharge provides sufficient protection to public health. © 2014

  7. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  8. Chemical composition of stars in Ruprecht 106 .

    Science.gov (United States)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  9. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    International Nuclear Information System (INIS)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-01-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  10. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  11. Measurement of Surface Damage through Boundary Detection: An Approach to Assess Durability of Cementitious Composites under Tannery Wastewater

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Concrete structures are often subjected to aggressive aqueous environments which consist of several chemical agents that can react with concrete to produce adverse effects. A Central Effluent Treatment Plant consisting of reinforced concrete structures which is being constructed at Savar, Bangladesh, is an example of such a case. The purpose of this treatment facility is to reduce the environmental pollution created by tannery wastewater. However, tannery wastewater consists of several chemicals such as sulfates, chlorides, and ammonium, which, from the literature, are known to generate detrimental effects on concrete. Evaluation of durability of concrete structures in such environments is therefore imperative. This paper highlights a technique of boundary detection developed through image processing performed using MATLAB. Cement mortar cubes were submerged in simulated tannery wastewater and the images of the surface of cubes were taken at several time intervals. In addition, readings for compressive strength and weight were also taken on the same days. In this paper, an attempt is made to correlate the results from image processing with that of strength and weight loss. It was found, within the scope of this study, that the specimens which suffered greater strength and weight loss also underwent greater loss of surface area.

  12. Operational and biological analyses of branched water-adjustment and combined treatment of wastewater from a chemical industrial park.

    Science.gov (United States)

    Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing

    2018-01-01

    The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.

  13. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  14. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  15. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    Science.gov (United States)

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  16. Removal of phosphate from greenhouse wastewater using hydrated lime.

    Science.gov (United States)

    Dunets, C Siobhan; Zheng, Youbin

    2014-01-01

    Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.

  17. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  18. MBR technology: a promising approach for the (pre-)treatment of hospital wastewater.

    Science.gov (United States)

    Beier, S; Cramer, C; Mauer, C; Köster, S; Schröder, H Fr; Pinnekamp, J

    2012-01-01

    Membrane bioreactor (MBR) technology is a very reliable and extensively tested solution for biological wastewater treatment. Nowadays, separate treatment of highly polluted wastewater streams especially from hospitals and other health care facilities is currently under investigation worldwide. In this context, the MBR technology will play a decisive role because an effluent widely cleaned up from solids and nutrients is absolutely mandatory for a subsequent further elimination of organic trace pollutants. Taking hospital wastewater as an example, the aim of this study was to investigate to what extent MBR technology is an adequate 'pre-treatment' solution for further elimination of trace pollutants. Therefore, we investigated - within a 2-year period - the performance of a full-scale hospital wastewater treatment plant (WWTP) equipped with a MBR by referring to conventional chemical and microbiological standard parameters. Furthermore, we measured the energy consumption and tested different operating conditions. According to our findings the MBR treatment of the hospital wastewater was highly efficient in terms of the removal of solids and nutrients. Finally, we did not observe any major adverse effects on the operation and performance of the MBR system which potentially could derive from the composition of the hospital wastewater. In total, the present study proved that MBR technology is a very efficient and reliable treatment approach for the treatment of highly polluted wastewater from hospitals and can be recommended as a suitable pre-treatment solution for further trace pollutant removal.

  19. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  20. Effect of Treated Wastewater Combined with Various Amounts of Manure and Chemical Fertilizers on Nutrient Content and Yield in Corn

    Directory of Open Access Journals (Sweden)

    Abolfazal Tavassoli

    2010-09-01

    Full Text Available In order to study the effects of treated wastewater combined with manure and chemical fertilizers on the nutrients content and forage yield in corn, field experiments were conducted in 2007. The experiments were conducted in a split plot design with three replications. The treatments were comprised of two levels of irrigation water (W1= well water and W2= wastewater in the main plot and five levels of fertilizer (F1= unfertilized, F2 = 100% manure, F3= 50% manure, F4= 100% fertilizer, and F5= 50% fertilizer in the subplot. Results showed that, compared to ordinary water, irrigation with treated wastewater significantly increased fresh and dry forage yield of corn. The treatment using treated wastewater also had a significant effect on N, P, and K contents in corn forage. However, wastewater had no significant effect on plant Fe, Mn, and Zn contents. Among the fertilizer treatments, the highest fresh and dry forage yields and the highest N, P and K contents belonged to the treatments using 100% fertilizer. The highest Fe, Mn, and Zn contents were observed in plants in the treatment with 100% manure.

  1. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.

    Science.gov (United States)

    Lizarralde, I; Fernández-Arévalo, T; Brouckaert, C; Vanrolleghem, P; Ikumi, D S; Ekama, G A; Ayesa, E; Grau, P

    2015-05-01

    This paper introduces a new general methodology for incorporating physico-chemical and chemical transformations into multi-phase wastewater treatment process models in a systematic and rigorous way under a Plant-Wide modelling (PWM) framework. The methodology presented in this paper requires the selection of the relevant biochemical, chemical and physico-chemical transformations taking place and the definition of the mass transport for the co-existing phases. As an example a mathematical model has been constructed to describe a system for biological COD, nitrogen and phosphorus removal, liquid-gas transfer, precipitation processes, and chemical reactions. The capability of the model has been tested by comparing simulated and experimental results for a nutrient removal system with sludge digestion. Finally, a scenario analysis has been undertaken to show the potential of the obtained mathematical model to study phosphorus recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  3. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Mishra, Chinmayee [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Hong, Hyun Seon [Sungshin University, Dept. of Interdisciplinary ECO Science, Seoul, 142-732 (Korea, Republic of); Cho, Sung-Soo [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of)

    2016-05-15

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching

  4. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  5. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Practical application of wastewater reuse in tourist resorts.

    Science.gov (United States)

    Antakyali, D; Krampe, J; Steinmetz, H

    2008-01-01

    A medium-scale membrane bioreactor was tested in a large tourist resort on the south-western coast of Turkey with the treated wastewater subsequently being used for irrigational purposes. The wastewater treatment system was designed to eliminate carbonaceous and nitrogenous substances. Treatment efficiency was monitored by means of regular chemical and microbiological analyses. Information was collected on water use at different locations of the hotel. Specific values based on the number of guests were determined. Wastewater streams from kitchen, laundry and rooms were analysed to investigate the various contribution from these points. The social acceptance of the guests concerning the on-site wastewater treatment and reuse in the hotel was analysed using a questionnaire. The investigations indicated that the treated wastewater provides the required chemical and hygienic conditions to satisfy requirement for its reuse in irrigation. The acceptance by guests was encouraging for such applications. IWA Publishing 2008.

  7. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    Science.gov (United States)

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  8. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  9. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J

    2012-01-01

    Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures

  10. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    Science.gov (United States)

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  11. Degradation of organic pollutants and characteristics of activated sludge in an anaerobic/anoxic/oxic reactor treating chemical industrial wastewater

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-09-01

    Full Text Available A laboratory-scale anaerobic/anoxic/oxic system operated at the hydraulic retention times (HRT of 20, 40, and 60 h with mixed liquor suspended solids (MLSS concentrations of 3 g/L and 6 g/L was considered for treating chemical industrial wastewater rich in complex organic compounds and total dissolved solids. Extending the HRT and increasing the MLSS concentration resulted in higher removal efficiency for chemical oxygen demand at 72%. Organic compounds in wastewater could be classified into easily-removed and refractory compounds during treatment. The easily-removed compounds consisted primarily of ethers, alcohols, and aldehydes, whereas the refractory compounds included mainly oxygen-containing heterocyclic and benzene-containing compounds. Results from energy-dispersive X-ray spectroscopy showed that several metal ions accumulated in activated sludge, particularly Fe(III. Fe accumulated mainly on the surface of sludge floc pellets and resulted in the compactness of activated sludge, which caused the values of mixed liquor volatile suspended solids /MLSS and sludge volume index to decrease.

  12. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  13. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Science.gov (United States)

    2010-07-01

    ... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater... exothermic reaction or the contents of the tank is sparged, the owner or operator shall comply with the... barometric pressure, or (B) An engineering evaluation that the Administrator determines is an accurate method...

  14. Treatment of coffee wastewater by gamma radiation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Consuegra, R.; Rapado, M.

    1998-01-01

    Radiation energy can be an important resource in the treatment of wastewaters from different industries both directly and in combination with other processes to improve economics. The aim of this study was to evaluate the effect of an ionizing radiation on coffee wastewater in order to decompose chemical organic refractory substances which cannot be degradated by biological treatment. One of the approaches employed in the survey was the chemical treatment followed by the irradiation of the samples since no nuclear changes of the coagulant solution or wastewater samples were expected. Irradiation is a high cost treatment although it has increased its applications nowadays. The method is safe, fast and effective and it does not generate any pollution

  15. Recycling the Wastewater from Swine Farm for Soilless Culture Production

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Vasanaand, Nimnuan; Intaravichai, Pantipa; Chattay, Patchariya; Thipvisaid Na Tawan

    2006-09-01

    Swine farm wastewater was used in solution for hydroponics. The solution comprised swine farm wastewater influent and chemical nutrients. Water spinaches were selected for planting in foam containers. The sizes of the container were 50 x 42 x 16 centimeters. In this experiment, the ratios of influent and chemical nutrient solution were 3:1 and 1:1. The result shows that the growth of water spinaches from both solutions are almost the same. The weight of them is 78.3 and 77.3 grams each, respectively. Consequently, the result was expanded to the experiment in the field. The solution comprised swine farm wastewater influent and chemical nutrients at the ratio 1:1 was used for planting 6 kinds of vegetables. They were planted in the area of 7.2 x 2.0 meters. it was found that the weight of Chinese cabbage and Chinese white cabbage are highly significant difference when growing in chemical nutrient solution compared with growing in the solution of wastewater influent and chemical nutrient at the ratio 1:1. Moreover, water spinaches which planted in chemical nutrient solution gave the significant difference while 3 kinds of as lads gave no significant difference.

  16. Treatability study of pesticide-based industrial wastewater.

    Science.gov (United States)

    Shah, Kinnari; Chauhan, L I; Galgale, A D

    2012-10-01

    This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.

  17. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  18. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  19. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.

    2017-01-01

    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central

  20. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  1. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  2. Changes in chemical properties of distrophic Red Latosol as result of swine wastewater application

    Directory of Open Access Journals (Sweden)

    Juarez R. Cabral

    2014-02-01

    Full Text Available Swine wastewater (SW has characteristics that allow its disposal in the soil as a fertilizer. This is an alternative in order not to accumulate this material in the farm as well as it provides savings with mineral fertilizers. The aim of this study was to evaluate the effect of applying swine wastewater on the chemical properties of a distrophic Red Latosol for two seasons. The experiment was carried out under field conditions with treatments defined as T0 = 0 (control, T1 = 150, T2 = 300, T3 = 450, T4 = 600, T5 = 750 m3 ha-1 of SW applied during the crop cycle of elephant grass. SW application contributed to the increase of magnesium and phosphorus and the reduction of soil aluminum in the first season. As for the second season when compared to the first one, there were reductions in K, Ca, and P concentrations. Hence applications of SW did not contribute to the increase in concentration of elements in the soil.

  3. Cytogenotoxicity screening of untreated hospital wastewaters using ...

    African Journals Online (AJOL)

    Physico-chemical parameters of the wastewaters were determined in accordance with standard methods. Onions root growth inhibition test was used to assess the toxic status of the wastewaters, while cytogenotoxicity was measured by microscopic investigation of the chromosomal aberrations. Onion bulbs were exposed ...

  4. Current technologies for biological treatment of textile wastewater--a review.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  5. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Science.gov (United States)

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Addressing the role of earthworms in treating domestic wastewater by analyzing biofilm modification through chemical and spectroscopic methods.

    Science.gov (United States)

    Wang, Yin; Xing, Mei-Yan; Yang, Jian; Lu, Biao

    2016-03-01

    Vermifiltration eco-friendly system is an alternative and low-cost artificial ecosystem for decentralized wastewater treatment and excess sludge reduction. The biofilm characteristics of a vermifilter (VF) with earthworms, Eisenia fetida, for domestic wastewater treatment were studied. A conventional biofilter (BF) without earthworms served as the control. Pore number in VF biofilm was significantly more than BF biofilm, and VF biofilm showed a better level-administrative structure through scanning electron microscope. VF biofilms had lower levels of protein and polysaccharide, but phosphoric acids and humic acid showed the opposite results. Furthermore, in the presence of earthworms, VF biofilms contained higher total organic carbon (TOC) percentage composition in the condition of less volatile suspended substances (VSS) contents. Dehydrogenase activity (DHA) and adenosine triphosphate (ATP) contents along VF showed better results than BF by increment of 12.84 ∼ 16.46 %. Overall findings indicated that the earthworms' presence remarkably decreases biofilm contests but increases enzyme activity and improves the community structure of VF biofilms, which is beneficial for the wastewater disposal.

  7. Evaluation of chemical composition of defect wine distillates

    OpenAIRE

    Mihaljević Žulj, Marin; Posavec, Barbara; Škvorc, Melanija; Tupajić, Pavica

    2016-01-01

    The aim of this study was to evaluate the chemical composition of the distillate obtained from wine with off-flavour. The chemical composition of wine distillates obtained by distillation of Chardonnay wine with oxidation off-flavour was investigated. Distillation of wine was carried out using a simple distillation pot still by double distillation and separation the different portion of the first fraction. Volatile compounds of wine and wine distillates (acetaldehyde, ethyl acetate, methanol ...

  8. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...

  9. A summary of studies on mine wastewater treatment

    International Nuclear Information System (INIS)

    Ma Yao; Hu Baoqun; Sun Zhanxue

    2006-01-01

    The composition of mine wastewater is complicated and is harmful to the environment. The mine wastewater treatment methods include mainly neutralization, constructed wetland and microorganism methods. The three methods are summarized, with focus on the microorganism method. The mechanisms, characteristics and influencing factors of the sulfate reducing bacteria and the iron oxidizing bacteria are described in detail. The treatment methods of uranium mine wastewater are presented. (authors)

  10. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  11. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    irrigation for years, and studies have shown that its use does not cause health problems. Reuse of gray water means less energy consumption and less chemicals in wastewater treatment plants, which is good for the community, i.e. households will be spending significantly less money on water bills. Reuse of wastewater from industry In industry, water is used in refrigeration, industrial process and power boilers. In the  purification of industrial wastewater two approaches are generally distinguished: a pretreatment of wastewater that must be implemented to meet the criteria for its   discharge  into public sewers and a singular wastewater treatment (without interference from household waste to meet the criteria for effluent to be discharged. More and more freguently companies release their waste into urban sewage,having previously partially refined it to the level where it is mixed with wastewater from households and then finally purified in the same installation. The composition of water for steam boilers is of very great importance, because the slightest disturbance in the steam boiler can cause a disturbance in the entire industrial process. The quality of water for steam boilers depends on the type of a plant, steam pressure and the purpose for which steam is used. Water should be of such quality that it does not leave residues and deposits and it should not have a corroding effect. The purity of produced steam should correspond to the purpose of the steam in question. Water should not contain substances that could cause foaming (fats, oils and other organic substances and should be slightly alkaline (pH = 7 to 9.5. Industrial water, depending on the processes in the industry, can be purified up to a certain degree. When discharged into natural water systems, it must meet the principles underpinning the system of the limit  values of major wastewater parameters, developed by The Association for wastewater from the Federal Republic of Germany and presented in Table 6

  12. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal.

    Science.gov (United States)

    Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi

    2014-01-01

    Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.

  13. STUDY ON WASTEWATER TREATMENT SYSTEMS IN HOSPITALS OF IRAN

    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh

    2008-07-01

    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  14. Efficiency of Moringa oleifera Seeds for Treatment of Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Al-Gheethi AA

    2017-01-01

    Full Text Available Laundry wastewater has simple characteristics in which the detergents compounds are the main constitutes. But these compounds have adverse effects on the aquatic organisms in the natural water bodies which received these wastes without treatment. Few studies were conducted on these wastes because it represent a small part of the total wastewater generated from different human activities. Moreover, the coagulation process for laundry wastewater might be effective to remove of detergents compounds. Therefore, in the present study, the efficiency of coagulation process by using chemical (ferrous sulphate and natural coagulants (Moringa oleifera seeds were investigated. The raw laundry wastewater samples were collected from laundromat located at Taman Universiti, Parit Raja. The characteristics of these wastes were determined and then the wastewater was subjected for the treatment process consisted of three units including aeration, coagulation and sedimentation process. The chemical and natural coagulants were used with four dosage (30, 60, 90 and 120 mg L−1 and the coagulation process was carried out at room temperature (25±2ºC for one hour. The results revealed that the laundry wastewater have high concentrations of turbidity (57.8-68.1 NTU and Chemical Oxygen Demand (COD (423-450 mg L−1 with pH value between 7.96 and 8.37. M. oleifera seeds exhibited high efficiency for removal of turbidity (83.63% with 120 mg L−1 of dosage, while 30 mg L−1 of FeSO4 was the best for removal of COD (54.18%. However, both parameters still more than Standard B for wastewater disposal suggesting the need to increase the period of coagulation process with M. oleifera seeds or to subject of the treated effluents for a secondary coagulation process with natural coagulant products to improve the characteristics of laundry wastewater without a secondary products as that generated with the chemical coagulants.

  15. Simulation of Constructed Wetland in treating Wastewater using Fuzzy Logic Technique

    Science.gov (United States)

    Sudarsan, J. S.; Subramani, Sheekha; Rajan, Rajitha J.; Shah, Isha; Nithiyanantham, S.

    2018-04-01

    Constructed wetlands act as a natural alternative to conventional methods of wastewater treatment. CW are found effective in wastewater containing inorganic matter, organic matter, toxic compounds, metals, nitrogen, phosphorous, heavy metals, organic chemicals, and pathogens. The treatment efficiency by the adaptation of CWs in treatment process is achieved by a complex interaction between plants, microorganisms, soil matrix and substances in the wastewater. Constructed wetland treatment systems are engineered systems designed in such a manner that it could take advantages of those processes occurring in natural wetlands in treating the wastewater concerned, but in a more controlled environment. Petrochemical wastewater was the type of wastewater taken for the study. Characteristics of petrochemical wastewater mainly oil, Biological Oxygen Demand (BOD) and Chemical oxygen demand (COD) were selected for treatment in constructed wetland as they are predominant in petrochemical wastewater. The conventional methods followed in the treatment are chemical and biological treatment. In this study, a fuzzy model for water quality assessment has been developed and water quality index value was obtained. The experiment conducted and further analysis using fuzzy logic indicated that interpretation of certain imprecise data can be improved within fuzzy inference system (FIS). Based on the analysis, we could observe that Typha sp contained wetland cell showed greater efficiency in removal of parameters such as COD and BOD than Phragmites sp. wetland cell.

  16. Extraction of hydrocarbons from freshwater green microalgae (Botryococcus sp.) biomass after phycoremediation of domestic wastewater.

    Science.gov (United States)

    Gani, Paran; Sunar, Norshuhaila Mohamed; Matias-Peralta, Hazel; Mohamed, Radin Maya Saphira Radin; Latiff, Ab Aziz Abdul; Parjo, Umi Kalthsom

    2017-07-03

    This study was undertaken to analyze the efficiency of Botryococcus sp. in the phycoremediation of domestic wastewater and to determine the variety of hydrocarbons derived from microalgal oil after phycoremediation. The study showed a significant (p chemical oxygen demand, 69.1% biochemical oxygen demand, 59.9% total nitrogen, 54.5% total organic carbon, and 36.8% phosphate. The average dry weight biomass produce was 0.1 g/L of wastewater. In addition, the dry weight biomass of Botryococcus sp. was found to contain 72.5% of crude oil. The composition analysis using Gas Chromatogram - Mass Spectrometry (GC-MS) found that phthalic acid, 2-ethylhexyltridecyl ester (C 29 H 48 O 4 ), contributed the highest percentage (71.6%) of the total hydrocarbon compounds to the extracted algae oil. The result of the study suggests that Botryococcus sp. can be used for effective phycoremediation, as well as to provide a sustainable hydrocarbon source as a value-added chemical for the bio-based plastic industry.

  17. Technical note The formulation of synthetic domestic wastewater ...

    African Journals Online (AJOL)

    Technical note The formulation of synthetic domestic wastewater sludge medium to study anaerobic biological treatment of acid mine drainage in the laboratory. ... Journal Home > Vol 42, No 2 (2016) > ... Domestic wastewater sludge is however highly variable in its composition, making laboratory experimentation difficult.

  18. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  19. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    Science.gov (United States)

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  20. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options

    International Nuclear Information System (INIS)

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Thi, Ngoc Bao Dung; Zhen, Guangyin; Chandrasekhar, Kuppam; Kadier, Abudukeremu

    2017-01-01

    Highlights: • Hydrogen production from various wastewaters has been reviewed. • Physico-chemical composition of the wastewater influences the H_2 yield. • Sugar rich wastewaters could be a feasible source for dark fermentative H_2 production. - Abstract: This review focuses on the current developments and new insights in the field of dark fermentation technologies using wastewater as carbon and nutrient source. It has begun with the type of wastewaters (sugar rich, toxic and industrial) employed in the H_2 production and their production performances with pure (or) mixed microbiota as seeding source in the batch reactors. Secondly, well-documented continuous system performances and their failure reasons were examined along with the enhancement possibilities in ways of strategies. A SWOT analysis has been performed to validate the strength and weakness of the continuous systems towards its industrialization and possible scheme of the integration methods have been illustrated. Additionally, an outlook has been provided with enlightening the remedies for its success. Moreover, the practical perspectives of the continuous systems are highlighted and challenges towards scale up are mentioned. Finally, the possible integrative approaches along with continuous systems towards the bioH_2 technologies implementation are enlightened.

  1. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  2. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  3. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  4. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  5. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  6. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  7. Chemical composition of Pechora Sea crude oil

    Directory of Open Access Journals (Sweden)

    Derkach S. R.

    2017-03-01

    Full Text Available The physicochemical properties of the Pechora Sea shelf oil and its chemical composition have been studied using the methods of refractometry, titrimetry, viscometry, rheometry and standard methods for the analysis of oil and petroleum products. The fractionation of oil is held at atmospheric pressure, some fractions boiling at the temperature below and above 211 °C have been received. Chemical structural-group composition of oil and its components has been investigated using a Fourier infrared (IR spectroscopy method. The density of oil has been obtained, it is equal to 24.2 API. The chemical composition analysis shows that water content in the investigated oil sample is about 0.03 % (by weight. The oil sample contains hydrocarbons (including alkanes, naphthenes, arenes and asphaltenes with resins; their content is equal to 89 and 10 % (by weight respectively. Alkane content is about 66 %, including alkanes of normal structure – about 37 %. The solidification temperature of oil sample is equal to –43 °C. This low temperature testifies obliquely low content of solid alkanes (paraffin. Bearing in mind the content of asphaltenes with resins we can refer the investigated oil sample to resinous oils. On the other hand spectral coefficient values (aromaticity quotient and aliphaticity quotient show that oil sample belongs to naphthenic oils. According to the data of Fourier IR spectroscopy contents of naphthenes and arenes are 5.9 and 17.8 % respectively. Thus, the obtained data of chemical structural-group composition of crude oil and its fractions indicate that this oil belongs to the heavy resinous naphthenic oils. The rheological parameters obtained at the shear deformation conditions characterize the crude oil as a visco-plastic medium.

  8. Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption.

    Science.gov (United States)

    Petta, Luigi; De Gisi, Sabino; Casella, Patrizia; Farina, Roberto; Notarnicola, Michele

    2017-10-01

    A multi-stage pilot-scale treatment cycle consisting of an Upflow Anaerobic Sludge Blanket reactor (UASB) followed by an anoxic-aerobic Ultra Filtration Membrane Bio Reactor (UF-MBR) and a post treatment based on chemical precipitation with lime or adsorption on Granular Activated Carbons (GAC), was applied in order to evaluate the treatment feasibility of a real winery distillery wastewater at laboratory and bench scale. The wastewater was classified as high strength with acidic pH (3.8), and concentrations of 44,600, 254, 604 and 660 mg/l for COD tot , total nitrogen, total phosphorous and phenols, respectively. The UASB reactor was operated at Organic Loading Rates (OLR) in the range 3.0-11.5 kgCOD tot /m 3 /d achieving treatment efficiency up to 97%, with an observed methane production of 340 L of CH 4 /kgCOD. The MBR system was operated with an organic load in the range 0.070-0.185 kgCOD/kgVSS/d, achieving a removal up to 48%, 67% and 65% of the influent COD, total nitrogen and phenols, respectively. The combination of UASB and UF-MBR treatment units was not effective in phosphate and colour removal assigning to further chemical precipitation and adsorption processes, respectively, their complete removal in order to comply with legal standards for wastewater discharge. Subsequently, the optimization of the investigated treatment chain was assessed by applying a chemical precipitation step upstream and downstream the UASB reactor, and a related treatment unit cost assessment is presented in view of a further technological scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biological wastewater treatment; Tratamiento biologico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isac, L.; Lebrato, J. [Universidad de Sevilla (Spain)

    2000-07-01

    Over the last years, many physical, chemical and biological processes for wastewater treatment have been developed. Biological wastewater treatment is the most widely used because of the less economic cost of investment and management. According to the type of wastewater contaminant, biological treatment can be classified in carbon, nitrogen and phosphorus removal. In this work, biodiversity and microbial interactions of carbonaceous compounds biodegradation are described. (Author) 13 refs.

  10. Determination of the chemical composition, the physicochemical ...

    African Journals Online (AJOL)

    The chemical composition of the seed of Telfairia occidentalis (fluted pumpkin), the physicochemical properties of the seed oil and the amino acids profiles of the seed protein have been determined. In proximate composition, the crude fat content of 58.41% indicates that the plant seed is an oil seed. Its protein content of ...

  11. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  12. Applications of Natural Coagulants to Treat Wastewater − A Review

    Directory of Open Access Journals (Sweden)

    Kumar Vicky

    2017-01-01

    Full Text Available The natural water falls from the mountain is merging into the oceans. This water is preserved by humans that are consumed for agriculture, industrial, and municipal use. This water become wastewater after different usage, and finally, completes the hydrological cycle. The water becomes wastewater due to population growth, urbanization, industrialization, sewage from household, institutions, hospitals, industries and etc. Wastewater can be destructive for the public because it contains a variety of organic and inorganic substances, biological substances, toxic inorganic compounds and the presence of toxic materials. The coagulant chemicals and its associated products are resourceful but these may change the characteristics of water in terms of physical and chemical characteristics, this make matters worse in the disposal of sludge. An option of natural polymer can be used in water and wastewater in this review. The natural polymers are most efficient that provide several benefits such as; prolific, exempt from physical and chemical changes from the treated water.

  13. BIOSORBENTS – PROSPECTIVE MATERIALS FOR HEAVY METAL IONS EXTRACTION FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    О. Kovalenko

    2018-04-01

    Full Text Available The article deals with ecological safety, resource saving, economic efficienty in the technologies of wastewater purification from heavy metals ions. It is shown that modern technologies of wastewater purification from such substances need to be improved. А promising way to solve this problem is the production and wide use of carbon sorbents obtained from the waste of processing agricultural raw materials and waste generated at food enterprises. Scientific research is actively carried out in this area. This is due to the possibility of organizing the process of wastewater purification from heavy metal ions in a cheap and effective way. The development of biosorbent production is relevant for Ukraine, as the development of agriculture and food industry is of primary importance. The article presents the results of an analytical review of literary sources on various aspects of the scientific problem. In particular, possible sources of raw materials for the production of biosorbents, classical and modified technologies for their production, mechanisms of biosorption using raw materials with different chemical composition, sorption characteristics of biosorbents, and indicators of the economic efficiency of their production are considered.

  14. Fabrication of Cf/SiC composite by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2003-07-01

    This technical report reviewed the fabrication process of fiber reinforced ceramic composites, characteristics of the chemical vapor infiltration process, and applications for C f /SiC composite to develop a carbon fiber reinforced silicon carbide composite. Infiltration process was performed by the chemical vapor infiltration process using methyltrichlorosilane and hydrogen gas as a source and a diluent, respectively. Infiltration behavior, phase analysis, microstructure observation were carried out. Parameter study results of C f /SiC composite fabricated with some variables such as reaction pressure, reaction temperature, input gas ratio and preform thickness were described

  15. Future wastewater solutions: removal of pharmaceuticals in conventional wastewater treatment plants

    DEFF Research Database (Denmark)

    Jensen, Thomas

    Residues of pharmaceuticals, personal care products and industrial chemicals find their way into the environment mainly through incomplete removal in the conventional urban wastewater treatment plants (WWTPs) and appear as micro-pollutants at pg L-1 to μg L-1 concentrations. WWTPs were designed...

  16. Wastewater-based epidemiology to assess pan-European pesticide exposure

    DEFF Research Database (Denmark)

    Rousis, Nikolaos I.; Gracia-Lor, Emma; Zuccato, Ettore

    2017-01-01

    human exposure to pesticides in eight cities across Europe. 24 h-composite wastewater samples were collected from the main wastewater treatment plants and analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates and pyrethroids, by liquid chromatography...

  17. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  18. Microaerobic biodegradation of high organic load wastewater by ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... concentration in the simulated wastewater as in the RCVBN medium. Optimization of wastewater composition and treatment conditions. SW with pollutants strength of 3600 mgl-1 COD was used to incubate the phototrophic bacteria microaerobically in the light (appro- ximately 2000 lx), the COD reduction ...

  19. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes.

    Science.gov (United States)

    Faraco, V; Pezzella, C; Miele, A; Giardina, P; Sannia, G

    2009-04-01

    The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.

  20. Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005

    Science.gov (United States)

    Haack, Sheridan Kidd

    2010-01-01

    Beginning in the late 1990's, the U.S. Geological Survey began to develop analytical methods to detect, at concentrations less than 1 microgram per liter (ug/L), emerging water contaminants such as pharmaceuticals, personal-care chemicals, and a variety of other chemicals associated with various human and animal sources. During 1998-2005, the U.S. Geological Survey analyzed the following Michigan water samples: 41 samples for antibiotic compounds, 28 samples for pharmaceutical compounds, 46 unfiltered samples for wastewater compounds (dissolved and suspended compounds), and 113 filtered samples for wastewater compounds (dissolved constituents only). The purpose of this report is to summarize the status of emerging contaminants in Michigan waters based on data from several different project-specific sample-collection efforts in Michigan during an 8-year period. During the course of the 8-year sampling effort, antibiotics were determined at 20 surface-water sites and 2 groundwater sites, pharmaceuticals were determined at 11 surface-water sites, wastewater compounds in unfiltered water were determined at 31 surface-water sites, and wastewater compounds in filtered water were determined at 40 surface-water and 4 groundwater sites. Some sites were visited only once, but others were visited multiple times. A variety of quality-assurance samples also were collected. This report describes the analytical methods used, describes the variations in analytical methods and reporting levels during the 8-year period, and summarizes all data using current (2009) reporting criteria. Very few chemicals were detected at concentrations greater than current laboratory reporting levels, which currently vary from a low of 0.005 ug/L for some antibiotics to 5 ug/L for some wastewater compounds. Nevertheless, 10 of 51 chemicals in the antibiotics analysis, 9 of 14 chemicals in the pharmaceuticals analysis, 34 of 67 chemicals in the unfiltered-wastewater analysis, and 56 of 62 chemicals in

  1. Treatment of kitchen wastewater using Eichhornia crassipes

    Science.gov (United States)

    Parwin, Rijwana; Karar Paul, Kakoli

    2018-03-01

    The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.

  2. Indications of Transformation Products from Hydraulic Fracturing Additives in Shale Gas Wastewater

    Science.gov (United States)

    Elsner, Martin; Hoelzer, Kathrin; Sumner, Andrew J.; Karatum, Osman; Nelson, Robert K.; Drollette, Brian D.; O'Connor, Megan P.; D'Ambro, Emma; Getzinger, Gordon J.; Ferguson, P. Lee; Reddy, Christopher M.; Plata, Desiree L.

    2016-04-01

    Unconventional natural gas development (UNGD) generates large volumes of wastewater, whose detailed composition must be known for adequate risk assessment and treatment. In particular, there is a need to elucidate the structures of organic chemical additives, extracted geogenic compounds, and transformation products. This study investigated six Fayetteville Shale UNGD wastewater samples for their organic composition using purge-and-trap gas chromatography-mass spectrometry (P&T-GC-MS) in combination with liquid-liquid extraction with comprehensive two-dimensional gas chromatography-time of flight-mass spectrometry (GCxGC-TOF-MS). Following application of strict compound identification confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons), disclosed UNGD additives (e.g., hydrocarbons, phthalates, such as diisobutyl phthalate, and radical initiators, such as azobisisobutyronitrile), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as putative delayed acids (those that release acidic moieties only after hydrolytic cleavage, whose rate could potentially be controlled), suggesting they were deliberately introduced to react in the subsurface. Identification of halogenated methanes and acetones, in contrast, suggested they were formed as unintended by-products. Our study highlights the possibility that UNGD operations generate transformation products, knowledge of which is crucial for risk assessment and treatment strategies, and underscores the value of disclosing potential precursors that are injected into the subsurface.

  3. A gradual change between methanogenesis and sulfidogenesis during a long-term UASB treatment of sulfate-rich chemical wastewater.

    Science.gov (United States)

    Wu, Jiang; Niu, Qigui; Li, Lu; Hu, Yong; Mribet, Chaimaa; Hojo, Toshimasa; Li, Yu-You

    2018-04-25

    The competition between methane-producing archaea and sulfate-reducing bacteria is an important topic in anaerobic wastewater treatment. In this study, an Up-flow Anaerobic Sludge Blanket Reactor (UASB) was operated for 330 days to evaluate the treatment performance of sulfate-rich wastewater. The effects of competition change between methane production and sulfate reduction on the organic removal efficiency, methane production, and electrons allocation were investigated. Synthetic wastewater was composed of ethanol and acetate with a chemical oxygen demand (COD)/SO 4 2- of 1.0. As a result, the COD removal efficiency achieved in long-term treatment was higher than 90%. During the initial stage, methane production was the dominant reaction. Sulfate-reducing bacteria (SRB) could only partially oxidize ethanol to acetate, and methane-producing archaea (MPA) utilized acetate for methane production. Methane production declined gradually over the long-term operation, whereas the sulfate-reducing efficiency increased. However, UASB performed well throughout the experiment because there was no significant inhibition. After the complete reduction of the sulfate, MPA converted the remaining COD into methane. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  5. Chemical composition, antioxidant effects and antimicrobial ...

    African Journals Online (AJOL)

    Thymus vulgaris, Cinnamomum zeylanicum and Ocimum gratissimum are spices widely used as aroma enhancers and food preservatives. This work assessed the chemical composition, antioxidant and antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus, Citrobacter ...

  6. Feature soil, growth and chemical composition of grass in tifton fertilization and irrigation of aquaculture with wastewater

    OpenAIRE

    Francisca Mirlanda Vasconcelos Furtado

    2015-01-01

    This work was carried out to evaluate the effects of nitrogen fertilization in areas of irrigated pastures with biofertilizados effluents from fish farming. Four doses of nitrogen fertilizer were used for 3 cycles of Tifton-85 grass cut every 28 days and irrigated with wastewater from fish farming. After each cutting the grass was fertilized with the respective doses of fertilizer. The design was completely randomized in a factorial 2 x 4 with four replicates. Four doses of nitrogen fertilize...

  7. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    2002-01-01

    The goal of this research was to establish the applicability of the electron beam treatment process for treating wastewater intended for reuse. The objective of this study was to determine the effectiveness of gamma irradiation in the disinfection of wastewater, and the improvement of the water quality by determining the changes in organic matter as indicated by the measurement of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC). Samples of effluent, before and after chlorination, and sludge were obtained from a Riyadh Wastewater Treatment Plant. The studies were conducted using a laboratory scale 60 Co gamma source. The improvement in quality of the irradiated samples was demonstrated by the reduction in bacteria, and the reduction in the BOD, COD and TOC. Radiation of the wastewater provided adequate disinfection while at the same time increasing the water quality. This treatment could lead to additional opportunities for the reuse of this valuable resource. Limited studies, conducted on the anaerobically digested secondary biosolids, showed an improvement in bacterial content and no change in COD

  8. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  9. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  10. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  11. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  12. [Bioinorganic chemical composition of the lens and methods of its investigation].

    Science.gov (United States)

    Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G

    2018-01-01

    Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.

  13. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  14. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  15. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    International Nuclear Information System (INIS)

    Katz, Brian G.; Griffin, Dale W.; Davis, J. Hal

    2009-01-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m 3 /s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  16. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Brian G. [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)], E-mail: bkatz@usgs.gov; Griffin, Dale W.; Davis, J. Hal [U.S. Geological Survey, 2010 Levy Avenue, Tallahassee, Florida 32310 (United States)

    2009-04-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m{sup 3}/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water

  17. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    OpenAIRE

    Pietro Rubino; Maurizia Catalano; Antonio Lonigro

    2007-01-01

    In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being coll...

  18. Chemical composition and nutritional value of boiled Christmas ...

    African Journals Online (AJOL)

    A study was conducted to determine the chemical composition and the nutritive value of boiled Christmas bush (Alchornea cordifolia) for starter broiler chickens. Dried Christmas bush fruits (Capsules + seed) were boiled for 30 minutes, sundried and ground into meal. The meal was analyzed for proximate composition and ...

  19. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  20. Sequential micro and ultrafiltration of distillery wastewater

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2015-01-01

    Full Text Available Water reuse and recycling, wastewater treatment, drinking water production and environmental protection are the key challenges for the future of our planet. Membrane separation technologies for the removal of all suspended solids and a fraction of dissolved solids from wastewaters, are becoming more and more promising. Also, these processes are playing a major role in wastewater purification systems because of their high potential for recovery of water from many industrial wastewaters. The aim of this work was to evaluate the application of micro and ultrafiltration for distillery wastewater purification in order to produce water suitable for reuse in the bioethanol industry. The results of the analyses of the permeate obtained after micro and ultrafiltration showed that the content of pollutants in distillery wastewater was significantly reduced. The removal efficiency for chemical oxygen demand, dry matter and total nitrogen was 90%, 99.2% and 99.9%, respectively. Suspended solids were completely removed from the stillage.

  1. Chemical composition of black-watered rivers in the Amazons Region (Brazil)

    International Nuclear Information System (INIS)

    Horbe, Adriana M.C.; Santos, Ana G. da Silva

    2009-01-01

    Most investigations addressing Amazonian water chemistry are focused on the Solimoes, Amazonas and Negro rivers. Knowledge of the chemical composition of their smaller tributaries is restricted to some few, punctual data. The smaller rivers, that only present inputs from their catchments, are very important to understand the overall mechanisms controlling the chemistry of larger rivers of the region. With this objective the chemical composition of the principal Solimoes river black-watered tributaries in the western Brazilian Amazon during the low water period were determined. The data reveal the black water chemical composition to be highly variable and strongly influenced by the local geological environment: the Badajos basin being chemically more diluted; the Coari basin presenting higher SiO 2 contents, as well as smaller lakes having higher pH, conductivity, Ca 2+ , Mg 2+ and Sr, yet not as much as those found in the Solimoes river. The chemical composition of these waters is compatible with the low physical erosion and the region's highly leached tropical environment from which most soluble elements were quickly removed. (author)

  2. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed. © 2013 Society of Chemical Industry.

  3. Water use/reuse and wastewater management practices at selected Canadian coal fired generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.

    1984-08-01

    Recommended Codes of Practice are currently being developed by Environment Canada aimed at ensuring that the aquatic environment is not significantly impacted upon by wastewater discharges from steam electric generating stations. A study was carried out to: develop a reliable data base of the physical and chemical characteristics of water and wastewater streams at representative generating stations; study advanced water reuse/recirculation and wastewater management to evaluate their potential future use in power generating stations; and to examine and evaluate the relevant aspects of best practical technology as proposed by Environment Canada in the Recommended Codes of Practice. Studies were carried out at Dalhousie Generating Station (GS), New Brunswick, Poplar River GS, Saskatchewan, Battle River GS, Alberta, and Milner GS, Alberta. The studies included on-site flow monitoring and sampling, chemical analyses, treatability studies and engineering analyses of water and wastewater systems. Extensive chemical characterizations of the water and wastewater streams were completed. Some problems were identified with the recirculating bottom ash system at Dalhousie which was a significant wastewater producer, coal pile runoff which caused significant wastewater, and iron which was the principal discharge criteria metal. 14 refs., 41 figs., 2 tabs.

  4. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  5. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Kyaw Myint Htoo; Tun Khin; Sein Htoon

    2004-05-01

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  6. Evaluation of optimal reuse system for hydrofluoric acid wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, Chan-Hee [Department of Environmental Engineering, Chonbuk National University, 567 Bakje-daero, Deokjin-Gu, Jeonju, Jeollabuk-Do, 561-756 (Korea, Republic of); Choi, Jeongyun [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of); Chung, Jinwook, E-mail: jin-wook.chung@samsung.com [R and D Center, Samsung Engineering Co. Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, 443-823 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Coagulation and ion exchange technologies were ineffective in removing fluoride. Black-Right-Pointing-Pointer Polyamide RO was more efficacious than cellulose RO due to its high flux and rejection. Black-Right-Pointing-Pointer Spiral wound RO system was more preferential to disc tube RO system for reusing raw hydrofluoric acid wastewater. Black-Right-Pointing-Pointer Combined coagulation and RO technology can be applied to reuse raw hydrofluoric acid wastewater. - Abstract: The treatment of hydrofluoric acid (HF) wastewater has been an important environmental issue in recent years due to the extensive use of hydrofluoric acid in the chemical and electronics industries, such as semiconductor manufacturers. Coagulation/precipitation and ion exchange technologies have been used to treat HF wastewater, but these conventional methods are ineffective in removing organics, salts, and fluorides, limiting its reuse for water quality and economic feasibility. One promising alternative is reverse osmosis (RO) after lime treatment. Based on pilot-scale experiment using real HF wastewater discharged from semiconductor facility, the spiral wound module equipped with polyamide membranes has shown excellent flux and chemical cleaning cycles. Our results suggest that coagulation/precipitation and spiral wound RO constitute the optimal combination to reuse HF wastewater.

  7. Effects of radiation on wastewater from textile industries in Ghana

    International Nuclear Information System (INIS)

    Dogbe, S.A.; Emi-Reynolds, G.; Banini, G.K.

    2001-01-01

    Wastewater samples from three textile industries in Ghana were progressively irradiated in a gamma irradiator of dose rate 7.8 kGy/h. Gamma irradiation alone was done, and also in combination with hydrogen peroxide, sodium peroxide and ferrous ammonium sulphate. Preliminary work involved irradiation of model aqueous solutions of six textile dyes commonly used in Ghana. The dyes were Cibacron Yellow 6G, Cibacron Violet 2R, Basilen Blue P 5R, Basilen Brown P 2R, Solidazol Red RB, Acramin Green FB. Colour and pH of the wastewater and dye solutions were found to decrease with irradiation. Decolouration of the wastewater improved further when irradiation was carried out in combination with the chemical agents. Ferrous ammonium sulphate showed the most improved decolouration. Values of chemical oxygen demand (COD) of the wastewater were found to decrease with irradiation. (author)

  8. Toxicity of cassava wastewater effluents to African catfish: Clarias ...

    African Journals Online (AJOL)

    The relative lethal and sublethal toxicity of cassava wastewater effluents from a local food factory were investigated on Clarias gariepinus fingerlings using a renewable static bioassay. The physico-chemical characteristics of the cassava wastewater effluents showed a number of deviations from the standards of the Federal ...

  9. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  10. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  11. Chemical phosphorus removal: A clean strategy for piggery wastewater management in Brazil

    Science.gov (United States)

    The intensive production of animal protein is known to be an environmental polluting activity, especially if the wastewater produced is not managed properly. Swine production in Brazil is growing and technologies to manage all pollutants present in the wastewater effluent are needed. This work prese...

  12. Chemical treatment of wastewaters produced during separation of iodine 131; Traitement chimique des eaux residuaires provenant de la preparation d'iode-131

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-06-22

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results.

  13. The synthetic activities of TiO2-moringa oleifera seed powder in the treatment of the wastewater of the coal mining industry

    Science.gov (United States)

    Marhaini; Legiso; Trilestari

    2018-04-01

    To process the coal wastewater, the combination of chemical based technology of Advanced Oxidation Process (AOP) of a strong oxidizer using TiO2 photocatalyst and biological treatment of moringa seed powder (Moringa oleifera) is used in the composite form. AOP can be used as an alternative treatment of coal wastewater which is quite economical and environmentally friendly. The XRD results of TiO2 powder and the synthesis of TiO2 - is moringa seed powder in the form of tetragonal crystals. The degradation results of the quality of the coal wastewater using TiO2 powder reached a decrease of (TSS, Fe, Mn, Zn, Hg, Cu, Co, Cr, Al and Ni) by an average of 70% and the increase of pH value of 7 at 200 minute stirring time. The decrease of the wastewater quality using the synthesis of TiO2- moringa seed powder by using sunlight and without sunlight is detected negative (-) at 200 minute stirring time.

  14. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    Science.gov (United States)

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  15. Chemical aspects of peracetic acid based wastewater disinfection ...

    African Journals Online (AJOL)

    Peracetic acid (PAA) has been studied for wastewater disinfection applications for some 30 years and has been shown to be an effective disinfectant against many indicator microbes, including bacteria, viruses, and protozoa. One of the key advantages compared to, e.g., chlorine is the lack of harmful disinfection ...

  16. Chemical composition of wildland fire emissions

    Science.gov (United States)

    Shawn P. Urbanski; Wei Min Hao; Stephen Baker

    2009-01-01

    Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through...

  17. Indirect Determination of Chemical Composition and Fuel Characteristics of Solid Waste

    DEFF Research Database (Denmark)

    Riber, Christian; Christensen, Thomas Højlund

    Determination of chemical composition of solid waste can be performed directly or indirectly by analysis of combustion products. The indirect methodology instrumented by a full scale incinerator is the only method that can conclude on elements in trace concentrations. These elements are of great...... interest in evaluating waste management options by for example LCA modeling. A methodology description of indirect determination of chemical composition and fuel properties of waste is provided and validated by examples. Indirect analysis of different waste types shows that the chemical composition...... is significantly dependent on waste type. And the analysis concludes that the transfer of substances in the incinerator is a function of waste chemical content, incinerator technology and waste physical properties. The importance of correct representation of rare items in the waste with high concentrations...

  18. Chemical composition of lunar material.

    Science.gov (United States)

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  19. Precious Metals Recovery from Electroplating Wastewater: A Review

    Science.gov (United States)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  20. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.

    Science.gov (United States)

    Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev

    2007-04-02

    Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.

  1. Bio-composite Nonwoven Media Based on Chitosan and Empty Fruit Bunches for Wastewater Application

    International Nuclear Information System (INIS)

    Sadikin, Aziatul Niza; Nawawi, Mohd Ghazali Mohd; Othman, Norasikin

    2011-01-01

    Fibrous filter media in the form of non-woven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Lignocellulosic such as empty fruit bunches have potential to be used as a low cost filter media as they represent unused resources, widely available and are environmentally friendly. Laboratory filtration tests were performed to investigate the potential application of empty fruit bunches that enriched with chitosan as a fiber filter media to remove suspended solids, oil and grease, and organics in terms of chemical oxygen demand from palm oil mill effluent. The present paper studies the effect of chitosan concentration on the filter media performance. Bench-scaled experiment results indicated that pre-treatment using the fiber filtration system removed up to 67.3% of total suspended solid, 65.1% of oil and grease and 46.1% of chemical oxygen demand. The results show that the lignocellulosic fiber filter could be a potential technology for primary wastewater treatment.

  2. Car wash wastewater treatment and water reuse - a case study.

    Science.gov (United States)

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  3. Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater

    International Nuclear Information System (INIS)

    Kokko, M.; Bayerköhler, F.; Erben, J.; Zengerle, R.; Kurz, Ph.; Kerzenmacher, S.

    2017-01-01

    Highlights: • MoS_x is an efficient and durable catalyst for H_2 evolution in acidic wastewater. • MoS_x outperformed Pt as H_2-catalyst in long term in acidic wastewater. • Improved activity over time was likely due to changes in MoS_x structure. - Abstract: Microbial electrolysis cells (MECs) are an attractive future alternative technology to generate renewable hydrogen and simultaneously treat wastewaters. The thermodynamics of hydrogen evolution in MECs can be greatly improved by operating the cathode at acidic pH in combination with a neutral pH microbial anode. This can easily be achieved with acidic industrial wastewaters that have to be neutralised before discharge. For the hydrogen evolution reaction (HER) in acidic wastewater, efficient and inexpensive catalysts are required that are compatible with the often complex chemical composition of wastewaters. In this study, molybdenum sulphides (MoS_x) on different carbon supports were successfully used for hydrogen evolution in different acidic media. At first, the cathodes were screened by linear sweep voltammetry in sulphuric acid (pH 0) or phosphate buffer (pH 2.2). After this, the overpotentials for H_2 production of the best cathodes and their long term performances (⩾1 week) were determined in acidic industrial wastewater (pH 2.4) obtained from a plant mainly producing cellulose acetate. For the most promising MoS_x cathodes, the overpotentials for HER (at 3 mA cm"−"2) were only ∼40 mV higher than for a platinum electrode. Most importantly, the catalytic efficiency of the MoS_x electrodes improved in the wastewater over time (7–17 days), while Pt electrodes were found to be slowly deactivated. Thus, MoS_x emerges as an affordable, efficient and especially durable electrocatalyst for HER in real acidic wastewaters and this could be an important contribution to take energy production from wastewaters in the form of hydrogen towards practical applications.

  4. Treatment of radioactive wastewaters by chemical precipitation and ion exchange

    International Nuclear Information System (INIS)

    Robinson, S.M.; Begovich, J.M.; Brown, C.H. Jr.; Campbell, D.O.; Collins, E.D.

    1987-01-01

    Precipitation and ion exchange methods are being developed at Oak Ridge National Laboratory to decontaminate wastewaters containing small amounts of 90 Sr and 137 Cs while minimizing waste generation. Distribution coefficients have been determined for strontium and cesium as functions of Ca, Na, and Mg concentrations from bench- and pilot-scale data for ion exchange resins and zeolites using actual wastewaters. Models have been used to estimate the total amount of waste that would be generated at full-scale operation. Based on these data, four process flowsheets are being tested at full-scale. 14 refs., 8 figs., 7 tabs

  5. Produced water - composition and analysis

    International Nuclear Information System (INIS)

    Kvernheim, Arne Lund

    1998-01-01

    Produced water can be defined as ''High volume waste-water separated from oil and gas that is produced from subsurface formations''. The water contains aliphatic and aromatic hydrocarbons, particulate matter and soluble salts as well as elements originating from formations and from sea water injections. Residues of chemicals may also be present. The accepted North Sea discharge limit is 40 ppm. In this presentation the focus will be on the chemical composition of produced water and on the challenges involved in developing and implementing analytical methods. The focus will also be on the development of a new oil-in-water analytical method as a replacement for the Freon method. 7 refs., 1 tab

  6. Monitoring MDMA metabolites in urban wastewater as novel biomarkers of consumption.

    Science.gov (United States)

    González-Mariño, Iria; Zuccato, Ettore; Santos, Miquel M; Castiglioni, Sara

    2017-05-15

    Consumption of 3,4-methylendioxymethamphetamine (MDMA) has been always estimated by measuring the parent substance through chemical analysis of wastewater. However, this may result in an overestimation of the use if the substance is directly disposed in sinks or toilets. Using specific urinary metabolites may overcome this limitation. This study investigated for the first time the suitability of a panel of MDMA metabolites as biomarkers of consumption, considering the specific criteria recently proposed, i.e. being detectable and stable in wastewater, being excreted in a known percentage in urine, and having human excretion as the sole source. A new analytical method was developed and validated for the extraction and analysis of MDMA and three of its main metabolites in wastewater. 24-h composite raw wastewater samples from three European cities were analysed and MDMA use was back-calculated. Results from single MDMA loads, 4-hydroxy-3-methoxymethamphetamine (HMMA) loads and from the sum of MDMA, HMMA and 4-hydroxy-3-methoxyamphetamine (HMA) loads were in line with the well-known recreational use of this drug: consumption was higher during the weekend in all cities. HMMA and HMA turned out to be suitable biomarkers of consumption; however, concentrations measured in wastewater did not resemble the expected pharmacokinetic profiles, quite likely due to the very limited information available on excretion profiles. Different options were tested to back-calculate MDMA use, including the sum of MDMA and its metabolites, to balance the biases associated with each single substance. Nevertheless, additional pharmacokinetic studies are urgently needed in order to get more accurate excretion rates and, therefore, improve the estimates of MDMA use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  8. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  9. Case studies on the physical-chemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry.

    Science.gov (United States)

    Ghimpusan, Marieta; Nechifor, Gheorghe; Nechifor, Aurelia-Cristina; Dima, Stefan-Ovidiu; Passeri, Piero

    2017-12-01

    The paper presents a set of three interconnected case studies on the depuration of food processing wastewaters by using aeration & ozonation and two types of hollow-fiber membrane bioreactor (MBR) approaches. A secondary and more extensive objective derived from the first one is to draw a clearer, broader frame on the variation of physical-chemical parameters during the purification of wastewaters from food industry through different operating modes with the aim of improving the management of water purification process. Chemical oxygen demand (COD), pH, mixed liquor suspended solids (MLSS), total nitrogen, specific nitrogen (NH 4 + , NO 2 - , NO 3 - ) total phosphorous, and total surfactants were the measured parameters, and their influence was discussed in order to establish the best operating mode to achieve the purification performances. The integrated air-ozone aeration process applied in the second operating mode lead to a COD decrease by up to 90%, compared to only 75% obtained in a conventional biological activated sludge process. The combined purification process of MBR and ozonation produced an additional COD decrease of 10-15%, and made the Total Surfactants values to comply to the specific legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    International Nuclear Information System (INIS)

    Sun, Mok Young; Jin-Oh, Jo; Heon-Ju, Lee

    2008-01-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  11. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  12. The effect of temperature on the efficiency of industrial wastewater nitrification and its (genotoxicity

    Directory of Open Access Journals (Sweden)

    Gnida Anna

    2016-03-01

    Full Text Available The paper deals with the problem of the determination of the effects of temperature on the efficiency of the nitrification process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrification efficiency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the influent to the industrial mechanical-biological wastewater treatment plant (WWTP. The WWTP guaranteed high removal efficiency of organic compounds defined as chemical oxygen demand (COD but periodical failure of nitrification performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrification process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years’ period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrification efficiency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrification, in winter period the sludge age (SRT in the WWTP should be higher than 35 days.

  13. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)

    drinie

    1998). Research is directed on quantifying the C, N and P fractions in the secondary ... and prefermented wastewater, applicable for a basic in-line APT and other prefermenter ... representative composite samples, and from these samples the ... Constituents in true solution (dissolved) (particle size < 1 nm);. • not visible by ...

  14. Agricultural use of treated municipal wastewaters preserving environmental sustainability

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2007-07-01

    Full Text Available In this paper the utility of the treated municipal wastewaters in agriculture, analyzing the chemical, physical and microbiological characteristics and their pollution indicators evaluation are being illustrated. Some methods employed for treating wastewaters are examined, as well as instructions and rules actually in force in different countries of the world, for evaluating the legislative hygienic and sanitary and agronomic problems connected with the treated wastewaters use, are being collected and compared. Successively, in order to provide useful indications for the use of treated municipal wastewaters, results of long-term field researches, carried out in Puglia, regarding two types of waters (treated municipal wastewater and conventional water and two irrigation methods (drip and capillary sub-irrigation on vegetable crops grown in succession, are being reported. For each crop cycle, chemical physical and microbiological analyses have been performed on irrigation water, soil and crop samples. The results evidenced that although irrigating with waters having high colimetric values, higher than those indicated by law and with two different irrigation methods, never soil and marketable yield pollutions have been observed. Moreover, the probability to take infection and/or disease for ingestion of fruits coming from crops irrigated with treated wastewaters, calculated by Beta-Poisson method, resulted negligible and equal to 1 person for 100 millions of exposed people. Concentrations of heavy metals in soil and crops were lesser than those admissible by law. The free chlorine, coming from disinfection, found in the wastewaters used for watering, in some cases caused toxicity effects, which determined significant yield decreases. Therefore, municipal wastewaters, if well treated, can be used for irrigation representing a valid alternative to the conventional ones.

  15. Hydrous manganese oxide-polyacrylonitrile (HMO-PAN) composite for the treatment of radioactive laundry wastewater

    International Nuclear Information System (INIS)

    Sanghwa Oh; Won Sik Shin; Sang-June Choi

    2015-01-01

    Hydrous manganese oxide-polyacrylonitrile (HMO-PAN) composite was applied for the removal of Co 2+ , Sr 2+ and Cs + from radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto HMO-PAN were investigated. The maximum sorption capacity was in the order of Co 2+ (0.573) > Cs + (0.551) > Sr 2+ (0.310 mmol g -1 ). Sorption of the metals occurred via physical adsorption due to weak van der Waals force and ion exchange with Mn 2+ in HMO-PAN. Sorption behaviors were not related to the types of the surfactants. Among the tested surfactants, SDBS and SOBS remarkably increased the distribution coefficient of Co 2+ and Sr 2+ , respectively. (author)

  16. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.

    Science.gov (United States)

    Ishii, Stephanie K L; Boyer, Treavor H

    2015-08-01

    Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery

  17. Estimating the Energy Content of Wastewater Using Combustion Calorimetry and Different Drying Processes

    Energy Technology Data Exchange (ETDEWEB)

    Korth, Benjamin; Maskow, Thomas; Günther, Susanne; Harnisch, Falk, E-mail: falk.harnisch@ufz.de [Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig (Germany)

    2017-09-19

    The energy content of wastewater is routinely assessed by chemical oxygen demand (COD) measurements that only provide an incomplete picture and the data fundament of other energy parameters remains scarce. The volumetric heat of combustion (Δ{sub C}H) of raw wastewater from a municipal wastewater treatment plant (WWTP) was assessed using oven drying method (Δ{sub C}H{sub vol} = −6.8 ± 4.3 kJ L{sup −1}, n = 20) and freeze drying method (Δ{sub C}H{sub vol} = −20.2 ± 9.7 kJ L{sup −1}, n = 6) illustrating the substantial loss during the oven drying approach. Normalizing Δ{sub C}H to COD of raw wastewater yielded −6.2 ± 3.5 kJ gCOD{sup −1} for oven-dried samples (n = 14) and −13.0 ± 1.6 kJ gCOD{sup −1} for freeze-dried samples (n = 3). A subsequent correlation analysis with further chemical wastewater parameters revealed a dependency of Δ{sub C}H{sub vol} on COD, total organic carbon (TOC), C:N ratio, and total sulfur content. To verify these correlations, wastewater of a second WWTP was sampled and analyzed. Only COD and TOC were in accordance with the data set from the first WWTP representing potential predictors for the chemical energy stored in wastewater for comparable WWTPs. Unfortunately, during the most practical method (oven drying), a certain loss of volatile compounds is inevitable so that the derived Δ{sub C}H{sub vol} systematically underestimates the total energetic potential of wastewater. Nevertheless, this work expands the, so far, little data fundament on the energy resource wastewater and implies the requirement for further long-term studies on different sites and different wastewater types with a highly standardized sample treatment protocol.

  18. Simultaneous removal and evaluation of organic substrates and NH3-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater

    International Nuclear Information System (INIS)

    Chen, Zhaobo; Wang, Hongcheng; Ren, Nanqi; Cui, Minhua; Nie, Shukai; Hu, Dongxue

    2011-01-01

    Highlights: ► We research a novel combined process to treat chemical synthesis-based pharmaceutical wastewater. ► The mechanism of amoxicillin verifies that the biodegradation, adsorption, hydrolysis and unknown mechanism were able to remove amoxicillin from wastewater. ► In this study demonstrates that biodegradation is the major factor for removal mechanism at work for amoxicillin. ► Mathematical statistic methods were employed to evaluate the performance of the WWTP. - Abstract: A full-scale novel combined anaerobic/micro-aerobic and two-stage aerobic biological process is used for the treatment of an actual chemical synthesis-based pharmaceutical wastewater containing amoxicillin. The anaerobic system is an up-flow anaerobic sludge blanket (UASB), the micro-aerobic system is a novel micro-aerobic hydrolysis acidification reactor (NHAR) and the two-stage aerobic process comprised cyclic activated sludge system (CASS) and biological contact oxidation tank (BCOT). The influent wastewater was high in COD, NH 3 -N varying daily 4016–13,093 mg-COD L −1 and 156.4–650.2 mg-NH 3 -N L −1 , amoxicillin varying weekly between 69.1 and 105.4 mg-amoxicillin L −1 , respectively; Almost all the COD, NH 3 -N, amoxicillin were removed by the biological combined system, with removal percentages 97%, 93.4% and 97.2%, respectively, leaving around 104 mg-COD L −1 , 9.4 mg-NH 3 -N L −1 and 2.6 ± 0.8 mg-amoxicillin L −1 in the final clarifier effluent. The performance evaluation of the wastewater treatment plant (WWTP) by mathematical statistic methods shown that at most of time effluent can meet the higher treatment discharge standard. In addition, the fate of amoxicillin in the full-scale WWTP and the amoxicillin removal rate of each different removal routes in UASB, NHAR, CASS, BCOT and final clarifier processes are investigated in this paper. The results show that biodegradation, adsorption and hydrolysis are the major mechanisms for amoxicillin removal.

  19. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review

    Science.gov (United States)

    Hossain, Kaizar; Maruthi, Y. Avasn; Das, N. Lakshmana; Rawat, K. P.; Sarma, K. S. S.

    2018-03-01

    Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.

  20. Total organic carbon removal from a chemical lab’s wastewater using Fenton’s reagent

    Directory of Open Access Journals (Sweden)

    Oscar Mauricio Martínez Ávila

    2013-05-01

    Full Text Available Treating industrial wastewater represents a serious problem nowadays; it requires a strong understanding of the particular systems and (in most of cases ad hoc solutions. This work describes the use of Fenton’s reagent (reaction between H2O2 and Fe(II for removing total organic carbon (TOC from a particular chemical laboratory’s lab-scale batch reactor wastewater. Some operating variables (hydrogen peroxide and ferrous ion concentration, temperature and pH were evaluated regarding final TOC removal. An economic optimisation was made by means of a second order polynomial model representing these variables’ behaviour regarding TOC removal (0.94 R2. The highest experimentally reached TOC removal was 88.8% at 50 mg/L [Fe(II]0, 50 mM [H2O2]0 , pH=2.8 at 80oC, while 53.9% was obtained in optimised conditions, i.e. 36 mg/L [Fe(II]0 , 45.5 mM [H2O2]0 , pH=2.6 at 20°C. It was found that the Fenton process could achieve 41% removal, even in adverse conditions (pH close to 6. It was noted from the analysis that both H2O2 concentration and temperature had a powerful effect on organic matter degradation efficiency, as well as on total treatment cost.

  1. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  2. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    Science.gov (United States)

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-05-01

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  3. Chemical composition of water extracts from shungite and shungite water

    International Nuclear Information System (INIS)

    Charykova, M.V.; Bornyakova, I.I.; Polekhovskij, Yu.S.; Charykov, N.A.; Kustova, E.V.; Arapov, O.V.

    2006-01-01

    Chemical analysis of water extracts from shungite-3 of Zagozhino deposit (Karelia) and natural water contacting with shungite rocks are done. Chemical composition and bactericide properties of shungite water are studied [ru

  4. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery.

    Science.gov (United States)

    Ansari, Ashley J; Hai, Faisal I; Price, William E; Ngo, Huu H; Guo, Wenshan; Nghiem, Long D

    2018-07-01

    This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. The sustainable utilization of malting industry wastewater biological treatment sludge

    Science.gov (United States)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  6. Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review.

    Science.gov (United States)

    Nharingo, Tichaona; Moyo, Mambo

    2016-01-15

    Heavy metal ion, pesticide and dye wastewaters cause severe ecological contamination with conventional treatment methods proving inadequate, unsuccessful or expensive to apply. Several biomaterials have recently been explored for the biosorption and biocoagulation-flocculation of pollutants from wastewaters. In the past 10 years, there has been an extensive research output on the use of biological materials such as agricultural wastes, chitosan, Moringa Oleifera, Eichhornia crassipes, bacteria, algae, Cactus plants etc. in environmental remediation. The present paper reviews the scattered information about the green technology involving Opuntia ficus-indica derived biomaterials in wastewater decontamination. Its characterization, physicochemical compositions, its application in biosorption and flocculation of dyes, pesticides and metallic species focussing on equilibrium, kinetics and thermodynamic properties are reviewed. The main results obtained in the depollution of a variety of contaminated wastewaters using cladodes, fruit pulp and peels mucilage and electrolytes show very high and promising pollutant maximum sorption capacities and removal percentages in the range -125.4-1000 mg/g and 0.31-2251.56 mg/g for the biosorption of dyes and metallic species respectively and removal % ranges of 50-98.7%, 11-93.62% and 17-100% for turbidity, chemical oxygen demand and heavy metals respectively by coagulation-flocculation process. The biomaterials proved to be efficient in pollutant removal that there is need to explore the scaling up of the study from the laboratory scale to community pilot plants and eventually to industrial levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemical composition analysis of simulated waste glass T10-G-16A

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  8. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: implications for biological wastewater treatment and land application.

    Science.gov (United States)

    Welz, P J; Holtman, G; Haldenwang, R; le Roes-Hill, M

    2016-11-01

    Wineries generate 0.2 to 4 L of wastewater per litre of wine produced. Many cellars make use of irrigation as a means of disposal, either directly or after storage. In order to consider the potential downstream impacts of storage/no storage, this study critically compared the seasonal organic and inorganic composition of fresh winery effluent with effluent that had been stored in waste stabilisation ponds. Ethanol and short chain volatile fatty acids were the main contributors to chemical oxygen demand (COD), with average concentrations of 2,086 and 882 mgCOD/L, respectively. Total phenolics were typically present in concentrations winery effluent should be stored in ponds prior to treatment.

  9. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia

    KAUST Repository

    Alidina, Mazahirali; Hoppe-Jones, Christiane; Yoon, Min; Hamadeh, Ahmed F.; Li, Dong; Drewes, Jorg

    2014-01-01

    . This study provides the first reconnaissance of TOrC occurrence in wastewater effluents within Saudi Arabia. Four wastewater treatment plants (WWTPs 1-4) located in Western Saudi Arabia were sampled hourly over twelve-hour periods, for a total of six sampling

  10. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  11. Pectin from Citrus Canning Wastewater as Potential Fat Replacer in Ice Cream

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2018-04-01

    Full Text Available Pectin had been recovered from canning wastewater produced by chemical treatment of segment membrane during preparation of canned citrus in our previous research. The purpose of this study was to characterize the extracted pectin from canning wastewater, and to evaluate its application as a fat alternative to replace fat in ice cream. The monosaccharide composition and rheological properties of the pectin were determined. The influences of fat reduction and pectin addition on the physicochemical, rheological and sensory properties of low-fat ice cream were determined. The rheological results showed that pectin solutions were typical pseudoplastic fluids. The addition of pectin in ice cream can cause an increase in viscosity, overrun, and hardness, and a decrease in meltdown of the ice cream. When 0.72% pectin (w/w is incorporated into ice cream, a prototype product of ice cream with 45% lower fat content compared to the control was made. Results indicated that their qualities such as appearance, flavor, and taste were not significantly different. The low-fat ice cream had higher smoothness scores and lower mouth-coating scores. Hence, pectin extracted from citrus canning wastewater can be potentially used as fat replacer in ice cream, which benefits both the environment and the food industry.

  12. Pectin from Citrus Canning Wastewater as Potential Fat Replacer in Ice Cream.

    Science.gov (United States)

    Zhang, Hua; Chen, Jianle; Li, Junhui; Wei, Chaoyang; Ye, Xingqian; Shi, John; Chen, Shiguo

    2018-04-17

    Pectin had been recovered from canning wastewater produced by chemical treatment of segment membrane during preparation of canned citrus in our previous research. The purpose of this study was to characterize the extracted pectin from canning wastewater, and to evaluate its application as a fat alternative to replace fat in ice cream. The monosaccharide composition and rheological properties of the pectin were determined. The influences of fat reduction and pectin addition on the physicochemical, rheological and sensory properties of low-fat ice cream were determined. The rheological results showed that pectin solutions were typical pseudoplastic fluids. The addition of pectin in ice cream can cause an increase in viscosity, overrun, and hardness, and a decrease in meltdown of the ice cream. When 0.72% pectin ( w / w ) is incorporated into ice cream, a prototype product of ice cream with 45% lower fat content compared to the control was made. Results indicated that their qualities such as appearance, flavor, and taste were not significantly different. The low-fat ice cream had higher smoothness scores and lower mouth-coating scores. Hence, pectin extracted from citrus canning wastewater can be potentially used as fat replacer in ice cream, which benefits both the environment and the food industry.

  13. Chemical composition of essential oil of Psidium cattleianum var ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the essential oil composition of Psidium cattleianum var. lucidum from South Africa. The essential oils were extracted by hydrodistillation and the components were identified by gas chromatography coupled to mass spectrometry (GC-MS) to determine the chemical composition of the ...

  14. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  15. Composites Based on Polytetrafluoroethylene and Detonation Nanodiamonds: Filler-Matrix Chemical Interaction and Its Effect on a Composite's Properties

    Science.gov (United States)

    Koshcheev, A. P.; Perov, A. A.; Gorokhov, P. V.; Zaripov, N. V.; Tereshenkov, A. V.; Khatipov, S. A.

    2018-06-01

    Specific properties of PTFE composites filled with ultradisperse detonation diamonds (UDDs) with different surface chemistries are studied. It is found for the first time that filler in the form of UDDs affects not only the rate of PTFE thermal decomposition in vacuum pyrolysis, but also the chemical composition of the products of degradation. The wear resistance of UDD/PTFE composites is shown to depend strongly on the UDD surface chemistry. The presence of UDDs in a PTFE composite is found to result in perfluorocarbon telomeres, released as a readily condensable fraction upon composite pyrolysis. The chemical interaction between PTFE and UDDs, characterized by an increase in the rate of gas evolution and a change in the desorbed gas's composition, is found to occur at temperature as low as 380°C. It is shown that the intensity of this interaction depends on the concentration of oxygen-containing surface groups, the efficiency of UDDs in terms of the composite's wear resistance being reduced due to the presence of these groups. Based on the experimental data, a conclusion is reached about the chemical interaction between UDDs and a PTFE matrix, its dependence on the nanodiamond surface chemistry, and its effect on a composite's tribology.

  16. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.

    Science.gov (United States)

    Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-03-15

    A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  18. A multicomponent ion-exchange equilibrium model for chabazite columns treating ORNL wastewaters

    International Nuclear Information System (INIS)

    Perona, J.J.

    1993-06-01

    Planned near-term and long-term upgrades of the Oak Ridge National Laboratory (ORNL) Process Waste Treatment Plant (PWTP) will use chabazite columns to remove 90 Sr and 137 Cs from process wastewater. A valid equilibrium model is required for the design of these columns and for evaluating their performance when influent wastewater composition changes. The cations exchanged, in addition to strontium and cesium, are calcium, magnesium, and sodium. A model was developed using the Wilson equation for the calculation of the solid-phase activity coefficients. The model was tested against chabazite column runs on two different wastewaters and found to be valid. A sensitivity analysis was carried out for the projected wastewater compositions, in which the model was used to predict changes in relative separation factors for strontium and cesium subject to changes in calcium, magnesium, and sodium concentrations

  19. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS ...

    African Journals Online (AJOL)

    CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS. MELLIFERA BEE POLLEN FROM NORTHWEST ALGERIA. A. Rebiai* and T.Lanez. University of El Oued, VTRS Laboratory, P.O. Box 789, 39000, El Oued, Algeria. Received: 08 November 2012 / Accepted: 23 December 2012 / Published online: 31 ...

  20. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    The physical characteristics (thousand seed and hectolitre mass), chemical composition (dry matter, ash, crude protein (CP), ether extract, acid detergent fibre, neutral detergent fibre and mineral content), energy values (nitrogen corrected true metabolisable energy content (TMEn for roosters)) as well as the lysine and ...

  1. An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management.

    Science.gov (United States)

    Chittick, Emily A; Srebotnjak, Tanja

    2017-12-15

    As high-volume hydraulic fracturing (HF) has grown substantially in the United States over the past decade, so has the volume of produced water (PW), i.e., briny water brought to the surface as a byproduct of oil and gas production. According to a recent study (Groundwater Protection Council, 2015), more than 21 billion barrels of PW were generated in 2012. In addition to being high in TDS, PW may contain hydrocarbons, PAH, alkylphenols, naturally occurring radioactive material (NORM), metals, and other organic and inorganic substances. PW from hydraulically fractured wells includes flowback water, i.e., injection fluids containing chemicals and additives used in the fracturing process such as friction reducers, scale inhibitors, and biocides - many of which are known to cause serious health effects. It is hence important to gain a better understanding of the chemical composition of PW and how it is managed. This case study of PW from hydraulically fractured wells in California provides a first aggregate chemical analysis since data collection began in accordance with California's 2013 oil and gas well stimulation law (SB4, Pavley). The results of analyzing one-time wastewater analyses of 630 wells hydraulically stimulated between April 1, 2014 and June 30, 2015 show that 95% of wells contained measurable and in some cases elevated concentrations of BTEX and PAH compounds. PW from nearly 500 wells contained lead, uranium, and/or other metals. The majority of hazardous chemicals known to be used in HF operations, including formaldehyde and acetone, are not reported in the published reports. The prevalent methods for dealing with PW in California - underground injection and open evaporation ponds - are inadequate for this waste stream due to risks from induced seismicity, well integrity failure, well upsets, accidents and spills. Beneficial reuse of PW, such as for crop irrigation, is as of yet insufficiently safety tested for consumers and agricultural workers as

  2. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    Science.gov (United States)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  3. Chemical composition of cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, M. R.

    1979-01-01

    Cigarette smoke is a concentrated aerosol of liquid particles suspended in an atmosphere consisting mainly of nitrogen, oxygen, and carbon dioxide. While the precise chemical composition of the particulate and gaseous phases is dependent on the characteristics of the cigarette and the manner in which it is smoked, both phases contain tens of hundreds of individual constitutents. Notable among potentially hazardous constituents of smoke are tar, nicotine, carbon monoxide, nitric oxide, hydrogen cyanide, acrolein, benzo(a)pyrene, and N-nitrosamines.

  4. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  5. Toxicological assessment and management options for boat pressure-washing wastewater.

    Science.gov (United States)

    Gerić, Marko; Gajski, Goran; Oreščanin, Višnja; Kollar, Robert; Franekić, Jasna; Garaj-Vrhovac, Vera

    2015-04-01

    Boats are washed periodically for maintenance in order to remove biofoulants from hulls, which results in the generation of wastewater. This study aimed at evaluating the cyto/genotoxic and mutagenic properties of wastewater produced by pressure washing of boats. The chemical characterisation of this wastewater showed that Cu, Zn, V, Cr, Fe, Pb, and select organic contaminants exceeded the maximum allowable values from 1.7 up to 96 times. The wastewater produced negative effects on human lymphocytes resulting in decreased cell viability after 4 and 24h of exposure. Chromosome aberration, micronucleus, and comet assay parameters were significantly higher after 24h of exposure. At the same time, the Salmonella typhimurium test showed negative for both TA98 and TA100 strains at all of the concentrations tested. After the treatment of wastewater using electrochemical methods/ozonation during real scale treatment plant, removal rates of colour, turbidity and heavy metals ranged from 99.4% to 99.9%, while the removal of total organic carbon (TOC) and chemical oxygen demand (COD) was above 85%. This was reflected in the removal of the wastewater's cyto/genotoxicity, which was comparable to negative controls in all of the conducted tests, suggesting that such plants could be implemented in marinas to minimise human impact on marine systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite.

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    Full Text Available Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25 and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria.

  7. Modelling Illicit Drug Fate in Sewers for Wastewater-Based Epidemiology

    DEFF Research Database (Denmark)

    Ramin, Pedram

    was found during festival period as compared to normal weekdays. Wastewater-based epidemiology is a truly interdisciplinary approach in which engineering tools, including models developed and tested in this thesis, can be beneficial for the accurate estimation of drug consumption in urban areas........ Sewer systems can be considered as biological reactors, in which the concentration of organic chemicals present in wastewater can be impacted by in-sewer processes during hydraulic residence time. Illicit drug biomarkers, as trace organic chemicals in the range of nanograms to micrograms per liter...... on sorption and transformation of drug biomarkers in raw wastewater and sewer biofilms; and (ii) developing modelling tools – by combining and extending existing modelling frameworks – to predict such processes. To achieve this goal, a substantial part of this thesis was dedicated to the experimental...

  8. Variation in the chemical composition, physical characteristics and ...

    African Journals Online (AJOL)

    Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. TS Brand, CW Cruywagen, DA Brandt, M Viljoen, WW Burger ...

  9. Relationship between bacterial density and chemical composition of ...

    African Journals Online (AJOL)

    TUOYO

    Key words: Bacterial density, chemical composition, oxidation pond, sewage, tropics. INTRODUCTION ... pond for about two weeks during which algae, bacteria and other organisms act ..... Chloride can serve as nutrient for micro- organisms ...

  10. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  11. Simultaneous removal and evaluation of organic substrates and NH{sub 3}-N by a novel combined process in treating chemical synthesis-based pharmaceutical wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaobo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Hongcheng [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Cui, Minhua; Nie, Shukai; Hu, Dongxue [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We research a novel combined process to treat chemical synthesis-based pharmaceutical wastewater. Black-Right-Pointing-Pointer The mechanism of amoxicillin verifies that the biodegradation, adsorption, hydrolysis and unknown mechanism were able to remove amoxicillin from wastewater. Black-Right-Pointing-Pointer In this study demonstrates that biodegradation is the major factor for removal mechanism at work for amoxicillin. Black-Right-Pointing-Pointer Mathematical statistic methods were employed to evaluate the performance of the WWTP. - Abstract: A full-scale novel combined anaerobic/micro-aerobic and two-stage aerobic biological process is used for the treatment of an actual chemical synthesis-based pharmaceutical wastewater containing amoxicillin. The anaerobic system is an up-flow anaerobic sludge blanket (UASB), the micro-aerobic system is a novel micro-aerobic hydrolysis acidification reactor (NHAR) and the two-stage aerobic process comprised cyclic activated sludge system (CASS) and biological contact oxidation tank (BCOT). The influent wastewater was high in COD, NH{sub 3}-N varying daily 4016-13,093 mg-COD L{sup -1} and 156.4-650.2 mg-NH{sub 3}-N L{sup -1}, amoxicillin varying weekly between 69.1 and 105.4 mg-amoxicillin L{sup -1}, respectively; Almost all the COD, NH{sub 3}-N, amoxicillin were removed by the biological combined system, with removal percentages 97%, 93.4% and 97.2%, respectively, leaving around 104 mg-COD L{sup -1}, 9.4 mg-NH{sub 3}-N L{sup -1} and 2.6 {+-} 0.8 mg-amoxicillin L{sup -1} in the final clarifier effluent. The performance evaluation of the wastewater treatment plant (WWTP) by mathematical statistic methods shown that at most of time effluent can meet the higher treatment discharge standard. In addition, the fate of amoxicillin in the full-scale WWTP and the amoxicillin removal rate of each different removal routes in UASB, NHAR, CASS, BCOT and final clarifier processes are investigated

  12. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for several samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B2O3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.

  13. Chemical composition, physicochemical and functional properties of ...

    African Journals Online (AJOL)

    The results of chemical composition, physicochemical and functional properties for both lupin samples indicated that lupins can be used as a raw material for various food products manufacturing and provide consistency in food processing, analogous to other food legumes. Therefore, the research findings can be used by ...

  14. Proximate chemical composition of giant ipil-ipil wood from different sources

    Energy Technology Data Exchange (ETDEWEB)

    Escolano, E U; Gonzales, E V; Semana, J A

    1978-01-01

    Studies of the chemical composition of seven samples of giant ipil-ipil (Leucaena leucocephala) yielded holocellulose, 69.8 to 73.9%; pentosans, 8.9 to 20.1%; lignin, 21.8 to 26%; alcohol-benzene solubles, 1.4 to 3.0%; caustic soda solubles, 13.0 to 16.4%; and ash, 0.7 to 0.9%. Based on chemical composition, this should be a suitable species for pulp and paper. (Refs. 11).

  15. Applications of nanotechnology in wastewater treatment--a review.

    Science.gov (United States)

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  16. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad; Diab, Atef; Alsuhaimi, Awadh; Niazy, Esmail; Metwally, Mohammed; Amad, Maan H.; Sioud, Salim; Dawoud, Abdulilah

    2012-01-01

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  17. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    KAUST Repository

    Shraim, Amjad

    2012-11-29

    The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs) are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides). The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city’s sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1) in the influents were: acetaminophen (38.9), metformin (15.2), norfluoxetine (7.07), atenolol (2.04), and cephalexin (1.88). Meanwhile, the effluents contained slightly lower levels (in ng mL−1) than those of influents: acetaminophen (31.2), metformin (3.19), norfluoxetine (7.25), atenolol (0.545), and cephalexin (1.53). The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  18. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah

    Directory of Open Access Journals (Sweden)

    Amjad Shraim

    2017-02-01

    Full Text Available The chemical pollution of water resources is a major challenge facing the humanity in this century. Pharmaceuticals and personal care products (PPCPs are a group of emerging environmental chemical pollutants distinguished by their bioactivity and high solubility. They may also cause health complications to humans and living organisms. Pharmaceuticals enter the environment, mainly via wastewater and can eventually reach the surface and ground water. Despite this, PPCPs received less attention as environmental pollutants than other chemical pollutants (e.g. heavy metals and pesticides. The purpose of this work was to investigate the presence of some of the most frequently dispensed drugs for the residents of Almadinah Almunawarah, Saudi Arabia in the municipal wastewater before and after treatment. For this purpose, wastewater samples were collected biweekly from the city's sewage treatment plant for a period of 4 months and analyzed the targeted drugs using tandem LC–MS. Out of the 19 investigated drugs, 5 pharmaceuticals have been found in concentrations greater than the limit of detection in both the influents and effluents of the sewage treatment plant. As expected, the concentrations of investigated pharmaceuticals in the wastewater were found to be low. These drugs and their average concentrations (in ng mL−1 in the influents were: acetaminophen (38.9, metformin (15.2, norfluoxetine (7.07, atenolol (2.04, and cephalexin (1.88. Meanwhile, the effluents contained slightly lower levels (in ng mL−1 than those of influents: acetaminophen (31.2, metformin (3.19, norfluoxetine (7.25, atenolol (0.545, and cephalexin (1.53. The results of this study supported by many other investigations indicate the inefficiency of current conventional wastewater treatment protocols in eliminating such a group of active and potentially hazardous pollutants from the wastewater.

  19. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  20. Antimicrobial activity and chemical compositions of Turkish propolis ...

    African Journals Online (AJOL)

    negative bacteria and its chemical composition were evaluated by the method of agar-well diffusion and GC-MS, respectively. Some typical compounds samples were identified in the propolis samples. Principal component analysis revealed that the ...

  1. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... The chemical composition of twig essential oils of Xylopia malayana, Xylopia elliptica and Xylopia fusca were analyzed ... brown or dark green in colors and fragrant. .... extraction used and geographic origin of plant studied.

  2. A long-term variation of chemical composition in precipitation

    International Nuclear Information System (INIS)

    Yoshioka, Ryuma; Okimura, Takashi; Okumura, Takenobu

    1991-01-01

    Precipitation samples are collected at the six localities in the southwestern Japan weekly or monthly over a long period of time (1978-1989) in order to estimate chemical weathering rates and amount of weathered materials through chemical composition in natural waters. Major chemical composition is determined for the precipitation samples. Together with the data available in the literature, the following characteristics are recognized : 1) Most pH values fall in the narrow range of 4.4 to 5.4, 2) Systematic variations in pH values are observed among the precipitation samples of different geologic environments, 3) pH values become almost constant from 1984 to 1989, 4) NO 3 - concentrations gradually decrease to an almost constant value with time, and 5) ΔSO 4 2- concentrations gradually have a tendency to decrease from 1978 to 1985. The mechanism of phenomena described above is also presented. (author)

  3. An Investigation on the Industrial Wastewater in Tehran Province

    Directory of Open Access Journals (Sweden)

    Ali Torabian

    2005-08-01

    Full Text Available During 1994 to 1999  a research program titled “A qualitative and quantitative review of industrial wastewater in Tehran province”  was done . This article presents the most important results obtained from this study . The research covered 330 food , textile , chemical , and Materials (Metal and liquid materials  factories . Completing of the questionnaire , sampling from the wastewater and analyzing have been done for 5  years . The results show that completely wastewater treatment in food , textile and metal industries were done in 8% , 18% and 17% of units respectively . In chemical industries for major groups include pharmaceutical , soap and detergent , pulp and paper , and paint industries were studied . In pharmaceutical and pulp and paper industries , there were only one factory in each group which were doing a complete treatment , and in detergent and paint industries there were no complete treatment at all . Maximum discharge of wastewater in food and textile industries were into surface waters . They were 62.4% and 48.8% respectively . But mainly wastwater discharging in metal and liquid materials industries were into ground waters which were 86% and 83% respectively .

  4. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    Science.gov (United States)

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. Critical review on the stability of illicit drugs in sewers and wastewater samples.

    Science.gov (United States)

    McCall, Ann-Kathrin; Bade, Richard; Kinyua, Juliet; Lai, Foon Yin; Thai, Phong K; Covaci, Adrian; Bijlsma, Lubertus; van Nuijs, Alexander L N; Ort, Christoph

    2016-01-01

    Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Application of Gas Sensor Arrays in Assessment of Wastewater Purification Effects

    Directory of Open Access Journals (Sweden)

    Łukasz Guz

    2014-12-01

    Full Text Available A gas sensor array consisting of eight metal oxide semiconductor (MOS type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR. A comparison of the gas sensor array (electronic nose response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose—gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I chemical oxygen demand (COD (r = 0.988; (II total suspended solids (TSS (r = 0.938; (III turbidity (r = 0.940; (IV pH (r = 0.554; (V nitrogen compounds: N-NO3 (r = 0.958, N-NO2 (r = 0.869 and N-NH3 (r = 0.978; (VI and volatile organic compounds (VOC (r = 0.987. Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.

  7. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  8. Structure and Composition of Mangrove Associations in Tubli Bay of Bahrain as Affected by Municipal Wastewater Discharge and Anthropogenic Sedimentation

    Directory of Open Access Journals (Sweden)

    Kholoud Abou Seedo

    2017-01-01

    Full Text Available The effects of municipal wastewater discharge and anthropogenic sedimentation on the structure and composition of gray mangrove (Avicennia marina (Forsk. Vierh. communities along Tubli Bay coastlines in Bahrain were investigated. Growth and regeneration of mangrove were measured, and its community was characterized. Sediment profile was analyzed for texture, pH, and salinity. Mangrove area covered by sand depositions was measured using Google Earth Pro. ANOVA and regression tests were employed in the analysis of the data. Results indicated that mangrove overwhelmingly dominated plant community in the study area, which was zoned by a community of other salt-tolerant species. Three main habitats exist in the study area with high similarity in their floristic composition. Species richness and the number of habitats were low due to the aridity and high sediment salinity. The dilution effect of the secondary treated wastewater had a favorable effect on height and diameters of mangrove trees. However, no differences were observed in leaf area index, basal area, and density of mangrove. The long-term accumulation of anthropogenic sedimentation had a detrimental effect on the mangrove community, expressed in swath death of mangrove trees due to root burials and formation of high topography within the community boundaries.

  9. Endocrine potency of wastewater: Contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Krüger, Tanja; Long, Manhai

    2011-01-01

    chemical analysis and a battery of bioassays. Influent samples, collected at the first STP grate, and effluent samples, collected after the sewage treatment, were extracted using solid phase extraction. Extracts were analyzed for the content of a range of industrial chemicals with endocrine disrupting...... properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl......Industrial and municipal effluents are important sources of endocrine disrupting compounds (EDCs) discharged into the aquatic environment. This study investigated the endocrine potency of wastewater and the cleaning efficiency of two typical urban Danish sewage treatment plants (STPs), using...

  10. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  11. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In vitro CT evaluation of intrahepatic stones: correlation with chemical composition

    International Nuclear Information System (INIS)

    Kim, Young Jun; Han, Joon Koo; Jeong, Jun Yong; Lee, Kyoung Ho; Kim, Se Hyung; Kim, Young Il; Lee, Jeong Min; Choi, Byung Ihn; Park, Youn-Chan; Kim, Sun-Whe

    2005-01-01

    Objective: To describe in vitro CT features of intrahepatic stones and to correlate CT attenuation with chemical composition. Materials and methods: Of the patients who underwent choledochoscopic intrahepatic stone removal between 1998 and 2001, 54 patients with stones larger than 3 mm were enrolled in this study. In each case, a chemical compositional analysis was performed to determine calcium, cholesterol, total bilirubin, and inorganic phosphorus compositions. The three largest stones obtained from each patient were imaged by CT. CT attenuation numbers were measured in the center images of each stone by drawing free-hand region of interest (ROI). The measured CT attenuation numbers were correlated with their chemical composition. Also, CT attenuation numbers of stones were compared with that of the liver on non-contrast CT (50-70 HU). Results: Stone size ranged from 3.1 to 10.5 mm (mean ± S.D.: 6.0 ± 1.4). The CT attenuation numbers (HU) of stones ranged from 36.4 to 410.19 (mean ± S.D.: 94.6 ± 49.9). CT numbers of stones were below 70 HU in 11 patients (20.4%), and below 90 HU in 33 patients (59.3%). The chemical analysis data of the stones were as follows: calcium (0.5-6.5 wt.%; mean ± S.D., 2.6 ± 1.4), total bilirubin (0.45-24.4 wt.%; 13.1 ± 6.2), cholesterol (5.4-73.9 wt.%; 29.3 ± 17.4), phosphorus (0.1-1.2 wt.%; 0.6 ± 0.3), and non-soluble residue (17.6-85.4 wt.%; 57.0 ± 22.6). There was a weak but significant correlation between calcium composition and CT attenuation (r = 0.38, P 0.01; total bilirubin, r = 0.05, P > 0.01; phosphorus, r = 0.01, P > 0.01). Conclusion: On non-contrast CT, intrahepatic stones would not be hyperattenuating with respect to liver parenchyma in about one fifth of patients. The CT attenuation of stones correlates with calcium and does not correlate with any other chemical composition

  13. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  14. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    116. Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. T.S. Brand. 1, 2,3#. , D.A. Brandt. 1, 2,4 and C.W. ... alternatives (Wiseman, 1987; Brand et al., 1995). ..... The Ca, P and trace element concentrations for lupins, faba beans and peas recorded in the present.

  15. Application of radiation for wastewater treatment

    International Nuclear Information System (INIS)

    Han Bumsoo; Kim Jinkyu; Kim Yuri

    2006-01-01

    Electron beam processing of wastewater is non-chemical, and uses fast formation of short-lived reactive radicals that can interact with a wide range of pollutants. Such reactive radicals are strong oxidizing or reducing agents that can transform the pollutants in the liquids wastes. The first studies on the radiation treatment of wastes were carried out in the 1950s principally for disinfection. In the 1960s, these studies were extended to the purification of water and wastewater. After some laboratory research on industrial wastewaters and polluted groundwater in 1970s and 1980s, several pilot plants were built for extended research in the 1990s. The first full-scale application was reported for the purification of wastewater at the Voronezh synthetic rubber plant in Russia. Two accelerators (50 kW each) were used to convert the non-biodegradable emulsifier, 'nekal', present in the wastewater to a biodegradable form . The installation treats up to 2000 m3 of effluent per day. A pilot plant of 1000 m 3 /d for treating textile-dyeing wastewater has been constructed in Daegu, Korea with 1 MeV, 40 kW electron accelerator. High-energy irradiation produces instantaneous radiolytical transformations by energy transfer from accelerated electrons to orbital electrons of water molecules. Absorbed energy disturbs the electron system of the molecule and results in breakage of inter-atomic bonds. Hydrated electron eaq, H atom, . OH and HO 2 . radicals and hydrogen peroxide H 2 O 2 and H 2 are the most important products of the primary interactions (radiolysis products). Generally, radiation processing of wastewater has maximum efficiency at pollutant concentration less than 10 -3 mol/L (∼100 ppm). The treatment of such wastewater is simple, requires low dose (about 1 kGy or less) and gives almost complete elimination of odor, color, taste and turbidity. The radiation processing of polluted water containing specific contaminants may require creation of special conditions to

  16. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Removal performance and water quality analysis of paper machine white water in a full-scale wastewater treatment plant.

    Science.gov (United States)

    Shi, Shuai; Wang, Can; Fang, Shuai; Jia, Minghao; Li, Xiaoguang

    2017-06-01

    Paper machine white water is generally characterized as a high concentration of suspended solids and organic matters. A combined physicochemical-biological and filtration process was used in the study for removing pollutants in the wastewater. The removal efficiency of the pollutant in physicochemical and biological process was evaluated, respectively. Furthermore, advanced technology was used to analyse the water quality before and after the process treatment. Experimental results showed that the removal efficiency of suspend solids (SS) of the system was above 99%, while the physicochemical treatment in the forepart of the system had achieved about 97%. The removal efficiency of chemical oxygen demand (COD) and colour had the similar trend after physicochemical treatment and were corresponding to the proportion of suspended and the near-colloidal organic matter in the wastewater. After biological treatment, the removal efficiency of COD and colour achieved were about 97% and 90%, respectively. Furthermore, molecular weight (MW) distribution analysis showed that after treatment low MW molecules (analysis showed that most humic-like substances were effectively removed during the treatment. The analyses of gas chromatography/mass spectrometry showed that the composition of organic matter in the wastewater was not complicated. Methylsiloxanes were the typical organic components in the raw wastewater and most of them were removed after treatment.

  18. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  19. Physical and chemical treatment of the acid wastewater poured from Aznalcollar quarnx (Sevilla-Spain); Tratamiento fisicoquimico de las aguas acidas vertidas tras la rotura de la balsa minera de Aznalcollar (Sevilla)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Mediavilla, B.; Medialdea, J. M.; Montes, M. A.; Garcia Martinez de Simon, I.; Lopez, C. M.; Moron, M. J.; Escot, E.; Arnaiz, M. C.; Lebrato, J. [Universidad de Sevilla. Sevialla (Spain)

    1999-11-01

    In this work, laboratory results of physical and chemical treatment of the acid wastewater poured from Aznalcollar quarry (Sevilla, Spain) the last april 25, 1998, are presented. Experiments were carried out in the facilities of the Wastewater Treatment Research Group, University of Sevilla. Objectives were to adjust pH and to remove heavy metals from the water. Comparative results showed application of calcium hydroxide and aluminium policyholder as the most effective physical and chemical treatment for the water, in terms of pH adjustment and heavy metal removal. Data suggest that treatment systems including preliminary adjustment of water pH followed by addition of chemical coagulants, significantly alter the physical state of dissolved heavy metals and facilitate their removal by sedimentation. Such procedures might be useful for the treatment of surface waters polluted with high concentrations of heavy metals. (Author) 5 refs.

  20. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  1. Dynamic Membrane Technology for Printing Wastewater Reuse

    Science.gov (United States)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  2. The influence of macronutrient deficiencies on chemical composition ...

    African Journals Online (AJOL)

    The influence of macronutrient deficiencies on chemical composition of dwarf green coconut (Cocu nucifera linn) seedling. ... Elimination of magnesium also leads to reduction in the concentration of chlorophyll. starch and sugar concentrations improved with nitrogen and potassium but decreased with were more ...

  3. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    Science.gov (United States)

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  4. Effects of ionizing radiation on struvite crystallization of livestock wastewater

    International Nuclear Information System (INIS)

    Kim, Tak- Hyun; Nam, Yun-Ku; Joo Lim, Seung

    2014-01-01

    Livestock wastewater is generally very difficult to be treated by conventional wastewater treatment techniques because it contains high-strength organics (COD), ammonium (NH 4 + ), phosphate (PO 4 3− ) and suspended solids. Struvite crystallization has been recently studied for the simultaneous removal of NH 4 + and PO 4 3− . In this study, gamma ray irradiation was carried out prior to struvite crystallization of the anaerobically digested livestock wastewater. The effects of gamma ray irradiation on the struvite crystallization of livestock wastewater were investigated. As a result, gamma ray irradiation can decrease the concentration of COD, NH 4 + and PO 4 3− contained in the livestock wastewater. This results in not only an enhancement of the struvite crystallization efficiency but also a decrease in the chemical demands for the struvite crystallization of livestock wastewater. - Highlights: • Gamma ray was applied prior to struvite crystallization of livestock wastewater. • Gamma ray resulted in an enhancement of struvite crystallization efficiency. • This is due to the decrease of COD concentration by gamma ray irradiation

  5. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  6. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    OpenAIRE

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9%) and β-seli...

  7. Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.

    Science.gov (United States)

    Benyelles, Batoul; Allali, Hocine; Dib, Mohamed El Amine; Djabou, Nassim; Paolini, Julien; Costa, Jean

    2017-06-01

    The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 - 99% of the total oil compositions. The main components were linalool (18; 12.5 - 22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2 - 20.2%), 2-methylbutyl isobutyrate (10; 4.2 - 12.2%), ammimajane (47; 2.6 - 37.1%), (E)-β-ocimene (15; 0.2 - 12.8%) and 3-methylbutyl isovalerate (19; 3.3 - 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  8. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo

    2015-03-01

    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  9. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    Science.gov (United States)

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  10. Wastewater Treatment from Batik Industries Using TiO2 Nanoparticles

    Science.gov (United States)

    Arifan, Fahmi; Nugraheni, FS; Rama Devara, Hafiz; Lianandya, Niken Elsa

    2018-02-01

    Batik is cultural patterned fabric, and the this industries produce wastewater that can pollute the aquatic environment. Besides dyes, batik wastewater also contains synthetic compounds that are hard degraded, such as heavy metals, suspended solids, or organic compounds. In this study, photocatalitic membrane TiO2 coated plastic sheets have been used to degrade batik wastewater under solar exposure. A total of 8 pieces of catalyst sheets are added on 1000 ml of the waste, and managed to degrade 50.41% of the initial concentration during 5-days irradiation. In this study, several parameters of the water quality such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspensed solids (TSS) of the wastewater were observed to be decreasing during photodegradation process. The catalyst sheet also is stable to be used repeatedly in wastewater treatment.

  11. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  12. An evaluation of a mesophilic reactor for treating wastewater from a ...

    African Journals Online (AJOL)

    An evaluation of anaerobic treatment of potato-processing wastewater using an up flow Anaerobic Sludge Bed (UASB) reactor at 37°C was conducted. Wastewater from a potato-processing plant in Harare, with an average of 6.8 g COD/l, (COD = chemical oxygen demand) a high concentration of total solids (up to 6725 ...

  13. Isolation and characterization of an n-hexadecane degrading Acinetobacter baumannii KSS1060 from a petrochemical wastewater treatment plant

    International Nuclear Information System (INIS)

    Shiri, Z.; Kermanshahi, R. K.; Soudi, M. R.; Farajzadeh, D.

    2015-01-01

    Hydrocarbons are widespread in the environment, but because of the massive utilization of petroleum products, they are nowadays strongly involved in environmental pollution. Bioremediation is the obliging technology for the treatment of hydrocarbon-contaminated sites. Therefore, to investigate the potential of petrochemical hydrocarbon (HC)-degrading indigenous microorganisms in wastewater samples collected from Fajr petrochemical wastewater treatment plants, a strain of Acinetobacter baumannii was isolated from this hydrocarbon-contaminated wastewater and examined for its ability to utilize hexadecane. This strain was capable to grow on n-hexadecane as the sole source of carbon and energy. The ability of the isolate to degrade n-hexadecane was assessed by growth assays and gas chromatography/mass spectrometry analysis. Using GC analysis, it was shown that the strain KSS1060 was able to degrade 62 % of n-hexadecane within 6 days, which mostly (51.6 %) occurred within the first 24 h. Identification of this hexadecane-degrader bacterium was carried out using 16S rDNA sequence analysis. Additionally, characterization of chemical composition of wastewater samples by the use of gas chromatography/mass spectrometry analysis indicated the presence of Hexanal, Benzene methanol, Indanol, 1,2-benzenedicarboxylic acid diethyl ester, diisobutyl phthalate, and Phenol,4,4′-(1-methylethylidene) in the major constituents of wastewater. In conclusion, this study can focus on more cost-efficient applications of native bacterial strains for the large-scale biodegradation of wastewater samples from petrochemical plant in industry, where it causes disturbing problems due to its harmful effects on different organisms and human beings.

  14. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  15. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  16. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    2003-01-01

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  17. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg

    2016-01-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....... permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO...

  18. The chemical composition and industrial quality of Barite ...

    African Journals Online (AJOL)

    ... that the mineralization is of high industrial quality and compares favourably with the Azara barite deposits of the Benue Trough. The quality of the barite meets American Petroleum institute (API) requirements for use as drilling mud. KEYWORDS: Barite, mineralization, quality, chemical composition, southeastern Nigeria.

  19. Potential of Duckweed for Swine Wastewater Nutrient removal and Biomass Valorisation through Anaerobic Co-digestion

    Directory of Open Access Journals (Sweden)

    Luis Pena

    2017-06-01

    Full Text Available Over the last decades, phytodepuration has been considered an efficient technology to treat wastewaters. The present study reports a bench scale depuration assay of swine wastewater using Lemna minor. The highest observed growth rate obtained in swine wastewater was 3.1 ± 0.3 gDW m−2 day−1 and the highest nitrogen and phosphorus uptake were 140 mg N m−2 day−1 and 3.47 mg P m−2 day−1, respectively. The chemical oxygen demand removal efficiency in the swine wastewater assay was 58.9 ± 2.0%. Furthermore, the biomass valorisation by anaerobic co-digestion with swine wastewater was assessed. Results showed a clear improvement in specific methane production rate (around 40% when compared to mono-substrate anaerobic digestion. The highest methane specific production, 131.0 ± 0.8 mL CH4 g−1 chemical oxygen demand, was obtained with a mixture containing 100 g of duckweed per liter of pre-treated swine wastewater. The water-nutrients-energy nexus approach showed to be promising for swine waste management.

  20. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    Science.gov (United States)

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  1. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams

    Science.gov (United States)

    Buxton, Herbert T.; Kolpin, Dana W.

    2002-01-01

    A recent study by the Toxic Substances Hydrology Program of the U.S. Geological Survey (USGS) shows that a broad range of chemicals found in residential, industrial, and agricultural wastewaters commonly occurs in mixtures at low concentrations downstream from areas of intense urbanization and animal production. The chemicals include human and veterinary drugs (including antibiotics), natural and synthetic hormones, detergent metabolites, plasticizers, insecticides, and fire retardants. One or more of these chemicals were found in 80 percent of the streams sampled. Half of the streams contained 7 or more of these chemicals, and about one-third of the streams contained 10 or more of these chemicals. This study is the first national-scale examination of these organic wastewater contaminants in streams and supports the USGS mission to assess the quantity and quality of the Nation's water resources. A more complete analysis of these and other emerging water-quality issues is ongoing.

  2. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    Science.gov (United States)

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this

  3. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Directory of Open Access Journals (Sweden)

    Daniel Stalter

    Full Text Available Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn, 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in

  4. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    Science.gov (United States)

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this

  5. Recycling of waste bread as culture media for efficient biological treatment of wastewater

    International Nuclear Information System (INIS)

    Kim, Young-Ju; Kim, Pil-Jin; Kim, Ji-Hoon; Lee, Chang-Soo; Qureshi, T.I.

    2012-01-01

    Possibilities of recycling of waste bread as culture media for efficient biological treatment of wastewater were investigated. In order to get the highest growth of microorganism for increased contaminants' removal efficiency of the system, different compositions of waste bread and skim milk with and without adding Powdered Activated Carbon (PAC) were tested. Mixed waste bread compositions with added PAC showed relatively higher number of microorganisms than the compositions without added PAC. A composition of 40% mixed waste bread and 60% skim milk produced highest number of microorganisms with subsequent increased contaminants' removal efficiency of the system. 'Contrast' alone showed lower contaminants' removal efficiency than mixed bread compositions. Use of waste bread in the composition of skim milk reduced cost of using foreign source of nutrients in biological treatment of wastewater and also facilitated waste bread management through recycling. (author)

  6. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  7. PFP Wastewater Sampling Facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP's liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use

  8. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    Science.gov (United States)

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  9. Membrane processes for the reuse of car washing wastewater

    OpenAIRE

    Deniz Uçar

    2018-01-01

    This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD...

  10. Brackish Water Desalination Coupled With Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Zainab Ziad Ismail

    2015-05-01

    Full Text Available A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC provided with forward osmosis (FO membrane and cation exchange membrane (CEM was evaluated with respect to the chemical oxygen demand (COD removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were 96%, 90%, 30.02 mW/m2, and 107.20 mA/m2, respectively.

  11. Improvement of municipal wastewater pretreatment by direct membrane filtration.

    Science.gov (United States)

    Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar

    2017-10-01

    The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2  h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.

  12. Changes in chemical composition and bioassay assessment of ...

    African Journals Online (AJOL)

    Changes in chemical composition and bioassay assessment of nutritional potentials of almond fruit waste as an alternative feedstuff for livestock. ... AFW using day-old cockerels and considering performance parameters showed that treated AFW improved feed intake, body weight gain and feed conversion ratio even better ...

  13. Treatment of variable and intermittently flowing wastewaters.

    Science.gov (United States)

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  14. Biological treatment of model dyes and textile wastewaters.

    Science.gov (United States)

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identificação de compostos orgânicos e farmacêuticos em esgoto hospitalar utilizando cromatografia gasosa acoplada a espectrometria de massa Identification of organic and pharmaceutical compositions in hospital wastewater using a gas chromatograph coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    Francisco Vieira Paiva

    2011-03-01

    Full Text Available Os resíduos líquidos provenientes dos estabelecimentos assistenciais de saúde são mais complexos do que os esgotos domésticos. Sua composição contém inúmeros compostos farmacêuticos, saneantes, elementos radiativos e de laboratórios. O conhecimento desses compostos pode auxiliar na escolha do tratamento adequado para esses esgotos e diminuir os impactos ambientais nos corpos receptores. A pesquisa foi realizada utilizando um sistema combinado (UASB e lodos ativados para tratar a água residuária de um hospital. Neste trabalho, foram realizadas análises físico-químicas para caracterização do esgoto e cromatografia gasosa acoplada à espectrometria de massa para identificação de compostos químicos farmacêuticos, podendo-se constatar a presença de inúmeros elementos residuais dos fármacos usados no hospital.Liquid waste residues from health care establishments are more complex than those from residential sewage. Their composition contains several pharmaceutical chemical composites, sanitizers, radioactive, and laboratorial elements. Knowing about these composites may aid in choosing the proper treatment for these sewages, and diminish the environmental impact in receptors. The study was carried out in a combined system (UASB and activated sludge to treat a hospital wastewater. In this experiment, material and chemical analyses were employed to trace sewage characteristics and gas chromatography associated with mass spectrometry to identify pharmacologic chemical composites, where innumerous residual elements were found in chromatographs.

  16. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  17. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.

    Science.gov (United States)

    Cheng, Hefa; Xu, Weipu; Liu, Junliang; Wang, Huanjun; He, Yanqing; Chen, Gang

    2007-07-19

    We studied the pretreatment of concentrated wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Results show that coagulation by polyaluminum chloride at dosage of 0.5 g/L could remove up to 17.2% chemical oxygen demand (COD) from the wastewater. Electrolysis using iron electrode achieved 33.2% COD removal at current of 2A in 180 min, which was attributed to coagulation and oxidation of the organic contaminants in the wastewater by the radicals (OH and O) and oxidants (O2, O3, and H2O2) produced in electrochemical reactions. Internal microelectrolysis using iron chips and granular activated carbon (GAC) showed that up to 60.5% COD could be removed under the conditions of iron/GAC/wastewater volumetric ratio of 3:2:490, sparge ratio (ratio of air flow rate to volume of wastewater) of 2:490 min(-1), and reaction time of 132 h. COD reduction in internal microelectrolysis was attributed to a combination of chemical and physical processes, mainly oxidation by radicals and oxidants formed in electrochemical reactions, adsorption on, co-precipitation with, and enmeshment in ferrous and ferric hydroxides resulted from Fe2+ released during anode oxidation. The results suggest that internal microelectrolysis using iron chips and GAC is a promising, low-cost alternative for pretreating concentrated wastewater from pesticide manufacturing.

  18. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Science.gov (United States)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  19. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Leo [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada); Nelson, Alan E. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], E-mail: aenelson@dow.com; Heo, Giseon [Department of Statistics, Department of Dentistry, University of Alberta (Canada); Major, Paul W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2008-08-30

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  20. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-01-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength

  1. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    Science.gov (United States)

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. chemical adjustment chemical adjustment of effluent from cassava

    African Journals Online (AJOL)

    eobe

    Higher degradation and odour removal was achieved faster with. ). Higher ... form of food biotechnology, in which wastewater can ... University of Nigeria, Nsukka, ISSN: 0331-8443 .... Effect of Chemical Treatment ..... Fundacaocarg ill.

  3. The Chemical Composition of Grape Fibre

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  4. Evaluation of the energetic potential of sewage sludge by characterization of its organic composition.

    Science.gov (United States)

    Schaum, C; Lensch, D; Cornel, P

    2016-01-01

    The composition of sewage sludge and, thus, its energetic potential is influenced by wastewater and wastewater treatment processes. Higher or lower heating values (HHV or LHV) are decisive factors for the incineration/gasification/pyrolysis of sewage sludge. The HHV is analyzed with a bomb calorimeter and converted to the LHV. It is also possible to calculate the heating value via chemical oxygen demand (COD), total volatile solids (TVS), and elemental composition. Calculating the LHV via the COD provides a suitable method. In contrast, the correlation of the HHV or LHV with the TVS is limited. One prerequisite here is a constant specific energy density; this was given with the types of sewage sludge (primary, surplus/excess, and digested sludge) investigated. If the energy density is not comparable with sewage sludge, for instance with the co-substrate (bio-waste, grease, etc.), the estimation of the heating value using TVS will fail. When calculating the HHV or LHV via the elemental composition, one has to consider the validity of the coefficients of the calculation equation. Depending on the organic composition, it might be necessary to adjust the coefficients, e.g. when adding co-substrates.

  5. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  6. Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils

    Energy Technology Data Exchange (ETDEWEB)

    Mosse, K.P.M., E-mail: kim.mosse@monash.edu [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia); Centre for Green Chemistry, Monash University, VIC 3800 (Australia); School of Biological Sciences, Monash University, VIC 3800 (Australia); Patti, A.F. [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia); Centre for Green Chemistry, Monash University, VIC 3800 (Australia); Smernik, R.J. [School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae SA 5064 (Australia); Christen, E.W. [CSIRO Land and Water PMB No. 3, Griffith, NSW, 2680 (Australia); Cavagnaro, T.R. [School of Biological Sciences, Monash University, VIC 3800 (Australia); Australian Centre for Biodiversity, Monash University, VIC 3800 (Australia)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Application of winery wastewater to soils increased soil respiration and nitrogen cycling. Black-Right-Pointing-Pointer Untreated and treated winery wastewaters affected microbial community composition. Black-Right-Pointing-Pointer Long-term application to soils impacted only minimally on soil OM composition. - Abstract: Application of winery wastewaters to soils for irrigation of various crops or landscapes is a common practice in the wine industry. In this study, we sought to investigate the effects of this practice, by comparing the physicochemical and microbiological soil properties in paired sites that differed in having had a history of winery waste application or not. We also compared the effects of a single application of untreated winery wastewater, to application of treated winery wastewater (sequencing batch reactor) and pure water to eliminate the effects of wetting alone. Long-term application of winery wastes was found to have significant impacts on soil microbial community structure, as determined by phospholipid fatty acid analysis, as well as on many physicochemical properties including pH, EC, and cation concentrations. {sup 13}C NMR revealed only slight differences in the nature of the carbon present at each of the paired sites. A single application of untreated winery wastewater was shown to have significant impacts upon soil respiration, nitrogen cycling and microbial community structure, but the treated wastewater application showed no significant differences to wetting alone. Results are discussed in the context of sustainable winery wastewater disposal.

  7. Physicochemical and microbiological effects of long- and short-term winery wastewater application to soils

    International Nuclear Information System (INIS)

    Mosse, K.P.M.; Patti, A.F.; Smernik, R.J.; Christen, E.W.; Cavagnaro, T.R.

    2012-01-01

    Highlights: ► Application of winery wastewater to soils increased soil respiration and nitrogen cycling. ► Untreated and treated winery wastewaters affected microbial community composition. ► Long-term application to soils impacted only minimally on soil OM composition. - Abstract: Application of winery wastewaters to soils for irrigation of various crops or landscapes is a common practice in the wine industry. In this study, we sought to investigate the effects of this practice, by comparing the physicochemical and microbiological soil properties in paired sites that differed in having had a history of winery waste application or not. We also compared the effects of a single application of untreated winery wastewater, to application of treated winery wastewater (sequencing batch reactor) and pure water to eliminate the effects of wetting alone. Long-term application of winery wastes was found to have significant impacts on soil microbial community structure, as determined by phospholipid fatty acid analysis, as well as on many physicochemical properties including pH, EC, and cation concentrations. 13 C NMR revealed only slight differences in the nature of the carbon present at each of the paired sites. A single application of untreated winery wastewater was shown to have significant impacts upon soil respiration, nitrogen cycling and microbial community structure, but the treated wastewater application showed no significant differences to wetting alone. Results are discussed in the context of sustainable winery wastewater disposal.

  8. Chemical composition and larvicidal activity of Zanthoxylum gilletii ...

    African Journals Online (AJOL)

    The essential oil was extracted by hydro-distillation, and its chemical compositions determined by gas chromatography mass spectrometry. The oil was dominated by sesquiterpenes and monoterpenes which accounted for 38.30 and 34.00%, respectively. The oil showed good activity against A. gambiae and recorded LC50 ...

  9. Industrial reuse of regenerated of wastewater; Reutilizacion industrial de aguas residuales regeneradas

    Energy Technology Data Exchange (ETDEWEB)

    Cortacans Torre, J.A.

    1998-12-01

    The reuse of treated wastewater is a realistic possibility not only for agricultural irrigation or in recreational uses (golf greens), but for other purposes which require a better quality. In the wastewater plant of Monclova the effluent must be of a high quality in order to reuse it in the processes of the existing steel-mill. To achieve this quality a biological process including nitrification and denitrification is followed by a tertiary treatment including a physico-chemical treatment with flotation, chemical precipitation of phosphorus, pressure filtration and chlorination. (Author)

  10. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  11. Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    B. Subha

    2012-01-01

    Full Text Available Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2 of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81% was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87% was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction.

  12. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  13. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  14. Chemical composition and microbial load of cheese produced using ...

    African Journals Online (AJOL)

    Aframomum sceptrum) on the chemical composition and microbial load of cheese was evaluated in a Completely Randomized Design. Cheese produced with 1% bear berry (Aframomum sceptrum) had the highest (P < 0.05) crude protein content ...

  15. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  16. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  17. Phytoremediation of industrial mines wastewater using water hyacinth

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-01

    ABSTRACT The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved. PMID:27551860

  18. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    Chemical Composition, antioxidant activity, functional properties and inhibitory action of unripe plantain ( M. Paradisiacae ) flour. ... of dry matter (48.00 ± 3.96%) and starch (31.10 ± 0.44%) but was low in phenol (1.42 ± 0.03%), protein (3.15 ± 0.042%), ash (5.50 ± 0.42%) and total soluble sugar (0.64 ± 0.001%) (p < 0.05).

  19. Swine farm wastewater and mineral fertilization in corn cultivation

    Directory of Open Access Journals (Sweden)

    Pâmela A. M. Pereira

    2016-01-01

    Full Text Available ABSTRACT In the long run, swine wastewater can provide benefits to the soil-plant relationship, when its use is planned and the potential environmental impacts are monitored. The objective of this study was to investigate the effects of continuous application of swine wastewater, associated with mineral fertilization, after six years of management in no-tillage and crop rotation (14 production cycles, on the chemical conditions of the soil and the corn crop. The doses of wastewater were 0, 100, 200, 300 m3 ha-1 during the cycle. The effects of the association between mineral fertilization at sowing and swine wastewater were evaluated simultaneously. Swine wastewater at the dose of 100 m3 ha-1 promoted availability and absorption of P, K+, Mg2+ and Zn2+ without causing toxicity to plants or damage to the soil, constituting a viable, low-cost alternative of water reuse and fertilization for farmers. The nutrients N, P, K+ and B must be complemented with mineral fertilization. Special attention should be directed to the accumulation of Zn2+ in the soil along the time of swine wastewater application.

  20. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  1. Minimizing the Risk of Disease Transmission in Emergency Settings: Novel In Situ Physico-Chemical Disinfection of Pathogen-Laden Hospital Wastewaters.

    Directory of Open Access Journals (Sweden)

    Emanuele Sozzi

    Full Text Available The operation of a health care facility, such as a cholera or Ebola treatment center in an emergency setting, results in the production of pathogen-laden wastewaters that may potentially lead to onward transmission of the disease. The research presented here evaluated the design and operation of a novel treatment system, successfully used by Médecins Sans Frontières in Haiti to disinfect CTC wastewaters in situ, eliminating the need for road haulage and disposal of the waste to a poorly-managed hazardous waste facility, thereby providing an effective barrier to disease transmission through a novel but simple sanitary intervention. The physico-chemical protocols eventually successfully treated over 600 m3 of wastewater, achieving coagulation/flocculation and disinfection by exposure to high pH (Protocol A and low pH (Protocol B environments, using thermotolerant coliforms as a disinfection efficacy index. In Protocol A, the addition of hydrated lime resulted in wastewater disinfection and coagulation/flocculation of suspended solids. In Protocol B, disinfection was achieved by the addition of hydrochloric acid, followed by pH neutralization and coagulation/flocculation of suspended solids using aluminum sulfate. Removal rates achieved were: COD >99%; suspended solids >90%; turbidity >90% and thermotolerant coliforms >99.9%. The proposed approach is the first known successful attempt to disinfect wastewater in a disease outbreak setting without resorting to the alternative, untested, approach of 'super chlorination' which, it has been suggested, may not consistently achieve adequate disinfection. A basic analysis of costs demonstrated a significant saving in reagent costs compared with the less reliable approach of super-chlorination. The proposed approach to in situ sanitation in cholera treatment centers and other disease outbreak settings represents a timely response to a UN call for onsite disinfection of wastewaters generated in such

  2. Supply-chain environmental effects of wastewater utilities

    International Nuclear Information System (INIS)

    Stokes, Jennifer R; Horvath, Arpad

    2010-01-01

    This letter describes a comprehensive modeling framework and the Wastewater-Energy Sustainability Tool (WWEST) designed for conducting hybrid life-cycle assessments of the wastewater collection, treatment, and discharge infrastructure in the United States. Results from a case study treatment plant which produces electricity using methane offgas are discussed. The case study system supplements influent with 'high-strength organic waste' to augment electricity production. The system balance is 55 kg of greenhouse gases per million liters of wastewater. Sensitivity analysis confirms that reusing biogas from anaerobic digestion for electricity reduces life-cycle greenhouse gas emissions by nine times. When biogas is captured and reused for electricity, material production (e.g., chemicals and pipes) and the corresponding supply chains, rather than energy production, are responsible for most of the environmental effects. When biogas is flared, the material and energy production contributions are similar.

  3. Influences of mechanical pre-treatment on the non-biological treatment of municipal wastewater by forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada

    2016-01-01

    municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment......, e.g., microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using thin-film-composite, Aquaporin Inside(TM) and HTI membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested......-sized wastewater treatment plants....

  4. Technical study on separating compounds of low level radioactive wastewater by composite membranes

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2014-01-01

    In the view of low level radioactive wastewater from operation and decommissioning project for the nuclear facilities and technology of reverse osmosis, this paper analyzes the related research of reverse osmosis technology at home and aboard, and designs a technical system in practice by using reverse osmosis combined with a pretreatment process of disc filtration-ultrafiltration or filtration-microfiltration to treat radioactive wastewater. (authors)

  5. Treatment of micropollutants in municipal wastewater using white-rot fungi

    OpenAIRE

    Margot, Jonas; Vargas, Micaela; Contijoch, Andreu; Barry, David Andrew; Holliger, Christof

    2014-01-01

    Treatment of micropollutants such as pharmaceuticals and pesticides in municipal wastewater is challenging due to their very low concentrations (ng/l to µg/l), their relatively low biodegradability, and their different physico-chemical characteristics. One potential way to improve micropollutant biodegradation in wastewater treatment plant (WWTP) effluent is by using microorganisms such as white-rot fungi that produce powerful unspecific oxidative exo-enzymes (laccase, peroxidase) that are ab...

  6. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    OpenAIRE

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; G?mez, Ignacio; Navarro-Pedre?o, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (ne...

  7. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... The chemical composition of twig essential oils of Xylopia malayana, Xylopia elliptica and Xylopia fusca ... Volatile constituents and bioactivity studies are available in the literature on Xylopia aethiopica (Issakou et al., 2014;. Sylvain et al, 2014; Vyry et al, 2014), Xylopia longifolia. (Fourier et al, 1993), ...

  8. Antimicrobial properties and chemical compositions of the petroleum ...

    African Journals Online (AJOL)

    The study was designed to investigate the antimicrobial and chemical compositions of the petroleum ether extract of theaerial parts of Rauvolfia vomitoria. The aerial parts of the plant were air dried under shade, pounded using wooden mortar and pestle into coarse powder. The coarse powder was extracted in aSoxhlet ...

  9. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  10. Use of potassium permanganate integrated chemical-biological treatment schemes of wastewaters from agricultural industry; Aplicacion de permanganato potasico en sistemas de tratamiento integrado quimico-biologico en las aguas residuales de la industria agricola

    Energy Technology Data Exchange (ETDEWEB)

    Medialdea, J. M.; Arnaiz, M. C.; Isac, L.; Ruiz, C.; Valentin, R.; Martinez, M. F.; Garcia, S.; Lebrato, J. [Universidad de Sevilla (Spain); Cuenca, I.

    2000-07-01

    Present study assesses the applicability of a treatment scheme based on the combination of anaerobic biological digestion and chemical oxidation by potassium permanganate, in the purification of winery wastewaters. Biological digestion, performed using an experimental 1-liter reactor that operated discontinuously with completely mixed input and a mesophilic regime (35 degree centigree), removed 65% and 78% of water COD and BOD, and contributed 82,27% to the system global efficiency. Further chemical oxidation of effluent by Aquox -potassium permanganate eliminated 40% of residual COD, although contributed only 17,73% to global purification efficiency. However, effluent chemical oxidation at a dosage of 35 mg KMnO{sub 4}/L significantly increased effluent biodegradability. Results demonstrated the feasibility of analyzed working scheme and provide a positive valuation on the use of KMnO{sub 4} in the treatment of winery wastewaters. (Author) 24 refs.

  11. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  12. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    /mL, with its prevalence among total heterotrophic bacteria at 47% and 26%, respectively. Correlation of CRBP with physico-chemical and other bacteriological parameters of wastewater was estimated. Higher numbers of CRBP in influent and ...

  13. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  14. CHEMICAL COMPOSITION VARIABILITY IN THE Uncaria tomentosa (cat’s claw WILD POPULATION

    Directory of Open Access Journals (Sweden)

    Evelyn Maribel Condori Peñaloza

    2015-03-01

    Full Text Available Uncaria tomentosa (cat's claw is a vine widely distributed throughout the South-American rainforest. Many studies investigating the chemical composition of cat's claw have focused on the pentacyclic (POA and tetracyclic oxindole alkaloids (TOA, quinovic acid glycosides (QAG, and polyphenols (PPH. Nevertheless, it is still uncertain how environmental factors affect chemical groups. The aim of this work was to better understand the influence of environmental factors (geographic origin, altitude, and season on cat's claw chemical composition. Stem bark, branches and leaf samples were extracted and analyzed by HPLC-PDA. The data obtained were explored by multivariate analysis (HCA and PCA. Higher amounts of oxindole alkaloids and PPH were found in leaves, followed by stem bark and branches. No clear relationship was verified among geographic origin or altitude and chemical composition, which remained unchanged regardless of season (dry or rainy. However, three oxindole alkaloid chemotypes were clearly recognized: chemotype I (POA with cis D/E ring junction; chemotype II (POA with trans D/E ring junction; and chemotype III (TOA. Thus, environmental factors appear to have only a minor influence on the chemical heterogeneity of the cat's claw wild population. Nevertheless, the occurrence of different chemotypes based on alkaloid profiles seems to be clear.

  15. A systematic model identification method for chemical transformation pathways – the case of heroin biomarkers in wastewater

    DEFF Research Database (Denmark)

    Ramin, Pedram; Valverde Pérez, Borja; Polesel, Fabio

    2017-01-01

    This study presents a novel statistical approach for identifying sequenced chemical transformation pathways in combination with reaction kinetics models. The proposed method relies on sound uncertainty propagation by considering parameter ranges and associated probability distribution obtained...... at any given transformation pathway levels as priors for parameter estimation at any subsequent transformation levels. The method was applied to calibrate a model predicting the transformation in untreated wastewater of six biomarkers, excreted following human metabolism of heroin and codeine. The method....... Results obtained suggest that the method developed has the potential to outperform conventional approaches in terms of prediction accuracy, transformation pathway identification and parameter identifiability. This method can be used in conjunction with optimal experimental designs to effectively identify...

  16. Effect of Seasonal Temperature on the Performance and on the Microbial Community of a Novel AWFR for Decentralized Domestic Wastewater Pretreatment

    Directory of Open Access Journals (Sweden)

    Juanhong Li

    2017-06-01

    Full Text Available Due to environmental burden and human health risks in developing countries, the treatment of decentralized domestic wastewater has been a matter of great concern in recent years. A novel pilot-scale three-stage anaerobic wool-felt filter reactor (AWFR was designed to treat real decentralized domestic wastewater at seasonal temperature variations of 8 to 35 °C for 364 days. The results showed that the average chemical oxygen demand (COD removal efficiencies of AWFR in summer and winter were 76 ± 7.2% and 52 ± 5.9% at one day and three days Hydraulic Retention Time (HRT, respectively. COD mass balance analysis demonstrated that even though COD removal was lower in winter, approximately 43.5% of influent COD was still converted to methane. High-throughput MiSeq sequencing analyses indicated that Methanosaeta, Methanobacterium, and Methanolinea were the predominant methanogens, whereas the genus Bacillus probably played important roles in fermentation processes throughout the whole operation period. The performance and microbial community composition study suggested the application potential of the AWFR system for the pretreatment of decentralized domestic wastewater.

  17. Chemical Composition of Defatted Cottonseed and Soy Meal Products

    Science.gov (United States)

    He, Zhongqi; Zhang, Hailin; Olk, Dan C.

    2015-01-01

    Chemical composition is critical information for product quality and exploration of new use. Hence defatted cottonseed meals from both glanded (with gossypol) and glandless (without gossypol) cotton seeds were separated into water soluble and insoluble fractions, or water soluble, alkali soluble as well as total protein isolates. The contents of gossypol, total protein and amino acids, fiber and carbohydrates, and selected macro and trace elements in these products were determined and compared with each other and with those of soy meal products. Data reported in this work improved our understanding on the chemical composition of different cottonseed meal products that is helpful for more economical utilization of these products. These data would also provide a basic reference for product standards and quality control when the production of the cottonseed meal products comes to pilot and industrial scales. PMID:26079931

  18. Kinetics of aerobic oxidation of volatile sulfur compounds in wastewater and biofilm from sewers

    DEFF Research Database (Denmark)

    Rudelle, Elise Alice; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2013-01-01

    Laboratory experiments were conducted to investigate the kinetics of aerobic chemical and biological oxidation of selected odorous volatile sulfur compounds (VSCs) by wastewater and biofilm from sewers. The VSCs included methyl mercaptan (MeSH), ethyl mercaptan (EtSH), dimethyl sulfide (DMS......-spot downstream of a force main and the other was a gravity sewer transporting young aerobic wastewater. The kinetics of VSC oxidation for both wastewater and suspended biofilm samples followed a first-order rate equation. The average values of the reaction rate constants demonstrated the following order...... in the aerobic wastewater....

  19. Application of electrochemically synthesized ferrate(VI in the purification of wastewater from coal separation plant

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2010-01-01

    Full Text Available The oxidative and coagulation efficiency of Na2FeO4 solution, electrochemically generated by trans-passive anodic oxidation of electrical steel in 10M NaOH solution, is confirmed in the process of purification of heavily contaminated wastewater from coal separation plant. The decontamination efficiency is evaluated comparing the values of selected contamination parameters obtained by chemical and biochemical analysis of plant effluent water and water obtained after decontamination with ferrate(VI solution in relatively simple laboratory procedure. The sample of 450 ml of wastewater is treated in laboratory conditions with 100cm3 solution of 1 mg dm-3 Na2FeO4 in 10M NaOH. The chemical analysis of effluent water after treatment have shown almost 3 times lower permanganate index, about 3 times lower iron content, 1.45 times lower As3+ content, 7.35 times lower ammonia content. Turbidity and chemical oxygen demand (COD is reduced for more than 5.77and 13.4 times, respectively. The suspended and colloid matter is eliminated from effluent water after treatment with ferrate(VI solution. Also, biochemical exploration has confirmed high efficiency of ferrate(VI in organics and microbial elimination showing 7.1 times lower 5-days bio-chemical oxygen demand (BOD5, and total elimination of aerobic and anaerobic bacteria from effluent water. According to standards on quality of industrial wastewater effluents, it may be concluded that ferrate(VI treatment of wastewater almost completely eliminates excess of dangerous chemicals and pathogen bacteria, with the exemption of arsenic. Thus, ferrate(VI shows capable performance in treatment of coal separation plant wastewater.

  20. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; hide

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  1. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.

    Science.gov (United States)

    Ates, Nuray; Uzal, Nigmet

    2018-05-27

    Aluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl 3 and FeSO 4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH ~ 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (>90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure

  2. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  3. Predicting the Chemical composition of herbaceous legumes using ...

    African Journals Online (AJOL)

    Predicting the Chemical composition of herbaceous legumes using Near Infrared Reflectance Spectroscopy. J F Mupangwa, N Berardo, N T Ngongoni, J H Topps, H Hamudikuwanda, M Ordoardi. Abstract. (Journal of Applied Science in Southern Africa: 2000 6(2): 107-114). http://dx.doi.org/10.4314/jassa.v6i2.16844.

  4. Changes in the chemical composition of the light crude by short-term weathering

    International Nuclear Information System (INIS)

    Luo, X.; Ma, Q.M.

    2006-01-01

    In the event of an oil spill, it is important to unambiguously identify the oil and link it to the known source in order to determine environmental impact and legal liability. The fate and behaviour of spilled oil depends on several physical, chemical and biological factors such as evaporation, dissolution, microbial degradation and photooxidation. The chemical composition of the spilled oil changes with weathering. The changes can have a significant effect on the oil's toxicity and can add to the difficulty of identifying spilled oil. This paper presents the results of changes in chemical composition of light crude oil by weathering under natural environmental conditions. Oil samples were analyzed on a gas chromatograph equipped with a mass selective detector. Light crude oil was obtained from the oil cabin of a tanker which spilled oil near the Dalian Sea near China in April 2005. It was shown that the saturated hydrocarbons of light crude oil distribute between n-C 8 and n-C 23 . The most abundant n-alkanes are found in the n-C 10 to n-C 16 . The main chemical compositions of the light crude oil are the n-alkanes and the isoprenoids. The aromatic compounds are subordinate chemical compositions of the light crude oil. A simulated weathering experiment showed that less than n-C 12 of the n-alkanes, toluene, 1,3-dimethyl benzene is lost after 1 day of weathering. The n-C 13 , n-C 14 , naphthalene and 2-methyl-naphthalene are lost on the fifth day of weathering. N-C 15 alkane composition indicates some weatherproof capability. The ratios of n-C 17 /pristine and n-C 18 /phytane were unchanged and useful in identifying the source of the light crude oil during the first 8-day weathering period. By the twenty-first day of weathering, the chemical composition underwent extreme alteration, and the source of the pollution could not be determined by the ratios of pristine/phytane. 12 refs., 3 tabs., 7 figs

  5. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  6. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  7. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Song, J.S.

    2009-01-01

    This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility

  8. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus.

    Science.gov (United States)

    Lutzu, Giovanni Antonio; Zhang, Wei; Liu, Tianzhong

    2016-01-01

    This work investigates the potential use of a brewery wastewater as a medium for the cultivation of the oleaginous species Scenedesmus dimorphus with the double aim of removing nutrients and to produce biomass as feedstock for biodiesel. For this purpose, effects of nitrogen (61.8-247 mg L(-1)), phosphorous (1.4-5.5 mg L(-1)), and iron (1.5-6 mg L(-1)) concentrations on growth, nutrients uptake, lipid accumulation, and fatty acids profile of this microalga were investigated. Results showed that brewery wastewater can be used as a culture medium even if nitrogen and phosphorous concentrations should have been modified to improve both biomass (6.82 g L(-1)) and lipid accumulation (44.26%). The analysis revealed a C16-C18 composition of 93.47% fatty acids methyl esters with a relative high portion of unsaturated ones (67.24%). High removal efficiency (>99%) for total nitrogen and total phosphorous and a reduction of up to 65% in chemical oxygen demand were achieved, respectively. The final microalgae biomass, considering its high lipid content as well as its compliance with the standards for the quality of biodiesel, and considering also the high removal efficiencies obtained for macronutrients and organic carbon, makes the brewery wastewater a viable option as a priceless medium for the cultivation of microalgae.

  9. Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2 composites.

    Science.gov (United States)

    Nomura, Youhei; Fukahori, Shuji; Fukada, Haruhisa; Fujiwara, Taku

    2017-10-15

    Removal efficiencies of sulfamonomethoxine (SMM) and its degradation intermediates formed by treatment with zeolite/TiO 2 composites through adsorption and photocatalysis were investigated in fresh aquaculture wastewater (FAWW). Coexistent substances in the FAWW showed no inhibitory effects against SMM adsorption. Although coexistent substances in the FAWW inhibited the photocatalytic decomposition of SMM, the composites mitigated the inhibition, possibly because of concentration of SMM on their surface by adsorption. LC/MS/MS analyses revealed that hydroxylation of amino phenyl and pyrimidinyl portions, transformation of the amino group in the amino phenyl portion into a nitroso group, and substitution of the methoxy group with a hydroxyl group occurring in the initial reaction resulted in the formation of various intermediates during the photocatalysis of SMM. All detected intermediates had a ring structure, and almost all intermediates disappeared at the same time SMM was completely decomposed. Ph-OH formed by hydroxylation of the phenyl portion was detected upon decomposition of SMM during photocatalysis. The removal of Ph-OH by the composites proceeded more rapidly than that by TiO 2 alone under ultraviolet irradiation. The SMM and Ph-OH were completely degraded by the composites within 30min, showing that the zeolite/TiO 2 composites were effective in removing SMM and its intermediates from FAWW. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  11. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Directory of Open Access Journals (Sweden)

    Affam Augustine Chioma

    2018-01-01

    Full Text Available Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal. It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  12. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Science.gov (United States)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  13. Anaerobic fluidized bed treatment of a tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.J.; Li, C.T.; Shieh, W.K.

    1988-11-01

    The anaerobic fluidized bed system, in conjunction with neutralization and chemical coagulation/flocculation, was evaluated for treatment of a tannery wastewater produced from a chrome tanning operation. Neutralization with 1 N sulphuric acid was effective for removal of chromate, with complete removal achieved at pH=8.0. Chemical coagulation/flocculation with alum at a dosage of 200 mg/L was able to remove 97% of feed SS and 65% of feed grease. Evaluation of the performance of the anaerobic fluidized bed system indicated more than 75% of feed COD could be removed up to an F/M ratio of approximately 0.4 g COD/g TVS center dot day. The observed methane production rate was 0.221 of CH/sub 4/ produced per gram COD removed. The anaerobic fluidized bed system could provide an effective treatment of a pretreated tannery wastewater.

  14. Toxicological characterization of chemicals produced from laser irradiation of graphite composite materials

    International Nuclear Information System (INIS)

    Kwan, J.

    1990-11-01

    One of the major potential hazards associated with laser machining of graphite composite materials is the toxic fumes and gases that are generated. When exposed to the intense energy of the laser beam, the organic polymer matrix of the composite material may decompose into various toxic by-products. To advance the understanding of the laser machining process from a health and safety viewpoint, this particular study consisted of the following steps: collect and analyze gaseous by-products generated during laser machining; collect particulates generated during laser machining and chemically extract them to determine the chemical species that may have absorbed or recondensed onto these particles; and review and evaluate the toxicity of the identified chemical species

  15. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  16. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  17. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts

    OpenAIRE

    Lu, Qing‐Yi; Summanen, Paula H.; Lee, Ru‐Po; Huang, Jianjun; Henning, Susanne M.; Heber, David; Finegold, Sydney M.; Li, Zhaoping

    2017-01-01

    Abstract The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP‐HPLC‐DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects o...

  18. The effect of chemically adjusting cement compositions on leachabilities of waste ions

    International Nuclear Information System (INIS)

    Barnes, M.W.; Scheetz, B.E.; Roy, D.M.

    1986-01-01

    The chemical composition of both portland and aluminate cements was adjusted by adding amorphous silica. In the case of portland cement, the object was to react with excess portlandite and obtain an overall composition compatible with C-S-H gel or C-S-H gel + silica at low temperatures, and to obtain the tobermorite composition in order to be in equilibrium with this phase at temperatures above normal ambient. In the case of aluminate cement, the object was to be in equilibrium with more silica-rich phases. These silica-adjusted cements were used to make composites with nuclear waste forms. Leach tests showed that the silica-adjusted composites were chemically more stable than those made with as-received cement. Leach rates were lower in the case of the adjusted cements for Rb, Cs, Ca, Sr, Ba, La, Ce, Nd, Gd, Al, and Si. Only Na in the case of both portland and aluminate cements, and Mg and U in the case of aluminate cements, had greater leach rates in adjusted cements. Adjusting the composition of cements with silica is concluded to be beneficial when making composites to encapsulate nuclear waste forms

  19. Estimation of chemical carcass composition from 8th rib characteristics with Belgian blue double-muscled bulls.

    Science.gov (United States)

    De Campeneere, S; Fiems, L O; Van de Voorde, G; Vanacker, J M; Boucque, C V; Demeyer, D I

    1999-01-01

    Characteristics from the 8th rib cut: chemical composition, tissue composition after dissection, specific gravity (SG) and m. longissimus thoracis (LT) composition, collected on 17 Belgian Blue double-muscled fattening bulls were used to generate equations for predicting chemical carcass composition. Carcass composition was best predicted from chemical analysis of the 8th rib cut and the empty body weight (EBW) of the bull. Carcass chemical fat content (CCF, kg) was predicted from the 8th rib cut fat content (ether extract, 8RF, kg) by the following regression: CCF=1.94+27.37 8RF (R(2)=0.957, RSD =9.89%). A higher coefficient was found for carcass water (CCW, kg) predicted from 8RF and EBW: CCW=-2.26+0.28 EBW-34.28 8RF (R(2)=0.997, RSD=1.48%). No parameter was found to improve the prediction of CCP from EBW solely: CCP=-0.86+0.08 EBW (R(2) =0.992, RSD=2.61%). Prediction equations based solely on LT composition had low R(2) values of between 0.38 and 0.67, whereas no significant equations were found using SG. However, equations based on EBW had R(2) values between 0.78 and 0.99. Chemical components of the 8th rib cut in combination with EBW are most useful in predicting the chemical composition of the carcass of Belgian-Blue double-muscled bulls.

  20. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Kim, S.M.; Makaov, I.E.; Ponomarev, A.V.

    2006-01-01

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  1. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  2. The effect of wastewater pretreatment on nanofiltration membrane performance

    Directory of Open Access Journals (Sweden)

    Ali Hashlamon

    2017-03-01

    Full Text Available Membrane fouling is considered a serious obstacle for operation and cost efficiency in wastewater treatment using nanofiltration (NF. However, pretreatment is the most practical way to reduce this prior to NF. In this research, two types of wastewaters were pretreated with different methods prior to NF to examine the effect of pretreatment on membrane fouling in terms of turbidity, chemical oxygen demand (COD and permeate flux. Turbidity and COD were measured to assess solid foulants and organic species in the wastewater, respectively. The first sample was secondary treated sewage, which was pretreated using coagulation-flocculation-sedimentation (CFS only. Steady flux was increased from 24 L/m2h for wastewater without pretreatment to 32.1 L/m2h with pretreatment. COD was also eliminated after CFS/NF, and turbidity was reduced to 0.6 NTU. The second sample was diluted biodiesel wastewater, which was pretreated using a combination of powdered-activated carbon (PAC adsorption and CFS (PAC/CFS. Steady flux was increased from 22.3 L/m2h for wastewater without pretreatment to 28.7 L/m2h with pretreatment; biodiesel wastewater quality also improved. Turbidity was reduced from 12 to 0.6 NTU, and COD was reduced from 526 to 4 mg/L after NF with PAC/CFS pretreatment, while COD was reduced from 526 to 95 mg/L using NF without pretreatment.

  3. Recovery of nitrogen from saponification wastewater by struvite precipitation.

    Science.gov (United States)

    Huang, Haiming; Xiao, Xianming; Yang, Liping; Yan, Bo

    2010-01-01

    In general, saponification wastewater produced from the separation process of rare-earth elements contains high ammonium concentration. In this study, a series of experiments were conducted to investigate the parameters to enhance the struvite precipitation potential for ammonium removal from the wastewater having an ammonium concentration of 4,100 mg/L. Experimental results showed that increasing the dose and grain size of pre-formed struvite, which was added as the seeding material in struvite reaction, could increase ammonium removal. The removal efficiency increased 7.6% when the dose of pre-formed struvite with crystal grain size range of 0.098-0.150 mm increased from 0 g/L to 60 g/L. Additionally, struvite precipitation was tested with the intermittent addition of magnesium and phosphate to utilize the struvite crystals formed during the reaction process as the seeding material for the subsequent reaction. The results revealed that intermittently adding magnesium 7 times effectively enhanced ammonium removal by around 8%, which was equivalent to that of using pre-formed struvite as the seeding material. Furthermore, the chemical composition of the struvite recovered with intermittent addition of magnesium was characterized, showing the struvite could be used as fertilizer. An economic evaluation indicated that intermittent addition of magnesium 7 times can save 13.4% cost for recovering per kg NH(4)(+) compared to that of bulk addition.

  4. Research About the Corosive Effects of FeCl3 in the Aeration Wastewater Basin

    Science.gov (United States)

    Panaitescu, C.; Petrescu, M. G.

    2018-01-01

    Biological aeration of industrial wastewater is a very impressive process in the treatment of wastewater. The involvement of chemical reagents in this process, however, implies the intensification of the corrosion processes due to both pollutants in the wastewater and the chemical reactions that occur when the coagulation / flocculation reagents are added. This paper explores the action of ferric chloride (FeCl3) on metallic parts in the aeration basin. The most affected structures are metal. At the classical basins the aeration systems were made of P295GH materials. The corrosion produced is uneven. The analysis of the high degree of corrosion was done according to the national and international standards. Finally, the paper supports the replacement of the existing aeration system with an anticorrosive material.

  5. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis

    DEFF Research Database (Denmark)

    Niero, Monia; Pizzol, Massimo; Gundorph Bruun, Henrik

    2014-01-01

    Wastewater treatment has nowadays multiple functions and produces both clean effluents and sludge, which is increasingly seen as a resource rather than a waste product. Technological as well as management choices influence the performance of wastewater treatment plants (WWTPs) on the multiple...... functions. In this context, Life Cycle Assessment (LCA) can determine what choices provide the best environmental performance. However, the assessment is not straightforward due to the intrinsic space and time-related variability of the wastewater treatment process. These challenges were addressed...... in a comparative LCA of four types of WWTPs, representative of mainstream treatment options in Denmark. The four plant types differ regarding size and treatment technology: aerobic versus anaerobic, chemical vs. combined chemical and biological. Trade-offs in their environmental performance were identified...

  6. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  7. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  8. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Science.gov (United States)

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  9. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Digby Wrede

    Full Text Available The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm, large (over 300 µm, heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  10. In vivo ultrasound and biometric measurements predict the empty body chemical composition in Nellore cattle.

    Science.gov (United States)

    Castilhos, A M; Francisco, C L; Branco, R H; Bonilha, S F M; Mercadante, M E Z; Meirelles, P R L; Pariz, C M; Jorge, A M

    2018-05-04

    Evaluation of the body chemical composition of beef cattle can only be measured postmortem and those data cannot be used in real production scenarios to adjust nutritional plans. The objective of this study was to develop multiple linear regression equations from in vivo measurements, such as ultrasound parameters [backfat thickness (uBFT, mm), rump fat thickness (uRF, mm), and ribeye area (uLMA, cm2)], shrunk body weight (SBW, kg), age (AG, d), hip height (HH, m), as well as from postmortem measurements (composition of the 9th to 11th rib section) to predict the empty body and carcass chemical composition for Nellore cattle. Thirty-three young bulls were used (339 ± 36.15 kg and 448 ± 17.78 d for initial weight and age, respectively). Empty body chemical composition (protein, fat, water, and ash in kg) was obtained by combining noncarcass and carcass components. Data were analyzed using the PROC REG procedure of SAS software. Mallows' Cp values were close to the ideal value of number of independent variables in the prediction equations plus one. Equations to predict chemical components of both empty body and carcass using in vivo measurements presented higher R2 values than those determined by postmortem measurements. Chemical composition of the empty body using in vivo measurements was predicted with R2 > 0.73. Equations to predict chemical composition of the carcass from in vivo measurements showed R2 lower (R2Chemical compounds from components of the empty body of Nellore cattle can be calculated by the following equations: protein (kg) = 47.92 + 0.18 × SBW - 1.46 × uRF - 30.72 × HH (R2 = 0.94, RMSPE = 1.79); fat (kg) = 11.33 + 0.16 × SBW + 2.09 × uRF - 0.06 × AG (R2 = 0.74, RMSPE = 4.18); water (kg) = - 34.00 + 0.55 × SBW + 0.10 × AG - 2.34 × uRF (R2 = 0.96, RMSPE = 5.47). In conclusion, the coefficients of determination (for determining the chemical composition of the empty body) of the equations derived from in vivo measures were higher than those

  11. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  12. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Tian, Zhe; Gao, Yingxin; Yang, Min

    2016-09-01

    The combined anaerobic-aerobic biosystem is assumed to consume less energy for the treatment of high strength industrial wastewater. In this study, pollutant removal performance and microbial diversity were assessed in a long-term (over 300 days) bench-scale sequential anaerobic-aerobic bioreactor treating coking wastewater. Anaerobic treatment removed one third of the chemical oxygen demand (COD) and more than half of the phenols with hydraulic retention time (HRT) of 42 h, while the combined system with total HRT of 114 h removed 81.8, 85.6, 99.9, 98.2, and 85.4 % of COD, total organic carbon (TOC), total phenols, thiocyanate, and cyanide, respectively. Two-dimensional gas chromatography with time-of-flight mass spectrometry showed complete removal of phenol derivatives and nitrogenous heterocyclic compounds (NHCs) via the combined system, with the anaerobic process alone contributing 58.4 and 58.6 % removal on average, respectively. Microbial activity in the bioreactors was examined by 454 pyrosequencing of the bacterial, archaeal, and fungal communities. Proteobacteria (61.2-93.4 %), particularly Betaproteobacteria (34.4-70.1 %), was the dominant bacterial group. Ottowia (14.1-46.7 %), Soehngenia (3.0-8.2 %), and Corynebacterium (0.9-12.0 %), which are comprised of phenol-degrading and hydrolytic bacteria, were the most abundant genera in the anaerobic sludge, whereas Thiobacillus (6.6-43.6 %), Diaphorobacter (5.1-13.0 %), and Comamonas (0.2-11.1 %) were the major degraders of phenol, thiocyanate, and NHCs in the aerobic sludge. Despite the low density of fungi, phenol degrading oleaginous yeast Trichosporon was abundant in the aerobic sludge. This study demonstrated the feasibility and optimization of less energy intensive treatment and the potential association between abundant bacterial groups and biodegradation of key pollutants in coking wastewater.

  13. Wastewater-based epidemiology, an analytical chemical approach for the investigation of human consumption of lifestyle chemicals

    NARCIS (Netherlands)

    Causanilles Llanes, A.

    2018-01-01

    The research presented in this thesis supports the hypothesis that wastewater-based epidemiology (WBE) approach can be used as an alternative and non-intrusive technique that provides information about a population’s health and lifestyle habits. The focus is in the essential role of analytical

  14. Properties of magnetic iron oxides used as materials for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Matei, E; Predescu, A; Predescu, A [Politehnica University of Bucharest, Faculty of Science and Engineering Materials, 313 Splaiul Independentei, 060042, Bucharest (Romania); Vasile, E, E-mail: ecaterina.matei@ecomet.pub.ro [METAV CD, 31 C.A. Rosetti Street, 020011, Bucharest (Romania)

    2011-07-06

    The paper describes the properties of some nanopowders obtained by coprecipitation and used as adsorbent for wastewater treatment. The Fe{sub 3}O{sub 4} and {gamma}-Fe{sub 2}O{sub 3} nanopowders were obtained using iron salts and NaOH as precipitation agents. D-sorbitol was used to prevent the agglomeration between the nanoparticles. The particle size and distribution were detected using a transmission electron microscopy (TEM) and a scanning electron microscope (SEM) equipped with dispersive analyze system in X radiation energy (EDS). The structure of the iron oxide nanoparticles was characterized by X-ray powder diffraction. Thus, the nanoparticles were characterized and compare in terms of particle size and chemical composition and used for adsorption studies in order to removal hexavalent chromium from waste waters.

  15. On performance capabilities of alkaline anolyte in wastewater management

    International Nuclear Information System (INIS)

    Shimkevich, Alexander

    2014-01-01

    A concept for electric converting a saline wastewater into basic solution (pH > 7) with a positive RedOx potential (alkaline anolyte) is considered. Such the medium can be obtained in situ at flowing wastewater via a special electrochemical cell with strongly polarized cathode (generating hydroxide anions) and quasi-equilibrium anode which intensively discharges hydroxide ions to hydroxyl radicals into the wastewater. The radicals will oxidize anions of strong acid and convert them into weak-acid micro precipitates in the flowing basic solution. These renewable nano-sorbents will uninterruptedly co-precipitate radioactive contamination from wastewater and be agglomerated as corrosion by-products in the felt-like anode. The consideration of liquid water as a chemical compound with a wide band gap shows that the anolyte (as a hyper-stoichiometric water, H 2 O 1+|x| ) is a simple and effective tool for varying physical and chemical properties of the aqueous solution due to forced changing its RedOx potential as one needs. This potential as Fermi level in the band gap of liquid water is the most convenient parameter for monitoring and managing the electrochemical potential of the aqueous medium. Its hyper-stoichiometric state is realized when Fermi level is shifted to the top of a valence band. This electro-oxidized state as the alkaline anolyte is characterized by an acceptor level, OH/OH - , partially occupied by electrons. Then, the hydroxyl radical (OH • ) as the strongest oxidizer will oxidize intensively the metal anode and renew its surface for great removal of radio-nuclides from the wastewater due to their large specific area of renewable surface of hydroxide absorber on the felt-like anode. (author)

  16. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities.

    Science.gov (United States)

    Chonova, Teofana; Keck, François; Labanowski, Jérôme; Montuelle, Bernard; Rimet, Frédéric; Bouchez, Agnès

    2016-01-15

    Hospital wastewaters (HWW) contain wider spectrum and higher quantity of pharmaceuticals than urban wastewaters (UWW), but they are generally discharged in sewers without pretreatment. Since traditional urban wastewater treatment plants (WWTP) are not designed to treat HWWs, treated effluents may still contain pollutants that could impair receiving aquatic environments. Hence, a better understanding of the effect of pharmaceuticals in the environment is required. Biofilms are effective "biological sensors" for assessing the environmental effects of pharmaceuticals due to their ability to respond rapidly to physical, chemical and biological fluctuations by changes in their structure and composition. This study evaluated the efficiency of biological treatment with conventional activated sludge system performed parallel on HWW and UWW. Furthermore, six successive monthly colonizations of biofilms were done on autoclaved stones, placed in grid-baskets in the hospital treated effluents (HTE) and urban treated effluents (UTE). The biomass of these biofilms as well as the structure and diversity of their bacterial communities were investigated. Results showed better treatment efficiency for phosphate and nitrite/nitrate during the treatment of UWW. Pharmaceuticals from all investigated therapeutic classes (beta-blockers, nonsteroidal anti-inflammatory drugs, antibiotics, analgesics and anticonvulsants) were efficiently removed, except for carbamazepine. The removal efficiency of the antibiotics, NSAIDs and beta-blockers was higher during the treatment of HWW. HTE and UTE shaped the bacterial communities in different ways. Higher concentrations of pharmaceuticals in the HTE caused adapted development of the microbial community, leading to less developed biomass and lower bacterial diversity. Seasonal changes in solar irradiance and temperature, caused changes in the community composition of biofilms in both effluents. According to the removal efficiency of pharmaceuticals

  17. Chemical composition of essential oil of exudates of Dryobalanops ...

    African Journals Online (AJOL)

    Purpose: To identify the chemical composition of essential oil from the exudates of Dryobalanops aromatica from Malaysia. Methods: Exudate was collected from D. aromatica and subjected to fractional distillation to obtain essential oil. Gas chromatography-mass spectrometry (GC-MS) was used to characterize the ...

  18. Chemical Composition and Antifungal Properties of Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of the essential oil of Origanum vulgare Linnaeus (Lamiaceae) on the growth of Sporothrix schenckii and Sporothrix brasiliensis. Methods: The chemical composition of the essential oil was investigated by gas chromatography/flame ionization detector (GC-FID). The minimum inhibitory ...

  19. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  20. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.

    Science.gov (United States)

    Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A

    2016-01-01

    The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    Science.gov (United States)

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  2. Chemical composition of patikaraparpam.

    Science.gov (United States)

    Saraswathy, A; Rani, M G; Susan, T; Purushothaman, K K

    1997-04-01

    Patikaraparpam, a Siddha formulation in prepared by trituration of potash alum with egg albumin followed by calcinatin. The three authentic laboratories made parpams as well as six commercial samples have been examined for their chemical composition. The analytical data that emerged from the analysis of the above samples showed that seven parpams contained only aluminium sulphate and they did respond to tests for potassium. An inspection of the crude drugs patikaram' available in the market established that potash alum and ammonia alum are indiscriminateldy taken for use, according to literature, only potash alum should be used in Indian system of medicine. Patikarapparapam is indicated in urinary inflammations and obstructions and is a reputed diuretic. Potassium salts are established diuretic. These studies show that the raw drugs sellers, the pharamaceutists or manufacturers of medicine and the physician as well should make sure that only potash alum is used in Indian medicine.

  3. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    International Nuclear Information System (INIS)

    Epicier, T.; Sato, K.; Tournus, F.; Konno, T.

    2012-01-01

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  4. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  5. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    Science.gov (United States)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  6. Preliminary study of chemical compositional data from Amazon ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A.; Neves, Eduardo G.; Oliveira, Paulo M.S.

    2005-01-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  7. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  8. Ecotoxicity of Wastewater from Medical Facilities: A Review

    Directory of Open Access Journals (Sweden)

    Cidlinová A.

    2018-03-01

    Full Text Available Wastewater from medical facilities contains a wide range of chemicals (in particular pharmaceuticals, disinfectants, heavy metals, contrast media, and radionuclides and pathogens, therefore it constitutes a risk to the environment and human health. Many micropollutants are not efficiently eliminated during wastewater treatment and contaminate both surface water and groundwater. As we lack information about the long-term effects of low concentrations of micropollutants in the aquatic environment, it is not possible to rule out their adverse effects on aquatic organisms and human health. It is, therefore, necessary to focus on the evaluation of chronic toxicity in particular when assessing the environmental and health risks and to develop standards for the regulation of hazardous substances in wastewater from medical facilities on the basis of collected data. Wastewater from medical facilities is a complex mixture of many compounds that may have synergetic, antagonistic or additive effects on organisms. To evaluate the influence of a wide range of pollutants contained in the effluents from medical facilities on aquatic ecosystems, it is necessary to determine their ecotoxicity.

  9. ELECTRICITY GENERATION FROM SWINE WASTEWATER USING MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Chimezie Jason Ogugbue

    2015-11-01

    Full Text Available Electricity generation from swine wastewater using microbial fuel cell (MFC was investigated. Swine wastewater was collected into dual-chambered (aerobic and anaerobic fuel cell. The maximum power output using copper and carbon electrodes were 250.54 and 52.33 µW, while 10.0 and 5.0 cm salt bridge length between the cathode and anode were 279.50 and 355.26 µW, respectively. Potassium permanganate and ordinal water gave a maximum power output of 1287.8 and 13 9.18 µW. MFCs utilize microbial communities to degrade organic materials found within wastewater and converted stored chemical energy to electrical energy in a single step. The initial bacterial and fungal counts were 7.4×106 and 1.1×103 CFU ml-1. Bacterial counts steadily increased with time to 1.40×107 CFU ml-1 while fungal count declined to 4.4×106 CFU ml-1 after day 60. The declined in microbial counts may be attributed to the time necessary for acclimatization of microbes to the anode. The genera identified were Bacillus, Citrobacter, Pseudomonas, Lactobacillus, Escherichia coli, Aspergillus and Rhizopus. These microbes acted as primary and secondary utilizers, utilizing carbon and other organics of the wastewater. Chemical parameters indicated that the biochemical oxygen demand ranged from 91.4–23.2 mg/L, giving 75% while the chemical oxygen demand ranged from 243.1–235.2 mg/L, representing 3.3%. Although, the metabolic activities of microbes were responsible for the observed degradation, leading to electricity, the overall power output depended on the distance between the anode and cathode compartment, types of electrode materials and mediators and oxygen reaction at the cathode.

  10. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate.

    Science.gov (United States)

    Bedbabis, Saida; Ben Rouina, Béchir; Boukhris, Makki; Ferrara, Giuseppe

    2014-01-15

    In Tunisia, water scarcity is one of the major constraints for agricultural activities. The reuse of treated wastewater (TWW) in agriculture can be a sustainable solution to face water scarcity. The research was conducted for a period of four years in an olive orchard planted on a sandy soil and subjected to irrigation treatments: a) rain-fed conditions (RF), as control b) well water (WW) and c) treated wastewater (TWW). In WW and TWW treatments, an annual amount of 5000 m(3) ha(-1) of water was supplied to the orchard. Soil samples were collected at the beginning of the study and after four years for each treatment. The main soil properties such as electrical conductivity (EC), pH, soluble cations, chloride (Cl(-)), sodium adsorption ratio (SAR), organic matter (OM) as well as the infiltration rate were investigated. After four years, either a significant decrease of pH and infiltration rate or a significant increase of OM, SAR and EC were observed in the soil subjected to treated wastewater treatment. Copyright © 2013. Published by Elsevier Ltd.

  11. Researching the technology of tar removal from coke-chemical plants’ wastewater by reagent flotation method

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-03-01

    Full Text Available The study aims to identify process patterns of tars and oils removal from phenolic wastewater by reagent flotation with bringing those components’ content to acceptable concentrations. For the first time established is the effect of Al2(SO43, AlCl3, FeSO4, Fe2(SO43, Al2(OH5Cl and FeCl3 doses onto residual tar content in phenolic wastewater. Results obtained give the possibility to prevent air pollution resulting from the toxic substances emission at the wet quenching with water containing excessive oils and to increase the quality of wastewater biological treatment. It is shown experimentally that the most efficient are Fe2(SO43, FeCl3 and Al2(OH5Cl at optimum concentrations of 50, 30 and 30 mg/dm3 respectively. The Al2(OH5Cl can be recommended for implementation at industry on existing coking plants and municipal wastewater treatment plants to improve the environmental air and water resources condition in Ukraine.

  12. Reuse the pulp and paper industry wastewater by using fashionable technology

    Science.gov (United States)

    Sudarshan, K.; Maruthaiya, K.; Kotteeswaran, P.; Murugan, A.

    2017-10-01

    This proposed method is a promising way, which can be implemented in pulp and paper industries by effective removal of the color and chemical oxygen demand (COD) and the resulting treated water may surely reuse to the other streams. Fourier Transformer Infra Red spectra confirmed the presence of the respective functional groups in the removed pollutants from the wastewater. The efficiency of Non-ferric Alum (NF Alum) and cationic polyacrylamide (C-PAM) with and without power boiler fly ash was also studied. The reduction efficiency of color and chemical oxygen demand (COD) is evaluated at the optimum dosage of NF Alum, fly ash, and C-PAM. At the optimized pH attained from these coagulants using to treat the wastewater, the flocs formation/settling and the pollutant removal efficiency are encouraging and the resulting color of the wastewater is to 40 PtCo units from 330 PtCo units and COD to 66 mg/L from 218 mg/L. While using NF Alum alone with C-PAM for the treatment of wastewater, the highest reduction efficiency of COD is 97 mg/L from 218 mg/L and the color is 60 from 330 PtCo units at pH 4.8 was noted. From these observations, NF Alum and power boiler fly ash with C-PAM can effectively remove the pollutants from the pulp and paper mill wastewater and the water can be reused for other streams.

  13. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  14. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Melinda NAGY

    2017-05-01

    Full Text Available Over the last decades, the consumption of mushrooms has significantly increased due to the scientific evidence of their ability to help the organism in the combat and prevention of several diseases (Kalac, 2009. Fruiting bodies of mushrooms are consumed as a delicacy for their texture and flavour, but also for their nutritional properties that makes them even more attractable (Heleno S. 2015. In this paper data were collected from several scientific studies with the aim to characterize the chemical composition and content of bioactive compounds of various mushrooms species: Agaricus bisporus, Boletus edulis, Cantharellus cibarius, Pleurotus ostreatus, Lactarius piperatus. The chemical composition of 5 wild edible studied mushrooms, including moisture, ash, total carbohydrates, total sugars, crude fat, crude protein and energy were determined according to AOAC procedures.

  15. Removal of nitrogen from anaerobically digested swine wastewater ...

    African Journals Online (AJOL)

    This result indicates that the sulfur-packed biofilter would be used as an efficient option for denitrification by autotrophic denitrifiers during swine wastewater treatment. Key words: Biological nitrogen removal, nitrification, denitrification, chemical oxygen demand (COD), intermittent aeration, sulfur-packed bed reactor, swine ...

  16. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    International Nuclear Information System (INIS)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T.; Santiago, Gilvandete M.P.; Nascimento, Ronaldo F. do; Braz-Filho, Raimundo

    2009-01-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC 50 64.6 ± 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC 50 3.6 ± 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC 50 104.7 ± 0.2 and 34.7 ± 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  17. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  18. Can sonography define the chemical composition of gall stones

    International Nuclear Information System (INIS)

    Frentzel-Beyme, B.; Faehndrich, R.; Arnan-Thiele, B.

    1983-01-01

    Eight sonographic patterns caused by gall stones are described. In an attempt to explain these different appearances, 62 stones were analysed chemically and physically. The chemical composition of the stones did not correlate with their sonographic pattern. Cholesterol stones cannot be recognised as such by sonography. The formation of an acoustic shadow depends largely on the position of the stone within the acoustic beam. It therefore follows that the examination must be done by keeping the focal plane of the transducer in proper relationship to the stone. (orig.) [de

  19. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment

    International Nuclear Information System (INIS)

    Munoz, Ivan; Rodriguez, Antonio; Rosal, Roberto; Fernandez-Alba, Amadeo R.

    2009-01-01

    Life Cycle Assessment has been used to compare different scenarios involving wastewater reuse, with special focus on toxicity-related impact categories. The study is based on bench-scale experiments applying ozone and ozone in combination with hydrogen peroxide to a wastewater effluent from a Spanish sewage treatment plant. Two alternative characterisation models have been used to account for toxicity of chemical substances, namely USES-LCA and EDIP97. Four alternative scenarios have been assessed: wastewater discharge plus desalination supply, wastewater reuse without tertiary treatment, wastewater reuse after applying a tertiary treatment consisting on ozonation, and wastewater reuse after applying ozonation in combination with hydrogen peroxide. The results highlight the importance of including wastewater pollutants in LCA of wastewater systems assessing toxicity, since the contribution of wastewater pollutants to the overall toxicity scores in this case study can be above 90%. Key pollutants here are not only heavy metals and other priority pollutants, but also non-regulated pollutants such as pharmaceuticals and personal care products. Wastewater reuse after applying any of the tertiary treatments considered appears as the best choice from an ecotoxicity perspective. As for human toxicity, differences between scenarios are smaller, and taking into account the experimental and modelling uncertainty, the benefits of tertiary treatment are not so clear. From a global warming potential perspective, tertiary treatments involve a potential 85% reduction of greenhouse gas emissions when compared with desalination

  20. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  1. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  2. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  3. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    Science.gov (United States)

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  4. A study on the treatment of industrial wastewater containing heavy metals

    International Nuclear Information System (INIS)

    Yoon, Myoung Hwan; Jang, In Soon; Park, Jang Jin; Choi, Chang Shik; Lee, Yoon Hwan; Shin, Jin Myoung

    1993-06-01

    It is essential to treat heavy metals contained in industrial wastewater safely and economically for the protection of the environment. An effective method of separating heavy metals using acornic acid for the first time in the world must be utilized for wastewater treatment. One of the merits of this method lies in its cheap treatment cost. Furthermore, the secondary contamination, which occurs often when chemical purifiers are used, could be minimized. Another advantage of utilizing the acornic acid is that various kinds of heavy metals contained in industrial wastewater can be purified at once. The final purpose of this project is to commercialize the method by 1994. (Auther)

  5. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... undergo degradation during wastewater treatment. As these chemicals ... environmental factors, hormonal stimuli and by microbial attack (Nover and ... sowed in plastic pots (10 x 20 cm) containing a mixture of 1:2 perlite-peat.

  6. Chemical composition and toxicities of essential oil of Illicium ...

    African Journals Online (AJOL)

    The aim of this research was to determine the chemical composition and toxicities of essential oil derived from Illicium fargesii Finet et Gagnep fruits against the maize weevil (Sitophilus zeamais Motsch). Essential oil of I. fargesii fruits was obtained from hydrodistillation and was investigated by GC (Gas Chromatography) ...

  7. Effect of wastewater on properties of Portland pozzolana cement

    Science.gov (United States)

    Babu, G. Reddy

    2017-07-01

    This paper presents the effect of wastewaters on properties of Portland pozzolana cement (PPC). Fourteen water treatment plants were found out in the Narasaraopet municipality region in Guntur district, Andhra Pradesh, India. Approximately, from each plant, between 3500 and 4000 L/day of potable water is selling to consumers. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. During water treatment, plants are discharging approximately 1,00,000 L/day as wastewater in side drains in Narasaraopet municipality. Physical and chemical analysis was carried out on fourteen plants wastewater and distilled water as per producer described in APHA. In the present work, based on the concentrations of constituent's in wastewater, four typical plants i.e., Narasaraopeta Engineering College (NECWW), Patan Khasim Charitable Trust (PKTWW), Mahmadh Khasim Charitable Trust (MKTWW) and Amara (ARWW) were considered. The performance of four plants wastewater on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were performed in laboratories and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time but setting times of selected wastewaters were retarded as compared to that of reference water. Almost, no change was observed in 90 days compressive and flexural strengths in four plants wastewaters specimens compared to that of reference water specimens. XRD technique was employed to find out main hydration compounds formed in the process.

  8. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    Science.gov (United States)

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  9. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  10. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  11. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Khalil, H.P.S. Abdul; Bakar, A. Abu; Khanam, P. Noorunnisa

    2011-01-01

    Tri layer hybrid composites of oil palm empty fruit bunches (EFB) and jute fibres was prepared by keeping oil palm EFB as skin material and jute as the core material and vice versa. The chemical resistance, void content and tensile properties of oil palm EFB/Jute composites was investigated with reference to the relative weight of oil palm EFB/Jute, i.e. 4:1, the fibre loading was optimized and different layering pattern were investigated. It is found from the chemical resistance test that all the composites are resistant to various chemicals. It was observed that marked reduction in void content of hybrid composites in different layering pattern. From the different layering pattern, the tensile properties were slightly higher for the composite having jute as skin and oil palm EFB as core material. Scanning electron microscopy (SEM) was used to study tensile fracture surfaces of different composites.

  12. Alternative Treatment Technologies for Low-Cost Industrial and Municipal Wastewater Management

    OpenAIRE

    Hodges, Alan J.

    2017-01-01

    Roughly the same volume of water that rushes over the Niagara Falls is produced as wastewater in North America. This wastewater is treated through a variety of means to ensure that it can be safely returned to the natural ecosystem. This thesis examines two novel means for this treatment, one biological and one physical-chemical in nature, namely, Rotating Algae Biofilm Reactor treatment and expanded shale augmented coagulation-flocculation. Rotating algae biofilm reactors (RABRs) support ...

  13. Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites

    Science.gov (United States)

    Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi

    2017-12-01

    Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.

  14. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Young; Seok, Hyun-Woo [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Kwon, Hye-Ok; Choi, Sung-Deuk [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919 (Korea, Republic of); Seok, Kwang-Seol [Chemical Research Division, National Institute of Environmental Research, Incheon 22689 (Korea, Republic of); Oh, Jeong Eun [Department of Civil and Environmental Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑{sub 11}PFAAs concentrations were detected in the influent and effluent from the paper (median: 411 ng/L) and textile (median: 106 ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49–66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0 ng/g) and chemical (median: 81.5 ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146 ton/yr. The textile industry had the highest discharge load with 0.055 ton/yr (PFOA: 0.039 ton/yr, PFOS: 0.010 ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489 ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored. - Highlights: • 11 PFAAs in wastewater and sludge from 5 industrial sectors were investigated. • PFOA and PFOS were the dominant in wastewater while PFOS was predominant in sludge. • The total discharge loads from 5 industrial sectors 0.146 ton/yr. • The textile industry showed the highest discharge load with 0.055 ton/yr.

  15. Removal of an endocrine disrupting chemical (17 alpha-ethinyloestradiol) from wastewater effluent by activated carbon adsorption: Effects of activated carbon type and competitive adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ifelebuegu, A.O.; Lester, J.N.; Churchley, J.; Cartmell, E. [Cranfield University, Cranfield (United Kingdom). School of Water Science

    2006-12-15

    Granular activated carbon has been extensively used for the adsorption of organic micropollutants for potable water production. In this study the removal of an endocrine disrupting chemical from wastewater final effluent by three types of granular activated carbon (wood, coconut and coal based) has been investigated in batch adsorption experiments and correlated with the removal of chemical oxygen demand (COD), total organic carbon (TOC) and ultraviolet absorbance (UV). The results obtained demonstrated 17 alpha-ethinyloestradiol (EE2) removals of 98.6%, 99.3%, and 96.4% were achieved by the coal based (ACo), coconut based (ACn) and wood based (AWd) carbons respectively at the lowest dose of carbon (0.1 gl{sup -1}). The other adsorbates investigated all exhibited good removal. At an equilibrium concentration of 7 mgl{sup -1} the COD adsorption capacities were 3.16 mg g{sup -1}, 4.8 mg g{sup -1} and 7.1 mg g{sup -1} for the wood, coconut and coal based carbons respectively. Overall, the order of removal efficiency of EE2 and the other adsorbates for the three activated carbons was ACn {gt} ACo {gt} AWd. The adsorption capacities of the carbons were found to be reduced by the effects of other competing adsorbates in the wastewater effluent.

  16. Forward osmosis niches in seawater desalination and wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Bucs, Szilard; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v

  17. Removal of reactive dyes from wastewater by shale

    Directory of Open Access Journals (Sweden)

    Jareeya Yimrattanabovorn

    2012-02-01

    Full Text Available Colored textile effluents represent severe environmental problems as they contain mixture of chemicals, auxiliariesand dyestuffs of different classes and chemical constitutions. Elimination of dyes in the textile wastewater by conventionalwastewater treatment methods is very difficult. At present, there is a growing interest in using inexpensive and potentialmaterials for the adsorption of reactive dyes. Shale has been reported to be a potential media to remove color from wastewaterbecause of its chemical characteristics. In this study, shale was used as an adsorbent. The chosen shale had particlesizes of : A (1.00 < A < 2.00 mm, B (0.50 < B < 1.00 mm, C (0.25 < C < 0.50 mm, D (0.18 < D < 0.25 mm and E (0.15 < E < 0.18mm. Remazol Deep Red RGB (Red, Remazol Brilliant Blue RN gran (Blue and Remazol Yellow 3RS 133% gran (Yellow wereused as adsorbates. Batch adsorption experiments were performed to investigate the effect of contact time, pH, temperatureand initial dye concentration. It was found that the equilibrium data were best described by the Langmuir isotherm model,with the maximum monolayer adsorption capacities of 0.0110-0.0322 mg/g for Red, 0.4479-1.1409 mg/g for Blue and 0.0133-0.0255 mg/g for Yellow, respectively. The maximum adsorption capacity of reactive dye by shale occurred at an initial pH of 2,initial concentration of 700 Pt-Co and temperature 45°C. Reactive dye adsorption capacities increased with an increase of theinitial dye concentration and temperature whereas with a decrease of pH. The fixed bed column experiments were appliedwith actual textile wastewater for estimation of life span. The results showed that COD and color removal efficiencies of shalefix bed column were 97% and 90%, respectively. Also the shale fixed bed columns were suitable for using with textile effluentfrom activated sludge system because of their COD and color removal efficiencies and life expectancy comparison using withdyebath wastewater and raw

  18. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M.; Logan, Bruce E.

    2013-01-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  19. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    KAUST Repository

    Ren, Lijiao

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. © 2013 Elsevier Ltd.

  20. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.