WorldWideScience

Sample records for component aerosol direct

  1. Direct radiative effect by multicomponent aerosol over China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  2. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition

    Science.gov (United States)

    Pilinis, Christodoulos; Pandis, Spyros N.; Seinfeld, John H.

    1995-09-01

    We evaluate, using a box model, the sensitivity of direct climate forcing by atmospheric aerosols for a "global mean" aerosol that consists of fine and coarse modes to aerosol composition, aerosol size distribution, relative humidity (RH), aerosol mixing state (internal versus external mixture), deliquescence/crystallization hysteresis, and solar zenith angle. We also examine the dependence of aerosol upscatter fraction on aerosol size, solar zenith angle, and wavelength and the dependence of single scatter albedo on wavelength and aerosol composition. The single most important parameter in determining direct aerosol forcing is relative humidity, and the most important process is the increase of the aerosol mass as a result of water uptake. An increase of the relative humidity from 40 to 80% is estimated for the global mean aerosol considered to result in an increase of the radiative forcing by a factor of 2.1. Forcing is relatively insensitive to the fine mode diameter increase due to hygroscopic growth, as long as this mode remains inside the efficient scattering size region. The hysteresis/deliquescence region introduces additional uncertainty but, in general, errors less than 20% result by the use of the average of the two curves to predict forcing. For fine aerosol mode mean diameters in the 0.2-0.5 μm range direct aerosol forcing is relatively insensitive (errors less than 20%) to variations of the mean diameter. Estimation of the coarse mode diameter within a factor of 2 is generally sufficient for the estimation of the total aerosol radiative forcing within 20%. Moreover, the coarse mode, which represents the nonanthropogenic fraction of the aerosol, is estimated to contribute less than 10% of the total radiative forcing for all RHs of interest. Aerosol chemical composition is important to direct radiative forcing as it determines (1) water uptake with RH, and (2) optical properties. The effect of absorption by aerosol components on forcing is found to be

  3. Direct impact aerosol sampling by electrostatic precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  4. Maritime Aerosol Network (MAN) as a Component of AERONET

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; Quinn, P. K.

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  5. Organic Aerosol Component (OACOMP) Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  6. Behaviors of volatile inorganic components in urban aerosols

    Science.gov (United States)

    Ueda, Hiromasa; Takemoto, Taroh; Kim, Young Pyo; Sha, Weiming

    A multicomponent gas-aerosol equilibrium model (Kim et al., 1993a,b; Kim and Seinfeld, 1995) was used to explain the behaviors of water content and other volatile species in the aerosols observed in polluted air mass in Central Japan. It was found that gas-aerosol equilibrium was attained after long-range transport of polluted air mass (e.g., 50 km) from emission source area, while it was not completed in large emission source areas. The present model predicted with high accuracy the gas-aerosol equilibrium of ammonium, nitrate and chloride at remote sites. The correlation coefficient was R=0.98 for ammonia and more than R=0.86 for gaseous nitric acid. It was R=0.94 for gaseous hydrochloric acid, which meant significant chlorine deficit under high-temperature and low humidity conditions was also predicted accurately. The predicted water content was consistent with that calculated by the semi-theoretical Winkler's formula (Aerosol Sceince, 13, 1973, 373-387). At RH=90% the water content attained almost the same weight as that of dry aerosol, while at about RH=60% it was less than 10%. In contrast, temperature dependency of the water content was weak except for very high air temperature conditions in summer. Finally, it emphasized the superiority of the multicomponent approach for gas-aerosol equilibrium, compared with the binary-component approach.

  7. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  8. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  9. The Impact of Aerosol Direct and Indirect Effects on Climate

    Science.gov (United States)

    Schwarzkopf, M. D.; Levy, H.; Horowitz, L. W.; Ming, Y.; Golaz, J.; Naik, V.; Ramaswamy, V.

    2012-12-01

    We employ GFDL's new fully-coupled chemistry-climate (ocean/atmosphere/land/sea ice) model (CM3) with an explicit physical representation of aerosol indirect effects (cloud-water droplet activation) to find a global-averaged cooling of ~1K due to aerosol forcing in the historical (1860-2005) period, and that the aerosol indirect effect accounts for almost all of this cooling. In the 21st Century, employing the RCP 4.5 scenario, with projected reductions in emissions of anthropogenic aerosols and their precursors, we find ~1 K of additional warming and 0.1 mm/day of additional precipitation, both globally averaged, by the end of the 21st Century, compared with a simulation in which aerosol and precursor emissions are fixed at 2005 values. The impact of these projected reductions in aerosol emissions on simulated globally averaged surface temperature and precipitation becomes apparent by ~ 2050. The reduction in aerosols increases precipitation in East and South Asia by as much as 0.5-1.0 mm/day in the latter part of the 21st Century. The simulated temperature and precipitation responses in CM3 are significantly stronger than the previously simulated responses in our earlier climate model (CM2.1) that only considered direct radiative forcing by aerosols. We conclude that sulfate aerosol indirect effects greatly enhance the impacts of aerosols on surface temperature in CM3, while both sulfate aerosol indirect effects and BC aerosol absorption contribute to a strong precipitation response. CM3 produces late 21st Century surface warming patterns that are uncorrelated with the spatial distribution of the changes in aerosol loading, a result similar to CM2.1. However, unlike temperature, the largest precipitation increases and aerosol decreases in CM3 are co-located in and downwind of Asia.

  10. Direct Simulation Monte Carlo exploration of charge effects on aerosol evolution

    Science.gov (United States)

    Palsmeier, John F.

    Aerosols are potentially generated both during normal operations in a gas cooled Generation IV nuclear reactor and in all nuclear reactors during accident scenarios. These aerosols can become charged due to aerosol generation processes, radioactive decay of associated fission products, and ionizing atmospheres. Thus the role of charge on aerosol evolution, and hence on the nuclear source term, has been an issue of interest. There is a need for both measurements and modeling to quantify this role as these effects are not currently accounted for in nuclear reactor modeling and simulation codes. In this study the role of charge effects on the evolution of a spatially homogenous aerosol was explored via the application of the Direct Simulation Monte Carlo (DSMC) technique. The primary mechanisms explored were those of coagulation and electrostatic dispersion. This technique was first benchmarked by comparing the results obtained from both monodisperse and polydisperse DSMC evolution of charged aerosols with the results obtained by respectively deterministic and sectional techniques. This was followed by simulation of several polydisperse charged aerosols. Additional comparisons were made between the evolutions of charged and uncharged aerosols. The results obtained using DSMC in simple cases were comparable to those obtained from other techniques, without the limitations associated with more complex cases. Multicomponent aerosols of different component densities were also evaluated to determine the charge effects on their evolution. Charge effects can be significant and further explorations are warranted.

  11. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  12. Radiative forcing of the direct aerosol effect using a multi-observation approach

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2008-07-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  13. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  14. Modelling multi-component aerosol transport problems by the efficient splitting characteristic method

    Science.gov (United States)

    Liang, Dong; Fu, Kai; Wang, Wenqia

    2016-11-01

    In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10-4, but the RKM only gets the accuracy of 10-2 using a small Δt = 0.01 and the accuracy of 10-3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are -6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm

  15. Impact of wet scavenging of natural and anthropogenic aerosol components on the columnar aerosol optical depth over a tropical rural atmosphere

    Science.gov (United States)

    Chatterjee, Abhijit; Jayaraman, Achuthan

    A typical feature of Indian monsoon is that, several dry days are observed even between the rain events. Atmospheric aerosol shows significant variations in their concentration between "before" and "after" the rain because of their efficient scavenging during the rain. The below cloud scavenging of several aerosol components during the rain has a direct impact on the columnar aerosol optical depth (AOD) between "before" and "after" the rain. In order to investigate the impact of the scavenging of several natural and anthropogenic aerosol components on spectral properties of aerosol, simultaneous studies on the characterization of aerosol, rainwater and AOD were done during July-December 2009 over a tropical rural atmosphere at Gadanki (13.5 0N, 79.2 0E) in southern peninsular India. Aerosols were collected and analyzed before, during and after the rain along with the collection and analysis of rainwater in several rain events during the entire study period. AOD data (at wavelengths of 400, 500, 675, 870, 1020 nm) was retrieved by processing the data obtained from an automatic sunphotomer (PREDE, PM 01) using the standard SKYRAD pack. Aerosols and rainwater samples were analyzed for water soluble ionic species using an Ion Chromatograph (Metrohm, 861). We observed that aerosols were highly loaded in the atmosphere just before the rain, efficiently scavenged during the rain and built-up slowly after the rain. Interestingly, the loading of sulphate aerosol after the rain was remarkably high whereas that of calcium and magnesium were remarkably low. The poor resuspension of soil dust from the wet soils after the rain could not allow calcium and magnesium to be loaded in the atmosphere whereas the high relative humidity favored the gas-to-particle conversion of SO2 to SO42-which allowed the high loading of sulphate aerosol in the atmosphere. Significant reductions in AOD both at lower (400 nm) and higher wavelength (1020 nm) were observed after the rain events. Two

  16. A direct method for e-cigarette aerosol sample collection.

    Science.gov (United States)

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  17. Direct UV-written integrated optical components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    2004-01-01

    Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques.......Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques....

  18. Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation

    Directory of Open Access Journals (Sweden)

    Y. Balkanski

    2010-05-01

    Full Text Available Aerosols and their precursors are emitted abundantly by transport activities. Transportation constitutes one of the fastest growing activities and its growth is predicted to increase significantly in the future. Previous studies have estimated the aerosol direct radiative forcing from one transport sub-sector, but only one study to our knowledge estimated the range of radiative forcing from the main aerosol components (sulphate, black carbon (BC and organic carbon for the whole transportation sector. In this study, we compare results from two different chemical transport models and three radiation codes under different hypothesis of mixing: internal and external mixing using emission inventories for the year 2000. The main results from this study consist of a positive direct radiative forcing for aerosols emitted by road traffic of +20±11 mW m−2 for an externally mixed aerosol, and of +32±13 mW m−2 when BC is internally mixed. These direct radiative forcings are much higher than the previously published estimate of +3±11 mW m−2. For transport activities from shipping, the net direct aerosol radiative forcing is negative. This forcing is dominated by the contribution of the sulphate. For both an external and an internal mixture, the radiative forcing from shipping is estimated at −26±4 mW m−2. These estimates are in very good agreement with the range of a previously published one (from −46 to −13 mW m−2 but with a much narrower range. By contrast, the direct aerosol forcing from aviation is estimated to be small, and in the range −0.9 to +0.3 mW m−2.

  19. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2008-07-01

    Full Text Available We present a sensitivity study on the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. Using the same aerosol fields simulated in the Global Modeling Initiative (GMI model, we find that, on a global average, the calculated AOT from RH in 1° latitude by 1.25° longitude spatial resolution is 11% higher than that in 2° by 2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% higher for total aerosols and 15% higher for only anthropogenic aerosols in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60°N (16–21%, where AOT is also relatively larger. A similar increase is also found when the time resolution of RH is increased. This increase of AOT and DRE with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study suggests that caution should be taken in a multi-model comparison (e.g. AeroCom since the comparison usually deals with results coming from different spatial/temporal resolutions.

  20. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    Science.gov (United States)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  1. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    Energy Technology Data Exchange (ETDEWEB)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  2. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    N. L. Ng

    2010-05-01

    Full Text Available In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS datasets (27 of the datasets are reanalyzed in this work. The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA, hydrocarbon-like OA (HOA, and sometimes other components such as biomass burning OA (BBOA. We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA and semi-volatile OOA (SV-OOA. Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+ and m/z 43 (mostly C2H3O+, which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14 and SV-OOA (0.07±0.04, 0.35±0.14 components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a

  3. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    Science.gov (United States)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-02-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  4. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  5. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity

    Directory of Open Access Journals (Sweden)

    H. Bian

    2009-04-01

    Full Text Available We present a sensitivity study of the effects of spatial and temporal resolution of atmospheric relative humidity (RH on calculated aerosol optical thickness (AOT and the aerosol direct radiative effects (DRE in a global model. We carry out different modeling experiments using the same aerosol fields simulated in the Global Modeling Initiative (GMI model at a resolution of 2° latitude by 2.5° longitude, using time-averaged fields archived every three hours by the Goddard Earth Observation System Version 4 (GEOS-4, but we change the horizontal and temporal resolution of the relative humidity fields. We find that, on a global average, the AOT calculated using RH at a 1°×1.25° horizontal resolution is 11% higher than that using RH at a 2°×2.5° resolution, and the corresponding DRE at the top of the atmosphere is 8–9% and 15% more negative (i.e., more cooling for total aerosols and anthropogenic aerosol alone, respectively, in the finer spatial resolution case. The difference is largest over surface escarpment regions (e.g. >200% over the Andes Mountains where RH varies substantially with surface terrain. The largest zonal mean AOT difference occurs at 50–60° N (16–21%, where AOT is also relatively larger. A similar impact is also found when the time resolution of RH is increased. This increase of AOT and aerosol cooling with the increase of model resolution is due to the highly non-linear relationship between RH and the aerosol mass extinction efficiency (MEE at high RH (>80%. Our study is a specific example of the uncertainty in model results highlighted by multi-model comparisons such as AeroCom, and points out one of the many inter-model differences that can contribute to the overall spread among models.

  6. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Overview and preliminary results

    Science.gov (United States)

    Georgoulias, Aristeidis K.; Zanis, Prodromos; Pöschl, Ulrich; Kourtidis, Konstantinos A.; Alexandri, Georgia; Ntogras, Christos; Marinou, Eleni; Amiridis, Vassilis

    2013-04-01

    An overview and preliminary results from the research implemented within the framework of QUADIEEMS project are presented. For the scopes of the project, satellite data from five sensors (MODIS aboard EOS TERRA, MODIS aboard EOS AQUA, TOMS aboard Earth Probe, OMI aboard EOS AURA and CALIOP aboard CALIPSO) are used in conjunction with meteorological data from ECMWF ERA-interim reanalysis and data from a global chemical-aerosol-transport model as well as simulation results from a regional climate model (RegCM4) coupled with a simplified aerosol scheme. QUADIEEMS focuses on Eastern Mediterranean [30oN-45No, 17.5oE-37.5oE], a region situated at the crossroad of different aerosol types and thus ideal for the investigation of the direct and indirect effects of various aerosol types at a high spatial resolution. The project consists of five components. First, raw data from various databases are acquired, analyzed and spatially homogenized with the outcome being a high resolution (0.1x0.1 degree) and a moderate resolution (1.0x1.0 degree) gridded dataset of aerosol and cloud optical properties. The marine, dust and anthropogenic fraction of aerosols over the region is quantified making use of the homogenized dataset. Regional climate model simulations with REGCM4/aerosol are also implemented for the greater European region for the period 2000-2010 at a resolution of 50 km. REGCM4's ability to simulate AOD550 over Europe is evaluated. The aerosol-cloud relationships, for sub-regions of Eastern Mediterranean characterized by the presence of predominant aerosol types, are examined. The aerosol-cloud relationships are also examined taking into account the relative position of aerosol and cloud layers as defined by CALIPSO observations. Within the final component of the project, results and data that emerged from all the previous components are used in satellite-based parameterizations in order to quantify the direct and indirect (first) radiative effect of the different

  7. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    Science.gov (United States)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  8. CCN Activation Properties of Multiple-Component, Smog Chamber Generated, and Ambient Aerosols

    Science.gov (United States)

    Raymond, T. M.; Pandis, S. N.

    2002-12-01

    Ambient aerosols are a complex mixture of inorganic and hundreds of organic compounds varying in structure and physical properties. Despite the considerable fraction of organic matter in atmospheric aerosol, relatively little is known about the ability of complex, mixed particles to act as cloud condensation nuclei (CCN). Previous work has focused on pure-component and dual-component aerosols and theoretical modeling of their activation. This work expands the investigation by studying the CCN-forming ability of multiple-component organic-inorganic mixed aerosol compounds produced in a smog chamber, and ambient aerosols. The CCN properties of aerosols produced in an indoor five cubic meter Teflon smog chamber and ambient aerosol are investigated experimentally combining a Tandem Differential Mobility Analyzer (TDMA) with a static diffusion CCN counter (M1 Model, DH Associates). Data was obtained for ozone oxidation products of alpha-pinene, beta-pinene, limonene, gasoline, and diesel fuel. Multiple-component aerosols were produced from atomizing a mixed solution of chemical components and studying the particles with the TDMA-CCNC system. Mixtures included ammonium sulfate, sodium chloride, pinonic acid, pinic acid, norpinic acid, glutamic acid, and leucine. Studies were performed at supersaturations of 0.3% and 1.0% with dry particle diameters ranging from 0.02 to 0.2 micrometers. The results were analyzed to gain insights into CCN properties of atmospheric aerosols composed of known mixtures of inorganic and organic species, mixed oxidation products of primary organic species, and actual ambient aerosols. The results are compared to the behavior of pure organic aerosols and theory.

  9. Isoprene oxidation products are a significant atmospheric aerosol component

    Directory of Open Access Journals (Sweden)

    S. N. Matsunaga

    2005-11-01

    Full Text Available Glycolaldehyde, hydroxyacetone, and methylglyoxal, which are known isoprene oxidation products, were collected during two field experiments using an annular denuder sampling system and compared to a model calculation. The compounds in gas and aerosol phases were determined during both experiments. Global variation and distribution of the aerosol mass contribution of the compounds were predicted using the measurements, the box model results, and gas-phase concentrations and humidity simulated by a global 3-D model. Here we report the estimates of a global annual contribution of 35 (10–120 Tg of aerosol organic matter from isoprene.

  10. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    Science.gov (United States)

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  11. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    Science.gov (United States)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  12. Organic Aerosol Component (OACOMP) Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J [Pacific Northwest National Laboratory; Zhang, Q; tilp, A [Brookhaven National Laboratory; Shippert, T [Pacific Northwest National Laboratory; Parworth, C; Mei, F [Pacific Northwest National Laboratory

    2013-08-23

    Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10–90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties accurately. This deficiency represents a large source of uncertainty in quantification of aerosol effects and prediction of future climate change. Evaluation and development of aerosol models require data products generated from field observations. Real-time, quantitative data acquired with aerosol mass spectrometers (AMS) (Canagaratna et al. 2007) are critical to this need. The AMS determines size-resolved concentrations of non-refractory (NR) species in submicrometer particles (PM1) with fast time resolution suitable for both ground-based and aircraft deployments. The high-resolution AMS (HR-AMS), which is equipped with a high mass resolution time-of-flight mass spectrometer, can be used to determine the elemental composition and oxidation degrees of OA (DeCarlo et al. 2006).

  13. Direct and semi-direct radiative forcing of smoke aerosols over clouds

    Science.gov (United States)

    Wilcox, E. M.

    2012-01-01

    Observations from Earth observing satellites indicate that dark carbonaceous aerosols that absorb solar radiation are widespread in the tropics and subtropics. When these aerosols mix with clouds, there is generally a reduction of cloudiness owing to absorption of solar energy in the aerosol layer. Over the subtropical South Atlantic Ocean, where smoke from savannah burning in southern Africa resides above a persistent deck of marine stratocumulus clouds, radiative heating of the smoke layer leads to a thickening of the cloud layer. Here, satellite observations of the albedo of overcast scenes of 25 km2 size or larger are combined with additional satellite observations of clouds and aerosols to estimate the top-of-atmosphere direct radiative forcing attributable to presence of dark aerosol above bright cloud, and the negative semi-direct forcing attributable to the thickening of the cloud layer. The average positive direct radiative forcing by smoke over an overcast scene is 9.2±6.6 W m-2 for cases with an unambiguous signal of absorbing aerosol over cloud in passive ultraviolet remote sensing observations. However, cloud liquid water path is enhanced by 16.3±7.7 g m-2 across the range of values for sea surface temperature for cases of smoke over cloud. The negative radiative forcing associated with this semi-direct effect of smoke over clouds is estimated to be -5.9±3.5 W m-2. Therefore, the cooling associated with the semi-direct cloud thickening effect compensates for greater than 60 % of the direct radiative effect. Accounting for the frequency of occurrence of significant absorbing aerosol above overcast scenes leads to an estimate of the average direct forcing of 1.0±0.7 W m-2 contributed by these scenes averaged over the subtropical southeast Atlantic Ocean during austral winter. The regional average of the negative semi-direct forcing is -0.7±0.4 W m-2. Therefore, smoke aerosols overlaying the decks of overcast marine stratocumulus clouds considered

  14. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    Science.gov (United States)

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  15. Assessment of Individual Direct Radiative Effects of Major Aerosol Species in East Asia

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao; ZHANG Mei-Gen

    2012-01-01

    To assess individual direct radiative effects of diverse aerosol species on a regional scale, the air quality modeling system RAMS-CMAQ (Regional Atmospheric Modeling System and Community Multiscale Air Quality) coupled with an aerosol optical properties/radiative transfer module was used to simulate the temporal and spatial distributions of their optical and radiative properties over East Asia throughout 2005. Annual and seasonal averaged aerosol direct radiative forcing (ADRF) of all important aerosols and individual components, such as sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and dust at top-of-atmosphere (TOA) in clear sky are analyzed. Analysis of the model results shows that the annual average ADRF of all important aerosols was in the range of 0 to -18 W m-z, with the maximum values mainly distributed over the Sichuan Basin. The direct radiative effects of sulfate, nitrate, and ammonium make up most of the total ADRF in East Asia, being concentrated mainly over North and Southeast China. The model domain is also divided into seven regions based on different administrative regions or countries to investigate detailed information about regional ADRF variations over East Asia. The model results show that the ADRFs of sulfate, ammonium, BC, and OC were stronger in summer and weaker in winter over most regions of East Asia, except over Southeast Asia. The seasonal variation in the ADRF of nitrate exhibited the opposite trend. A strong ADRF of dust mainly appeared in spring over Northwest China and Mongolia.

  16. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  17. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    Science.gov (United States)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  18. Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties

    Directory of Open Access Journals (Sweden)

    A. Bergamo

    2008-12-01

    Full Text Available The all-sky direct radiative effect by anthropogenic aerosol (DREa is calculated in the solar (0.3–4 μm and infrared (4–200 μm spectral ranges for six Mediterranean sites. The sites are differently affected by pollution and together reflect typical aerosol impacts that are expected over land and coastal sites of the central Mediterranean basin. Central to the simulations are aerosol optical properties from AERONET sun-/sky-photometer statistics for the year 2003. A discussion on the variability of the overall (natural + anthropogenic aerosol properties with site location is provided. Supplementary data include MODIS satellite sensor based solar surface albedos, ISCCP products for high- mid- and low cloud cover and estimates for the anthropogenic aerosol fraction from global aerosol models. Since anthropogenic aerosol particles are considered to be smaller than 1 μm in size, mainly the solar radiation transfer is affected with impacts only during sun-light hours. At all sites the (daily average solar DREa is negative all year round at the top of the atmosphere (ToA. Hence, anthropogenic particles produce over coastal and land sites of the central Mediterranean a significant cooling effect. Monthly DREa values vary from site to site and are seasonally dependent as a consequence of the seasonal dependence of available sun-light and microphysical aerosol properties. At the ToA the monthly average DREa is −(4±1 W m−2 during spring-summer (SS, April–September and −(2±1 W m−2 during autumn-winter (AW, October–March at the polluted sites. In contrast, it varies between −(3±1 W m−2 and −(1±1 W m−2 on SS and AW, respectively at the less polluted site. Due to atmospheric absorption the DREa at the surface is larger than at the ToA. At the surface the monthly average DREa varies between the most and the least polluted

  19. Volatility of organic aerosol and its components in the megacity of Paris

    Science.gov (United States)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and

  20. Ship-borne rotating shadowband radiometer observations for determination of components of spectral irradiance and aerosol optical properties

    Science.gov (United States)

    Walther, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2015-04-01

    The Maritime Aerosol Network (MAN) has been established as a sub-project of AERONET and a long-term program to collect ship-borne aerosol optical depth measurements over ocean. Its purpose is to serve as reliable reference database for the evaluation of models and satellite products. Data are currently collected by handheld Microtops II photometers, as the automated acquisition of data from sun photometers on stabilized platforms is so far too expensive for wide-spread use. A promising alternative to the sun photometer is the rotating shadowband radiometer, whose principle of operation allows the determination of the direct-beam component of solar radiation without stabilizing the instrument, if the orientation of the detector horizontal is known. OCEANET, a project to investigate the exchange fluxes of energy and matter between the atmosphere and ocean, has contributed aerosol observations to MAN on several of its cruises on RV Polarstern during the transit between the hemispheres. On the recent cruise (PS 83) from Cape Town to Bremerhaven, TROPOS has operated for the first time a 19 channel rotating shadowband radiometer (GUVis-3511) built by the company Biospherical, as a possible means to provide automated irradiance and aerosol optical depth measurements. Calibration and processing of the raw data will be described, and an initial evaluation of the instrumental performance will be given. Aerosol optical depths derived from Microtops II measurements and the rotating shadowband radiometer will be compared. We show that the standard deviation of Aerosol optical depths observed with Microtops II and the shadowband radiometer is about 0.02 for matching channels, and an aerosol type classification based on Angstrom exponent shows good agreement. Also the influence of ship smoke and ocean swell is studied. The suitability of the instrument to automate MAN observations is discussed, and an outlook to the use of the instrument to also derive cloud optical properties is

  1. Zuur aerosol in de buitenlucht. Directe schade voor de volksgezondheid?

    NARCIS (Netherlands)

    Balfoort HW; de Leeuw FAAM

    1986-01-01

    Epidemiologische studies in Canada en de Verenigde Staten laten een correlatie zien tussen (zuur) aerosol concentraties en respiratoire ziekten of sterfte. Resultaten van dierexperimentele en humane blootstelling studies geven aan dat een herhaalde blootstelling aan zwavelzuur aerosol psysiologisch

  2. Development of ATLID-MSI synergy for retrieving the vertical profiles of aerosol components

    Science.gov (United States)

    Kudo, R.; Nishizawa, T.; Higurashi, A.; Sugimoto, N.; Oikawa, E.

    2014-12-01

    EarthCARE is an earth observation satellite and will be launched in 2016. Using its two sensors, ATLID (High spectral resolution lidar) and MSI (Multi-spectral imager), we are developing the synergy algorithm to retrieve the vertical profiles of extinction coefficients at 355 nm of four aerosol components (Water-soluble, black carbon, dust, and sea-salt particles), and the column mean of mode radii of water-soluble and dust particles. The ATLID data are extinction coefficient, backscatter coefficient, and depolarization ratio for total aerosols at 355 nm. The MSI data are radiances at 670 and 865 nm. The dry volume concentrations of four aerosol components at each altitude and the mode radii of water-soluble and dust particles in the column are simultaneously optimized to ATLID and MSI data by the gauss newton method. After the optimization, the vertical profiles of the extinction coefficient at 355 nm of four aerosol components are obtained. The size distributions of four aerosol components are assumed to be a lognormal distribution. The refractive indices of four aerosol components are given from previously observational studies. The humidity growth is considered for water-soluble and sea-salt particles. The volume concentration and the mode radius of the sea-salt particle are parameterized using the surface wind speed on the ocean. We assumed that the shape of the water-soluble, black carbon, and sea-salt particles are spherical, and the shape of the dust particle is spheroidal. We tested the algorithm using the ATLID and MSI data simulated using clean, dust-transported, and smoke-transported aerosols. The extinction coefficients of each component at 355 nm are retrieved well. The mode radius of water-soluble and dust particles were somehow overestimated.

  3. Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry

    Science.gov (United States)

    Graaf, M.; Tilstra, L. G.; Wang, P.; Stammes, P.

    2012-04-01

    The solar radiative absorption by an aerosol layer above clouds is quantified using passive satellite spectrometry from the ultraviolet (UV) to the shortwave infrared (SWIR). UV-absorbing aerosols have a strong signature that can be detected using UV reflectance measurements, even when above clouds. Since the aerosol extinction optical thickness decreases rapidly with increasing wavelength for biomass burning aerosols, the properties of the clouds below the aerosol layer can be retrieved in the SWIR, where aerosol extinction optical thickness is sufficiently small. Using radiative transfer computations, the contribution of the clouds to the reflected radiation can be modeled for the entire solar spectrum. In this way, cloud and aerosol effects can be separated for a scene with aerosols above clouds. Aerosol microphysical assumptions and retrievals are avoided by modeling only the pure (aerosol-free) cloud spectra. An algorithm was developed using the spaceborne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). The aerosol direct radiative effect (DRE) over clouds over the South Atlantic Ocean west of Africa, averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2. The largest aerosol DRE over clouds found in that month was 132 ± 8 Wm-2. The algorithm can be applied to any instrument, or a combination of instruments, that measures UV, visible and SWIR reflectances at the top of the atmosphere (TOA) simultaneously.

  4. Dense Heavy Metal Aerosol Monitoring by Direct X-Ray Fluorescence

    Science.gov (United States)

    1989-06-01

    TECHNICAL REPORT BRL-TR-3003 BRL 0 sDENSE HEAVY METAL AEROSOL MONITORING BY DIRECT X-RAY FLUORESCENCE I GEORGE M. THOMSON flgDTIC ELF% CTE b JUN 16...21005-5066 /F 6261A jIN8 1001I 11. TITLE (-’mi- Sawt Cauif&aan)II DENSE HEAVY METAL AEROSOL MONITORMN BY DIRECT X-RAY FLUORESCENCE 12. PERSONAL AUTHOR(S...Before proceeding, a definition of the term "dense, heavy - metal aerosol" is in order. For present purposes, it is an aerosol in which the suspended

  5. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    Science.gov (United States)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  6. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  7. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2012-07-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region have been derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to produce estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  8. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  9. Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model

    Science.gov (United States)

    Sajani, S.; Krishna Moorthy, K.; Rajendran, K.; Nanjundiah, Ravi S.

    2012-08-01

    Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a

  10. Direct Radiative Forcing of Anthropogenic Aerosols over Oceans from Satellite Observations

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; SHI Guangyu; QIN Shiguang; YANG Su; ZHANG Peng

    2011-01-01

    Anthropogenic aerosols play an important role in the atmospheric energy balance. Anthropogenic aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by numerical models. Recently, with the development of space-borne instruments and sophisticated retrieval algorithms, it has become possible to estimate aerosol radiative forcing based on satellite observations. In this study, we have estimated shortwave direct radiative forcing due to anthropogenic aerosols over oceans in all-sky conditions by combining clouds and the Single Scanner Footprint data of the Clouds and Earth's Radiant Energy System (CERES/SSF) experiment, which provide measurements of upward shortwave fluxes at the top of atmosphere, with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products. We found that globally averaged aerosol radiative forcing over oceans in the clear-sky conditions and all-sky conditions were -1.03±0.48 W m-2 and -0.34 ±0.16 W m-2, respectively. Direct radiative forcing by anthropogenic aerosols shows large regional and seasonal variations. In some regions and in particular seasons, the magnitude of direct forcing by anthropogenic aerosols can be comparable to the forcing of greenhouse gases. However, it shows that aerosols caused the cooling effect, rather than warming effect from global scale, which is different from greenhouse gases.

  11. Direct effect of aerosol on incident solar radiation at the surface as a function of aerosol mixtures measured in the center of Rome.

    Science.gov (United States)

    Campanelli, M.; Bassani, C.; Cacciani, M.; Siani, A. M.; Perrino, C.; Canepari, S.; Di Sarra, A.; Salzano, R.; Casasanta, G. P.; Tirelli, C.; Estelles, V.

    2012-04-01

    columnar ozone, wind profiles, diffuse and direct solar radiation at several selected wavelengths, respectively. The Rstar 6b radiative transfer code (Nakajima and Tanaka 1988) was used to calculate the vertical profiles of downward direct and total flux of solar radiation and of aerosol optical depth. The code was adapted to the needs of this work by changing: 1) "urban" standard vertical profile of aerosol according to the profiles of backscatter ratio measured by Lidar; 2) vertical ozone concentration according to the columnar ozone amount, measured by Brewer; 3) type and relative quantities of three chemical components of urban standard model (originally soot, dust-like, 75%H2SO4) according to the chemical analysis. In this work the first analysis of the direct effect of aerosol on surface incident solar radiation, by using Rstar code, is presented as a function of the changes in the measured mixtures of aerosol. Nakajiama T. and Tanaka M., 1988. "Alghorims for radiative intensity calculations in moderately thick atmosphere", J.Quant.Spect.Rad.Trans, 40,51-69. Perrino C., et al.,2009. "Influence of natural events on the concentration and composition of atmospheric particulate matter." Atm. Env. 43, 4766-4779

  12. Characteristics of Carbonaceous and Ionic Species and Direct Aerosol Forcing of the Aerosols over Gosan, Jeju, Korea

    Science.gov (United States)

    Kim, N.; Kim, Y.; Kang, C.

    2010-12-01

    Carbonaceous aerosols, consisting of elemental carbon (EC) are emitted into the atmosphere through incomplete combustion of biomass and fossil fuel. It directly warms the air by absorbing solar radiation. Another major pollutant emitted by fossil fuel combustion is SO2, which result in the formation of particulate sulfate (SO42-) compounds, contribute substantially to cool the air by scattering solar radiation. Therefore, carbonaceous and sulfate aerosols play an important role in regulating the amount of solar radiation absorbed by the earth atmosphere. (Charlson et al. 1992; Jacobson, 2004; Khan et al., 2010) Carbonaceous and sulfate aerosols are both temporally and spatially variable. Northeast Asia is characterized by high energy consumption. China, Japan, and South Korea have consumed 16.8%, 4.7%, and 2.1% of the world total primary energy, respectively in 2007 (BP, 2008). Consequently, there are resultant huge emissions of anthropogenic air pollutants. Therefore, the effect on climate forcing by carbonaceous and sulfate aerosols are even more important in this region. In this study, PM2.5 intensive measurement data for 18 separate periods at Gosan, Jeju, Korea from 1994 to 2006 were analyzed. Gosan is one of the cleanest areas in Korea and an excellent location to study the ambient aerosols in Northeast Asia (Kim et al., 2009). The characteristics of carbonaceous aerosols and anthropogenic ions such as SO42-, NO3-, NH4+ were analyzed. Also, direct aerosol forcing due to EC and SO42- were calculated. The net aerosol forcing were about -0.5 W m-2 to -0.1 W m-2 at Gosan. References BP, www.bp.com/statisticalreview, 2008. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A.Jr., Hansen, J.E., and Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430. Jacobson, M.Z. (2004) Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, Journal of

  13. Raman-shifted eye-safe aerosol lidar (REAL) in 2010: instrument status and two-component wind measurements

    Science.gov (United States)

    Mayor, Shane D.

    2010-10-01

    This paper and corresponding seminar given on 20 September 2010 at the 16th International School for Quantum Electronics in Nesebar, Bulgaria, will describe the key hardware aspects of the Raman-shifted Eye-safe Aerosol Lidar (REAL) and recent advances in extracting two-component wind vector fields from the images it produces. The REAL is an eye-safe, ground-based, scanning, elastic aerosol backscatter lidar operating at 1.54 microns wavelength. Operation at this wavelength offers several advantages compared to other laser wavelengths including: (1) maximum eye-safety, (2) invisible beam, (3) superior performance photodetectors compared with those used at longer wavelengths, (4) low atmospheric molecular scattering when compared with operation at shorter wavelengths, (5) good aerosol backscattering, (6) atmospheric transparency, and (7) availability of optical and photonic components used in the modern telecommunations industry. A key issue for creating a high-performance direct-detection lidar at 1.5 microns is the use of InGaAs avalanche photodetectors that have active areas of at most 200 microns in diameter. The small active area imposes a maximum limitation on the field-of-view of the receiver (about 0.54 mrad full-angle for REAL). As a result, a key requirement is a transmitter that can produce a pulsed (>10 Hz) beam with low divergence (150 mJ), and short pulse-duration (lidars in that two components of motion can be sensed. (Doppler lidars can sense only the radial component of flow.) Two-component velocity estimation is done by computing two-dimensional cross-correlation functions (CCFs) and noting the displacement of the peak of the CCF with respect to the origin. Motion vectors derived from this method are compared with coincident sonic anemometer measurements at 1.6 km range. Preliminary results indicate the method performs best when the atmosphere is stable with light winds.

  14. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    Science.gov (United States)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  15. Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer

    Science.gov (United States)

    Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar

    2017-03-01

    The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

  16. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    Energy Technology Data Exchange (ETDEWEB)

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  17. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    Science.gov (United States)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol

  18. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    Science.gov (United States)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14

  19. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society....

  2. Weekly periodicities of aerosol optical thickness over Central Europe – evidence of an anthropogenic direct aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Vogel

    2007-08-01

    Full Text Available Statistical analyses of data from 14 ground-based sun photometer stations all over Central Europe are presented. All stations are part of the Aerosol Robotic Network (AERONET, and only data of the highest data quality level 2.0 had been applied. The averages by weekday of aerosol optical thickness (AOT at a wavelength of 440 nm of 12 of the 14 stations show a weekly periodicity with lowest values on Sunday and Monday, but greatest values from Wednesday until Saturday, that is significant at least on a 90% level. The stations in Germany and in Greater Paris show weekly cycles with ranges of about 20% on average. In Northern Italy and Switzerland this range is about 10% on average. The corresponding weekly cycle of anthropogenic gaseous and particulate emissions leads us to the conclusion of the anthropogenic origin of the weekly AOT cycle. Since these AOT patterns are derived from the reduction of the direct sun radiation by the columnar atmospheric aerosol, this result represents strong evidence for an anthropogenic direct aerosol effect on shortwave radiation. Furthermore, this study makes a first contribution to the understanding and explanation of recently observed weekly periodicities in meteorological variables as temperature in Germany.

  3. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    Science.gov (United States)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  4. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  5. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    Science.gov (United States)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  6. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  7. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    Science.gov (United States)

    Campbell, M. F.; Haylett, D. R.; Davidson, D. F.; Hanson, R. K.

    2016-07-01

    This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm's calculations given typical experimental uncertainties.

  8. Evaluating Direct Radiative Effects of Absorbing Aerosols on Atmospheric Dynamics with Aquaplanet and Regional Model Results

    Science.gov (United States)

    Can, Ö.; Tegen, I.; Quaas, J.

    2015-12-01

    Effects of absorbing aerosol on atmospheric dynamics are usually investigated with help of general circulation models or also regional models that represent the atmospheric system as realistic as possible. Reducing the complexity of models used to study the effects of absorbing aerosol on atmospheric dynamics helps to understand underlying mechanisms. In this study, by using ECHAM6 General Circulation Model (GCM) in an Aquaplanet setting and using simplified aerosol climatology, an initial idealization step has been taken. The analysis only considers direct radiative effects, furthering the reduction of complex model results. The simulations include cases including aerosol radiative forcing, no aerosol forcing, coarse mode aerosol forcing only (as approximation for mineral dust forcing) and forcing with increased aerosol absorption. The results showed that increased absorption affects cloud cover mainly in subtropics. Hadley circulation is found to be weakened in the increased absorption case. To compare the results of the idealized model with a more realistic model setting, the results of the regional model COSMO-MUSCAT that includes interactive mineral dust aerosol and considers the effects of dust radiative forcing are also analyzed. The regional model computes the atmospheric circulation for the year 2007 twice, including the feedback of dust and excluding the dust aerosol forcing. It is investigated to which extent the atmospheric response to the dust forcing agrees with the simplified Aquaplanet results. As expected, in the regional model mineral dust causes an increase in the temperature right above the dust layer while reducing the temperature close to the surface. In both models the presence of aerosol forcing leads to increased specific humidity, close to ITCZ. Notwithstanding the difference magnitudes, comparisons of the global aquaplanet and the regional model showed similar patterns. Further detailed comparisons will be presented.

  9. Climate Response to Warm Cloud-Aerosol Interactions: Comparisons With Direct Aerosol and Long-Lived Greenhouse Gas Impacts

    Science.gov (United States)

    Ramaswamy, V.; Ming, Y.

    2006-12-01

    We employ the NOAA/ GFDL global atmospheric model coupled to a mixed-layer ocean to investigate the mechanisms and quantitative aspects underlying the radiative perturbations and climate response arising due to cloud-aerosol interactions in low-lying clouds. The aerosol species considered include sulfate, sea-salt and carbonaceous species, whose space-time distributions are determined offline by the MOZART 2 chemistry- transport model based on emissions data. The model's prognostic cloud scheme of liquid water and amount is expanded to include cloud droplet concentration in a way that importantly allows them to be computed using the same large-scale and convective updraft velocity field. The equilibrium response of the model's global climate system to the change in aerosols from pre- industrial to present-day is evaluated, in terms of the forcing applied and the role of the large- and cloud-scale feedback mechanisms. The cloud characteristics simulated are compared against observations, while the model's response is compared with that obtained from using a diagnostic aerosol-cloud relationship to highlight the significance of specific cloud microphysical processes. The spatial distributions of the thermal and hydrologic responses are also compared with those resulting from simulations performed for the pre-industrial to present-day direct aerosol effect. The temperature responses in the low and high latitudes, including changes in the large-scale precipitation pattern, are contrasted with those due to the well-mixed greenhouse gases. The forcing-response relationship is examined for the radiative perturbations investigated, with surface radiative forcing included in these considerations. We finally investigate the concept of linear additivity of the responses in various climate variables for the set of radiative perturbations considered above, extending from the global- and zonal-mean to continental scales.

  10. A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2005-01-01

    Full Text Available A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Kohler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM. The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA, specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However, the

  11. A curved multi-component aerosol hygroscopicity model framework: 1 – Inorganics

    Directory of Open Access Journals (Sweden)

    H. Coe

    2004-12-01

    Full Text Available A thermodynamic modelling framework to predict the equilibrium behaviour of mixed inorganic salt aerosols is developed, and then coupled with a technique for finding a solution to the Köhler equation in order to create a diameter dependent hygroscopic aerosol model (Aerosol Diameter Dependent Equilibrium Model – ADDEM. The model described here provides a robust and accurate inorganic basis using a mole fraction based activity coefficient model and adjusted energies of formation for treating solid precipitation. The model framework can accommodate organic components, though this added complexity is considered in a companion paper, whereas this paper describes the development of the modelling architecture to be used and predictions of an inorganic model alone. The modelling framework has been developed to flexibly use a combination of mixing rules and other potentially more accurate techniques where available to calculate the water content. Comparisons with other state-of-the-art general equilibrium models and experimental data are presented and show excellent agreement. The Kelvin effect can be considered in this scheme using a variety of surface tension models. Comparison of predicted diameter dependent phenomena, such as the increased relative humidity for onset of deliquescence with decreasing diameter, with another diameter dependent model is very good despite the different approach used. The model is subject to various sensitivities. For the inorganic systems studied here, the model is sensitive to choice of surface tension scheme used, which decreases for larger aerosol. Large sensitivities are found for the value of dry density used. It is thus likely that the history of the aerosol studied in a hygroscopic tandem differential mobility analyser (HTDMA, specifically the nature of the drying process that will influence the final crystalline form, will create systematic uncertainties upon comparisons with theoretical predictions. However

  12. Measurements of the Imaginary Component of the Refractive Index of Weakly Absorbing Single Aerosol Particles.

    Science.gov (United States)

    Willoughby, Rose E; Cotterell, Michael I; Lin, Hongze; Orr-Ewing, Andrew J; Reid, Jonathan P

    2017-08-03

    The interaction of atmospheric aerosols with radiation remains a significant source of uncertainty in modeling radiative forcing. Laboratory measurements of the microphysical properties of atmospherically relevant particles is one approach to reduce this uncertainty. We report a new method to investigate light absorption by a single aerosol particle, inferring changes in the imaginary part of the refractive index with a change in environmental conditions (e.g., relative humidity) and inferring the size dependence of the optical extinction cross section. More specifically, we present measurements of the response of single aerosol particles to near-infrared (NIR) laser-induced heating at a wavelength of 1520 nm. Particles were composed of aqueous NaCl or (NH4)2SO4 and were studied over ranges in relative humidity (40-85%), particle radius (1-2.2 μm), and NIR laser power. The ensuing size change and real component of the refractive index were extracted from measurements of the angular variation in elastically scattered light. From the heating-induced size change at varying NIR beam intensities, we retrieved the change in the imaginary component of the refractive index. In addition, cavity ring-down spectroscopy measurements monitored the change in extinction cross section with modulation of the heating laser power.

  13. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    Science.gov (United States)

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  14. Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation

    Science.gov (United States)

    Liu, X.; Easter, R. C.; Ghan, S. J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; Conley, A.; Park, S.; Neale, R.; Hannay, C.; Ekman, A. M. L.; Hess, P.; Mahowald, N.; Collins, W.; Iacono, M. J.; Bretherton, C. S.; Flanner, M. G.; Mitchell, D.

    2011-12-01

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical

  15. The direct radiative forcing effects of aerosols on the climate in California

    Science.gov (United States)

    Du, Hui

    The Weather Research and Forecast (WRF) model is used to explore the influence of aerosol direct radiative effects on regional climate of California. Aerosol data is provided by the MOZART global chemistry transport model and includes sulfate, black carbon, organic carbon, dust and sea salt. To investigate the sensitivity of aerosol radiative effects to different aerosol species and to the quantity of sulfate and dust, tests are conducted by using different combinations of aerosols and by resetting the quantity of sulfate and dust. The model results show that all the considered aerosols could have a cooling effect of one half to one degree in terms of temperature and that dust and sulfate are the most important aerosols. However, large uncertainties exist. The results suggest that the dust from MOZART is greatly overestimated over the simulation domain. The single scattering albedo (SSA) values of dust used in some global climate models are likely underestimated compared to recent studies on dust optical properties and could result in overestimating the corresponding cooling effects by approximately 0.1 degree. Large uncertainties exist in estimating the roles of different forcing factors which are causing the observed temperature change in the past century in California.

  16. Direct Radiative Forcing and Climatic Effects of Aerosols over East Asia by RegCM3

    Institute of Scientific and Technical Information of China (English)

    JU Li-Xia; HAN Zhi-Wei

    2011-01-01

    The authors used a high-resolution regional climate model (RegCM3) coupled with a chemistry/ aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regional- scale climate. The direct radiative forcing and climatic effects of aerosols (dust, sulfate, black carbon, and organic carbon) were discussed. The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere (TOA) over most areas of East Asia. The radiative forcing induced by aerosols exhibited significant seasonal and regional variations, with the strongest forcing occurring in summer. The aerosol feed- backs on surface air temperature and precipitation were clear. Surface cooling dominated features over the East Asian continental areas, which varied in the approximate range of-0.5 to -2℃ with the maximum up to -3℃ in summer over the deserts of West China. The aerosols induced complicated variations of precipitation. Except in summer, the rainfall generally varied in the range of-1 to 1 mm d^-1 over most areas of China.

  17. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  18. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    Science.gov (United States)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  19. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  20. A satellite view of the direct effect of aerosols on solar radiation at global scale

    Science.gov (United States)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  1. Aerosol direct effect retrieval over clouds from space-borne passive hyperspectral measurements (Invited)

    Science.gov (United States)

    de Graaf, M.; Tilstra, L.; Stammes, P.

    2013-12-01

    A novel approach for the retrieval of the aerosol direct radiative effect (DRE) over clouds will be presented, which is independent of aerosol parameters estimates. The direct effect at the top of the atmosphere (TOA) of aerosols over clouds can be estimated using hyperspectral reflectance measurements from space-borne spectrometers, when the equivalent aerosol-unpolluted cloud scene reflectance spectrum is known. For smoke over clouds the cloud parameters can be estimated from the shortwave infrared (SWIR), where the absorption of the small smoke particles becomes sufficiently small. Using precomputed tables of cloud reflectance spectra, the unpolluted cloud scene spectrum can then be simulated and compared to the real measured polluted cloud scene reflectance spectrum. The UV-radiation absorption by the smoke will lead to a difference between the measured and simulated spectra, which is proportional to the aerosol DRE at TOA. Aerosol microphysical assumptions and retrievals are avoided by modeling only the aerosol-free scene spectra, all the aerosol effects are in the reflectance measurements. The method works especially well for cloud scenes, which can be simulated relatively accurately. An algorithm was developed to derive the aerosol DRE over marine clouds, using the space-borne spectrometer SCIAMACHY, which produced shortwave reflectance spectra (from 240 to 1700 nm contiguously) from 2002 till 2012. These are ideally suited to study the effect of aerosols on the shortwave spectrum. However, since aerosols in general do not have high resolution spectral features, the algorithm can be adapted to suit data from any combination of instruments that measures UV, visible and SWIR reflectances simultaneously. Examples include OMI and MODIS, flying in the A-Train constellation, and TROPOMI, on the future Sentinel 5 precursor mission, combined with NOAA's NPP VIIRS. This would produce aerosol DRE estimates with unprecedented accuracy and spatial resolution. The

  2. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    Science.gov (United States)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  3. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    D. O'Donnell

    2011-08-01

    Full Text Available Secondary organic aerosol (SOA has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW forcing from the direct effect, amounting to −0.31 Wm−2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm−2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm−2 and an indirect effect of −0.03 Wm−2

  4. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    Science.gov (United States)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  5. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    Science.gov (United States)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  6. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    Science.gov (United States)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  7. On the correlation of atmospheric aerosol components of mass size distributions in the larger region of a central European city

    Science.gov (United States)

    Berner, A.; Galambos, Z.; Ctyroky, P.; Frühauf, P.; Hitzenberger, R.; Gomišček, B.; Hauck, H.; Preining, O.; Puxbaum, H.

    Mass size distributions of atmospheric aerosols have been sampled in the region of Vienna, a typical city in central Europe, at an urban and a rural site. The aerosol was collected simultaneously by cascade impactors. Two experiments which had a duration of 4 weeks each, were performed in August 1999 and in January/February 2000. Daily sampling periods were from 8:00 to 20:00, and from 20:00 to 8:00. An evaluation of the mass size distributions is represented in this paper. Emphasis is on the relationships of different aerosol components in a local and a regional context. The main results are as follows. The main components of the atmospheric aerosol are a fine aerosol, the accumulation aerosol, and a coarse aerosol. Specific coarse modes with modal diameters of 4.7 μm average and geometric standard deviations of about 3 occur at the urban and at the rural site, some times surprisingly strong. The fine and the coarse modes are very likely related to motor-car traffic. Usually the PM 2.5 and PM 10 aerosols are regionally strongly correlated. Occasionally, this correlation is effectively disturbed by local and/or regional emissions. Time series of correlation coefficients reveal an episodic character of the atmospheric aerosol. Periods of strong inter-site correlations of PM 2.5 and PM 10 indicate the dominance and the co-variation of the accumulation aerosols or the dominance and the co-variation of the coarse modes.

  8. Regional Oceanic Impact on Circulation and Direct Radiative Effect of Aerosol over East Asia

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhe; HAN Zhi-Wei

    2011-01-01

    The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect (DRE) of aerosol over East Asia. The aerosols considered in this study include both major anthropogenic aerosols (e.g., sulfate, black carbon, and organic carbon) and natural aerosols (e.g., soil dust and sea salt). The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II, and the simulated period is from 1 January to 31 December 2006. The results show the following: (1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean. (2) In summer, the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward, and the continental low is stronger than without POM in summer. (3) The aerosol optical depth (AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM. (4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore, the authors should take account of the impact of the regional ocean model on studying the direct climate effect &aerosols in long term simulation.

  9. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  10. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  11. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  12. Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their Direct Radiative Effect

    Directory of Open Access Journals (Sweden)

    F. Peers

    2014-10-01

    Full Text Available The albedo of clouds and the aerosol absorption are key parameters to evaluate the direct radiative effect of an aerosol layer above clouds. While most of the retrievals of above clouds aerosol characteristics rely on assumptions on the aerosol properties, this study offers a new method to evaluate aerosol and cloud optical properties simultaneously (i.e. aerosol and cloud optical thickness, aerosol single scattering albedo and angström exponent. It is based on multi-angle total and polarized radiances both provided by the A-train satellite instrument POLDER – Polarization and Directionality of Earth Reflectances. The sensitivities brought by each kind of measurements are used in a complementary way. Polarization mostly translates scattering processes and is thus used to estimate the scattering aerosol optical thickness and the aerosol size. On the other hand, total radiances, together with the scattering properties of aerosols, are used to evaluate the absorption optical thickness of aerosols and the cloud optical thickness. In addition, a procedure has been developed to process the shortwave direct radiative effect of aerosols above clouds based on exact modeling. Besides the three case studies (i.e. biomass burning aerosols from Africa and Siberia and Saharan dust, both algorithms have been applied on the South East Atlantic Ocean and results have been averaged through August 2006. The mean direct radiative effect is found to be 33.5 W m−2. Finally, the effect of the heterogeneity of clouds has been investigated and reveals that it affects mostly the retrieval of the cloud optical thickness and not much the aerosols properties. The homogenous cloud assumption used in both the properties retrieval and the DRE processing leads to a slight underestimation of the DRE.

  13. Modeling nitrate aerosol distributions and its direct radiative forcing in East Asia with RAMS-CMAQ

    Institute of Scientific and Technical Information of China (English)

    Xiao Han; Meigen Zhang; Baorong Zhou

    2013-01-01

    The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module.For evaluating the model performance,nitrate ion concentration in precipitation,and mixing ratios of PM1o,and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan,Korea,and China,and the satellite retrieved NO2 columns.The comparison shows that the simulated values are generally in good agreement with the observed ones.Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations.The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other.Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25-30% of the total aerosol mass concentration and DRF in Sichuan Basin,Southeast China,and East China where the high mass burden of all major aerosols concentrated.The high-est mass concentration and strongest DRF of nitrate could exceed 40 μg/m3 and-5 W/m2,respectively.It also indicates that other aerosol species,such as carbonaceous and mineral particles,could obviously influence the nitrate DRF for they are often internally mixed with each other.

  14. Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic

    Directory of Open Access Journals (Sweden)

    L. Costantino

    2013-09-01

    Full Text Available The net effect of aerosol Direct Radiative Forcing (DRF is the balance between the scattering effect that reflects solar radiation back to space (cooling, and the absorption that decreases the reflected sunlight (warming. The amplitude of these two effects and their balance depends on the aerosol load, its absorptivity, the cloud fraction and the respective position of aerosol and cloud layers. In this study, we use the information provided by CALIOP (CALIPSO satellite and MODIS (AQUA satellite instruments as input data to a Rapid Radiative Transfer Model (RRTM and quantify the shortwave (SW aerosol direct atmospheric forcing, over the South-East Atlantic. The combination of the passive and active measurements allows estimates of the horizontal and vertical distributions of the aerosol and cloud parameters. We use a parametrization of the Single Scattering Albedo (SSA based on the satellite-derived Angstrom coefficient. The South East Atlantic is a particular region, where bright stratocumulus clouds are often topped by absorbing smoke particles. Results from radiative transfer simulations confirm the similar amplitude of the cooling effect, due to light scattering by the aerosols, and the warming effect, due to the absorption by the same particles. Over six years of satellite retrievals, from 2005 to 2010, the South-East Atlantic all-sky SW DRF is −0.03 W m−2, with a spatial standard deviation of 8.03 W m−2. In good agreement with previous estimates, statistics show that a cloud fraction larger than 0.5 is generally associated with positive all-sky DRF. In case of cloudy-sky and aerosol located only above the cloud top, a SSA larger than 0.91 and cloud optical thickness larger than 4 can be considered as threshold values, beyond which the resulting radiative forcing becomes positive.

  15. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol

    Science.gov (United States)

    Aller, Josephine Y.; Radway, JoAnn C.; Kilthau, Wendy P.; Bothe, Dylan W.; Wilson, Theodore W.; Vaillancourt, Robert D.; Quinn, Patricia K.; Coffman, Derek J.; Murray, Benjamin J.; Knopf, Daniel A.

    2017-04-01

    Dissolved organic polymers released by phytoplankton and bacteria abiologically self-assemble in surface ocean waters into nano-to micro-sized gels containing polysaccharides, proteins, lipids and other components. These gels concentrate in the sea surface microlayer (SML), where they can potentially contribute to sea spray aerosol (SSA). Sea spray is a major source of atmospheric aerosol mass over much of the earth's surface, and knowledge of its properties (including the amount and nature of the organic content), size distributions and fluxes are fundamental for determining its role in atmospheric chemistry and climate. Using a cascade impactor, we collected size-fractionated aerosol particles from ambient air and from freshly generated Sea Sweep SSA in the western North Atlantic Ocean together with biological and chemical characterization of subsurface and SML waters. Spectrophotometric methods were applied to quantify the polysaccharide-containing transparent exopolymer (TEP) and protein-containing Coomassie stainable material (CSM) in these particles and waters. This study demonstrates that both TEP and CSM in surface ocean waters are aerosolized with sea spray with the greatest total TEP associated with particles 5 000 nm. The higher concentrations of TEP and CSM in particles >5 000 nm most likely reflects collection of microorganism cells and/or fragments. The greater concentration of CSM in larger size particles may also reflect greater stability of proteinaceous gels compared to polysaccharide-rich gels in surface waters and the SML. Both TEP and CSM were measured in the ambient marine air sample with concentrations of 2.1 ± 0.16 μg xanthan gum equivalents (XG eq.) m-3 and 14 ± 1.0 μg bovine serum albumin equivalents (BSA eq.) m-3. TEP in Sea Sweep SSA averaged 4.7 ± 3.1 μg XG eq. m-3 and CSM 8.6 ± 7.3 μg BSA eq. m-3. This work shows the transport of marine biogenic material across the air-sea interface through primary particle emission and the

  16. Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical Indian aerosols

    Directory of Open Access Journals (Sweden)

    C. M. Pavuluri

    2011-02-01

    Full Text Available To better characterize South and Southeast Asian aerosols, PM10 samples collected from tropical Chennai, India (13.04° N; 80.17° E were analyzed for carbonaceous and water-soluble ionic components. Concentration ranges of elemental carbon (EC and organic carbon (OC were 2.4–14 μg m−3 and 3.2–15.6 μg m−3 in winter samples whereas they were 1.1–2.5 μg m−3 and 4.1–17.6 μg m−3 in summer samples, respectively. Concentration of secondary organic carbon (SOC retrieved from EC-tracer method was 4.6 ± 2.8 μg m−3 in winter and 4.3 ± 2.8 μg m−3 in summer. SO42- (8.8 ± 2.5 μg m−3 and 4.1 ± 2.7 μg m−3 in winter and summer, respectively was found as the most abundant ionic species (57% on average, n = 49, followed by NH4+ (15% > NO3 > Cl > K+> Na+ > Ca2+ > MSA > Mg2+. The mass fractions of EC, organic matter (OM and ionic species varied seasonally, following the air mass trajectories and corresponding source strength. Based on mass concentration ratios of selected components and relations of EC and OC to marker species, we found that biofuel/biomass burning is the major source of atmospheric aerosols in South and Southeast Asia. The high concentrations of SOC and WSOC/OC ratios (ave. 0.45; n = 49 as well as good correlations between SOC and WSOC suggest that the secondary production of organic aerosols during long-range atmospheric transport is also significant in this region. This study provides the baseline data of carbonaceous aerosols for southern part of the Indian subcontinent.

  17. Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.

    Science.gov (United States)

    Igoe, Damien P; Parisi, Alfio; Carter, Brad

    2014-01-01

    This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.

  18. Assessing the direct occupational and public health impacts of solar radiation management with stratospheric aerosols.

    Science.gov (United States)

    Effiong, Utibe; Neitzel, Richard L

    2016-01-19

    Geoengineering is the deliberate large-scale manipulation of environmental processes that affects the Earth's climate, in an attempt to counteract the effects of climate change. Injecting sulfate aerosol precursors and designed nanoparticles into the stratosphere to (i.e., solar radiation management [SRM]), has been suggested as one approach to geoengineering. Although much is being done to unravel the scientific and technical challenges around geoengineering, there have been few efforts to characterize the potential human health impacts of geoengineering, particularly with regards to SRM approaches involving stratospheric aerosols. This paper explores this information gap. Using available evidence, we describe the potential direct occupational and public health impacts of exposures to aerosols likely to be used for SRM, including environmental sulfates, black carbon, metallic aluminum, and aluminum oxide aerosols. We speculate on possible health impacts of exposure to one promising SRM material, barium titanate, using knowledge of similar nanomaterials. We also explore current regulatory efforts to minimize exposure to these toxicants. Our analysis suggests that adverse public health impacts may reasonably be expected from SRM via deployment of stratospheric aerosols. Little is known about the toxicity of some likely candidate aerosols, and there is no consensus regarding acceptable levels for public exposure to these materials. There is also little infrastructure in place to evaluate potential public health impacts in the event that stratospheric aerosols are deployed for solar radiation management. We offer several recommendations intended to help characterize the potential occupation and public health impacts of SRM, and suggest that a comprehensive risk assessment effort is needed before this approach to geoengineering receives further consideration.

  19. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties

    Directory of Open Access Journals (Sweden)

    X. Ma

    2012-06-01

    Full Text Available Aerosol direct radiative forcing (DRF plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.. The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC and primary organic carbon (POC, the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.

  20. Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET

    Science.gov (United States)

    Kazadzis, S.; Veselovskii, I.; Amiridis, V.; Gröbner, J.; Suvorina, A.; Nyeki, S.; Gerasopoulos, E.; Kouremeti, N.; Taylor, M.; Tsekeri, A.; Wehrli, C.

    2014-07-01

    Synchronized sun-photometric measurements from the AERONET-CIMEL (AErosol RObotic NETwork) and GAW-PFR (Global Atmospheric Watch-Precision Filter Radiometer) aerosol networks are used to compare retrievals of the aerosol optical depth (AOD), effective radius, and volume concentration during a high-temporal-resolution measurement campaign at the Athens site in the Mediterranean Basin from 14 to 22 July 2009. During this period, direct-sun AOD retrievals from both instruments exhibited small differences in the range 0.01-0.02. The AODs measured with CIMEL and PFR instruments were inverted to retrieve particle microphysical properties using the linear estimation (LE) technique. For low aerosol loads (AOD CIMEL values for both direct-sun data and inversion data. At higher loads (AOD > 0.4), measurements of the effective radius by the PFR are consistently 20 % lower than CIMEL for both direct-sun and inversion data. Volume concentrations at low aerosol loads from the PFR are up to 80% higher than the CIMEL for direct-sun data but are up to 20% lower when derived from inversion data under these same conditions. At higher loads, the percentage difference in volume concentrations from the PFR and CIMEL is systematically negative, with inversion data predicting differences 30% lower than those obtained from direct-sun data. An assessment of the effect of errors in the AOD retrieval on the estimation of PFR bulk parameters was performed and demonstrates that it is possible to estimate the particle volume concentration and effective radius with an uncertainty < 65% when AOD < 0.2 and when input errors are as high as 10%.

  1. On direct passive microwave remote sensing of sea spray aerosol production

    Directory of Open Access Journals (Sweden)

    I. B. Savelyev

    2014-06-01

    Full Text Available This study addresses and attempts to mitigate persistent uncertainty and scatter among existing approaches for determining the rate of sea spray aerosol production by breaking waves in the open ocean. The new approach proposed here utilizes passive microwave emissions from the ocean surface, which are known to be sensitive to surface roughness and foam. Direct, simultaneous, and collocated measurements of the aerosol production and microwave emissions were collected on-board FLoating Instrument Platform (FLIP in deep water ∼150 km off the coast of California over a period of ∼4 days. Vertical profiles of coarse-mode aerosol (0.25–23.5 μm concentrations were measured with a forward scattering spectrometer and converted to surface flux using dry deposition and vertical gradient methods. Back trajectory analysis of Northeast Pacific meteorology verified the clean marine origin of the sampled air mass over at least 5 days prior to measurements. Vertical and horizontal polarization surface brightness temperatures were measured with a microwave radiometer at 10.7 GHz frequency. Data analysis revealed a strong sensitivity of the brightness temperature polarization difference to the rate of aerosol production. An existing model of microwave emission from the ocean surface was used to determine the empirical relationship and to attribute its underlying physical basis to microwave emissions from surface roughness and foam within active and passive phases of breaking waves. A possibility of and initial steps towards satellite retrievals of the sea spray aerosol production are briefly discussed in concluding remarks.

  2. Direct Climatic Effect of Aerosols and Interdecadal Variations over East Asia Investigated by a Regional Coupled Climate-Chemistry/Aerosol Model

    Institute of Scientific and Technical Information of China (English)

    HAN Zhi-Wei; XIONG Zhe; LI Jia-Wei

    2011-01-01

    The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.

  3. Estimate of Aerosol Optical Depth Using Broadband Direct Normal Observations at Highest Polluted Area in the World

    Directory of Open Access Journals (Sweden)

    U. A. Rahoma

    2010-01-01

    Full Text Available Problem statement: The measurement of different components of direct solar radiation for this research has been carried out in Helwan, Egypt. Helwan (Latitude 29°52 N, Longitude 31°20 E. This is a considered as the largest polluted region in the world. The level of pollution in Helwan region is higher, compared to the international limit by about 7 or 10 times in industrial and populated region respectively. Approach: The daily variation for different components of solar radiation bands as global, direct (total, yellow, red and infrared and diffuse solar radiation had been studied and discussed. The data measurements have been taken for nine years (1991-2000. Hourly data of solar irradiance on a horizontal plane had also been recorded simultaneously together with relative humidity and wind speed along with some traditional techniques for selecting the clear sky days of the period examined. Results: The results clearly showed seasonal dynamics in aerosol loading, type and perceptible water. Conclusion: Background levels of aerosols, which we defined as yellow color less than 0.10, had observed at almost all sites but varying frequencies.

  4. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    Science.gov (United States)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  5. Influence of Formulation Components on Aerosolization Properties of Isoniazid Loaded Chitosan Microspheres

    Directory of Open Access Journals (Sweden)

    Aliasgar J. Kundawala

    2011-10-01

    Full Text Available The objective of the present study was to prepare microspheres with small size and good sphericity by spray drying technology using Isoniazid (INH as model drug, chitosan as encapsulating polymer; lactose and L Leucine as bulking and dispersing agent respectively. Influence of formulation components on physical properties and aerosol performance were studied. The spray dried powders obtained were characterized for morphological characteristics, compatibility using scanning electron microscopy and Differential Scanning calorimetery respectively. Tapped density; bulk density and aerosol properties like Fine particle fraction, mass median aerodynamic diameter etc were also evaluated. The smooth microspheres with particle size ranging between 4 to 6 µm were obtained. The drug content of chitosan microspheres loaded with Isoniazid were in the range of 88 % to 108 %. The drug release studies showed that more than 90% of drug released from the chitosan microsphere matrix within one hour. The fine particle fraction observed between 55 to 67 % which indicate good lung deposition. Results of Fine particle fraction also revealed addition of L Leucine found to enhance powder dispersibility.

  6. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  7. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; Smyth, T. J.; Zielinski, T.; Zibordi, G.; Goes, J. I.; Harvey, M. J.; Quinn, P. K.; Nelson, N. B.; Radionov, V. F.; Duarte, C. M.; Remer, L. A.; Kahn, R. A.; Kleidman, R. G.; Gaitley, B. J.; Tan, Q.; Diehl, T. L.

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  8. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity

    Science.gov (United States)

    Iorga, G.; Hitzenberger, R.; Kasper-Giebl, A.; Puxbaum, Hans

    2007-01-01

    In view of both the climatic relevance of aerosols and the fact that aerosol burdens in central Europe are heavily impacted by anthropogenic sources, this study is focused on estimating the regional-scale direct radiative effect of aerosols in Austria. The aerosol data (over 80 samples in total) were collected during measurement campaigns at five sampling sites: the urban areas of Vienna, Linz, and Graz and on Mt. Rax (1644 m, regional background aerosol) and Mt. Sonnblick (3106 m, background aerosol). Aerosol mass size distributions were obtained with eight-stage (size range: 0.06-16 μm diameter) and six-stage (size range 0.1-10 μm) low-pressure cascade impactors. The size-segregated samples were analyzed for total carbon (TC), black carbon (BC), and inorganic ions. The aerosol at these five locations is compared in terms of size distributions, optical properties, and direct forcing. Mie calculations are performed for the dry aerosol at 60 wavelengths in the range 0.3-40 μm. Using mass growth factors determined earlier, the optical properties are also estimated for higher relative humidities (60%, 70%, 80%, and 90%). A box model was used to estimate direct radiative forcing (DRF). The presence of absorbing species (BC) was found to reduce the cooling effect of the aerosols. The water-soluble substances dominate radiative forcing at the urban sites, while on Rax and Sonnblick BC plays the most important role. This result can be explained by the effect of the surface albedo, which is much lower in the urban regions (0.16) than at the ice and snow-covered mountain sites. Shortwave (below 4 μm) and longwave surface albedo values for ice were 0.35 and 0.5, while for snow surface albedo, values of 0.8 (shortwave) and 0.5 (longwave) were used. In the case of dry aerosol, especially for urban sites, the unidentified material may contribute a large part to the forcing. Depending on the sampling site the estimated forcing gets more negative with increasing humidity

  9. Identification And Characterization Of Oligomers As Major Components Of Atmospheric Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Kalberer, M. [ETH Zuerich (Switzerland); Paulsen, D. [PSI and ETH Zuerich (Switzerland); Sax, M. [ETH Zuerich and PSI (Switzerland); Steinbacher, M.; Dommen, J.; Prevot, A.S.H.; Fisseha, R.; Richter, R.; Weingartner, E.; Frankevich, V. [ETH Zuerich (Switzerland); Zenobi, R. [ETH Zuerich (Switzerland); Baltensperger, U.

    2005-03-01

    The chemical composition and volatility of organic aerosols formed during photo-oxidation of volatile organic compounds were measured in the PSI smog chamber. With mass spectrometric and aerosol volatility methods, oligomers were identified for the first time as main constituents of these organic aerosols. Measurements showed that oligomers account for about 50% of the aerosol mass after more than 20 hours of aging. (author)

  10. Direct-write fabrication of integrated, multilayer ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Dimos, D.; Yang, P.

    1998-03-01

    The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. However, traditional tape casting and screen printing approaches are poorly suited to the requirements of rapid prototyping and small lot manufacturing. To address this need, the authors are developing a direct write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. This approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way, and has been used to make integrated passive devices such RC filters, inductors, and voltage transformers.

  11. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  12. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    Science.gov (United States)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  13. Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    Science.gov (United States)

    de Graaf, M.; Haywood, J.; Bellouin, N.; Tilstra, L. G.; Stammes, P.

    2017-02-01

    Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.

  14. Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014

    Science.gov (United States)

    Qiu, Yulu; Liao, Hong; Zhang, Renjian; Hu, Jianlin

    2017-06-01

    We quantified aerosol direct radiative effects on surface layer concentrations of aerosols during a heavily polluted event in the North China Plain (NCP, 35.4°N-41.2°N, 113.3°E-119.3°E) during 21-27 February 2014, using the chemistry version of the Weather Research and Forecasting (WRF-Chem) Model. Comparisons of model results with observations showed that the WRF-Chem model reproduced the spatial and temporal variations of meteorological variables reasonably well, but overestimated average PM2.5 concentration by 21.7% over the NCP during 21-27 February. The simulated direct radiative effects of total, absorbing, and scattering aerosols reduced the planetary boundary layer (PBL) heights by 111.4 m, 35.7 m, and 70.7 m, respectively, averaged over NCP and 21-27 February. The direct radiative effects of total aerosols induced increases in aerosol concentrations by 11.5% for SO42-, 29.5% for NO3-, 29.6% for NH4+, 28.7% for organic carbon (OC), 26.7% for black carbon (BC), and 20.4% for PM2.5, respectively, averaged over the NCP during 21-27 February 2014. The increase in PM2.5 concentration averaged over the NCP and the haze event was 29.6 μg m-3 (16.8%) due to radiative effect of scattering aerosols, as a result of the decreases in PBL height and changes in secondary aerosol production rates. The corresponding increase in PM2.5 concentration owing to absorbing aerosols was 2.1 μg m-3 (1.0%), resulting from the offsetting impacts of changes in PBL height, wind near the surface, and chemical processes.

  15. Goal-Directed Aiming: Two Components but Multiple Processes

    Science.gov (United States)

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  16. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

    Science.gov (United States)

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...

  17. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    Science.gov (United States)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating.

  18. Direct effect of aerosol optical properties on global dimming and brightening

    Science.gov (United States)

    Kudo, R.; Uchiyama, A.

    2011-12-01

    Surface solar radiation observed at numerous locations has decreased from the 1960s to the 1980s (Global dimming), thereafter increased (Global brightening). The dimming and brightening is considered to be due to the changes in both clouds and aerosols. Aerosols have a direct impact on the surface solar radiation by scattering and absorption. The impact is determined by three parameters: optical depth (AOD), single scattering albedo (SSA), and asymmetry factor, but the effect of asymmetry factor is rather smaller than the others. Therefore, the long-term changes in AOD and SSA are necessary to evaluate the aerosol impact on the global dimming and brightening. We have developed the method to estimate AOD and SSA from the hourly accumulated direct and diffuse irradiances measured by the ground-based broadband radiometers. In the estimation, the real part of the refractive index is fixed, and the size distribution is defined by the Junge distribution with a fixed shaping constant. Using the developed method, the measurements from 1975 to 2008 at 14 sites in Japan were analyzed. Consequently, a decrease of AOD by 0.02 and an increase of SSA by 0.2 during the period were seen. The surface solar radiation under the clear sky conditions, which was calculated from the estimated aerosol optical properties, was increased by 5% due to the changes in AOD and SSA; the influence of SSA was dominant. We also investigate the cloud impact on the surface solar radiation which was simply defined as the difference between the surface solar radiation under the cloudy sky conditions and under the clear sky conditions; the cloud impact had no statistically significant trends. The brightening in Japan may be due to the changes in aerosol optical properties, especially SSA. Our developed method can be applied to measurements at other sites around the world and would be helpful to understand the causes of the global dimming and brightening.

  19. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  20. Direct-write fabrication of integrated, multilayer ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Dimos, D.; Yang, P.; Garino, T.J.; Raymond, M.V.; Rodriguez, M.A.

    1997-08-01

    The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.

  1. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers

    OpenAIRE

    Cai, Chen; Stewart, David J.; Reid, Jonathan P; Zhang, Yun Hong; Ohm, Peter; Dutcher, Cari S.; Clegg, Simon L.

    2015-01-01

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate re...

  2. Quantification of the aerosol direct radiative effect from smoke over clouds using passive space-borne spectrometry

    Science.gov (United States)

    de Graaf, M.; Stammes, P.; Tilstra, L. G.

    2013-05-01

    The solar radiative absorption by smoke layers above clouds is quantified, using the unique broad spectral range of the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from the ultraviolet (UV) to the shortwave infrared (SWIR). Aerosol radiative effects in the UV are separated from cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke is strong, creating a strong signal in the measured reflectance. In the SWIR, absorbing and scattering effects from smoke are negligible, allowing the retrieval of cloud parameters from the measured spectrum using existing retrieval techniques. The spectral signature of the cloud can be modelled using a radiative transfer model (RTM) and the cloud parameters retrieved in the SWIR. In this way, the aerosol effects can be determined from the measured aerosol-polluted cloud shortwave spectrum and the modelled aerosol-unpolluted cloud shortwave spectrum. This can be used to derive the aerosol direct radiative effect (DRE) over marine clouds, independent of aerosol parameter retrievals, significantly improving the current accuracy of aerosol DRE estimates. Only cloud parameters are needed to model the aerosolunpolluted cloud reflectance, while the effects of the aerosol absorption are in the aerosol-polluted cloud reflectance measurements. In this paper we present a case study of the above method using SCIAMACHY data over the South Atlantic Ocean west of Africa on 13 August 2006, when a huge plume of smoke was present over persistent cloud fields. The aerosol DRE over clouds was as high as 128 ± 8 Wm-2 for this case, while the aerosol DRE over clouds averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2.

  3. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    Science.gov (United States)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  4. Sampling of Atmospheric Aerosols by Electrostatic Precipitation for Direct Analyses. Part 1

    CERN Document Server

    Hermann, G; Matz, R; Trenin, A; Moritz, W; Hermann, Gerd; Lasnitschka, Georg; Matz, Rudolf; Trenin, Alexander; Moritz, Walter

    2002-01-01

    A novel system for aerosol sampling by electrostatic precipitation using graphite platforms as sample collector is presented. Employing standard platforms for commercial analytical instruments, the conception allows fast solid sampling direct element analysis with ETAAS, ETV-ICP-MS/OES, and ETACFS without any wet digestive pre-treatment. Other advantages are: highly efficient electrostatic particle collection (>99% for d = 10e-9 m - 10e-6 m), reusable sample collectors, omission of filters and chemical reagents. On this basis, an electrostatic precipitator is constructed aiming at a small, relatively uncomplicated instrument. Ten precipitators are arranged in a multi-sampling apparatus for outdoor operation, which simultaneously collect ten samples on same or different collectors for instrumental element analyses, or for microscopic investigations of the collected particles. The precipitator is tested with different model aerosols as well as with atmospheric sampling. Element analysis is carried out with the ...

  5. Sampling of Atmospheric Aerosols by Electrostatic Precipitation for Direct Analyses. Part 2

    CERN Document Server

    Hermann, G; Matz, R; Trenin, A; Moritz, W; Hermann, Gerd; Lasnitschka, Georg; Matz, Rudolf; Trenin, Alexander; Moritz, Walter

    2002-01-01

    A novel system for aerosol sampling by electrostatic precipitation using graphite platforms as sample collector is presented. Employing standard platforms for commercial analytical instruments, the conception allows fast solid sampling direct element analysis with ETAAS, ETV-ICP-MS/OES, and ETACFS without any wet digestive pre-treatment. Other advantages are: highly efficient electrostatic particle collection (>99% for d = 10e-9 m - 10e-6 m), reusable sample collectors, omission of filters and chemical reagents. On this basis, an electrostatic precipitator is constructed aiming at a small, relatively uncomplicated instrument. Ten precipitators are arranged in a multi-sampling apparatus for outdoor operation, which simultaneously collect ten samples on same or different collectors for instrumental element analyses, or for microscopic investigations of the collected particles. The precipitator is tested with different model aerosols as well as with atmospheric sampling. Element analysis is carried out with the ...

  6. Automatic and Direct Identification of Blink Components from Scalp EEG

    Directory of Open Access Journals (Sweden)

    Guojun Dai

    2013-08-01

    Full Text Available Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA. Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn’t need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects.

  7. Automatic and direct identification of blink components from scalp EEG.

    Science.gov (United States)

    Kong, Wanzeng; Zhou, Zhanpeng; Hu, Sanqing; Zhang, Jianhai; Babiloni, Fabio; Dai, Guojun

    2013-08-16

    Eye blink is an important and inevitable artifact during scalp electroencephalogram (EEG) recording. The main problem in EEG signal processing is how to identify eye blink components automatically with independent component analysis (ICA). Taking into account the fact that the eye blink as an external source has a higher sum of correlation with frontal EEG channels than all other sources due to both its location and significant amplitude, in this paper, we proposed a method based on correlation index and the feature of power distribution to automatically detect eye blink components. Furthermore, we prove mathematically that the correlation between independent components and scalp EEG channels can be translating directly from the mixing matrix of ICA. This helps to simplify calculations and understand the implications of the correlation. The proposed method doesn't need to select a template or thresholds in advance, and it works without simultaneously recording an electrooculography (EOG) reference. The experimental results demonstrate that the proposed method can automatically recognize eye blink components with a high accuracy on entire datasets from 15 subjects.

  8. Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions

    Directory of Open Access Journals (Sweden)

    A. M. Sage

    2007-07-01

    Full Text Available The species and chemistry responsible for secondary organic aerosol (SOA formation remain highly uncertain. Laboratory studies of the oxidation of individual, high-flux SOA precursors do not lead to particles with mass spectra (MS matching those of ambient aged organic material. And, the complexity of real organic particles challenges efforts to identify their chemical origins. We have previously hypothesized that SOA can form from the atmospheric oxidation of a large suite of precursors with varying vapor pressures. Here, we support this hypothesis by using an aerosol mass spectrometer to track the chemical evolution of diesel exhaust as it is photochemically oxidized in an environmental chamber. With explicit knowledge of the condensed-phase MS of the primary emissions from our engine, we are able to decompose each recorded MS into contributing primary and secondary spectra throughout the experiment. We find that the SOA MS becomes increasingly oxidized as a function of time, eventually reaching a final MS that closely resembles that of ambient aged organic particulate matter. This observation is consistent with the idea that lower vapor pressure, semi-volatile organic emissions can form condensable products with fewer generations of oxidation, and therefore, they form relatively less oxidized SOA very quickly.

  9. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    Science.gov (United States)

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya

    2015-12-01

    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  10. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    Science.gov (United States)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  11. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    Directory of Open Access Journals (Sweden)

    C. D. Papadimas

    2011-11-01

    Full Text Available For the first time, the direct radiative effect (DRE of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM. The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA, DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR, DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000–2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2, Global Reanalysis projects (National Centers for Environmental Prediction – National Center for Atmospheric Research, NCEP/NCAR, and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer, are taken from the MODerate resolution Imaging Spectroradiometer (MODIS of NASA (National Aeronautics and Space Administration and they are Supplemented by the Global Aerosol Data Set (GADS. The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA covering the period 2000–2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = −2.4 Wm−2. Though planetary cooling is found over most of the region, up to −7 Wm−2, large positive DRETOA values (up to +25 Wm−2 are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm−2. Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DRE

  12. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Kotalo, Rama Gopal, E-mail: krgverma@yahoo.com [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Rajuru Ramakrishna, Reddy [Aerosol & Atmospheric Research Laboratory, Department of Physics, Sri Krishnadevaraya University, Anantapur 515 003, Andhra Pradesh (India); Srinivasa Ramanujan Institute of Technology, B.K. Samudram Mandal, Anantapur 515 701, Andhra Pradesh (India); Surendranair, Suresh Babu [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, Kerala (India)

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500 nm are found to be 0.47 ± 0.09, 0.34 ± 0.08, 0.29 ± 0.06 and 0.30 ± 0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α{sub 380–1020}) value is observed maximum in March (1.25 ± 0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33 ± 0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00–08:00 (IST) and evening 19:00–21:00 (IST) hours and one minima noticed during afternoon (13:00–16:00). The highest monthly mean BC concentration is observed in the month of January (3.4 ± 1.2 μg m{sup −3}) and the lowest in July (1.1 ± 0.2 μg m{sup −3}). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be + 36.8 ± 1.7 W m{sup −2}, + 26.9 ± 0.2 W m{sup −2}, + 18.0 ± 0.6 W m{sup −2} and + 18.5 ± 3.1 W m{sup −2} during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80 W m{sup −2}) which contributes more increase in atmospheric heating by ~ 1 K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. - Highlights: • The mean values of AOD{sub 500} are found to be high during summer whereas low in monsoon. • The highest values of BC are observed in January and the lowest in the month of July. • The annual mean

  13. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    Science.gov (United States)

    Gilardoni, Stefania; Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Chiara Pietrogrande, Maria; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-09-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1-0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4-20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate.

  14. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    Science.gov (United States)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  15. Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

    Directory of Open Access Journals (Sweden)

    C. A. Randles

    2010-10-01

    Full Text Available Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.

  16. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    Science.gov (United States)

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  17. A high-resolution study of surfactant partitioning and kinetic limitations for two-component internally mixed aerosols

    Science.gov (United States)

    Suda, S. R.; Petters, M. D.

    2013-12-01

    Atmospheric aerosols serve as cloud condensation nuclei (CCN), altering cloud properties and ultimately affecting climate through their effect on the radiative balance. Aerosol CCN activity depends in part on aerosol composition and surfactant compounds are of particular interest because surfactants are enriched at the water/air interface, resulting in a radial concentration gradient within the aqueous droplet. Accurate treatment of the surfactant concentration gradient complicates the otherwise straightforward predictions of CCN activity for aerosols of known composition. To accurately evaluate predictions made by theory, laboratory studies investigating the relationship between critical supersaturation and dry diameter of particles that include surfactants require significant reduction in measurement uncertainty for both water-uptake and CCN measurements. Furthermore, uncertainties remain regarding kinetic limitations to surfactant partitioning that could result in deviation from predictions based on equilibrium thermodynamics. This study attempts to address some of these issues through high-resolution analysis of CCN activity of two-component mixed surfactant/non-surfactant aerosols at different internal mixing ratios performed with and without a water-uptake time delay to ascertain whether or not the observed effects are kinetically limited. We present new data for the aerosols consisting of 1) the ionic surfactant sodium dodecyl sulfate (SDS) with ammonium sulfate, 2) SDS with sodium chloride and 3) the strong non-ionic fluorosurfactant Zonyl with an organic proxy glucose. As a point of reference we also evaluated the mixture of ammonium sulfate with glucose. Aerosol activation diameters were determined using CCN analysis in conjunction with scanning mobility size classification and high sheath-to-aerosol flow ratios. This resulted in CCN-derived kappa values that could be determined within +/-5% relative error. To test whether dynamic surfactant partitioning

  18. Enhancements of Major Aerosol Components Due to Additional HONO Sources in the North China Plain and Implications for Visibility and Haze

    Institute of Scientific and Technical Information of China (English)

    AN Junling; LI Ying; CHEN Yong; LI Jian; QU Yu; TANG Yujia

    2013-01-01

    The Weather Research and Forecasting/Chemistry model (WRF-Chem) was updated by including photoexcited nitrogen dioxide (NO2) molecules,heterogeneous reactions on aerosol surfaces,and direct emissions of nitrous acid (HONO) in the Carbon-Bond Mechanism Z (CBM-Z).Five simulations were conducted to assess the effects of each new component and the three additional HONO sources on concentrations of major chemical components.We calculated percentage changes of major aerosol components and concentration ratios of gas NOy (NOyg) to NOy and particulate nitrates (NO3-) to NOy due to the three additional HONO sources in the North China Plain in August of 2007.Our results indicate that when the three additional HONO sources are included,WRF-Chem can reasonably reproduce the HONO observations.Heterogeneous reactions on aerosol surfaces are a key contributor to concentrations of HONO,nitrates (NO3-),ammonium (NH4+),and PM2.5 (concentration of particulate matter of ≤2.5 μm in the ambient air) across the North China Plain.The three additional HONO sources produced a ~5%-20% increase in monthly mean daytime concentration ratios of NOa/NOy,a ~15%-52% increase in maximum hourly mean concentration ratios of NO3-/NOy,and a ~10%-50% increase in monthly mean concentrations of NO3 and NH4+ across large areas of the North China Plain.For the Bohai Bay,the largest hourly increases of NO3-exceeded 90%,of NH4+ exceeded 80%,and of PM2.5 exceeded 40%,due to the three additional HONO sources.This implies that the three additional HONO sources can aggravate regional air pollution,further impair visibility,and enhance the incidence of haze in some industrialized regions with high emissions of NOx and particulate matter under favorable meteorological conditions.

  19. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    anthropogenic aerosols are thought to be of comparable magnitude to the positive forcings resulting from incremental concentrations of greenhouse gases.The magnitudes and estimated uncertainties of the several forcings over the industrial period are summarized in Figure 2, which was prepared as part of the recent assessment of climate change by the Intergovernmental Panel on Climate Change (IPCC, 2001). This figure shows for each forcing a best estimate of its magnitude and of the associated uncertainty. The uncertainty associated with forcing by the long-lived greenhouse gases is relatively small, reflective of the rather high level of understanding of both the magnitude of the incremental concentrations of these species and of the radiative perturbation per incremental concentration. In marked contrast, the uncertainties associated with the several aerosol forcings are much greater, indicative of a much lesser understanding of the controlling quantities. For direct forcing by dust aerosols, which may be positive or negative, and for indirect radiative forcing by anthropogenic aerosols the IPCC working groups ( Penner et al., 2001; Ramaswamy et al., 2001) declined to present best estimates but indicated only possible ranges. This situation is unsatisfying but unavoidable, given the current state of knowledge. Other reviews of aerosol forcings are provided by Ramanathan et al. (2001a), Haywood and Boucher (2000), Shine and Forster (1999), Schwartz (1996), and Schwartz and Slingo (1996). Hobbs (1993) provides an introduction to aerosol-cloud interactions. (9K)Figure 2. The effects of various anthropogenic constituents of the atmosphere on the global climate system for the year 2000 relative to 1750 as estimated by the Intergovernmental Panel on Climate Change (IPCC, 2001). The effects are expressed as forcings, which in this case are changes in global mean radiative flux components arising from the indicated perturbing influence. Best estimates are indicated by the bars and

  20. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    Science.gov (United States)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  1. Aerosol direct radiative forcing during Sahara dust intrusions in the Central Mediterranean

    Directory of Open Access Journals (Sweden)

    M. R. Perrone

    2010-08-01

    Full Text Available The clear-sky, instantaneous Direct Radiative Effect (DRE by all and anthropogenic particles is calculated during Sahara dust intrusions in the Mediterranean basin, to evaluate the role of anthropogenic particle's radiative effects and to obtain a better estimate of the DRE by desert dust. The clear-sky aerosol DRE is calculated by a two stream radiative transfer model in the solar (0.3–4 μm and infrared (4–200 μm spectral range, at the top of the atmosphere (ToA and at the Earth's surface (sfc. Aerosol optical properties by AERONET sun-sky photometer measurements and aerosol vertical profiles by EARLINET lidar measurements, both performed at Lecce (40.33° N, 18.10° E during Sahara dust intrusions occurred from 2003 to 2006 year, are used to perform radiative transfer simulations. Instantaneous values at 0.44 μm of the real (n and imaginary (k refractive index and of the of aerosol optical depth (AOD vary within the 1.33–1.55, 0.0037–0.014, and 0.2–0.7 range, respectively during the analyzed dust outbreaks. Fine mode particles contribute from 34% to 85% to the AOD by all particles. The complex atmospheric chemistry of the Mediterranean basin that is also influenced by regional and long-range transported emissions from continental Europe and the dependence of dust optical properties on soil properties of source regions and transport pathways, are responsible for the high variability of n, k, and AOD values and of the fine mode particle contribution. Instantaneous all-wave (solar+infrared DREs that are negative as a consequence of the cooling effect by aerosol particles, span the – (32–10 Wm−2 and the – (44–20 Wm−2 range at the ToA and surface, respectively. The instantaneous all-wave DRE by anthropogenic particles that is negative, varies within – (13–7 Wm−2 and – (18–11 Wm−2 at the ToA and surface, respectively. It represents from 41

  2. Aerosol direct radiative forcing during Sahara dust intrusions in the central Mediterranean

    Directory of Open Access Journals (Sweden)

    M. R. Perrone

    2009-10-01

    Full Text Available The clear-sky, instantaneous Direct Radiative Effect (DRE by all and anthropogenic particles is calculated during Sahara dust intrusions in the Mediterranean basin, to evaluate the role of anthropogenic particle's radiative effects and to get a better estimate of the DRE by desert dust. The clear-sky aerosol DRE is calculated by a two stream radiative transfer model in the solar (0.3–4 μm and infrared (4–200 μm spectral range, at the top of the atmosphere (ToA and at the Earth's surface (sfc. Aerosol optical properties by AERONET sun-sky photometer measurements and aerosol vertical profiles by EARLINET lidar measurements, both performed at Lecce (40.33° N, 18.10° E during Sahara dust intrusions occurred from 2003 to 2006 year, are used to initialize radiative transfer simulations. Instantaneous values at 0.44 μm of the real (n and imaginary (k refractive index and of the of aerosol optical depth (AOD vary within the 1.33–1.55, 0.0037–0.014, and 0.2–0.7 range, respectively during the analyzed dust outbreaks. Fine mode particles contribute from 34% to 85% to the AOD by all particles. The complex atmospheric chemistry of the Mediterranean basin that is also influenced by regional and long-range transported emissions from continental Europe and the dependence of dust optical properties on soil properties of source regions and transport pathways are responsible for the high variability of n, k, and AOD values and of the fine mode particle contribution. Instantaneous net (solar+infrared DREs that are negative as a consequence of the cooling effect by aerosol particles, span the – (32–10 W m−2 and the – (44–20 W m−2 range at the ToA and surface, respectively. The instantaneous net DRE by anthropogenic particles that is negative, varies within −(13–8 W m−2 and −(17–11 W m−2 at the ToA and surface, respectively. It represents from 41 up to 89

  3. Direct and Collisional Excitation of Automotive Fuel Components)

    Science.gov (United States)

    White, Allen R.; Wilson, Kyle; Sakai, Stephen; Devasher, Rebecca B.

    2010-06-01

    Adding energy directly into the vibrational modes of automotive fuel may reduce the threshold energy required for combustion, without raising the combustion charge temperature. This energy can be supplied either directly via incident laser radiation or indirectly through collision with directly excited molecules. The most common chemical in commercial gasoline, isooctane, does not absorb infrared radiation sufficiently at any wavelength for which an infrared laser is readily available. However, CO2 lasers are relatively cheap, and are available at wavelengths which are absorbed by isopropanol as well as ethanol, which is also a component of commercial gasoline. In this study, the infrared absorption of isopropanol and ethanol in balance isooctane were measured at three wavelengths (10.6 m, 10.2 m, and 9.3 m) of incident CO2 laser radiation. Additional time-resolved emission measurements were performed for these mixtures. The data support the existence of the proposed collisional pathway for energy transfer from ethanol and isopropanol to isooctane.

  4. Aerosol-droplet relations in Arctic clouds: insight from the Indirect and Semi-Direct Aerosol Campaign (ISDAC)

    Science.gov (United States)

    Earle, M. E.; Liu, P.; Strapp, J. W.; Zelenyuk, A.; Ovchinnikov, M.; MacDonald, A.; Shantz, N. C.; Leaitch, W. R.; Ghan, S. J.

    2010-12-01

    The relationships between atmospheric aerosol particles and Arctic cloud microphysics are investigated through a droplet number closure study using aircraft observational data from the US Department of Energy ISDAC study conducted in Alaska in April, 2008. In-situ measurements of aerosol physicochemical properties and atmospheric state are used to simulate droplet activation and growth in an adiabatic cloud parcel model. Size distributed aerosol particle concentration and composition measurements were obtained below-cloud using a Passive Cavity Aerosol Spectrometer Probe (PCASP; size range ~ 0.12 - 3 µm) and SPLAT II, a single particle mass spectrometer. The updraft velocity defines the development of supersaturation, and so dictates the onset of droplet nucleation. For model simulations in the present work, the updraft velocity was determined from a combination of gust probe observations and updraft trajectories computed using a large eddy simulation cloud-resolving model (LES-CRM). The simulated droplet concentrations are compared against in situ measurements from a DMT Cloud Droplet Probe (CDP; size range 2 - 50 µm) and/or Forward-Scattering Spectrometer Probe (FSSP-100X; size range 3 - 45 µm). The sensitivity of the comparison of simulated and observed cloud droplet number concentrations is examined for reasonable variations of the aerosol physicochemical properties (e.g. mass accommodation coefficient) and updraft velocity. Droplet closure analysis is presented for selected cases during ISDAC, comprising both clean and polluted air masses with respect to aerosol particle number concentration and composition. The applicability of the results to model parameterizations is considered, with emphasis on the description of the updraft velocity. The findings increase our knowledge of factors affecting the lifetime and radiative properties of Arctic clouds, which are critical to our understanding of the role of climate change in the Arctic.

  5. Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2004-11-01

    Full Text Available Direct observation of the Sun at large solar zenith angles during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II/Validation of International Satellites and study of Ozone Loss (VINTERSOL campaign by several instruments provided a rich dataset for the retrieval and analysis of line-of-sight column composition, intercomparison, and measurement validation. A flexible, multi-species spectral fitting technique is presented and applied to spectral solar irradiance measurements made by the NCAR Direct beam Irradiance Atmospheric Spectrometer (DIAS on-board the NASA DC-8. The approach allows for the independent retrieval of O3, O2·O2, and aerosol optical properties, by constraining Rayleigh extinction. We examine the 19 January 2003 and 6 February 2003 flights and find very good agreement of O3 and O2·O2 retrievals with forward-modeling calculations, even at large solar zenith angles, where refraction is important. Intercomparisons of retrieved ozone and aerosol optical thickness with results from the Ames Airborne Tracking Sunphotometer (AATS-14 are summarized.

  6. Modelling sea salt aerosol and its direct and indirect effects on climate

    Directory of Open Access Journals (Sweden)

    X. Ma

    2007-10-01

    Full Text Available A size-dependent sea salt aerosol parameterization was developed based on the piecewise log-normal approximation (PLA for aerosol size distributions. Results of this parameterization from simulations with a global climate model produce good agreement with observations at the surface and for vertically-integrated volume size distributions. The global and annual mean of the sea salt burden is 10.1 mg m−2. The direct radiative forcing is calculated to be −1.52 and −0.60 W m−2 for clear sky and all sky, respectively. The first indirect radiative forcing is about twice as large as the direct forcing for all-sky (−1.34 W m−2. The results also show that the total indirect forcing of sea salt is −2.9 W m−2 if climatic feedbacks are taken into account. The sensitivity of the forcings to changes in the burdens and sizes of sea salt particles was also investigated based on additional simulations with a different sea salt source function.

  7. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    Directory of Open Access Journals (Sweden)

    C. D. Papadimas

    2012-08-01

    Full Text Available For the first time, the direct radiative effect (DRE of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM. The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA, DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR, DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000–2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2, Global Reanalysis projects (National Centers for Environmental Prediction – National Center for Atmospheric Research, NCEP/NCAR, and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer, are taken from the MODerate resolution Imaging Spectroradiometer (MODIS of NASA (National Aeronautics and Space Administration and they are supplemented by the Global Aerosol Data Set (GADS. The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA covering the period 2000–2007.

    A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = −2.4 W m−2. Although a planetary cooling is found over most of the region, of up to −7 W m−2, large positive DRETOA values (up to +25 W m−2 are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m−2. Aerosols are found to increase the absorption of solar radiation in the atmospheric

  8. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    Science.gov (United States)

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant.

  9. Direct Numerical Simulation of Combustion Using Principal Component Analysis

    Science.gov (United States)

    Owoyele, Opeoluwa; Echekki, Tarek

    2016-11-01

    We investigate the potential of accelerating chemistry integration during the direct numerical simulation (DNS) of complex fuels based on the transport equations of representative scalars that span the desired composition space using principal component analysis (PCA). The transported principal components (PCs) offer significant potential to reduce the computational cost of DNS through a reduction in the number of transported scalars, as well as the spatial and temporal resolution requirements. The strategy is demonstrated using DNS of a premixed methane-air flame in a 2D vortical flow and is extended to the 3D geometry to further demonstrate the computational efficiency of PC transport. The PCs are derived from a priori PCA of a subset of the full thermo-chemical scalars' vector. The PCs' chemical source terms and transport properties are constructed and tabulated in terms of the PCs using artificial neural networks (ANN). Comparison of DNS based on a full thermo-chemical state and DNS based on PC transport based on 6 PCs shows excellent agreement even for species that are not included in the PCA reduction. The transported PCs reproduce some of the salient features of strongly curved and strongly strained flames. The 2D DNS results also show a significant reduction of two orders of magnitude in the computational cost of the simulations, which enables an extension of the PCA approach to 3D DNS under similar computational requirements. This work was supported by the National Science Foundation Grant DMS-1217200.

  10. Hot isostatic pressing of direct selective laser sintered metal components

    Science.gov (United States)

    Wohlert, Martin Steven

    2000-10-01

    A new manufacturing process combining the benefits of Selective Laser Sintering (SLS) and Hot Isostatic Pressing (HIP) has been developed to permit Rapid Prototyping of high performance metal components. The new process uses Direct Metal SLS to produce a gas impermeable HIP container from the same powdered material that will eventually compose the bulk of the part. The SLS generated capsule performs the functions of the sheet metal container in traditional HIP, but unlike a sheet metal container, the SLSed capsule becomes an integral part of the final component. Additionally, SLS can produce a capsule of far greater geometric complexity than can be achieved by sheet metal forming. Two high performance alloys, Ti-6Al-4V and Inconel 625, were selected for use in the development of the new process. HIP maps were constructed to predict the densification rate of the two materials during HIP processing. Comparison to experimentally determined densification behavior indicated that the maps provide a useful qualitative description of densification rates; however, the accuracy of quantitative predictions was greatly enhanced by tuning key material parameters based on a limited number of experimental HIP cycles. Microstructural characterization of SLS + HIP samples revealed two distinct regions within the components. The outer SLS processed capsule material exhibited a relatively coarse microstructure comparable to a cast, or multi-layer welded structure. No layer boundaries were discernible in the SLS material, with grains observed to grow epitaxially from previously deposited material. The microstructure of the HIP consolidated core material was similar to conventionally HIP processed powder materials, featuring a fine grain structure and preserved prior particle boundaries. The large variation in grain size between the capsule and core materials was reflected in hardness measurements conducted on the Alloy 625 material; however, the variation in hardness was less

  11. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  12. Soluble metals in the atmosphere and their biological implications. A study to identify important aerosol components by statistical analysis of PIXE data.

    Science.gov (United States)

    Winchester, J W

    1990-01-01

    Multivariate statistical analysis has been applied to time series measurements of aerosol elemental composition from PIXE analysis of filter samples, and principal components have been resolved that represent distinct particle types in an external mixture in the atmosphere. In this study, it is argued that a combination of chemical and statistical analyses of the data may be more powerful in determining chemical species in atmospheric aerosols than studied that employ mainly direct chemical analysis of chemical species in unresolved mixtures of aerosol particle samples. Sulfur is generally associated with mineral dust elements. It is reasoned that the association may represent sulfuric acid coatings on particles that can lead to mineral dissolution and solubilization of significant amounts of aluminum, iron, and other metals. Upon wet or dry deposition to the surface, the fluxes of these metals in biologically-available form may be sufficient to affect primary productivity in the world ocean and cause ecological damage in lakes. As a consequence, the fluxes of biogenic trace gases to the atmosphere may be changed, possibly leading to changes in the tropospheric concentration of ozone. The inputs to lakes of soluble aluminum, which is toxic to fish, may be partly by deposition directly from the atmosphere, thus not limited to leaching of soils by acid deposition. Human inhalation of soluble aluminum and other solubilized mineral metals may account, in part, for the observed geographic pattern of deaths attributed to chronic obstructive pulmonary disease (COPD) that show high rates in cities of the Western US and the southeast region, but low in most of the midwest and northeast.

  13. Simulation of the direct effects of dust aerosol on climate in East Asia

    Institute of Scientific and Technical Information of China (English)

    Jian Wu; Congbin Fu; Zhiwei Han; Jianping Tang; Yanyan Xu; Renjian Zhang

    2010-01-01

    The results from some general circulation models show distinct radiative forcing(RF)by dust aerosol,which potentially has an effect on climate change.The direct RF and regional climatic effects of dust aerosol over the East Asian region are investigated in this study using NCAR's Community Atmospheric Model version 3.1.The negative RF at the top of the atmosphere(TOA)and the surface(SRF)has been revealed except for some high-albedo regions,which leads to a decrease in the surface air temperature and brings an increase of atmospheric radiative heating under both clear-and all-sky conditions.The decrease in the surface air temperature can be found over a wide region that includes the Indian peninsula and northwest China.It accompanies an increase in eastern China and the Korean peninsula,and temperature changes are not limited to regions with a large dust optical depth.A belt of vapor increase is revealed from the Indian peninsula extending east to northern China,while vapor content evidently deceases in southwest China.An increase in precipitation can also be found in the belt of increased vapor accompanying the reduction of precipitation across the regions to the south of 30°N.The pattern of rainfall change helps to offset the trend of increasing wetness in the south and increasing dryness in the north of China in recent years.

  14. Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing

    Science.gov (United States)

    Venkataraman, Chandra; Chandramouli, Bharadwaj; Patwardhan, Anand

    A one-box chemical-meteorological model had been formulated to make preliminary estimates of sulphate aerosol formation and direct radiative forcing over India. Anthropogenic SO 2 emissions from India, from industrial fuel use and biomass burning, were estimated at 2.0 Tg S yr -1 for 1990 in the range of previous estimates of 1.54 and 2.55 Tg S yr -1 for 1987. Meteorological parameters for 1990 from 18 Indian Meteorological Department stations were used to estimate spatial average sulphate burdens through formation from SO 2 reactions in gas and aqueous phase and removal by dry and wet deposition. The hydrogen peroxide reaction was found dominating for undepleted oxidant-rich conditions. Monthly mean sulphate burdens ranged from 2-10 mg m -2 with a seasonal variation of winter-spring highs and summer lows in agreement with previous GCM studies. The sulphate burdens are dominated by sulphate removal rates by wet deposition, which are high in the monsoon period from June-November. Monthly mean direct radiative forcing from sulphate aerosols is high (-3.5 and -2.3 W m -2) in December and January, is moderate (-1.3 to -1.5 W m -2) during February to April and November and low (-0.4 to -0.6 W m -2) during May to October also in general agreement with previous GCM estimates. This model, in reasonable agreement with detailed GCM results, gives us a simple tool to make preliminary estimates of sulphate burdens and direct radiative forcing.

  15. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  16. Dependence of the surf zone aerosol on wind direction and wind speed at a coastal site on the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tymon Zieliński

    2003-09-01

    Full Text Available Since 1992 lidar-based measurements have been carried out under various meteorological conditions and at various times of the year. The aerosol optical properties were determined in the marine boundary layer as a function of altitude using such factors as wind direction, duration and velocity and aerosol size distribution and concentration. It was confirmed that in all cases, the total aerosol concentration, size distribution and aerosol extinction increase with wind speed but decrease with altitude. In the range of wind velocities from 1 to 15 m s-1 the mean aerosol optical thickness of the atmosphere (VIS obtained from the lidar varied from 0.1 to 0.38 for offshore winds and from 0.01 to about 0.1 for onshore winds, while the Ångström parameter for VIS oscillated around 0.65 for onshore winds and around 1 for offshore winds. Both parameters depended strongly on the history of the air mass above the Baltic Sea. Such aerosol optical thicknesses are in agreement with those obtained by other researchers in the Baltic Sea area.

  17. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    Science.gov (United States)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  18. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    Science.gov (United States)

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment.

  19. Recent updates in the aerosol component of the C-IFS model run by ECMWF

    Science.gov (United States)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes

    2017-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern

  20. The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties – Part 2: Determination of particle hygroscopicity and its dependence on "apparent" volatility

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2011-08-01

    Full Text Available A large number of calculations of absorptive partitioning of organic compounds have been conducted, making use of several methods to estimate pure component vapour pressures and activity coefficients (p0 and γi. The sensitivities of the predicted particle properties (density, hygroscopicity, CCN activation potential to the choice of p0 and γi models and to the number of components used to represent the organic mixture have been systematically compared.

    The variability in theoretical hygroscopic growth factor attributable to the choice of estimation technique increases with decreasing mixture complexity. Generally there is low sensitivity to the choice of vapour pressure predictive technique. The inclusion of non-ideality is responsible for a larger difference in predicted growth factor, though still relatively minor.

    Assuming instantaneous equilibration of all semi-volatile on drying the aerosol to 0 % RH massively increases the sensitivity. Without such re-equilibration, the calculated growth factors are comparable to the low hygroscopicity of organic material widely measured in the laboratory and atmosphere. Allowing re-equilibration on drying produces a calculated hygroscopicity greater than measured for ambient organic material, and frequently close to those of common inorganic salts. Such a result has substantial implications on aerosol behaviour in instruments designed to measure hygroscopicity and on the degree of equilibration of semi-volatile components in the ambient atmosphere.

    The impacts of this variability on behaviour of particles as cloud condensation nuclei, on predicted cloud droplet number and uncertainty in radiative forcing are explored. When it is assumed only water evaporates on drying, the sensitivity in radiative forcing, "ΔF" to choice of p0 and γi estimation technique is low

  1. Detection, Characterization and Classification of Biological Components in Aerosols by Time-Resolved Laser Pyrolysis Mass Spectrometry

    Science.gov (United States)

    1987-03-20

    samples were more than 2 cm from the center of a very open ion source. The laser pyrolysis spectra of the SBR sample (Figure 5a) and a SBR and natural...z) Figure 5. Laser pyrolysis mass spectra of vulcanized SBR (a) and SBR -NR (b) rubber compounds. Spectra consist primarily of fragment and molecular...4X .210󈨢 Ol~~L&42fjy DETECTION, CHARACTERIZATION AND CLASSIFICATION OF BIOLOGICAL COMPONENTS IN AEROSOLS BY TIME-RESOLVED LASER PYROLYSIS MASS

  2. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  3. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  4. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    Science.gov (United States)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; LeBlanc, S.; Schmidt, S.; Pilewskie, P.; Song, S.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  5. A Modeling Study of the Effects of Direct Radiative Forcing Due to Carbonaceous Aerosol on the Climate in East Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; WANG Zhili; GUO Pinwen; WANG Zaizhi

    2009-01-01

    The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.

  6. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    Science.gov (United States)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-11-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva particles with aerodynamic diameter Da particles with Da particles with 2.5 μm biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to suppress both the in-cloud supersaturation and the formation of cloud condensation nuclei from sulfate. These effects can be accounted for only in models with sufficiently detailed aerosol microphysics and physics-based parameterizations of cloud activation. However, due to a strong negative direct effect, the simulated effective radiative forcing (total radiative) effect was -0.2 W m-2. The simulated radiative effects of the primary marine organic emissions were small, with a direct effect of 0.03 W m-2 and an indirect effect of -0.07 W m-2.

  7. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA)

    OpenAIRE

    Barnard, J.C.; Volkamer, R.; E. I. Kassianov

    2008-01-01

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer (SR), we derive aerosol single scattering albedo, π0,λ, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm) π0,&lambd...

  8. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Science.gov (United States)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning

  9. Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China

    Science.gov (United States)

    Zhuang, Bingliang; Jiang, Fei; Wang, Tijian; Li, Shu; Zhu, Bin

    2011-06-01

    In China, due to lack of countrywide monitoring and coarse emission inventory of black carbon (BC) in early years, there are large uncertainties as to the estimations of its loading, direct radiative forcing (DRF) and climate response. Here, we apply an up-to-date emission inventory of BC in 2006 to investigate its loading, optical depth (AOD) at 550 nm and DRF using the coupled Regional Climate Chemistry Modeling System (RegCCMS). A state of the art air quality model (WRF/Chem) is also used to access surface BC concentration. Simulated surface concentrations of BC from these two models were compared with observations, while the AOD was compared with the results both from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and from satellite and ground-based simulations. Results show that RegCCMS presented similar patterns and levels of annual mean-surface BC concentration to those of WRF/Chem. The regional distributions and monthly variations of RegCCMS BC were reproduced well in comparison to observations. Simulated pattern of AODs are consistent to but lower than those from satellite (Omi-0.25°) and AERONET simulations. Annual mean DRFs mainly distribute in the area with high BC loadings, with regional mean of 0.75 W m-2 and predicted global mean of 0.343 W m-2. In general, the results are about 0.4-5 times for regional column burden, about 2 times as high for regional mean DRFs, about 1.3-1.8 times for global mean DRFs and about 3-4 times for AOD at 550 nm as compared to those in previous studies in China. These increasing DRFs of BC imply that its warming effect and climate response should be stronger and the DRF of total aerosols should be weaker (less negative).

  10. Assesment of the Indirect and Semi-Direct Aerosol-Effect During ISDAC Through Integrated Observational and Modeling Studies

    Energy Technology Data Exchange (ETDEWEB)

    Boybeyi, Zafer [George Mason Univ., Fairfax, VA (United States)

    2014-09-29

    The Department of Energy (DOE) awarded George Mason University (GMU) with a research project. This project started on June, 2009 and ended July 2014. Main objectives of this research project are; a) to assess the indirect and semi-direct aerosol effects on microphysical structure and radiative properties of Arctic clouds, b) to assess the impact of feedback between the aerosol-cloud interactions and atmospheric boundary layer (ABL) processes on the surface energy balance, c) to better understand and characterize the important unresolved microphysical processes, aerosol effects, and ABL processes and feedbacks, over meso-γ spatial (~1-2 km) and temporal scales (a few minutes to days), and d) to investigate the scale dependency of microphysical parameterizations and its effect on simulations.

  11. Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, C.; Chandramouli, B.; Patwardhan, A. [Indian Institute of Technology, Mumbai (India). Centre for Environmental Science and Engineering

    1999-08-01

    The paper describes a one-box chemical-meteorological model formulated to make preliminary estimates of sulphate aerosol formation and direct radiative forcing over India. Anthropogenic SO{sub 2} emissions from India, from industrial fuel use and biomass burning, were estimated at 2.0 Tg S yr{sup -1} for 1990 in the range of previous estimates of 1.54 and 2.55 Tg S yr{sup -1} for 1987. Meteorological parameters for 1990 from 18 Indian Meteorological Department stations were used to estimate spatial average sulphate burdens through formation from SO{sub 2} reactions in gas and aqueous phase and removal by dry and wet deposition. The hydrogen peroxide reaction was found dominating for undepleted oxidant-rich conditions. Monthly mean sulphate burdens ranged from 2-10 mg m{sup -2} with a seasonal variation of winter-spring highs and summer lows in agreement with previous GCM studies. The sulphate burdens are dominated by sulphate removal rates by wet deposition, which are high in the monsoon period from June to November. The model is in reasonable agreement with detailed GCM results and provides a simple tool to make preliminary estimates of sulphate burdens and direct radiative forcing.

  12. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    Science.gov (United States)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  13. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    Science.gov (United States)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  14. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  15. Modeling Study of the Impact of Heterogeneous Reactions on Dust Surfaces on Aerosol Optical Depth and Direct Radiative Forcing over East Asia in Springtime

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Wei; HAN Zhi-Wei

    2011-01-01

    The spatial distributions and interannual variations of aerosol concentrations, aerosol optical depth (AOD), aerosol direct radiative forcings, and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations (inorganic + carbonaceous) were higher in March 2006 and 2008, whereas soil dust reached its highest levels in March 2006 and 2010, resulting in stronger aerosol radiative forcings in these periods. The domain and five-year (2006-10) monthly mean concentrations of anthropogenic and dust aerosols, AOD, and radiative forcings at the surface (SURF) and at the top of the atmosphere (TOA) in March were 2.4 μg m 3 13.1 lag m^-3, 0.18, -19.0 W m^-2, and -7.4 W m^-2, respectively. Heterogeneous reactions led to an increase of total inorganic aerosol concentration; however, the ambient inorganic aerosol concentration decreased, resulting in a smaller AOD and weaker aerosol radiative forcings. In March 2006 and 2010, the changes in ambient inorganic aerosols, AOD, and aerosol radiative forcings were more evident. In terms of the domain and five-year averages, the total inorganic aerosol concentrations increased by 13.7% (0.17 μg m^-3) due to heterogeneous reactions, but the ambient inorganic aerosol concentrations were reduced by 10.5% (0.13 lag m-3). As a result, the changes in AOD, SURF and TOA radiative forcings were estimated to be -3.9% (-0.007), -1.7% (0.34 W m^-2), and -4.3% (0.34 W m^-2), respectively, in March over East Asia.

  16. A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultra-high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. S. Willoughby

    2014-04-01

    Full Text Available The chemical composition of organic aerosols in the atmosphere is strongly influenced by human emissions, and the effect these have on the environment, human health, and climate change is determined by the molecular nature of these chemical species. The complexity of organic aerosol samples limits the ability to study the chemical composition, and, therefore, the associated properties and the impacts they have. Many studies address the water-soluble fraction of organic aerosols, and have had much success in identifying specific molecular formulas for thousands of compounds present. However, little attention is given to the water-insoluble portion, which can contain most of the fossil material that is emitted through human activity. Here we compare the organic aerosols present in water extracts and organic solvent extracts (pyridine and acetonitrile of an ambient aerosol sample collected in a rural location that is impacted by natural and anthropogenic emission sources. A semi-quantitative method was developed using proton nuclear magnetic resonance spectroscopy to determine that the amount of organic matter extracted by pyridine is comparable to that of water. Electrospray ionization Fourier transform ion cyclotron resonance mass spectra show that pyridine extracts a molecularly unique fraction of organic matter compared to water or acetonitrile, which extract chemically similar organic matter components. The molecular formulas unique to pyridine were less polar, more aliphatic, and reveal formulas containing sulfur to be an important component of insoluble aerosol organic matter.

  17. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

    Directory of Open Access Journals (Sweden)

    E. T. Sena

    2013-02-01

    Full Text Available This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i the emission of aerosols from biomass burning due to forest fires; (ii changes in surface albedo after deforestation; and (iii modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES shortwave fluxes and aerosol optical depth (AOD retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS were analysed during the peak of the biomass burning seasons (August and September from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages.

    The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m

  18. Laboratory studies of reactions of atmospheric gases with components of mineral dust aerosol and research in chemical education

    Science.gov (United States)

    Schuttlefield, Jennifer Dianne

    Mineral dust aerosol surfaces provide a medium in the atmosphere for heterogeneous chemistry to occur, which can alter the chemical balance of the Earth's atmosphere. It is becoming increasingly clear that the heterogeneous chemistry of these aerosols is a function of relative humidity (RH), as water on the surface of these particles can enhance or inhibit reactivity depending on the reaction. In this thesis, the uptake of water on clays and oxides was investigated, as well as phase transitions for atmospherically relevant salts. Reactions of carbon dioxide and nitric acid on oxide particles in the presence and absence of water were also examined. Following the reaction of HNO 3 on an alumina surface, photoirradiation experiments were preformed to determine the effect of irradiation on the adsorbed nitrate. The results presented in this thesis provide insight into the heterogeneous reactivity of mineral dust aerosol in the presence and absence of co-adsorbed water, as well as a fundamental understanding of water uptake on soluble and insoluble aerosols. A new method, using a quartz crystal microbalance, was developed to attempt to obtain a better fundamental understanding of different mineral dust components. In addition to the laboratory research, research in chemical education is also presented in this thesis. Two different types of work being done in the area of chemical education are shown. First a new experiment was implemented into an undergraduate physical chemistry course. The technique, ATR-FTIR spectroscopy, was chosen for its ability to expose students to a technique that is commonly used in laboratory research as well as the ease for which high quality results can be obtained. Students used ATR-FTIR spectroscopy to monitor sulfate, SO 42-, adsorption on TiO2 thin films. Second, the role of cognitive load and problem difficulty was accessed with data acquired while students completed an introductory-level chemistry word problem using a web-based tool

  19. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    Directory of Open Access Journals (Sweden)

    A. W. Birdsall

    2014-08-01

    Full Text Available Recently, methacrylic acid epoxide (MAE has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA: 2-methylglyceric acid (2-MG and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG, and acids (including MAE and 2-MG in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water; this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  20. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  2. Direct measurement of attachment of {sup 220}Rn progeny on aerosols by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.K.C. E-mail: jkcleung@hku.hk; Tso, M.Y.W.; Lam, J.H.C.; Zhau, Q.F

    2003-08-11

    Atomic force microscopy (AFM) is becoming a powerful tool for the study of nuclear tracks in materials such as CR-39. Coupled with its capability of observing near nm aerosol particles, we have utilized the AFM to observe the radon progeny-loaded aerosol particles deposited on surfaces of CR-39 and to observe the corresponding etch pits produced by the {alpha}-particles emitted from the radon progenies. A special platform was built so that after the aerosol particles on the CR-39 have been scanned and recorded, the CR-39 can be etched and then scanned for the etch pits at the same location. Both {sup 222}Rn and {sup 220}Rn progenies were used in the study. The progenies were generated by the appropriate radon sources and mixed with aerosol particles generated by aerosol generators. The aerosol size distributions were analyzed by a scanning mobility particle sizer. Some of the limitations and difficulties of the technique will be described. The results enable us to examine the attachment process including multiple attachments of radon progenies on aerosols.

  3. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED summer 2013 campaign

    Directory of Open Access Journals (Sweden)

    M. Mallet

    2015-07-01

    Full Text Available The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows were not favorable to produce high level of atmospheric pollutants nor intense biomass burning events in

  4. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  5. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Science.gov (United States)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  6. The impact of biogenic carbon sources on aerosol absorption in Mexico City

    Science.gov (United States)

    Marley, N. A.; Gaffney, J. S.; Tackett, M.; Sturchio, N. C.; Heraty, L.; Martinez, N.; Hardy, K. D.; Marchany-Rivera, A.; Guilderson, T.; MacMillan, A.; Steelman, K.

    2009-03-01

    In order to determine the wavelength dependence of fine (C-4 plants) in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  7. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2003-10-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2  (g SO42−−1, which compare to US values of 0.030 and 13.9 m2 (g SO42−−1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m2− are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL = −0.750, FU = −0.930, and

  8. Method for estimating the atmospheric content of sub-micrometer aerosol using direct-sun photometric data

    Science.gov (United States)

    Stefan, S.; Filip, L.

    2009-04-01

    It is well known that the aerosol generated by human activity falls in the sub-micrometer rage [1]. The rapid increase of such emissions led to massive accumulations in the planetary boundary layer. Aerosol pollutants influence the quality of life on the Earth in at least two ways: by direct physiological effects following their penetration into living organisms and by the indirect implications on the overall energy balance of the Earth-atmosphere system. For these reasons monitoring the sub-micrometer aerosol on a global scale, become a stringent necessity in protecting the environment. The sun-photometry proved a very efficient way for such monitoring activities, mainly when vast networks of instruments (like AERONET [2]) are used. The size distribution of aerosols is currently a product of AERONET obtained through an inversion algorithm of sky-photometry data [3, 4]. Alternatively, various methods of investigating the aerosol size distribution have been developed through the use of direct-sun photometric data, with the advantages of simpler computation algorithms and a more convenient use [5, 6]. Our research aims to formulate a new simpler way to retrieve aerosol fine and coarse mode volume concentrations, as well as dimensional information, from direct-sun data. As in other works from the literature [3-6], the main hypothesis is that of a bi-modal shape of the size distribution of aerosols that can be reproduced rather satisfactorily by a linear combination of two lognormal functions. Essentially, the method followed in this paper relies on aerosol size information retrieval through fitting theoretical computations to measured aerosol optical depth (AOD) and related data. To this purpose, the experimental spectral dependence of AOD is interpolated and differentiated numerically to obtain the Ǻngström parameter. The reduced (i.e. normalized to the corresponding columnar volumetric content) contributions of the fine and coarse modes to the AOD have also been

  9. Aerosol mass loading over the marine environment of Arabian Sea during ICARB: Sea-salt and non-sea-salt components

    Indian Academy of Sciences (India)

    Susan K George; Prabha R Nair

    2008-07-01

    Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 g m−3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 g m−3/◦ longitude and an e−1 scale distance of ∼2300 km. SO$^{2−}_{4}$, Cl− and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO$^{−}_{3}$ (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ∼76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.

  10. Comparison of concentrations of selected aerosol components estimated using the AERONET data set with those from continuous/semi-continuous measurements on the ground

    Science.gov (United States)

    Choi, Y.; Ghim, Y.

    2013-12-01

    A CIEMEL sunphotometer was operated in 2012 starting from March as a part of the DRAGON (Distributed Regional Aerosol Gridded Observation Networks) campaign. The site is Hankuk_UFS (Hankuk University of Foreign Studies; 37.02 °N, 127.16 °E, 167 m above sea level) located about 35 km southeast of downtown Seoul. We also measured inorganic ions using PILS (Particle-Into-Liquid Sampler, ADI 2081, Applikon) at intervals of 25 minutes in spring and winter and BC (black carbon) using MAAP (Multiangle Absorption Photometer, Model 5012, Thermo) at intervals of 10 minutes throughout the study period. Concentrations of major chemical components were estimated from effective real and imaginary refractory indices for a mixture assuming the Maxwell-Garnett mixing of four components such as mineral dust, organic and black carbons, and ammonium sulfate (as a surrogate of secondary ions) embedded in water host. We compare ammonium sulfate of column aerosols estimated from the refractive indices with secondary ions of surface aerosols from PILS and BC of column aerosols estimated from the refractive indices with that of surface aerosols from MAAP. Since the measurement intervals are different between sunphotometer and surface instruments, we compare the concentrations when the measurement time coincides within 5 minutes.

  11. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    Science.gov (United States)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  12. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  13. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  14. The phasing of atmospheric and environmental response to Dansgaard-Oeschger events from highly resolved multi-component Greenland aerosol records

    Science.gov (United States)

    Erhardt, Tobias; Capron, Emelie; Olander Rasmussen, Sune; Schüpbach, Simon; Bigler, Matthias; Fischer, Hubertus

    2017-04-01

    During the last glacial period a series of millennial scale rapid warming events with subsequent cooling is well documented in the proxy record throughout the Northern Hemisphere (NH). It is widely assumed that these so called Dansgaard-Oeschger (DO) events are linked to an increase in the Atlantic Meridional Overturning Circulation (AMOC), which leads to warming of the Northern Hemisphere and a cooling of the Southern Hemisphere. Furthermore changes in the atmospheric circulation such as shifts in the Inter Tropical Convergence Zone (ITCZ) and the westerlies. However, the trigger, detailed mechanisms and progress of these events are still not completely understood. Here we present annually to multi-annually resolved multi-component aerosol records from both the NGRIP and NEEM ice cores from Greenland spanning the last glacial period and the early Holocene. Using a probabilistic approach, we investigate the relative timing of the warming onsets and terminations of the different aerosol species and the respective lengths of the transitions and warm events in the different aerosols, where different aerosol species reflect different circulation patterns and geographical distinct source regions. Within uncertainties, we do not find any systematic differences in either the timing or the lengths of the warming transitions between the investigated aerosol species. Because ice core aerosol records are a result of emission, transport and deposition processes, their variability can be interpreted in terms of changing atmospheric circulation influencing the transport, changing precipitation rate influencing deposition of aerosol en route as well as changes in source processes. We try to separate these effects and discuss these results with regard to possible changes in the position of the ITZC and moisture availability over the North Atlantic.

  15. Aerosol Climatology at Pune, Western India: Implications to Direct Radiative Forcing and Heating Rates

    Science.gov (United States)

    Pandithurai, G.; Pinker, R. T.; Devara, P. C.; Raj, P. E.; Jayarao, Y.; Dani, K. K.; Maheskumar, R. S.; Sonbawne, S. M.; Saha, S. K.; Bhawar, R.; Shinde, U. P.

    2005-12-01

    Extensive aerosol observations were carried out at Indian Institute of Tropical Meteorology (IITM), Pune, an urban site in the western part of the country, using a Prede (Model POM-01L) sun/sky radiometer and a bi-static Argon ion lidar since December 2000 and October 1986, respectively. The sun/sky radiometer was operated daily at every 15 minute interval during day-time to derive column aerosol optical parameters such as aerosol optical depth (AOD), single scattering albedo (SSA), asymmetry parameter (ASY) while the lidar was operated weekly in the early-night period to derive vertical distributions of aerosol number density. The sun/sky radiance data collected during the above period have been analysed by using the radiative transfer model SkyRadPack version 3.0 (Nakajima et al. 1996) to retrieve AOD, SSA and ASY. AOD and SSA retrieved at 15-minutes interval were averaged to get monthly means. On every year from 2000 to 2005, monthly means of AOD show gradual increase of aerosol loading from December to April and Angstrom exponent decreases from March due to local as well as transported dust from African / Arabian regions through Arabian Sea. Monthly means of SSA show decrease from December to April and the wavelength dependence also indicate the abundance of dust from March to May. Lidar-derived vertical distributions yield minimum during the monsoon months, gradually builds up during the post-monsoon and winter months, and finally peaks during the pre-monsoon months in every year (Devara et al., 2002). The aerosol climatology of optical/radiative parameters and their vertical distribution are used for estimating aerosol radiative forcing (ARF) and atmospheric heating rates by using a discrete-ordinate radiative transfer model (Ricchiazzi et al., 1998, Pandithurai et al. 2004). Details of the experimental methods, data, results of aerosol climatology and implications to radiative forcing and associated heating rates will be presented. References Devara, P

  16. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2015-09-01

    Full Text Available In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE of above-cloud aerosols (ACAs over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA to be positive (i.e., warming in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2 at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2, and 0.17 W m−2 (range of 0.11 to 0.24 W m−2, respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August seasonal mean cloudy-sky DRE is about 0.7 W m−2 (range of 0.2 to 1.2 W m−2 at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature

  17. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.

    2015-09-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the

  18. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    Science.gov (United States)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-10-01

    The ammonia cycle and nitrate particle formation are introduced into the LMDz-INCA (Laboratoire de Météorologie Dynamique, version 4 - INteraction with Chemistry and Aerosols, version 3) global model. An important aspect of this new model is that both fine nitrate particle formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is -0.056 W m-2. This forcing corresponds to 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing, representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four representative concentration pathway (RCP) scenarios and for the 2030, 2050, and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentration of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia, which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and North America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in ammonium nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of -0.234 W m-2 to a range of -0.070 to -0.130 W m-2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates, for which the direct negative forcing increases to a range of -0.060 to -0.115 W m-2 in 2100. Including nitrates in the radiative

  19. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  20. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-06-01

    Full Text Available This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU spectral library; aspens from the US Geological Survey (USGS digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m−2 and aerosol forcing by over 10 W m−2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m−2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance. These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  1. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol; Desarrollo de Metodologias para la Determinacion de Componentes Organicos del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O.; Perez, R.; Garcia, R.; Barrado, A. I.; Sevillano, M. L.; Gonzalez, D.

    2006-07-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs.

  2. A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model

    Directory of Open Access Journals (Sweden)

    J. A. Ruiz-Arias

    2014-01-01

    Full Text Available Broadband short-wave (SW surface direct and diffuse irradiances are not typically within the set of output variables produced by numerical weather prediction (NWP models. However, they are being more and more demanded in solar energy applications. A detailed representation of the aerosol optical properties is important to achieve an accurate assessment of these direct and diffuse irradiances. Nonetheless, NWP models typically oversimplify its representation or even neglect its effect. In this work, a flexible method to account for the SW aerosol optical properties in the computation of broadband SW surface direct and diffuse irradiances is presented. It only requires aerosol optical depth at 0.55 μm and the type of predominant aerosol. The rest of parameters needed to consider spectral aerosol extinction, namely, Angström exponent, aerosol single-scattering albedo and aerosol asymmetry factor, are parameterized. The parameterization has been tested in the RRTMG SW scheme of the Weather Research and Forecasting (WRF NWP model. However, it can be adapted to any other SW radiative transfer band model. It has been verified against a control experiment along five radiometric stations in the contiguous US. The control experiment consisted of a clear-sky evaluation of the RRTMG solar radiation estimates obtained in WRF when RRTMG is driven with ground-observed aerosol optical properties. Overall, the verification has shown very satisfactory results for both broadband SW surface direct and diffuse irradiances. It has proven effective to significantly reduce the prediction error and constraint the seasonal bias in clear-sky conditions to within the typical observational error in well-maintained radiometers.

  3. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    Directory of Open Access Journals (Sweden)

    D. A. Hauglustaine

    2014-03-01

    Full Text Available The ammonia cycle and nitrate particle formation have been introduced in the LMDz-INCA global model. Both fine nitrate particles formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is −0.056 W m−2. This forcing has the same magnitude than the forcing associated with organic carbon particles and represents 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four Representative Concentration Pathway (RCP scenarios and for the 2030, 2050 and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentrations of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and Northern America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of −0.234 W m−2 to a range of −0.070 to −0.130 W m−2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates for which the direct negative forcing increases to a range of −0.060 to −0.115 W m−2 in 2100. Including nitrates in the radiative forcing calculations increases the

  4. Direct radiative effect of carbonaceous aerosols from crop residue burning during the summer harvest season in East China

    Science.gov (United States)

    Yao, Huan; Song, Yu; Liu, Mingxu; Archer-Nicholls, Scott; Lowe, Douglas; McFiggans, Gordon; Xu, Tingting; Du, Pin; Li, Jianfeng; Wu, Yusheng; Hu, Min; Zhao, Chun; Zhu, Tong

    2017-04-01

    East China experiences extensive crop residue burnings in fields during harvest season. The direct radiative effect (DRE) of carbonaceous aerosols from crop residue burning in June 2013 in East China was investigated using the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). Absorption of organic aerosol (OA) in the presence of brown carbon was considered using the parameterization of Saleh et al. (2014), in which the imaginary part of the OA refractive index is a function of wavelength and the ratio of black carbon (BC) and OA. The carbonaceous emissions from crop fires were estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) product with a localized crop-burning-sourced BC-to-organic carbon (OC) ratio emission ratio of 0.27. Evaluation of the model results with in situ measurements of particulate matter with aerodynamic diameter less than 2.5 µm (PM2. 5) chemical composition, MODIS aerosol optical depth (AOD) detections and meteorological observations showed that this model was able to reproduce the magnitude, spatial variation and optical characteristics of carbonaceous aerosol pollution. The observed BC and OC peak concentrations at the site in Suixi, Anhui province, during the 2013 wheat burning season reached 55.3 µg m-3 and 157.9 µg m-3. WRF-Chem simulations reproduced these trends with a correlation coefficient of 0.74, estimating that crop residue burning contributed 86 and 90 % of peak BC and OC, respectively. The simulated hourly DRE from crop residue burning at the top of atmosphere (TOA) reached a maximum of +22.66 W m-2 at the Suixi site. On average, the simulations showed that the crop residue burning introduced a net positive DRE of +0.14 W m-2 at TOA throughout East China, with BC from this source as the main heating contributor (+0.79 W m-2). The OA DRE from crop burning (-0.22 W m-2) was a combined effect of the positive DRE of absorption (+0.21 W m-2) and a stronger

  5. Can a coupled meteorology-chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    Directory of Open Access Journals (Sweden)

    J. Xing

    2015-05-01

    Full Text Available The ability of a coupled meteorology-chemistry model, i.e., WRF-CMAQ, in reproducing the historical trend in AOD and clear-sky short-wave radiation (SWR over the Northern Hemisphere has been evaluated through a comparison of 21 year simulated results with observation-derived records from 1990–2010. Six satellite retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-terra and -aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both TOA and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling and decreased surface SWR (downwelling in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling and increased surface SWR (downwelling in eastern US, Europe and northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and north Indian Ocean. Estimates of aerosol direct radiative effect (DRE at TOA are comparable with those derived by measurements. Compared to GCMs, the model exhibits better estimates of surface- aerosol direct radiative efficiency (Eτ. However, surface-DRE tends to be underestimated due to the underestimated AOD in land and dust regions. Further investigation of TOA-Eτ estimations as well as the dust module used for estimates of windblown-dust emissions is needed.

  6. Lateralized EEG components with direction information for the preparation of saccades versus finger movements

    NARCIS (Netherlands)

    Lubbe, van der Rob H.J.; Wauschkuhn, Bernd; Wascher, Edmund; Niehoff, Torsten; Kömpf, Detlef; Verleger, Rolf

    2000-01-01

    During preparation of horizontal saccades in humans, several lateralized (relative to saccade direction), event-related EEG components occur that have been interpreted as reflecting activity of frontal and parietal eye fields. We investigated to what degree these components are specific to saccade p

  7. Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment

    Science.gov (United States)

    EstelléS, VíCtor; MartíNez-Lozano, José A.; Pey, Jorge; Sicard, MichaëL.; Querol, Xavier; Esteve, Anna R.; Utrillas, MaríA. P.; Sorribas, Mar; Gangoiti, Gotzon; Alastuey, AndréS.; Rocadenbosch, Francesc

    2012-02-01

    Although routinely monitored by ground based air quality networks, the particulate matter distribution could be eventually better described with remote sensing techniques. However, valid relationships between ground level and columnar ground based quantities should be known beforehand. In this study we have performed a comparison between particulate matter measurements at ground level at different cut sizes (10, 2.5 and 1.0 μm), and the aerosol optical depth obtained by means of a ground based sunphotometer during a multiinstrumental field campaign held in El Arenosillo (Huelva, Spain) from 28 June to 4 July 2006. All the PM fractions were very well correlated with AOD with correlation coefficients that ranged from 0.71 to 0.81 for PM10, PM2.5 and PM1. Furthermore, the influence of the mixing layer height in the correlations was explored. The improvement in the correlation when the vertical distribution is taken into account was significant for days with a homogeneous mixing layer. Moreover, the chemical analysis of the individual size fractions allowed us to study the origin of the particulate matter. Secondary components were the most abundant and also well correlated in the three size fractions; but for PM10 fraction, chemical species related to marine origin were best correlated. Finally, we obtained a relationship between MODIS L3 AOD from collection 5.1 and the three PM cut sizes. In spite of being a relatively clean environment, all the techniques were able to capture similar day to day variations during this field campaign.

  8. Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea

    Science.gov (United States)

    Park, Seung Shik; Son, Se-Chang

    2017-03-01

    To examine the relationship between the chemical composition of light-absorbing organic aerosols and the absorption properties of the aerosols, daily PM2.5 samples were collected during winter at an urban site of Gwangju, Korea, and analyzed for organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water-soluble inorganic substances. The real-time black carbon (BC) concentration in PM2.5 was also measured using a dual-spot aethalometer. During the study period, average WSOC/OC and HULIS-C/WSOC ratios were 0.53 and 0.52, respectively. K+/EC and K+/OC ratios indicate that biomass burning (BB) emissions are a possible source of the observed carbonaceous aerosols and K+. Moderate-to-strong correlations of HULIS with NO3-, oxalate, SO42 -, K+, CO, and ΔBC (= BC@370 nm - BC@880 nm) suggest that in addition to the primary BB emissions, secondary processing is another important contributor to the formation of HULIS in winter at the site. The average absorption Ångstrӧm exponent (α) of fine aerosols for the wavelengths of 370-950 nm and 590-950 nm was 1.29 and 1.18, respectively, but the aerosol α value was higher in the near UV wavelength range (370-520 nm), with an average of 1.51 (0.76-2.36), indicating that aerosol absorption characteristics during winter were influenced by BB aerosol sources, as well as by traffic emissions. Over the study period, the α370-520 nm value during the highest EC, highest OC, and Asian dust events was 1.42 ± 0.10 (1.26-1.59), 1.44 ± 0.15 (1.16-1.68), and 1.90 ± 0.28 (1.54-2.36), respectively. Higher α370-520 nm values during the Asian dust event were attributed to the influence of dust particles. In addition, the light absorption coefficients of aerosols at 370 nm were strongly correlated with OC (R2 = 0.76), water-insoluble OC (R2 = 0.70), and water-soluble HULIS (R2 = 0.64). These tight correlations suggest that water-insoluble fractions of OC, as well as the

  9. Evaluation of Aerosol Particle Size at High Polluted Region in the World Using Direct Solar Radiation Measurements: Helwan as a Case Region

    Directory of Open Access Journals (Sweden)

    U. A. Rahoma

    2010-01-01

    Full Text Available Problem statement: Particle counting and sizing of atmospheric aerosols by electro-optical methods are complex and absolute interpretation of measurements is difficult, so, the scattered light varies in a complicated manner with the system of optics as well as with the size and physical characteristics of particles. Approach: The estimation of the air aerosol number concentration variation was carried out in this study making use of data obtained from the Helwan, Egypt. The aerosol number concentration was determined indirectly, making use of the intensity of light scattered by particles. The scattered light intensity was proportional to the average number concentration of the aerosols. Results: The results were presented from desert zone from using Eppley direct solar irradiance measurements as a base on 10 years of data collection (1991-2000. Conclusion: The differences among the region were characterized mainly by their different climate change taken in consideration in the spectral region 250-900 nm. Most of the particles are greater than 10 μm in aerodynamic diameter and 60-80% of particles was 5-10 μm and was trapped in the nasopharyngeal region. This showed an idealized size distribution of particulate matter in ambient air and measurement techniques to cover specific fractions. The columnar volume radius distributions of aerosol 3-6 µm showed the aerosol optical depth is less than 0.31 for λ = 500-630 nm. The behavior in a more turbidity, when the aerosol optical depth is about 0.25 for 630-695 nm, gives approximately fixed volume radius distributions of aerosols between 5-10 µm. The small size fraction of aerosols, measured as PM10 and PM2.5, rather than the larger particles, was considered to be responsible for most of the health effects.

  10. Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves

    Science.gov (United States)

    Chen, Shurui; Xu, Liang; Zhang, Yinxiao; Chen, Bing; Wang, Xinfeng; Zhang, Xiaoye; Zheng, Mei; Chen, Jianmin; Wang, Wenxing; Sun, Yele; Fu, Pingqing; Wang, Zifa; Li, Weijun

    2017-01-01

    Many studies have focused on the physicochemical properties of aerosol particles in unusually severe haze episodes in North China instead of the more frequent and less severe hazes. Consistent with this lack of attention, the morphology and mixing state of organic matter (OM) particles in the frequent light and moderate (L & M) hazes in winter in the North China Plain (NCP) have not been examined, even though OM dominates these fine particles. In the present work, morphology, mixing state, and size of organic aerosols in the L & M hazes were systematically characterized using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, atomic force microscopy, and nanoscale secondary ion mass spectrometer, with the comparisons among an urban site (Jinan, S1), a mountain site (Mt. Tai, S2), and a background island site (Changdao, S3) in the same hazes. Based on their morphologies, the OM particles were divided into six different types: spherical (type 1), near-spherical (type 2), irregular (type 3), domelike (type 4), dispersed-OM (type 5), and OM-coating (type 6). In the three sampling sites, types 1-3 of OM particles were most abundant in the L & M hazes and most of them were internally mixed with non-OM particles. The abundant near-spherical OM particles with higher sphericity and lower aspect ratio indicate that these primary OM particles formed in the cooling process after polluted plumes were emitted from coal combustion and biomass burning. Based on the Si-O-C ratio in OM particles, we estimated that 71 % of type 1-3 OM particles were associated with coal combustion. Our result suggests that coal combustion in residential stoves was a widespread source from urban to rural areas in NCP. Average OM thickness which correlates with the age of the air masses in type 6 particles only slightly increased from S1 to S2 to S3, suggesting that the L & M hazes were usually dry (relative humidity pollution controls in rural areas and in urban

  11. Emergence of the giant weak component in directed random graphs with arbitrary degree distributions

    Science.gov (United States)

    Kryven, Ivan

    2016-07-01

    The weak component generalizes the idea of connected components to directed graphs. In this paper, an exact criterion for the existence of the giant weak component is derived for directed graphs with arbitrary bivariate degree distributions. In addition, we consider a random process for evolving directed graphs with bounded degrees. The bounds are not the same for different vertices but satisfy a predefined distribution. The analytic expression obtained for the evolving degree distribution is then combined with the weak-component criterion to obtain the exact time of the phase transition. The phase-transition time is obtained as a function of the distribution that bounds the degrees. Remarkably, when viewed from the step-polymerization formalism, the new results yield Flory-Stockmayer gelation theory and generalize it to a broader scope.

  12. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models

    OpenAIRE

    Vuolo, M. R.; M. Schulz; Balkanski, Y.; Takemura, T.

    2014-01-01

    The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete understanding of the role of the vertical distribution of aerosols and clouds. This work aims at reducing the uncertainty of aerosol top-of-the-atmosphere (TOA) forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosol species...

  13. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    Science.gov (United States)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-11-01

    Since there have been individual reports of persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing the drastic differences in changes in 2013 from changes in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributing to such changes is yet to be determined. The study intends to present the changes in daily based major water-soluble constituents, carbonaceous species, and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, which are associated with specific meteorological conditions that are highly related to aerosol pollution (parameterized as an index called Parameter Linking Aerosol Pollution and Meteorological Elements - PLAM). No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components was quite different. In Hua Bei Plain (HBP), sulfate, organic carbon (OC), nitrate, ammonium, element carbon (EC), and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21, and 130 μg m-3, respectively; these masses were approximately 2 to 4 times higher than those in background mass, which also exhibited a decline during 2006 to 2010 and then a rise till 2013. The mass of these concentrations and PM10, except minerals, respectively, increased by approximately 28 to 117 % and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In the Yangtze River Delta (YRD) area, winter masses of these components, unlike HBP, have not significantly increase since 2010; PLAM were also maintained at a similar level without

  14. Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study

    Directory of Open Access Journals (Sweden)

    T. M. Saeed

    2013-09-01

    Full Text Available Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26–27 March respectively while Ångstrom coefficient, α870/440, dropped to −0.0234 and −0.0318. Particulate matter concentration of diameter 10 μm or less, PM10, peaked at 4800 μg m−3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA and surface level. The thick dust layer of 26 March resulted in cooling the TOA by −60 Wm−2 and surface level by −175 Wm−2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day−1 between 3 and 5 km, dropped to 1.5 °K day−1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day−1 at surface level, declined sharply at increasing altitude and diminished at 4 km

  15. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA

    Directory of Open Access Journals (Sweden)

    J. C. Barnard

    2008-05-01

    Full Text Available Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR and an actinic flux spectroradiometer (SR, we derive aerosol single scattering albedo, π0,λ, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm π0,λ is much lower compared to π0,λ at 500 nm indicating enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving the organic part of the aerosol as the only possible absorber. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS along with the inferred π0,λ to estimate the Mass Absorption Cross section (MAC for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as "radiatively correct" because when used in radiative transfer calculations the calculated irradiances/actinic fluxes match those measured at the wavelengths considered here. For an illustrative case study described here, we estimate that the light absorption by the "brown" (organic carbonaceous aerosol can add about 40% to the light absorption of black carbon in Mexico City. This contribution will vary depending on the relative abundance of organic carbon relative to black carbon. Furthermore, our analysis indicates that organic aerosol would slow down photochemistry by selectively scavenging the light reaching the ground at those wavelengths that drive photochemical reactions. Finally, satellite retrievals of trace gases that are used to infer emissions currently assume that the MAC of organic carbon is zero. For trace gases that are

  16. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.

    Science.gov (United States)

    Cuesta, Juan; Flamant, Pierre H

    2010-04-20

    We present the "lidar beams in opposite directions" (LIBOD) technique and applications for quality assessment of spaceborne observations made by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. LIBOD is applicable to standard total backscatter lidar because it does not require a priori knowledge of the particle extinction-to-backscatter ratio. In this paper, we present (i) an objective assessment of the lidar signal quality and representativity of correlative ground-based lidar and CALIOP measurements only using normalized range-corrected lidar signals and (ii) a numerical filtering and optimization technique for reducing the spurious oscillations induced by noisy signal differentiation as needed for retrieval of particle extinction coefficients and extinction-to-backscatter ratio profiles. Numerical simulations and Monte Carlo tests are conducted for assessing the performance of the LIBOD technique. The applications are illustrated with examples of actual correlative 532 nm lidar profiles from CALIOP and a ground-based lidar deployed in Tamanrasset in the heart of Sahara in 2006 and near Strasbourg, France, in 2007.

  17. Sensitive and direct determination of lithium by mixed-mode chromatography and charged aerosol detection.

    Science.gov (United States)

    Dai, Lulu; Wigman, Larry; Zhang, Kelly

    2015-08-21

    A sensitive analytical method using mixed mode HPLC separation coupled with charged aerosol detection (CAD) was developed for quantitative analysis of lithium. The method is capable of separating lithium ion from different drug matrices and other ions in a single run thus eliminating the organic matrix and ionic analyte interferences without extensive sample preparation such as derivatization and extraction. The separation space and chromatographic conditions are defined by systematic studies of the retention behaviors of lithium and potential interfering ions and different type of pharmaceutical APIs (active pharmaceutical ingredients) under reversed-phase, HILIC and cation/anion exchange mechanisms. Compared to other current analytical techniques for lithium analysis, the presented method provides a new approach and demonstrates high sensitivity (0.02ng for LOD and 0.08ng for LOQ in both standard and sample solution). The method has been validated for pharmaceutical samples and can be potentially applied to biological, food and environmental samples.

  18. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  19. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.M. [NASA Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, MD (United States); Kim, M.K. [Kongju National University, Department of Atmospheric Science, Gongju (Korea); Kim, K.M. [Science Systems and Applications, Inc, Lanham, MD (United States)

    2006-06-15

    In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau (TP). During the pre-monsoon season of March-April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the TP. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the TP relative to the region to the south. In May through early June in a manner akin to an ''elevated heat pump'', the rising hot air forced by the increasing heating in the upper troposphere, draws in warm and moist air over the Indian subcontinent, setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions. (orig.)

  20. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    Directory of Open Access Journals (Sweden)

    F. D. Lopez-Hilfiker

    2015-02-01

    Full Text Available We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer, but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS. Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products. Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing

  1. Atmosphere aerosol satellite project Aerosol-UA

    Science.gov (United States)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    The experiment Aerosol-UA is Ukrainian space mission aimed to the terrestrial atmospheric aerosol spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, aerosol and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric aerosol absorption, the aerosol over the ocean and the land surface, the signals from cirrus clouds, stratospheric aerosols caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve aerosol optical depth and polarization properties of aerosol by registration of three Stokes parameters simultaneously in three spectral channels. The two more

  2. Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption: Part 2: Quantifying the direct and indirect (dynamical) radiative forcings

    Science.gov (United States)

    Mann, Graham; Dhomse, Sandip; Carslaw, Ken; Chipperfield, Martyn; Lee, Lindsay; Emmerson, Kathryn; Abraham, Luke; Telford, Paul; Pyle, John; Braesicke, Peter; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin

    2016-04-01

    The Mt Pinatubo volcanic eruption in June 1991 injected between 10 and 20 Tg of sulphur dioxide into the tropical lower stratosphere. Following chemical conversion to sulphuric acid, the stratospheric aerosol layer thickened substantially causing a strong radiative, dynamical and chemical perturbation to the Earth's atmosphere with effects lasting several years. In this presentation we show results from model experiments to isolate the different ways the enhanced stratospheric aerosol from Pinatubo influenced the Earth's climate. The simulations are carried out in the UK Chemistry and Aerosol composition-climate model (UKCA) which extends the high-top (to 80km) version of the UK Met Office Unified Model (UM). The UM-UKCA model uses the GLOMAP-mode aerosol microphysics module coupled with a stratosphere-troposphere chemistry scheme including sulphur chemistry. By running no-feedback and standard integrations, we separate the main radiative forcings due to aerosol-radiation interactions (i.e. the direct forcings) from those induced by dynamical changes which alter meridional heat transport and distributions of aerosol, ozone and water vapour.

  3. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    Science.gov (United States)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal

  4. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model

    Institute of Scientific and Technical Information of China (English)

    王锦地; 李小文; 孙晓敏; 刘强

    2000-01-01

    When the remote sensing pixel is composed of multiple components and a non-isothermal surface, its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel. In this paper, we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel’s component parameters, and invert the model to get the component temperatures. For the inversion algorithm, we focus on how to use the information of given observations in a more effective way. The information content in data space and parameter space is defined, and the transferring of information content in inversion procedure is studied. Our forward model and inversion method are validated using indoor directional measurement data.

  5. Component temperatures inversion for remote sensing pixel based on directional thermal radiation model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    When the remote sensing pixel is composed of multiple components and a non-isothermal surface,its directional signature of thermal-infrared radiation is mainly determined by the 3D structure of the pixel.In this paper,we present our simple directional thermal radiation model to describe the relation between the pixel thermal emission and the pixel's component parameters,and invert the model to get the component temperatures.For the inversion algorithm,we focus on how to use the information of given observations in a more effective way.The information content in data space and parameter space is defined,and the transferring of information content in inversion procedure is studied.Our forward model and inversion method are validated using indoor directional measurement data.

  6. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    Directory of Open Access Journals (Sweden)

    X. Y. Zhang

    2015-07-01

    Full Text Available Since individuals experienced persistent haze-fog events in January 2013 in central-eastern China, questions on factors causing differences in drastic changes in 2013 from those in adjacent years have been raised. Changes in major chemical components of aerosol particles over the years also remain unclear. The extent of meteorological factors contributed to such changes is yet to be determined. The study intends to present the changes in daily-based major water-soluble constituents, carbonaceous species and mineral aerosol in PM10 at 13 stations within different haze regions in China from 2006 to 2013, associated with specific meteorological conditions that are highly related with aerosol pollution (parameterized as an index called "PLAM". No obvious changes were found in annual mean concentrations of these various chemical components and PM10 in 2013, relative to 2012. By contrast, wintertime mass of these components were quite different, in Hua Bei Plain (HBP, sulfate, OC, nitrate, ammonium, EC, and mineral dust concentrations in winter were approximately 43, 55, 28, 23, 21 and 130 μg m−3, respectively; these masses were approximately two to four times higher than those in background mass, also exhibiting a decline during 2006 to 2010, and then a rise till 2013. The mass of these concentrations and PM10, except mineral, respectively increased by approximately 28 to 117 and 25 % in January 2013 compared with that in January 2012. Thus, persistent haze-fog events occurred in January 2013, and approximately 60 % of this increase in component concentrations from 2012 to 2013 can be attributed to severe meteorological conditions in the winter of 2013. In Yangtzi River Delta (YRD area, winter masses of these components, unlike HBP, did not significantly increase since 2010; PLAM was also maintained at a similar level without significant changes. In the Pearl River Delta (PRD area, the regional background concentrations of the major chemical

  8. A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2009-10-01

    Full Text Available In the present work it is investigated the direct shortwave effect of anthropogenic aerosols on the near surface temperature over Southeastern Europe and the atmospheric circulation during summer 2000. In summer 2000, a severe heat-wave and droughts affected many countries in the Balkans. The study is based on two yearly simulations with and without the aerosol feedback of the regional climate model RegCM3 coupled with a simplified aerosol model. The surface radiative forcing associated with the anthropogenic aerosols is negative throughout the European domain with the more negative values in Central and Central-eastern Europe. A basic pattern of the aerosol induced changes in air temperature at the lower troposphere is a decrease over Southeastern Europe and the Balkan Peninsula (up to about 1.2°C thus weakening the pattern of the climatic temperature anomalies of summer 2000. The aerosol induced changes in air temperature from the lower troposphere to upper troposphere are not correlated with the respective pattern of the surface radiative forcing implying the complexity of the mechanisms linking the aerosol radiative forcing with the induced atmospheric changes through dynamical feedbacks of aerosols on atmospheric circulation. Investigation of the aerosol induced changes in the circulation indicates a southward shift of the subtropical jet stream playing a dominant role for the decrease in near surface air temperature over Southeastern Europe and the Balkan Peninsula. The southward shift of the jet exit region over the Balkan Peninsula causes a relative increase of the upward motion at the northern flank of the jet exit region, a relative increase of clouds, less solar radiation absorbed at the surface and hence relative cooler air temperatures in the lower troposphere between 45° N and 50° N. The southward extension of the lower troposphere aerosol induced negative temperature changes in the latitudinal band 35° N–45° N over the

  9. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    Science.gov (United States)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  10. Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    Science.gov (United States)

    Giorio, Chiara; Tapparo, Andrea; Dall'Osto, Manuel; Beddows, David C S; Esser-Gietl, Johanna K; Healy, Robert M; Harrison, Roy M

    2015-03-17

    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.

  11. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols.

    Science.gov (United States)

    Verma, Vishal; Rico-Martinez, Roberto; Kotra, Neel; King, Laura; Liu, Jiumeng; Snell, Terry W; Weber, Rodney J

    2012-10-16

    Relative contributions of water- and methanol-soluble compounds and their hydrophobic/hydrophilic subfractions to the ROS (reactive oxygen species)-generating potential of ambient fine aerosols (D(p) Hydrophobic and hydrophilic fractions were then subsequently segregated via a C-18 solid phase extraction column. The DTT assay response was significantly higher for the methanol extract, and for both extracts a substantial fraction of PM oxidative potential was associated with the hydrophobic compounds as evident from a substantial attenuation in DTT response after passing PM extracts through the C-18 column (64% for water and 83% for methanol extract; both median values). The DTT activities of water and methanol extracts were correlated with the water-soluble (R = 0.86) and water-insoluble organic carbon (R = 0.94) contents of the PM, respectively. Brown carbon (BrC), which predominantly represents the hydrophobic organic fraction (referred to as humic-like substances, HULIS), was also correlated with DTT activity in both the water (R = 0.78) and methanol extracts (R = 0.83). Oxidative potential was not correlated with any metals measured in the extracts. These findings suggest that the hydrophobic components of both water-soluble and insoluble organic aerosols substantially contribute to the oxidative properties of ambient PM. Further investigation of these hydrophobic organic compounds could help identify sources of a significant fraction of ambient aerosol toxicity.

  12. Virtual directions in paleomagnetism: A global and rapid approach to evaluate the NRM components.

    Science.gov (United States)

    Ramón, Maria J.; Pueyo, Emilio L.; Oliva-Urcia, Belén; Larrasoaña, Juan C.

    2017-02-01

    We introduce a method and software to process demagnetization data for a rapid and integrative estimation of characteristic remanent magnetization (ChRM) components. The virtual directions (VIDI) of a paleomagnetic site are “all” possible directions that can be calculated from a given demagnetization routine of “n” steps (being m the number of specimens in the site). If the ChRM can be defined for a site, it will be represented in the VIDI set. Directions can be calculated for successive steps using principal component analysis, both anchored to the origin (resultant virtual directions RVD; m * (n2+n)/2) and not anchored (difference virtual directions DVD; m * (n2-n)/2). The number of directions per specimen (n2) is very large and will enhance all ChRM components with noisy regions where two components were fitted together (mixing their unblocking intervals). In the same way, resultant and difference virtual circles (RVC, DVC) are calculated. Virtual directions and circles are a global and objective approach to unravel different natural remanent magnetization (NRM) components for a paleomagnetic site without any assumption. To better constrain the stable components, some filters can be applied, such as establishing an upper boundary to the MAD, removing samples with anomalous intensities, or stating a minimum number of demagnetization steps (objective filters) or selecting a given unblocking interval (subjective but based on the expertise). On the other hand, the VPD program also allows the application of standard approaches (classic PCA fitting of directions a circles) and other ancillary methods (stacking routine, linearity spectrum analysis) giving an objective, global and robust idea of the demagnetization structure with minimal assumptions. Application of the VIDI method to natural cases (outcrops in the Pyrenees and u-channel data from a Roman dam infill in northern Spain) and their comparison to other approaches (classic end-point, demagnetization

  13. Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime

    Science.gov (United States)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Kikuta, Motomi; Tachibana, Eri; Aggarwal, Shankar G.

    2012-12-01

    To better understand time-resolved variations of water-soluble organic aerosols in the atmosphere, we collected atmospheric particles (TSP) every 3 h during summertime (8-10 August, 2005) in Sapporo, northern Japan. We measured inorganic ions, carbonaceous components, dicarboxylic acids, ketoacids and α-dicarbonyls in TSP. SO42- was found as the most abundant ionic species (57 ± 9% of total ions determined) followed by NH4+ and NO3-. However, none of the ionic species showed any diurnal trend throughout the campaign. Organic carbon (OC) ranged from 2.1 to 12.1 μg m-3 whereas elemental carbon (EC) was negligible in most of the samples (0.31 ± 0.56 μg m-3). Oxalic (C2) acid was the most abundant diacid species, followed by malonic (C3) and succinic (C4) acids. Water-soluble OC (WSOC), water-insoluble OC (WIOC) and OC as well as dominant diacids (C2-C4), total diacids, ketoacids and α-dicarbonyls did not show diurnal trend on 8 August, but they showed clear diurnal distributions during 9-10 August following the changes in ambient temperature (and radiation). Detailed analyses of time-resolved aerosols demonstrate that diurnal variations of organic aerosol compositions are caused by local in situ photochemical production, but are significantly superimposed by long-range atmospheric transport of aerosols, particularly when the air masses are enriched with emissions from higher plants and/or biomass burning, and their photochemical processing during the transport.

  14. Influence of aerosols in the spectral irradiance in Valencia (Spain); Influencia de los aerosoles sobre la irradiancia espectral en Valencia

    Energy Technology Data Exchange (ETDEWEB)

    Maj, A.; Canada, J.; Bosca, J. V.

    2004-07-01

    The measures of global and direct spectral irradiance were realized during the period october/2002-september/2003 using two LICOR-1800 espectroradiometer. From all of data, we choose 4 days with cloudless sky like the more representative for the whole period detection. The results show that urban aerosols produce an important attenuation of direct component of spectral irradiance. In the other way, we observed an increase of the diffuse spectral irradiance, caused by aerosols. (Author)

  15. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  16. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  17. Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale

    Science.gov (United States)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2016-01-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the performance of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled with Chemistry (WRF-Chem) in capturing spatiotemporal variability of aerosol optical depth (AOD) and the Ångström exponent (AE) by comparison with ground- and space-based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A systematic positive bias in simulated AOD relative to observations is found (annual mean fractional bias (MFB) is 0.15 and 0.50 relative to MODIS (MODerate resolution Imaging Spectroradiometer) and AERONET, respectively), whereas the spatial variability is well captured during most months. The spatial correlation of observed and simulated AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. The model is biased towards the simulation of coarse-mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months, despite the fact that AE is retrieved with higher uncertainty from the remote-sensing observations. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of extreme aerosol events (i.e., AOD > 75th percentile) varies between 30 and 70 % during winter and summer months, respectively.

  18. BioJS DAGViewer: A reusable JavaScript component for displaying directed graphs.

    Science.gov (United States)

    Kalderimis, Alexis; Stepan, Radek; Sullivan, Julie; Lyne, Rachel; Lyne, Michael; Micklem, Gos

    2014-01-01

    The DAGViewer BioJS component is a reusable JavaScript component made available as part of the BioJS project and intended to be used to display graphs of structured data, with a particular emphasis on Directed Acyclic Graphs (DAGs). It enables users to embed representations of graphs of data, such as ontologies or phylogenetic trees, in hyper-text documents (HTML). This component is generic, since it is capable (given the appropriate configuration) of displaying any kind of data that is organised as a graph. The features of this component which are useful for examining and filtering large and complex graphs are described. http://github.com/alexkalderimis/dag-viewer-biojs; http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.8303.

  19. Fabrication of directional solidification components of nickel-base superalloys by laser metal forming

    Institute of Scientific and Technical Information of China (English)

    Liping Feng; Weidong Huang; Darong Chen; Xin Lin; Haiou Yang

    2004-01-01

    Straight plates, hollow columns, ear-like blade tips, twist plates with directional solidification microstructure made of Rene 95 superalloys were successfully fabricated on Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for production of the parts with corresponding shapes were obtained. The fabrication precision was high and the components were compact. The solidification microstructure of the parts was analyzed by optical microscopy. The results show that the solidification microstructure is composed of columnar dendrites, by epitaxial growth onto the directional solidification substrates. The crystallography orientation of the parts was parallel to that of the substrates. The primary arm spacing was about 10 μm, which is in the range of superfine dendrites, and the secondary arm was small or even degenerated. It is concluded that the laser metal forming technique provides a method to manufacture directional solidification components.

  20. An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer

    Directory of Open Access Journals (Sweden)

    D. Topping

    2010-07-01

    Full Text Available Calculating the equilibrium composition of atmospheric aerosol particles, using all variations of Köhler theory, has largely assumed that the total solute concentrations define both the water activity and surface tension. Recently however, bulk to surface phase partitioning has been postulated as a process which significantly alters the predicted point of activation. In this paper, an analytical solution to calculate the removal of material from a bulk to a surface layer in aerosol particles has been derived using a well established and validated surface tension framework. The applicability to an unlimited number of components is possible via reliance on data from each binary system. Whilst assumptions regarding behaviour at the surface layer have been made to facilitate derivation, it is proposed that the framework presented can capture the overall impact of bulk-surface partitioning. Predictions made by the model across a range of surface active properties should be tested against measurements. The computational efficiency of using the solution presented in this paper is roughly a factor of 20 less than a similar iterative approach, a comparison with highly coupled approaches not available beyond a 3 component system.

  1. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China

    Science.gov (United States)

    Zhuang, Bingliang; Liu, Qian; Wang, Tijian; Yin, Changqin; Li, Shu; Xie, Min; Jiang, Fei; Mao, Huiting

    2013-11-01

    A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg m-3, 8 mg m-2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and -0.95 W m-2, respectively, leading to a net RF of -0.15 W m-2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC's indirect effect. Further, the net effect of BC might cause a decrease of precipitation of -7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC's indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC's direct effect, while changes in surface air temperature and precipitation might be influenced by BC's indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.

  2. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Directory of Open Access Journals (Sweden)

    D. Tanré

    2011-04-01

    Full Text Available The aerosol remote sensing from space has started in the 1980's using observations provided by geostationary satellites or by polar orbiting platforms not specifically designed for observing aerosols. As a result, the number of retrieved parameters was limited and retrievals in the visible restricted over ocean. Over land, because of the important surface contribution, the aerosol detection was performed in the UV (or in the dark blue where most of the earth surfaces are dark enough but with overlap of multiple aerosols parameters, content, altitude and absorption. Instruments dedicated to aerosol monitoring are recently available and the POLDER instrument on board the PARASOL mission is one of them. By measuring the wavelength, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL can better quantify aerosol optical depths (AOD and improve the derivation of the radiative and physical properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques.

  3. Direct observational evidence of the influence of absorbing aerosols on surface energy partitioning during the monsoon onset period over Kanpur

    Science.gov (United States)

    Tripathi, S. N.; Sarangi, C.

    2016-12-01

    Detailed understanding of the radiative impact of ambient aerosols on land-atmosphere energy interactions during the onset period over the Indian summer monsoon region (ISMR) is essential for improving spatiotemporal prediction of the Indian summer monsoon. Transportation of air masses influenced by biomass burning outbreaks in the Himalayan foothills to Kanpur, located in ISMR, during May 2016 provides a unique opportunity to investigate the influence of absorbing aerosols on the Bowen ratio. Collocated half hourly observations of aerosol properties, surface energy balance and fluxes and carbon dioxide (CO2) fluxes over Kanpur under clear sky conditions were used. During this period, increase in aerosol optical depth (AOD) was associated with decrease in single scattering albedo and increase in near surface PM2.5 concentrations indicating that the increase in columnar aerosol loading was primarily due to increase in absorbing aerosols near the surface. Our results show that the net radiation (NR) decreases by 130 Wm-2 per unit increase in AOD at the surface, most of which is due to interactions of aerosols with incoming shortwave radiation. Comparison of observed Bowen ratio for low- and high AOD scenarios illustrates that the increase in aerosol is associated with a reduction in the Bowen ratio for all values of NR. The decrease in sensible heat fluxes relative to the net radiation (SH/NR) per unit increase in AOD is 50 % during midday. We found that aerosol-induced stability in near surface temperature gradient suppresses energy dissipation by the sensible heat flux. Further, relative latent heat flux was found to increase 25 % per unit increase in AOD, mainly due to enhanced photosynthesis as a function of a greater fraction of diffuse radiation. This is evident from the more negative CO2 flux with AOD. Thus, this study provides the first observational evidence of the influence of absorbing aerosols on the Bowen ratio over this region of climatic importance.

  4. USE OF DIRECT QUENCHING AS AN ALTERNATIVE IN AUTOMOTIVE COMPONENTS MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Hevlin Cristina de Almeida Costa

    2014-03-01

    Full Text Available This work has the aim to evaluate the replacement of quenching and hardening thermal treatment by direct quenching of forged safety washer component, to ensure and to maintain the mechanical properties of the products associated with competitive manufacturing costs. Supporting that, a statistical tool was used to delineate the processing routes, and forging tests were conducted at industrial scale. The effect of the different processing routes on the forged product was investigated through Finite Element Method and metallurgical analysis of the final product. The results showed the viability of the direct quenching with technical and economical advantages, once the control of the process parameters are guaranteed.

  5. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules

    DEFF Research Database (Denmark)

    Thyssen, Jørn; Fleig, Timo; Jensen, Hans Jørgen Aagaard

    2008-01-01

    A new direct relativistic four-component Kramers-restricted multiconfiguration self-consistent-field (KR-MCSCF) code for molecules has been implemented. The program is based upon Kramers-paired spinors and a full implementation of the binary double groups (D2h* and subgroups). The underlying...... quaternion algebra for one-electron operators was extended to treat two-electron integrals and density matrices in an efficient and nonredundant way. The iterative procedure is direct with respect to both configurational and spinor variational parameters; this permits the use of large configuration...

  6. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    Science.gov (United States)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  7. Component validation of direct diode 488nm lasers in BD Accuri C6 flow cytometers

    Science.gov (United States)

    Chen, Wei P.; Luo, Ningyi D.

    2016-03-01

    The 488nm laser is the most important excitation light source of flow cytometry. The indirect diode (frequency-doubled diode) 488nm lasers are used in the excitation of Becton Dickinson (BD) AccuriTM C6. For using cost effective lasers, we have validated direct diode 488nm lasers as the replacement component of frequency-doubled diode laser. BD Bioscience issued the protocols to cover wavelength, power, noise, and polarization at the operation temperature range of cytometer. Pavilion Integration Corporation (PIC) tested 6 samples as the component validation of direct diode 488nm lasers based on the protocols from BD Biosciences. BD Bioscience also tested one of laser samples to further validate the test results of power, noise, and polarization from PIC.

  8. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  9. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  10. Fabrication of 3D components by laser-aided direct metal deposition

    Science.gov (United States)

    Mazumder, Jyotirmoy; Qi, Huan

    2005-03-01

    Breinan and Kear first reported fabrication of three-dimensional metallic components via layer by layer laser cladding in 1978 and subsequently a patent was issued to Brown et al. in 1982. Recently, various groups are working world wide on different types of layered manufacturing techniques for fabrication of near net shape metallic components. Integration of lasers with multi-axis presently available CNC machines, CAD/CAM, sensors and powder metal delivery through co-axial nozzles along with the laser beam are the main innovations for fabrication of 3-Dimensional components. Continuous corrective measures during the manufacturing process are necessary to fabricate net shape functional parts with close tolerances and acceptable residual stress. The closed loop Direct Metal Deposition(DMD) System, using an optical feedback loop along with a CNC working under the instructions from a CAD/CAM software, indicate that it can produce three dimensional components directly from the CAD data eliminating intermediate machining and reduces final machining considerably. This technology is now being commercialized.

  11. Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP

    Science.gov (United States)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-05-01

    aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm-2AOD-1 to 65.1Wm-2AOD-1 when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  12. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  13. Estimate of Aerosol Optical Depth Using Broadband Direct Normal Observations at Highest Polluted Area in the World

    OpenAIRE

    U. A. Rahoma; A. H. Hassan

    2010-01-01

    Problem statement: The measurement of different components of direct solar radiation for this research has been carried out in Helwan, Egypt. Helwan (Latitude 29°52 N, Longitude 31°20 E). This is a considered as the largest polluted region in the world. The level of pollution in Helwan region is higher, compared to the international limit by about 7 or 10 times in industrial and populated region respectively. Approach: The daily variation for different components of solar radiation bands as...

  14. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  15. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    Science.gov (United States)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  16. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  17. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  18. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  19. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-01-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  20. Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps

    Directory of Open Access Journals (Sweden)

    G. Aymoz

    2004-07-01

    Full Text Available A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC and Organic Carbon (OC are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.

  1. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  2. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    Science.gov (United States)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  3. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    Science.gov (United States)

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-01

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol-radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m-2) with the maximum albedo effect

  4. Integrated tool for fabrication of electronic components by laser direct write

    Science.gov (United States)

    Mathews, Scott A.; Zhang, Chengping; Kegresse, Todd; Liu, David

    2002-06-01

    A prototype workstation has been developed that allows the fabrication of passive electronic components at low temperatures using a laser direct-write process. The work station combines a variety of laser processing techniques onto a single, integrated platform. These techniques include material deposition, laser micromachining, laser sintering, and laser trimming. One particular process, referred to as 'mill and fill', combines the laser micromachining ability of the tool with 'off-the-shelf' conductor pastes to allow the fabrication of high density metalization at very low temperatures. The present work describes the details of the 'mill and fill' process and shows examples of prototype devices fabricated using this technique.

  5. Direct Machining of Low-Loss THz Waveguide Components With an RF Choke.

    Science.gov (United States)

    Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J

    2014-12-01

    We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 μm.

  6. The sequential aerosol technique: a major component in an integrated strategy of intervention against Riverine Tsetse in Ghana.

    Directory of Open Access Journals (Sweden)

    Yahaya Adam

    Full Text Available BACKGROUND: An integrated strategy of intervention against tsetse flies was implemented in the Upper West Region of Ghana (9.62°-11.00° N, 1.40°-2.76° W, covering an area of ≈18,000 km(2 within the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign. Two species were targeted: Glossina tachinoides and Glossina palpalis gambiensis. METHODOLOGY/PRINCIPAL FINDINGS: The objectives were to test the potentiality of the sequential aerosol technique (SAT to eliminate riverine tsetse species in a challenging subsection (dense tree canopy and high tsetse densities of the total sprayed area (6,745 km(2 and the subsequent efficacy of an integrated strategy including ground spraying (≈100 km(2, insecticide treated targets (20,000 and insecticide treated cattle (45,000 in sustaining the results of tsetse suppression in the whole intervention area. The aerial application of low-dosage deltamethrin aerosols (0.33-0.35 g a.i/ha was conducted along the three main rivers using five custom designed fixed-wings Turbo thrush aircraft. The impact of SAT on tsetse densities was monitored using 30 biconical traps deployed from two weeks before until two weeks after the operations. Results of the SAT monitoring indicated an overall reduction rate of 98% (from a pre-intervention mean apparent density per trap per day (ADT of 16.7 to 0.3 at the end of the fourth and last cycle. One year after the SAT operations, a second survey using 200 biconical traps set in 20 sites during 3 weeks was conducted throughout the intervention area to measure the impact of the integrated control strategy. Both target species were still detected, albeit at very low densities (ADT of 0.27 inside sprayed blocks and 0.10 outside sprayed blocks. CONCLUSIONS/SIGNIFICANCE: The SAT operations failed to achieve elimination in the monitored section, but the subsequent integrated strategy maintained high levels of suppression throughout the intervention area, which will

  7. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  8. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  9. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

    Science.gov (United States)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros

    2016-03-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed

  10. Shortwave Direct Radiative Effects of Above-Cloud Aerosols Over Global Oceans Derived From 8 Years of CALIOP and MODIS Observations

    Science.gov (United States)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros

    2016-01-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and

  11. Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India

    Science.gov (United States)

    Allen, R. J.; Norris, J. R.; Wild, M.

    2013-06-01

    underestimation of the observed trends is related to underestimation of aerosol direct radiative forcing and/or deficient aerosol emission inventories.

  12. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Front End Analog Circuit Design and Component Characterization

    Science.gov (United States)

    2016-09-01

    PHOTONIC ARCHITECTURE FOR DIRECTION FINDING OF LPI EMITTERS: FRONT-END ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION by Chew K. Tan...PHOTONIC ARCHITECTURE FOR DIRECTION FINDING OF LPI EMITTERS: FRONT-END ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION 5. FUNDING NUMBERS 6. AUTHOR... ANALOG CIRCUIT DESIGN AND COMPONENT CHARACTERIZATION Chew K. Tan Military Expert 6, Republic of Singapore Navy B.E. (Hons), University of New

  13. Directing folding pathways for multi-component DNA origami nanostructures with complex topology

    Science.gov (United States)

    Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.

    2016-05-01

    Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.

  14. Optical closure study on light-absorbing aerosols

    Science.gov (United States)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  15. Direct detection of the tertiary component in the massive multiple HD 150136 with VLTI

    Science.gov (United States)

    Sanchez-Bermudez, J.; Schödel, R.; Alberdi, A.; Barbá, R. H.; Hummel, C. A.; Maíz Apellániz, J.; Pott, J.-U.

    2013-06-01

    Context. Massive stars are of fundamental importance for almost all aspects of astrophysics, but there still exist large gaps in our understanding of their properties and formation because they are rare and therefore distant. It has been found that most O-stars are multiples. It may well be that almost all massive stars are born as triples or higher multiples, but their large distances require milliarcsecond angular resolution for a direct detection of the companions. Aims: HD 150136 is the nearest system to Earth with >100 M⊙ and provides a unique opportunity to study an extremely massive system. Recently, evidence for the existence of a third component in HD 150136, in addition to the tight spectroscopic binary that forms the main component, was found in spectroscopic observations. Our aim was to image and obtain astrometric and photometric measurements of this component using long-baseline optical interferometry to further constrain the nature of this component. Methods: We observed HD 150136 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer, which provides an angular resolution of 2 mas. The recovered closure phases are robust to systematic errors and provide unique information on the source asymmetry. Therefore, they are of crucial relevance for both image reconstruction and model fitting of the source structure. Results: The third component in HD 150136 is clearly detected in the high-quality data from AMBER. It is located at a projected angular distance of 7.3 mas, or about 13 AU at the line-of-sight distance of HD 150136, at a position angle of 209 degrees east of north, and has a flux ratio of 0.25 with respect to the inner binary. Our findings agree with previous results and have permitted us to improve the orbital solutions of the tertiary around the inner system. Conclusions: We resolved the third component of HD 150136 in J, H and K filters. The luminosity and color of the tertiary agrees with the predictions and shows

  16. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2011-05-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of cloud condensation nuclei, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can be formed and grow large enough to influence cloud condensation nuclei (CCN, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the southern and northern polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high during this extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles up to the size of CCN. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to provide evidence for the probable production of stratospheric CCN from cosmic ray induced ionization.

  17. Characteristics and seasonal variation of Carbonaceous and Water soluble organic Components in the aerosols over East India

    Directory of Open Access Journals (Sweden)

    Basant Shubhankar

    2016-03-01

    Full Text Available The present investigation intends to measurement of PM2.5 and PM10 samples from agricultural (AG and an Adityapur industrial (AI site of East India to better characterize the carbonecous and water-soluble organic carbon (WSOC. The current study aimed (a to determine variation ratio of OC/PM, EC/PM, WSOC/EC, OC/EC in the study area (b assess and quantity the Correlation between OC and EC, WSOC and OC, WSOC and PM, WSOC and EC of AG and AI site (c Analyse the abundance pattern, at AG site indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste and in AI site sharp contrast influenced by emissions from coal-fired industries. The OC10/EC10, OC2.5/EC2.5, OC10/PM10, OC2.5/PM2.5, EC10/PM10,EC2.5/PM2.5 ratios at the AI and AG sampling sites varied from (min-max (average are 2.8 – 8.3 (4.9, 4.2 - 7.6 (5.5, 0.17 -0.19 (0.17, 0.14 - 0.20 (0.17, 0.03 - 0.06 (0.04, 0.02 - 0.04 (0.03 and 3.3 - 8.3 (4.9, 3.03 - 8.8 (3.9, 0.62 - 0.98 (0.78, 0.09 - 0.12 (0.09, 0.07 - 0.23 (0.17, 0.01 - 0.04 (0.02 respectively. Total carbon (TC was calculated as OC+EC. The comprehensive data set on EC, OC and WSOC/OC ratios from Eastern India is crucial to systematise the baseline data for future predictions of carbonaceous aerosol studies for atmospheric scattering and absorption of solar radiation on a regional scale.

  18. Strong Ground Motion in the 2011 Tohoku Earthquake: a 1Directional - 3Component Modeling

    CERN Document Server

    D'Avila, Maria Paola Santisi; Lenti, Luca

    2013-01-01

    Local wave amplification due to strong seismic motions in surficial multilayered soil is influenced by several parameters such as the wavefield polarization and the dynamic properties and impedance contrast between soil layers. The present research aims at investigating seismic motion amplification in the 2011 Tohoku earthquake through a one-directional three-component (1D-3C) wave propagation model. A 3D nonlinear constitutive relation for dry soils under cyclic loading is implemented in a quadratic line finite element model. The soil rheology is modeled by mean of a multi-surface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan (MPII) type. Its major advantage is that the rheology is characterized by few commonly measured parameters. Ground motions are computed at the surface of soil profiles in the Tohoku area (Japan) by propagating 3C signals recorded at rock outcrops, during the 2011 Tohoku earthquake. Computed surface ground motions are compared to the Tohoku earthquake records at alluvial ...

  19. Direct calculation of 2D components of myocardial strain using sinusoidal MR tagging

    Science.gov (United States)

    Osman, Nael F.; Prince, Jerry L.

    1998-07-01

    A new technique to measure local planar strain in left ventricular myocardium using two-dimensional tagged MR images is presented. This new technique is computationally fast, is fully automated, and generates dense motion estimates. It is based on using a 1-1 SPAMM tag pattern which comprise several one-dimensional sinusoidal tag patterns at different frequencies. A local deformation of the myocardium produces a variation in the local frequencies of these patterns, which can be used to compute strain components in the image plane. Local frequency is measured by scanning certain spectral peaks to create complex images, for which the local frequency is the gradient of the angle associated with their complex data points. The method is demonstrated using both simulations and real tagged MR images, and a discussion of these results and of directions for future research is provided.

  20. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  1. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    Science.gov (United States)

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  2. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    Science.gov (United States)

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  3. Development status and research directions on the structural components of the fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Nam; Jeong, Yeon Ho; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Bang, Jae Keon

    1997-06-01

    Survey on the structural components of the state-of-the art of the PWR fuel assembly developed by various nuclear fuel vendors has been performed. As a result, some developmental directions and mechanical/structural basic technology to be established for these structural components have been drawn out. The developmental directions are as follows; The top end piece shall be designed in shape to reduce its height to accommodate the fuel rod growth for high burnup and to have a function for easy reconstitution of the fuel assembly. The bottom end piece shall be designed in shape to reduce its height to accommodate the fuel rod growth for high burnup and to have a function for easy reconstitution of the fuel assembly. The bottom end piece shall be designed in shape to reduce its height to accommodate the fuel rod growth for high burnup and to have a function of debris protection. The spacer grid shall be designed in shape to have a function of enhancing the thermal margin and maintaining the fuel rod integrity without fuel failure due to fuel rod fretting and vibration. The mechanical/structural basic technology which must be established is as follows; The stress analysis results shall comply with the stress criteria specified in the ASME code stress limits and the shape optimization technology shall be developed for the top/bottom end pieces. For the spacer grid cell, the nonlinear analysis model of the fuel rod and the analysis model on the flow-induced fuel rod vibration, and a study of the mechanism and a quantified model on the fuel rod fretting wear shall be developed. In addition, numerical analysis model to estimate the buckling strength of the spacer grid assembly shall be developed. Besides above technology, technology related the verification test should be developed. (author). 30 figs., 54 refs.

  4. In vitro study of the direct effect of extracellular hemoglobin on myelin components.

    Science.gov (United States)

    Bamm, Vladimir V; Lanthier, Danielle K; Stephenson, Erin L; Smith, Graham S T; Harauz, George

    2015-01-01

    There is a relationship between cerebral vasculature and multiple sclerosis (MS) lesions: abnormal accumulations of iron have been found in the walls of dilated veins in MS plaques. The sources of this iron can be varied, but capillary and venous hemorrhages leading to blood extravasation have been recorded, and could result in the release of hemoglobin extracellularly. Extracellular hemoglobin oxidizes quickly and is known to become a reactive molecule that triggers low-density lipoprotein oxidation and plays a pivotal role in atherogenesis. In MS, it could lead to local oxidative stress, inflammation, and tissue damage. Here, we investigated whether extracellular hemoglobin and its breakdown products can cause direct oxidative damage to myelin components in a peroxidative environment such as occurs in inflamed tissue. Oxidation of lipids was assessed by the formation of fluorescent peroxidized lipid-protein covalent adducts, by the increase in conjugated diene and malondialdehyde. Oxidation of proteins was analyzed by the change in protein mass. The results suggest that the globin radical could be a trigger of myelin basic protein oxidative cross-linking, and that heme transferred to the lipids is involved in lipid peroxidation. This study provides new insight into the mechanism by which hemoglobin exerts its pathological oxidative activity towards myelin components. This work supports further research into the vascular pathology in MS, to gain insight into the origin and role of iron deposits in disease pathogenesis, or in stimulation of different comorbidities such as cardiovascular disease.

  5. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  6. In vitro exposure to isoprene-derived secondary organic aerosol by direct deposition and its effects on COX-2 and IL-8 gene expression

    Science.gov (United States)

    Arashiro, Maiko; Lin, Ying-Hsuan; Sexton, Kenneth G.; Zhang, Zhenfa; Jaspers, Ilona; Fry, Rebecca C.; Vizuete, William G.; Gold, Avram; Surratt, Jason D.

    2016-11-01

    Atmospheric oxidation of isoprene, the most abundant non-methane hydrocarbon emitted into Earth's atmosphere primarily from terrestrial vegetation, is now recognized as a major contributor to the global secondary organic aerosol (SOA) burden. Anthropogenic pollutants significantly enhance isoprene SOA formation through acid-catalyzed heterogeneous chemistry of epoxide products. Since isoprene SOA formation as a source of fine aerosol is a relatively recent discovery, research is lacking on evaluating its potential adverse effects on human health. The objective of this study was to examine the effect of isoprene-derived SOA on inflammation-associated gene expression in human lung cells using a direct deposition exposure method. We assessed altered expression of inflammation-related genes in human bronchial epithelial cells (BEAS-2B) exposed to isoprene-derived SOA generated in an outdoor chamber facility. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed cells, together with complementary chemical measurements, showed that a dose of 0.067 µg cm-2 of SOA from isoprene photooxidation leads to statistically significant increases in IL-8 and COX-2 mRNA levels. Resuspension exposures using aerosol filter extracts corroborated these findings, supporting the conclusion that isoprene-derived SOA constituents induce the observed changes in mRNA levels. The present study is an attempt to examine the early biological responses of isoprene SOA exposure in human lung cells.

  7. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G., E-mail: g.barucca@univpm.it [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Santecchia, E.; Majni, G. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Girardin, E. [DISCO, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Bassoli, E.; Denti, L.; Gatto, A. [DIMeC, University of Modena and Reggio Emilia, via Vignolese 905/B, Modena 41125 (Italy); Iuliano, L. [DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Moskalewicz, T. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Mengucci, P. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}{sub γ} planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed.

  8. Impacts of East Asian aerosols on the Asian monsoon

    Science.gov (United States)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  9. Yield and yield components of minituber potato under direct cultivation and transplanting

    Directory of Open Access Journals (Sweden)

    H. Ghorbani

    2015-08-01

    Full Text Available This research was performed to study the effect of direct planting and transplanting of potato minituber on its yield and yield components. The experiment was designed as a randomized complete blocks with nine treatments and three replications. Treatments were one direct and eight indirect planting. In order to prepare the nursery, two types of pots (peat and nylon and four types of substrates including sand + peat moss (1:1, sand + Kimiya organic fertilizer (1:1, sand + vermicompost (1:1 and sand + farm soil (1:1 were used. Results showed that there was significant difference in regard to mean yield per plant, mean wet weight of tuber, number of tubers smaller and greater than 80 g, percent dry weight of tuber, biologic yield, starch percentage and nitrate content of tubers. The highest mean tuber yield per plant, number of tubers greater than 80 gr and biologic yield belonged to plants in nylon pots with substrate of sand + Kimiya organic fertilizer. The highest percentage of starch and tuber dry matter belonged to plants in peat pots with substrate of sand + soil. The highest mean wet weight of tubers belonged to nylon pots with substrate of sand + peat moss. The highest number of tubers lower than 80 g and the highest nitrate content was obtained by direct planting. The sand+ Kimiya organic fertilizer, which provides the necessary elements for plant growth, with more yield and number of marketable tubers, could be the best substrate as compared to other substrates used in this experiment.

  10. Characteristics of the chemical components of aerosol particles in the various regions over China%中国不同区域大气气溶胶化学成分浓度、组成与来源特征

    Institute of Scientific and Technical Information of China (English)

    张小曳

    2014-01-01

    In order to obtain the overall chemical “picture”of the aerosol pollution in the various regions of China and discuss the further direction of pollution control,we need to assess and evaluate the concentration level,chemical composition and their sources region¯by¯region in China.Features of the chemical aerosol particles in China have been obtained,based on the analysis of the six major chemical components (sulfate,nitrate,ammonium,mineral aerosol,organic and element carbon)from the ground¯based observation with all having at least one¯year¯long measurements.The four most hazy regions of the nine regions with characteristics of synchronous changing in visibility within China are also identified,which are the region south of Beijing (also called the Huabei Plain and Guanzhong Plain);the eastern China region with the Yangtze River Delta as its main body;the south China region with the Pearl River Delta as its main body;and also the region of Sichuan Basin.Of the PM10 in China, three major components are accounted for 20%-38% of the total mass for mineral aerosol,14%-24% for sulfate,and 11%-18% for organic carbon.The heaviest aerosol pollution was found in the Huabei and Guanzhong Plain region,with the annual mean concentrations of 35-47 μg/m3 of sulfate (which was much higher than the urban Beijing level of 13 to 18 μg/m3 ),28-45 μg/m3 of organic carbon (about 1.8 factor higher than the Beijing level of 19 -22 μg/m3 ),19 -22 μg/m3 for nitrate (2 times higher than the Beijing level of 9.9-12 μg/m3 ),14-16 μg/m3 for ammonium (still one factor higher than the Beijing mean concentration of 6.2-8.4 μg/m3 ),and the 9.1-12 μg/m3 of elemental carbon which was similar with the level of Bei¯ jing.More than 50% mass of nitrate and organic carbon are attributable to coal¯combustion,and the agricultural activity is the most important source for ammonium.In the urban areas of eastern,southern and northeastern China,the concentration levels of aerosol chemical

  11. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 Wm-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small

  12. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  13. Microstructural evolution during direct laser sintering of multi-component Cu-based metal powder

    Institute of Scientific and Technical Information of China (English)

    SHEN Yi-fu; GU Dong-dong; WU Peng; YANG Jia-lin; WANG Yang

    2005-01-01

    A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.

  14. Direct and maternal (co)variance components and heritability estimates for body weights in Chokla sheep.

    Science.gov (United States)

    Kushwaha, B P; Mandal, A; Arora, A L; Kumar, R; Kumar, S; Notter, D R

    2009-08-01

    Estimates of (co)variance components were obtained for weights at birth, weaning and 6, 9 and 12 months of age in Chokla sheep maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, over a period of 21 years (1980-2000). Records of 2030 lambs descended from 150 rams and 616 ewes were used in the study. Analyses were carried out by restricted maximum likelihood (REML) fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weight at birth, weaning and 6, 9 and 12 months of age were 0.20, 0.18, 0.16, 0.22 and 0.23, respectively in the best models. Additive maternal and maternal permanent environmental effects were both significant at birth, accounting for 9% and 12% of phenotypic variance, respectively, but the source of maternal effects (additive versus permanent environmental) at later ages could not be clearly identified. The estimated repeatabilities across years of ewe effects on lamb body weights were 0.26, 0.14, 0.12, 0.13, and 0.15 at birth, weaning, 6, 9 and 12 months of age, respectively. These results indicate that modest rates of genetic progress are possible for all weights.

  15. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    Science.gov (United States)

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  17. Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    NARCIS (Netherlands)

    Timmermans, J.; Verhoef, W.; Tol, van der C.; Su, Z.

    2009-01-01

    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the ev

  18. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  19. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    Directory of Open Access Journals (Sweden)

    C. A. Stroud

    2012-02-01

    Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in southern Ontario (ON, Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA. Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS. Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. Co-located carbon monoxide (CO, PM2.5 black carbon (BC, and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation.

    At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m−3 vs. 1.2 μg m−3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1 underweighting of urban locations in particulate matter (PM spatial surrogate fields, (2 overly-coarse model grid spacing for resolving urban-scale sources, and (3 lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical

  20. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    Directory of Open Access Journals (Sweden)

    C. A. Stroud

    2012-09-01

    Full Text Available Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007 in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA and two other carbonaceous species, black carbon (BC and carbon monoxide (CO, made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON and two rural sites (Harrow and Bear Creek, ON to derive hydrocarbon-like organic aerosol (HOA factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA. Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species.

    At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m−3 and 1.2 μg m−3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer

  1. Measurement of the Range Component Directional Signature in a DRIFT-II Detector using 252Cf Neutrons

    CERN Document Server

    Burgos, S; Forbes, J; Ghag, C; Gold, M; Hagemann, C; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; Muna, D; Murphy, A St J; Nicklin, G G; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Snowden-Ifft, D P; Spooner, N J C; Turk, J; Tziaferi, E

    2008-01-01

    The DRIFT collaboration utilizes low pressure gaseous detectors to search for WIMP dark matter with directional signatures. A 252Cf neutron source was placed on each of the principal axes of a DRIFT detector in order to test its ability to measure directional signatures from the three components of very low energy (~keV/amu) recoil ranges. A high trigger threshold and the event selection procedure ensured that only sulfur recoils were analyzed. Sulfur recoils produced in the CS2 target gas by the 252Cf source closely match those expected from massive WIMP induced sulfur recoils. For each orientation of the source a directional signal from the range components was observed, indicating that the detector is directional along all 3 axes. An analysis of these results yields an optimal orientation for DRIFT detectors when searching for a directional signature from WIMPs. Additional energy dependent information is provided to aid in understanding this effect.

  2. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.

    Science.gov (United States)

    Epstein, Scott A; Blair, Sandra L; Nizkorodov, Sergey A

    2014-10-07

    Primary and secondary organic aerosols (POA and SOA) contain a complex mixture of multifunctional chemicals, many of which are photolabile. Much of the previous work that aimed to understand the chemical evolution (aging) of POA and SOA has focused on the reactive uptake of gas-phase oxidants by particles. By stripping volatile compounds and ozone from α-pinene ozonolysis SOA with three 1-m-long denuders, and exposing the residual particles in a flow cell to near-ultraviolet (λ>300 nm) radiation, we find that condensed-phase photochemistry can induce significant changes in SOA particle size and chemical composition. The particle-bound organic peroxides, which are highly abundant in α-pinene ozonolysis SOA (22 ± 5% by weight), have an atmospheric photolysis lifetime of about 6 days at a 24-h average solar zenith angle (SZA) of 65° experienced at 34° latitude (Los Angeles) in the summer. In addition, the particle diameter shrinks 0.56% per day under these irradiation conditions as a result of the loss of volatile photolysis products. Experiments with and without the denuders show similar results, suggesting that condensed-phase processes dominate over heterogeneous reactions of particles with organic vapors, excess ozone, and gas-phase free radicals. These condensed-phase photochemical processes occur on atmospherically relevant time scales and should be considered when modeling the evolution of organic aerosol in the atmosphere.

  3. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    Science.gov (United States)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  4. Studies of aerosols advected to coastal areas

    Science.gov (United States)

    Zielinski, T.; Petelski, T.; Makuch, P.; Strzalkowska, A.; Ponczkowska, A.; Drozdowska, V.; Gutowska, D.; Kowalczyk, J.; Darecki, M.; Piskozub, J.

    2012-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensingmaking them highly relevant for the ocean color atmospheric correction. This paper presents the results of the studies of aerosol optical properties measured using lidars and sun photometers. We describe two case studies of the combined measurements made in two coastal zones, in Crete in 2006and in Rozewie on the Baltic Sea in 2009. The combination of lidar and sun photometer measurements provides comprehensive information on both the total aerosol optical thickness in the entire atmosphere as well as the vertical structure of aerosol optical properties. Combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides complete picture of the aerosol variations in the study area both vertically and horizontally. We show that such combined studies are especially important in the coastal areas. Additionally, aerosol particle direct and indirect radiative effects have been identified as key uncertainties for the prediction of the future global climate. This research has been made within the framework of the NASA/AERONET Program and Polish National Grants 1276/B/P01/2010/38, PBW 1283/B/P01/2010/38, POLAR-AOD, NN 306315536 and Satellite Monitoring of the Baltic Sea Environment - SatBałtyk funded by the European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09.

  5. A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe

    NARCIS (Netherlands)

    Barbu, A.L.; Segers, A.J.; Schaap, M.; Heemink, A.W.; Builtjes, P.J.H.

    2009-01-01

    Fine particulate matter (PM) is relevant for human health and its components are associated with climate effects. The performance of chemistry transport models for PM, its components and precursor gases is relatively poor. The use of these models to assess the state of the atmosphere can be strength

  6. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    Science.gov (United States)

    Di Biagio, Claudia; Formenti, Paola; Doppler, Lionel; Gaimoz, Cécile; Grand, Noel; Ancellet, Gerard; Attié, Jean-Luc; Bucci, Silvia; Dubuisson, Philippe; Fierli, Federico; Mallet, Marc; Ravetta, François

    2016-08-01

    Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ˜ 160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84-0.98 at 370 nm and 0.70-0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84-0.70 between 370 and 950 nm) are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41-1.77 and 0.002-0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE) to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE), i.e. the DRE per unit of optical depth, at the surface (-160/-235 W m-2 τ-1 at 60° solar zenith angle) and at the Top-Of-Atmosphere (-137/-92 W m-2 τ-1) for ω varying between its maximum and minimum value

  7. 75 FR 64309 - Components for Evaluation of Direct-Reading Monitors for Gases and Vapors and Addendum

    Science.gov (United States)

    2010-10-19

    ...The National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC) announces the availability of the following draft publication for public comment. The document and its addendum are entitled, respectively, ``Components for Evaluation of Direct-Reading Monitors for Gases and Vapors'' and ``Addendum to Components for Evaluation of Direct-Reading Monitors for Gases and Vapors: Hazard Detection in First Responder Environments.'' The draft documents and instructions for submitting comments can be found at: http://www.cdc.gov/niosh/docket/ review/docket220. The document expands the 1995 method development and evaluation experimental testing methods to direct-reading monitors for gases and vapors. These Components are provided for laboratory users, consensus standard setting bodies, and manufacturers of direct-reading instrumentation and are compatible with the Instrumentation, Systems, and Automation Society guidelines. The addendum to the document expands the applicability of the Components by presenting methods to be used in evaluating direct-reading monitors for hazard detection in First Responder environments. The 1995 document, entitled ``Guidelines for Air Sampling and Analytical Method Development and Evaluation,'' can be viewed at: http://www.cdc.gov/niosh/docs/ 95-117/. This guidance does not have the force and effect of the law.

  8. Data-driven aerosol development in the GEOS-5 modeling and data assimilation system

    Science.gov (United States)

    Darmenov, A.; da Silva, A.; Liu, X.; Colarco, P. R.

    2013-12-01

    Atmospheric aerosols are important radiatively active agents that also affect clouds, atmospheric chemistry, the water cycle, land and ocean biogeochemistry. Furthermore, exposure to anthropogenic and/or natural fine particulates can have negative health effects. No single instrument or model is capable of quantifying the diverse and dynamic nature of aerosols at the range of spatial and temporal scales at which they interact with the other constituents and components of the Earth system. However, applying model-data integration techniques can minimize limitations of individual data products and remedy model deficiencies. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) Earth system model. GEOS-5 is a modeling and data assimilation framework well suited for aerosol research. It is being used to perform aerosol re-analysis and near real-time aerosol forecast on a global scale at resolutions comparable to those of aerosol products from modern spaceborne instruments. The aerosol processes in GEOS-5 derive from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) but it is implemented on-line, within the climate model. GEOS-5 aerosol modeling capabilities have recently been enhanced by inclusion of the Modal Aerosol Microphysics module (MAM-7) originally developed in the Community Earth System Model (CESM) model. This work will present examples of data driven model development that include refining parameterization of sea-salt emissions, tuning of biomass burning emissions from vegetation fires and the effect of the updated emissions on the modeled direct aerosol forcing. We will also present results from GOES-5/MAM-7 model evaluation against AOD and particulate pollution datasets, and outline future directions of aerosol data assimilation in the GEOS-5 system.

  9. A Molecular-level Approach for Characterizing Water-insoluble Components of Organic Aerosols Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Priest, A. S.; Wozniak, A. S.; Hatcher, P. G.

    2011-12-01

    There is strong evidence that suggests emissions from human activities have played a substantial role in changing the chemical composition of the atmosphere, resulting in negative effects on climate and human and environmental health. Theory suggests that the molecular composition of organic aerosols plays a role in the specific impacts; however, due to the lack of suitable analytical methods for characterizing the inherently complex aerosol organic matter (OM), our molecular level understanding of the nature and reactivity of this material has been limited. Ultra-high resolution mass spectrometry has provided molecular formula information for thousands of species present in the water-soluble fraction of organic aerosols. However, fewer studies have examined the water-insoluble fraction, which typically accounts for 30-70% of aerosol OM. Here we employ pyridine, with its high solvating power for natural OM, as a suitable solvent for examining the water-insoluble fraction of field-collected organic aerosols using ultra-high resolution mass spectrometry. The molecular composition of the water-soluble organic matter (WSOM) and pyridine-soluble organic matter (PSOM) of organic aerosols was evaluated using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Ambient aerosol samples were collected from rural sites in New York and Virginia in 2007. The mass spectral distribution of the ions detected using ESI FT-ICR MS allowed for the determination of molecular formulas for the thousands of peaks detected in each extract. Approximately 40% of the aerosol OM was WSOM, and the spectra were dominated by compounds with only carbon, hydrogen and oxygen (~45% of assigned formulas), with relatively smaller contributions from nitrogen- and sulfur-containing formulas. Pyridine, on the other hand, extracts a molecularly unique portion of aerosol OM. Approximately 25% of the formulas are unique to PSOM, and the

  10. Development and Deployment of a Particle-into-Liquid sampling - Electrospray Ionization Mass Spectrometer (PiLs-ESI/MS) for Characterization of Water-Soluble Biomass Burning Aerosols

    Science.gov (United States)

    Stockwell, C.; Witkowski, B.; Talukdar, R. K.; Middlebrook, A. M.; Roberts, J. M.

    2016-12-01

    Biomass burning (BB) is a major influence on Earth's atmosphere as it is an important source of primary and secondary aerosols. Measuring the aerosol composition for such complex mixtures remains an analytical challenge and the characterization of the water-soluble portion of BB aerosol has been traditionally limited to off-line analysis and/or qualitative techniques. In this work, we present a new method of directly interfacing a particle-into-liquid sampler with an electrospray ionization mass spectrometer (PiLs-ESI/MS). This technique allows real-time, sensitive, and chemically-specific speciation of water-soluble organics and inorganics for the quantification of fresh BB aerosol sampled during the recent Firelab component of the NOAA FIREX experiments. The aerosol composition is fuel and combustion-phase dependent, and several polar organic species thought to be main contributors to aerosol brown carbon and secondary organic aerosol were measured.

  11. Direct gravimetric measurements of the mass of the antarctic aerosol collected by high volume sampler: PM10 summer seasonal variation at Terra Nova Bay.

    Science.gov (United States)

    Truzzi, Cristina; Lambertucci, Luca; Illuminati, Silvia; Annibaldi, Anna; Scarponi, Giuseppe

    2005-01-01

    An on-site procedure was set up for direct gravimetric measurement of the mass of aerosol collected using high volume impactors (aerodynamic size cut point of 10 microm, PM10); this knowledge has hitherto been unavailable. Using a computerized microbalance in a clean chemistry laboratory, under controlled temperature (+/-0.5 degrees C) and relative humidity (+/-1%), continuous, long time filter mass measurements (hours) were carried out before and after exposure, after a 48 h minimun equilibration at the laboratory conditions. The effect of the electrostatic charge was exhausted in 30-60 min, after which stable measurements were obtained. Measurements of filters exposed for 7-11 days (1.13 m3 min(-1)) in a coastal site near Terra Nova Bay (December 2000 - February 2001), gave results for aerosol mass in the order of 10-20 mg (SD approximately 2 mg), corresponding to atmospheric concentrations of 0.52-1.27 microg m(-3). Data show a seasonal behaviour in the PM10 content with an increase during December - early January, followed by a net decrease. The above results compare well with estimates obtained from proxy data for the Antarctic Peninsula (0.30 microg m(-3)), the Ronne Ice Shelf (1.49 microg m(-3)), and the South Pole (0.18 microg m(-3), summer 1974-1975, and 0.37 microg m(-3), average summer seasons 1975-1976 and 1977-1978), and from direct gravimetric measurements recently obtained from medium volume samplers at McMurdo station (downwind 3.39 microg m(-3), upwind 4.15 microg m(-3)) and at King George Island (2.5 microg m(-3), summer, particle diameter <20 microm). This finding opens the way to the direct measurement of the chemical composition of the Antarctic aerosol and, in turn, to a better knowledge of the snow/air relationships as required for the reconstruction of the chemical composition of past atmospheres from deep ice core data.

  12. Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis

    Science.gov (United States)

    Deboudt, Karine; Flament, Pascal; ChoëL, Marie; Gloter, Alexandre; Sobanska, Sophie; Colliex, Christian

    2010-12-01

    The mixing state of aerosols collected at M'Bour, Senegal, during the Special Observing Period conducted in January-February 2006 (SOP-0) of the African Monsoon Multidisciplinary Analysis project (AMMA), was studied by individual particle analysis. The sampling location on the Atlantic coast is particularly adapted for studying the mixing state of tropospheric aerosols since it is (1) located on the path of Saharan dust plumes transported westward over the northern tropical Atlantic, (2) influenced by biomass burning events particularly frequent from December to March, and (3) strongly influenced by anthropogenic emissions from polluted African cities. Particle size, morphology, and chemical composition were determined for 12,672 particles using scanning electron microscopy (automated SEM-EDX). Complementary analyses were performed using transmission electron microscopy combined with electron energy loss spectrometry (TEM-EELS) and Raman microspectrometry. Mineral dust and carbonaceous and marine compounds were predominantly found externally mixed, i.e., not present together in the same particles. Binary internally mixed particles, i.e., dust/carbonaceous, carbonaceous/marine, and dust/marine mixtures, accounted for a significant fraction of analyzed particles (from 10.5% to 46.5%). Western Sahara was identified as the main source of mineral dust. Two major types of carbonaceous particles were identified: "tar balls" probably coming from biomass burning emissions and soot from anthropogenic emissions. Regarding binary internally mixed particles, marine and carbonaceous compounds generally formed a coating on mineral dust particles. The carbonaceous coating observed at the particle scale on African dust was evidenced by the combined use of elemental and molecular microanalysis techniques, with the identification of an amorphous rather than crystallized carbon structure.

  13. A large source of low-volatility secondary organic aerosol.

    Science.gov (United States)

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  14. Direct Detection of the Tertiary Component in the Massive Multiple HD 150 136 with VLTI

    CERN Document Server

    Sanchez-Bermudez, J; Alberdi, A; Barbá, R H; Hummel, C A; Apellaníz, J Maíz; Pott, J -U

    2013-01-01

    Massive stars are of fundamental importance for almost all aspects of astrophysics, but there still exist large gaps in our understanding of their properties and formation because they are rare and therefore distant. It has been found that most O-stars are multiples. HD 150 136 is the nearest system to Earth with >100 M_sol, and provides a unique opportunity to study an extremely massive system. Recently, evidence for the existence of a third component in HD 150 136, in addition to the tight spectroscopic binary that forms the main component, was found in spectroscopic observations. Our aim was to image and obtain astrometric and photometric measurements of this component using long baseline optical interferometry to further constrain the nature of this component. We observed HD150136 with the near-infrared instrument AMBER attached to the ESO VLT Interferometer. The recovered closure phases are robust to systematic errors and provide unique information on the source asymmetry. Therefore, they are of crucial ...

  15. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization

    Indian Academy of Sciences (India)

    Chandrani Das; Tarini Shankar Ghosh; Sharmila S Mande

    2016-03-01

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacteriun tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcuss gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.

  16. Skin and muscle components of forearm blood flow in directly heated resting man.

    Science.gov (United States)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  17. Hand calculations for transport of radioactive aerosols through sampling systems.

    Science.gov (United States)

    Hogue, Mark; Thompson, Martha; Farfan, Eduardo; Hadlock, Dennis

    2014-05-01

    Workplace air monitoring programs for sampling radioactive aerosols in nuclear facilities sometimes must rely on sampling systems to move the air to a sample filter in a safe and convenient location. These systems may consist of probes, straight tubing, bends, contractions and other components. Evaluation of these systems for potential loss of radioactive aerosols is important because significant losses can occur. However, it can be very difficult to find fully described equations to model a system manually for a single particle size and even more difficult to evaluate total system efficiency for a polydispersed particle distribution. Some software methods are available, but they may not be directly applicable to the components being evaluated and they may not be completely documented or validated per current software quality assurance requirements. This paper offers a method to model radioactive aerosol transport in sampling systems that is transparent and easily updated with the most applicable models. Calculations are shown with the R Programming Language, but the method is adaptable to other scripting languages. The method has the advantage of transparency and easy verifiability. This paper shows how a set of equations from published aerosol science models may be applied to aspiration and transport efficiency of aerosols in common air sampling system components. An example application using R calculation scripts is demonstrated. The R scripts are provided as electronic attachments.

  18. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2010-08-01

    Full Text Available Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects.

    Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  19. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.

    Science.gov (United States)

    Metwally, Mohamed K; Han, Seung Moo; Kim, Tae-Seong

    2015-10-01

    Transcranial direct current stimulation (tDCS) is considered to be a promising technique for noninvasive brain stimulation and brain disease therapy. Recent studies have investigated the distribution of the electric field (EF) magnitude over gyri and sulci and the effect of tissue homogeneity with isotropic electrical conductivities. However, it is well known that the skull and white matter (WM) are highly anisotropic electrically, requiring investigations of their anisotropic effects on the magnitude and the directional components of the induced EF due to the high dependency between neuromodulation and the EF direction. In this study, we investigated the effects of the skull and WM anisotropy on the radial and tangential components of the EF via gyri-specific high-resolution finite element head models. For tDCS, three configurations were investigated: the conventional rectangular pad electrode, a 4(cathodes) +1(anode) ring configuration, and a bilateral configuration. The results showed that the skull anisotropy has a crucial influence on the distribution of the radial EF component. The affected cortical regions by the radial EF were reduced about 22 % when considering the skull anisotropy in comparison with the regions with the skull isotropy. On the other hand, the WM anisotropy strongly alters the EF directionality, especially within the sulci. The electric current tends to flow radially to the cortical surface with the WM anisotropy. This effect increases the affected cortical areas by the radial EF component within the sulcal regions. Our results suggest that one must examine the distribution of the EF components in tDCS, not just the magnitude of the EF alone.

  20. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  1. CALIPSO Observations of Aerosol Properties Near Clouds

    Science.gov (United States)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  2. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    Science.gov (United States)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  3. Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase

    Directory of Open Access Journals (Sweden)

    C. B. Stipe

    2008-09-01

    Full Text Available We studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA or thin (near monolayer coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1 surface-only reactions between OH and palmitic acid, 2 secondary reactions between palmitic acid and OH oxidation products, 3 volatilization of condensed-phase mass, and 4 a surface renewal process. Using this model we infer a value of γOH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred γOH is lower, ranging from ~0.3+0.1/−0.05 for coatings on solid NaCl and ~0.05 (±0.01 on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs, and that OH oxidation may initiate secondary condensed-phase reactions.

  4. The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2008-03-01

    Full Text Available We studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA or thin (near monolayer coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1 surface-only reactions between OH and palmitic acid, 2 secondary reactions between palmitic acid and OH oxidation products, 3 volatilization of condensed-phase mass, and 4 a surface renewal process. Using this model we infer a value of γOH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred γOH is lower, ranging from ~0.3 (+0.1/−0.05 for coatings on solid NaCl and ~0.05 (±0.01 on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs, and that OH oxidation may initiate secondary condensed-phase reactions.

  5. Evaluation of Aerosol Particle Size at High Polluted Region in the World Using Direct Solar Radiation Measurements: Helwan as a Case Region

    OpenAIRE

    U. A. Rahoma

    2010-01-01

    Problem statement: Particle counting and sizing of atmospheric aerosols by electro-optical methods are complex and absolute interpretation of measurements is difficult, so, the scattered light varies in a complicated manner with the system of optics as well as with the size and physical characteristics of particles. Approach: The estimation of the air aerosol number concentration variation was carried out in this study making use of data obtained from the Helwan, Egypt. The aerosol number con...

  6. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  7. Characterization of the direct metal laser sintered Ti6Al4V Components

    CSIR Research Space (South Africa)

    Chauke, L

    2013-09-01

    Full Text Available sample showed a partial martensitic structure, with columnar grains, however a/ß lamellar structure was observed in the heat treated. External and internal pores, un-melted or semi-melted powder particles and inclusions were observed in direct metal laser...

  8. Comprehensive characterization of PM2.5 aerosols in Singapore

    Science.gov (United States)

    Balasubramanian, R.; Qian, W.-B.; Decesari, S.; Facchini, M. C.; Fuzzi, S.

    2003-08-01

    A comprehensive characterization of PM2.5 aerosols collected in Singapore from January through December 2000 is presented. The annual average mass concentration of PM2.5 was 27.2 μg/m3. The atmospheric loading of PM2.5 was elevated sporadically from March through May, mainly due to advection of biomass burning (deliberate fires to clear plantation areas) impacted air masses from Sumatra, Indonesia. Satellite images of the area, trajectory calculations, and surface wind direction data are in support of the transport of pyrogenic products from Sumatra toward Singapore. Aerosol samples collected during the dry season were analyzed for water-soluble ions, water-soluble organic compounds (WSOC), elemental carbon (EC), organic carbon, and trace elements using a number of analytical techniques. The major components were sulfate, EC, water-soluble carbonaceous materials, and water-insoluble carbonaceous materials. Aerosol WSOC were characterized based on a combination of chromatographic separations by ion exchange chromatography, functional group investigation by proton nuclear magnetic resonance, and total organic carbon determination. The comprehensive chemical characterization of PM2.5 particles revealed that both non-sea-salt sufate (nss-SO42-) and carbonaceous aerosols mainly contributed to the increase in the mass concentration of aerosols during the smoke haze period. Using a mass closure test (a mass balance), we determined whether the physical measurement of gravimetric fine PM concentration of a sample is equal to the summed concentrations of the individually identified chemical constituents (measured or inferred) in the sample. The sum of the determined groups of aerosol components and the gravimetrically determined mass agreed reasonably well. Principal component analysis was performed from the combined data set, and five factors were observed: a soil dust component, a metallurgical industry factor, a factor representing emissions from biomass burning and

  9. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Science.gov (United States)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  10. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components.

    Science.gov (United States)

    Ishikawa, Fumihiro; Shirahashi, Masato; Hayakawa, Hiroshi; Yamaguchi, Asako; Hirokawa, Takatsugu; Tsumuraya, Takeshi; Fujii, Ikuo

    2016-10-21

    Taking advantage of antibody molecules to generate tailor-made binding sites, we propose a new class of protein modifications, termed as "site-directed chemical mutation." In this modification, chemically synthesized catalytic components with a variety of steric and electronic properties can be noncovalently and nongenetically incorporated into specific sites in antibody molecules to induce enzymatic activity. Two catalytic antibodies, 25E2 and 27C1, possess antigen-combining sites which bind catalytic components and act as apoproteins in catalytic reactions. By simply exchanging these components, antibodies 25E2 and 27C1 can catalyze a wide range of chemical transformations including acyl-transfer, β-elimination, aldol, and decarboxylation reactions. Although both antibodies were generated with the same hapten, phosphonate diester 1, they showed different catalytic activity. When phenylacetic acid 4 was used as the catalytic component, 25E2 efficiently catalyzed the elimination reaction of β-haloketone 2, whereas 27C1 showed no catalytic activity. In this work, we focused on the β-elimination reaction and examined the site-directed chemical mutation of 27C1 to induce activity and elucidate the catalytic mechanism. Molecular models showed that the cationic guanidyl group of Arg(H52) in 27C1 makes a hydrogen bond with the P═O oxygen in the hapten. This suggested that during β-elimination, Arg(H52) of 27C1 would form a salt bridge with the carboxylate of 4, thus destroying reactivity. Therefore, we utilized site-directed chemical mutation to change the charge properties of the catalytic components. When amine components 7-10 were used, 27C1 efficiently catalyzed the β-elimination reaction. It is noteworthy that chemical mutation with secondary amine 8 provided extremely high activity, with a rate acceleration [(kcat/Km 2)/kuncat] of 1 000 000. This catalytic activity likely arises from the proximity effect, plus general-base catalysis associated the

  11. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    Science.gov (United States)

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-12-01

    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  12. Direct MD simulation of liquid-solid phase equilibria for three-component plasma

    CERN Document Server

    Hughto, J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-01-01

    The neutron rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semi analytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Gamma) in our MD simulations compared to the semi analytic ...

  13. Very low levels of direct additive genetic variance in fitness and fitness components in a red squirrel population.

    Science.gov (United States)

    McFarlane, S Eryn; Gorrell, Jamieson C; Coltman, David W; Humphries, Murray M; Boutin, Stan; McAdam, Andrew G

    2014-05-01

    A trait must genetically correlate with fitness in order to evolve in response to natural selection, but theory suggests that strong directional selection should erode additive genetic variance in fitness and limit future evolutionary potential. Balancing selection has been proposed as a mechanism that could maintain genetic variance if fitness components trade off with one another and has been invoked to account for empirical observations of higher levels of additive genetic variance in fitness components than would be expected from mutation-selection balance. Here, we used a long-term study of an individually marked population of North American red squirrels (Tamiasciurus hudsonicus) to look for evidence of (1) additive genetic variance in lifetime reproductive success and (2) fitness trade-offs between fitness components, such as male and female fitness or fitness in high- and low-resource environments. "Animal model" analyses of a multigenerational pedigree revealed modest maternal effects on fitness, but very low levels of additive genetic variance in lifetime reproductive success overall as well as fitness measures within each sex and environment. It therefore appears that there are very low levels of direct genetic variance in fitness and fitness components in red squirrels to facilitate contemporary adaptation in this population.

  14. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    Science.gov (United States)

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  15. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate

    Science.gov (United States)

    Bellouin, Nicolas; Rae, Jamie; Jones, Andy; Johnson, Colin; Haywood, Jim; Boucher, Olivier

    2011-10-01

    The latest Hadley Centre climate model, HadGEM2-ES, includes Earth system components such as interactive chemistry and eight species of tropospheric aerosols. It has been run for the period 1860-2100 in support of the fifth phase of the Climate Model Intercomparison Project (CMIP5). Anthropogenic aerosol emissions peak between 1980 and 2020, resulting in a present-day all-sky top of the atmosphere aerosol forcing of -1.6 and -1.4 W m-2 with and without ammonium nitrate aerosols, respectively, for the sum of direct and first indirect aerosol forcings. Aerosol forcing becomes significantly weaker in the 21st century, being weaker than -0.5 W m-2 in 2100 without nitrate. However, nitrate aerosols become the dominant species in Europe and Asia and decelerate the decrease in global mean aerosol forcing. Considering nitrate aerosols makes aerosol radiative forcing 2-4 times stronger by 2100 depending on the representative concentration pathway, although this impact is lessened when changes in the oxidation properties of the atmosphere are accounted for. Anthropogenic aerosol residence times increase in the future in spite of increased precipitation, as cloud cover and aerosol-cloud interactions decrease in tropical and midlatitude regions. Deposition of fossil fuel black carbon onto snow and ice surfaces peaks during the 20th century in the Arctic and Europe but keeps increasing in the Himalayas until the middle of the 21st century. Results presented here confirm the importance of aerosols in influencing the Earth's climate, albeit with a reduced impact in the future, and suggest that nitrate aerosols will partially replace sulphate aerosols to become an important anthropogenic species in the remainder of the 21st century.

  16. DIRECT AND ADAPTIVE SLICING ON CAD MODEL OF IDEAL FUNCTIONAL MATERIAL COMPONENTS (IFMC)

    Institute of Scientific and Technical Information of China (English)

    Xu Daoming; Jia Zhenyuan; Guo Dongming

    2005-01-01

    A brand new direct and adaptive slicing approach is proposed, which can apparently improve the part accuracy and reduce the building time. At least two stages are included in this operation: getting the crossing contour of the cutting plane with the solid part and determining the layer thickness. Apart from usual SPI algorithm, slicing of the solid model has its special requirements.Enabling the contour line segments of the cross-section as long as possible is one of them, which is for improving manufacturing efficiency and is reached by adaptively adjusting the step direction and the step size at every crossing point to obtain optimized secant height. The layer thickness determination can be divided into two phases: the geometry-based thickness estimation and the material-based thickness verifying. During the former phase, the geometry tolerance is divided into two parts: a variety of curves are approximated by a circular arc, which introduces the first part, and the deviation error between the contour line in LM process and the circular arc generates the second part. The latter phase is mainly verifying the layer thickness estimated in the former stage and determining a new one if necessary. In addition, an example using this slicing algorithm is also illustrated.

  17. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    Science.gov (United States)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  18. A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

    Science.gov (United States)

    Jethva, Hiren; Torrres, Omar; Ahn, Changwoo

    2016-05-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosolcloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong `color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  19. Direct determination of major components in human diets and baby foods.

    Science.gov (United States)

    Cascant, Mari Merce; Garrigues, Salvador; de la Guardia, Miguel

    2015-03-01

    A fast method has been developed for the determination of fat, proteins, carbohydrates, and energy value in baby food, infant fast food, and canteen menus, using near-infrared (NIR) and mid-infrared (MIR) spectroscopy measurements and multivariate calibration methods based on partial least square regression. Reference standard methods were employed to build and validate the infrared methods for direct determination of nutrients. Coefficients of determination obtained between predicted values and reference ones for total fat, proteins, carbohydrates, and energy value were 96.7, 98.1, 98.9, and 96.5 for NIR and 91.0, 93.0, 92.0, and 84.1 for MIR, respectively, with relative root mean square error of prediction (RRMSEP) below or equal to 9 % for NIR and 16 % for MIR. Results obtained indicate that both NIR and MIR techniques have good predictive capabilities, with the NIR method being the most accurate and simple.

  20. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Science.gov (United States)

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  1. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Directory of Open Access Journals (Sweden)

    S. Decesari

    2014-04-01

    Full Text Available The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterized by a less dense urbanization. We present here the results obtained in San Pietro Capofiume, which is located in a sparsely inhabited sector of the Po Valley, Italy. The experiment was carried out in summer 2009 in the framework of the EUCAARI project ("European Integrated Project on Aerosol, Cloud Climate Aerosol Interaction". For the first time in Europe, six state-of-the-art techniques were used in parallel: (1 on-line TSI aerosol time-of-flight mass spectrometer (ATOFMS, (2 on-line Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS, (3 soot particle aerosol mass spectrometer (SP-AMS, (4 on-line high resolution time-of-flight mass spectrometer-thermal desorption aerosol gas chromatograph (HR-ToFMS-TAG, (5 off-line twelve-hour resolution proton nuclear magnetic resonance (H-NMR spectroscopy, and (6 chemical ionization mass spectrometry (CIMS for the analysis of gas-phase precursors of secondary aerosol. Data from each aerosol spectroscopic method were analysed individually following ad-hoc tools (i.e. PMF for AMS, Art-2a for ATOFMS. The results obtained from each techniques are herein presented and compared. This allows us to clearly link the modifications in aerosol chemical composition to transitions in air mass origin and meteorological regimes. Under stagnant conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black

  2. Laser direct writing of 40 GHz RF components on flexible substrates

    Science.gov (United States)

    Zacharatos, F.; Iliadis, N.; Kanakis, J.; Bakopoulos, P.; Avramopoulos, H.; Zergioti, I.

    2016-05-01

    Flexible electronics have emerged as a very promising alternative of CMOS compatible electronics for a plethora of applications. Laser microfabrication techniques, such as selective laser patterning and sintering are compatible with flexible substrates and have demonstrated impressive results in the field of flexible electronic circuits and sensors. However, laser based manufacturing of radio frequency (RF) passive components or devices is still at an early stage. In this work we report on the all-laser fabrication of Silver Co-Planar Waveguides (CPWs) on polyethylene-naphthalate (PEN) substrates employing flat-top optics to achieve uniform laser fluence and thus high fabrication precision and reproducibility but also to mitigate the thermal effects of nanosecond laser pulses. The CPWs have been fabricated to match the impedance of 50 Ω ports of an Anritsu vector network analyzer operating from 40 MHz to 40 GHz. The all laser fabrication process consisted in the selective laser sintering of square dies on a Silver Nano Particle layer spin-coated on a PEN substrate followed by the selective laser patterning of the CPWs with a ns pulsed Nd:YAG laser source operating at 532 nm, according to the optimized parameters extracted from a previous studies of the authors. The CPWs have been characterized electrically at the 0.04-40 GHz regime and found to be excellent transmission lines with a 40 GHz 3 dB bandwidth, owing to the high electrical conductivity of Ag and the excellent dielectric properties of PEN. This novel process is a milestone towards the RF technology transfer to flexible electronics with low cost and specs comparable to the CMOS compatible equivalents.

  3. Linking Aerosol Source Activities to Present and Future Climate Effects

    Science.gov (United States)

    Koch, D.; Bond, T. C.; Streets, D.; Menon, S.; Unger, N.

    2007-05-01

    Aerosol source sectors (transport, power, industry, residential, biomass burning) generate distinct mixtures of aerosol species. These mixtures in turn have different effects on climate. As sectoral emissions change in coming decades, whether by regulation or not, it is helpful to link pollution from source types to climate consequences. We do so, using our global (GISS GCM) aerosol model for present and future IPCC SRES scenarios. According to our model, residential and transport sectors have net positive 1995 aerosol forcings (0.04 and 0.03 W m-2) due to their large black carbon contents. However, the sulfate-dominated power and industry sectors have net negative 1995 forcings (-0.10 and -0.09 W m-2). Due to the near-balance of absorbing and scattering components, biomass burning forcing is small. For the 2050 SRES A1B scenario, the net (negative) aerosol forcing is double 1995 due primarily to increased sulfur emissions in the industry and power sectors. For 2050 B1 the net (negative) forcing decreases relative to 1995, as sulfur emissions are reduced. Both future scenarios project decreasing residential emissions. Yet transport emissions are expected to remain significant and thus become the dominant source of warming aerosols in the future. Aerosol pollution is projected to shift southward relative to the present, as the current industrialized regions generally reduce emissions and tropical and southern hemispheric regions continue to develop. Similar to these SRES scenarios, IIASA scenarios project a decline in residential emissions; however IIASA is more optimistic about transport sector emissions reductions. We will conduct present-day climate experiments, including aerosol direct and indirect effects, to study impacts of power and transport sectors on climate features such as air temperature and hydrologic cycle.

  4. Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES

    Science.gov (United States)

    Small Griswold, J. D.; Heikkila, A.

    2016-12-01

    Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.

  5. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  6. The impact of biogenic carbon emissions on aerosol absorption in Mexico City

    Science.gov (United States)

    Marley, N. A.; Gaffney, J. S.; Tackett, M. J.; Sturchio, N. C.; Heraty, L.; Martinez, N.; Hardy, K. D.; Machany-Rivera, A.; Guilderson, T.; MacMillan, A.; Steelman, K.

    2008-10-01

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption Ångstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from 14C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The 13C/12C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  7. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2010-02-01

    Full Text Available Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing.

    Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  8. Direct Slicing Approach For The Production Of Perfused Components By Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Sehrt, Jan Torsten

    2014-05-01

    Full Text Available In this paper, laser beam melting technology is applied to the manufacture of defined porous metal structures using the exposure strategies of the machine manufacturer. It turns out that specific filter characteristics such as density, permeability, pore size, porosity, and shear strength are comparable to conventionally-made porosities [1]. To overcome some restrictions imposed by the default settings of the machine manufacturer, and to manufacture ultra-lightweight products, our own investigations such as direct slicing lead to an alternative exposure strategy for the laser. Here unique exposure lines, with their corresponding start and end points, are individually designed according to their practical needs. Even though this procedure is very complex and time-consuming, it leads to new possibilities for the perfusion of liquid or gaseous fluids that run through metal walls. In summary, the adjustment of the functional porosity of laser beam melted parts made of metal material is the focus of this investigation; and with it, the variation and determination of the proper process parameters is essential. With the easily adjustable porosities and pore sizes that are investigated, combined with the geometric freedom of laser beam melting, very complex elements can be integrated into one part; and this also leads to new fields of application.

  9. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy

    Institute of Scientific and Technical Information of China (English)

    Changshuai Wang; Jun Zhang; Lin Liu; Hengzhi Fu

    2011-01-01

    The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.

  10. Oxygenated fraction and mass of organic aerosol from direct emission and atmospheric processing measured on the R/V Ronald Brown during TEXAQS/GoMACCS 2006

    Science.gov (United States)

    Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2009-04-01

    masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers.

  11. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  12. The Climatology of Australian Aerosol

    Science.gov (United States)

    Mitchell, Ross M.; Forgan, Bruce W.; Campbell, Susan K.

    2017-04-01

    Airborne particles or aerosols have long been recognised for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in timescale, totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth, (b) the relative amplitudes of the 6- and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: tropical, arid and temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small

  13. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2010-11-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86×106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  14. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  15. An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm

    Institute of Scientific and Technical Information of China (English)

    WU Jing-min; ZUO Hong-fu; CHEN Yong

    2005-01-01

    A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented.Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network.

  16. Effects of ion source operating parameters on direct analysis in real time of 18 active components from traditional Chinese medicine.

    Science.gov (United States)

    Wang, Lu; Zeng, Shanshan; Qu, Haibin

    2016-03-20

    Direct analysis in real time mass spectrometry (DART-MS) provides a new analytical method for traditional Chinese medicine (TCM). The present study investigated the effects of key ion source operating parameters on DART-MS analysis of various TCM active components. A total of 18 active components, including phenylpropanoids, alkaloids, saponins, flavones, volatile oils, and glycosides, were examined. For each substance, the peak area and signal-to-noise of its characteristic ions under different reagent gases and heater temperatures were compared. Based on the comparison, the relationships among chemical structures, ion source parameters and instrument responses were revealed. Finally, some suggestions about choosing reagent gas and heater temperature were proposed for types of TCM active substance, which offered a reference for the application of DART-MS on TCM analysis.

  17. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  18. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    Science.gov (United States)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  19. Atmospheric Aerosol Analysis using Lightweight Mini GC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The major components of manmade aerosols are created by the burning of coal and oil. These aerosols are recognized to have a significant climatic impact through...

  20. Atmospheric Aerosol Analysis using Lightweight Mini GC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The major components of manmade aerosols are created by the burning of coal and oil. Aerosols are recognized to significantly impact the climate through their...

  1. 气雾剂单组份聚氨酯泡沫塑料的研制%The Development of One-component Polyurethane Foam in Aerosol Form

    Institute of Scientific and Technical Information of China (English)

    陈国维

    2011-01-01

    根据聚氨酯泡沫塑料的发展趋势,研制气雾剂形式的单组份聚氨酯泡沫。通过研究分析聚醚多元醇和多异氰酸酯的反应原理以及与烃类抛射剂等相关特性,把以上材料以不同的比例,方式灌装于马口铁气雾罐中进行开发,研究。经过一系列的试验,该产品开发配方通过了相关应用测试及稳定性试验。具有广阔的市场前景。%The development trend of polyurethane foaming plastic was introduced.It also explained the development process of polyurethane foaming plastic in aerosol form,using polyether polyol,polyisocyanates,hydrocarbon propellant etc.as the main raw materials.Polyurethane foaming plastic of aerosol had a broad market prospect.

  2. Impact of aerosols on solar energy production - Scenarios from the Sahel Zone

    Science.gov (United States)

    Neher, Ina; Meilinger, Stefanie; Crewell, Susanne

    2017-04-01

    Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on aerosol size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols. The aerosol size distribution and composition in the atmosphere is highly variable due to meteorological and land surface conditions. A quantitative assessment of aerosol effects on solar power yields and its relation to land use change is of particular interest for developing countries countries when analyzing the potential of local power production. This study aims to identify the effect of atmospheric aerosols in three different land use regimes, namely desert, urban/polluted and maritime on the tilted plane of photovoltaic energy modules. Here we focus on the Sahel zone, i.e. Niamey, Niger (13.5 N;2.1 E), located at the edge of the Sahara where also detailed measurements of the atmospheric state are available over the year 2006. Guided by observations a model chain is used to determine power yields. The atmospheric aerosol composition will be defined by using the Optical Properties of Aerosols and Clouds (OPAC) library. Direct and diffuse radiation (up- and downward component) are then calculated by the radiative transfer model libRadtran which allows to calculate the diffuse component of the radiance from different azimuth and zenith angles. Then the diffuse radiance will be analytically transformed to an east, south and west facing

  3. Generation of aerosolized drugs.

    Science.gov (United States)

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  4. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    Science.gov (United States)

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  5. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  6. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  7. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  8. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  9. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  10. Transformation of aerosol in Planetary Boundary Layer over the Baltic Sea

    Science.gov (United States)

    Makuch, Przemyslaw; Petelski, Tomasz; Piskozub, Jacek; Jankowski, Andrzej; Zieliński, Tymon; Rozwadowska, Anna; Markuszewski, Piotr; Zawadzka, Olga

    2013-04-01

    Aerosols are one of the most important components of the atmosphere. The content and composition of aerosols in the atmosphere depends on their origin. In maritime areas transformation of aerosols in the atmosphere may occur. This depends on many factors, such as wind speed and direction, humidity and emission from the sea surface. The transformation of aerosols in the Planetary Boundary Layer over the Baltic Sea is replacing other sources of aerosols to aerosols composed of sea salt. When the air passing over the Baltic aerosol optical thickness (AOT) initially decreases and then increases in strong winds due to increase of the marine aerosol content in the layer. This type of change can be followed with use of many numerical experiments performed on the model of the transformation of aerosols in the Planetary Boundary Layer. This model consists of two parts, dynamic and optical. The dynamic part is based on the repeated numerical solution of the equation of diffusion for different particle size and optical properties. The result of the dynamic part provides vertical profiles of aerosol size distributions. Optical module to calculate the relative cross sections for the weakening used Mie single process. We compare data from numerical experiments with data from in situ experiments and with data from MODIS (Moderate Resolution Imaging Spectroradiometer) on board of Terra and Aqua satellite. From the resulting comparisons received correlations are in order as 0.789 and 0.862. What indicates a good correlation between the data from numerical experiment and in situ data or MODIS data. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09

  11. Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006

    Science.gov (United States)

    Zalakeviciute, R.; Alexander, M. L.; Allwine, E.; Jimenez, J. L.; Jobson, B. T.; Molina, L. T.; Nemitz, E.; Pressley, S. N.; VanReken, T. M.; Ulbrich, I. M.; Velasco, E.; Lamb, B. K.

    2012-08-01

    As part of the MILAGRO 2006 field campaign, the exchange of atmospheric aerosols with the urban landscape was measured from a tall tower erected in a heavily populated neighborhood of Mexico City. Urban submicron aerosol fluxes were measured using an eddy covariance method with a quadrupole aerosol mass spectrometer during a two week period in March, 2006. Nitrate and ammonium aerosol concentrations were elevated at this location near the city center compared to measurements at other urban sites. Significant downward fluxes of nitrate aerosol, averaging -0.2 μg m-2 s-1, were measured during daytime. The urban surface was not a significant source of sulfate aerosols. The measurements also showed that primary organic aerosol fluxes, approximated by hydrocarbon-like organic aerosols (HOA), displayed diurnal patterns similar to CO2 fluxes and anthropogenic urban activities. Overall, 47% of submicron organic aerosol emissions were HOA, 35% were oxygenated (OOA) and 18% were associated with biomass burning (BBOA). Organic aerosol fluxes were bi-directional, but on average HOA fluxes were 0.1 μg m-2 s-1, OOA fluxes were -0.03 μg m-2 s-1, and BBOA fluxes were -0.03 μg m-2 s-1. After accounting for size differences (PM1 vs PM2.5) and using an estimate of the black carbon component, comparison of the flux measurements with the 2006 gridded emissions inventory of Mexico City, showed that the daily-averaged total PM emission rates were essentially identical for the emission inventory and the flux measurements. However, the emission inventory included dust and metal particulate contributions, which were not included in the flux measurements. As a result, it appears that the inventory underestimates overall PM emissions for this location.

  12. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  13. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011

    KAUST Repository

    Banks, Jamie R.

    2014-12-16

    © 2014. American Geophysical Union. All Rights Reserved. The direct clear-sky radiative effect (DRE) of atmospheric mineral dust is diagnosed over the Bordj Badji Mokhtar (BBM) supersite in the central Sahara during the Fennec campaign in June 2011. During this period, thick dust events were observed, with aerosol optical depth values peaking at 3.5. Satellite observations from Meteosat-9 are combined with ground-based radiative flux measurements to obtain estimates of DRE at the surface, top-of-atmosphere (TOA), and within the atmosphere. At TOA, there is a distinct daytime cycle in net DRE. Both shortwave (SW) and longwave (LW) DRE peak around noon and induce a warming of the Earth-atmosphere system. Toward dusk and dawn, the LW DRE reduces while the SW effect can switch sign triggering net radiative cooling. The net TOA DRE mean values range from -9 Wm-2 in the morning to heating of +59 Wm-2 near midday. At the surface, the SW dust impact is larger than at TOA: SW scattering and absorption by dust results in a mean surface radiative cooling of 145Wm-2. The corresponding mean surface heating caused by increased downward LW emission from the dust layer is a factor of 6 smaller. The dust impact on the magnitude and variability of the atmospheric radiative divergence is dominated by the SW cooling of the surface, modified by the smaller SW and LW effects at TOA. Consequently, dust has a mean daytime net radiative warming effect on the atmosphere of 153Wm-2.

  14. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    Science.gov (United States)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  15. The nature and structure of the socio-valuable component of valeological direction of future specialists in the field of physical education

    Directory of Open Access Journals (Sweden)

    Pranova E.V.

    2013-06-01

    Full Text Available We investigated more than 25 scientific and methodological sources of valeological education in vocational education. Reviewed and analyzed the main approaches to structuring components of valeological orientation. The essence of socially-valuable component of valeological orientation of vocational education. The structure of socially-valuable component and described in detail each of its components: values, professional and value orientation and personality components. Given study and determine the presence of each of the above structural components. Formulated specific professional values, which are implemented in valeological of future specialists of physical education. Structured personal component of the socio-valuable component valeological future direction of physical education specialists. The scheme of personal component. It reveals its elements through a system of meaningful and purposeful actions and personality traits that are associated in a logical sequence.

  16. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Anton, E-mail: tkacha@rpi.edu; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force. - Highlights: • Self-assembly of semiconductor dies into arrays using diamagnetic levitation. • Control over the die orientation in vertical and lateral dimensions. • Simulation shows good scalability of assembly time with the number of dies. • Suitable for assembly of LED panels, displays and microcell photovoltaics.

  17. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    Science.gov (United States)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  18. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    Science.gov (United States)

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  19. Radioactive content in aerosols and rainwater; Contenido radiactivo en aerosoles y agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perestelo, N.; Lopez Perez, M.; Rodriguez, S.; Duarte, X.; Catalan, A.; Fernandez de Aldecoa, J. C.; Hernandez, J.

    2013-07-01

    The environmental radiological characterization of a place requires knowledge of the radioactive contents of its components, such as air (aerosol), rain, soil, etc ... Inhalation of radioactive aerosols in the air remains the main component of the total dose to the world population. This work focuses on its determination. (Author)

  20. Simultaneous fingerprint, quantitative analysis and anti-oxidative based screening of components in Rhizoma Smilacis Glabrae using liquid chromatography coupled with Charged Aerosol and Coulometric array Detection.

    Science.gov (United States)

    Yang, Guang; Zhao, Xin; Wen, Jun; Zhou, Tingting; Fan, Guorong

    2017-04-01

    An analytical approach including fingerprint, quantitative analysis and rapid screening of anti-oxidative components was established and successfully applied for the comprehensive quality control of Rhizoma Smilacis Glabrae (RSG), a well-known Traditional Chinese Medicine with the homology of medicine and food. Thirteen components were tentatively identified based on their retention behavior, UV absorption and MS fragmentation patterns. Chemometric analysis based on coulmetric array data was performed to evaluate the similarity and variation between fifteen batches. Eight discriminating components were quantified using single-compound calibration. The unit responses of those components in coulmetric array detection were calculated and compared with those of several compounds reported to possess antioxidant activity, and four of them were tentatively identified as main contributors to the total anti-oxidative activity. The main advantage of the proposed approach was that it realized simultaneous fingerprint, quantitative analysis and screening of anti-oxidative components, providing comprehensive information for quality assessment of RSG.

  1. Season - dependent and source-influenced aerosol in Northern Siberia

    Science.gov (United States)

    Popovicheva, Olga; Makshtas, Alexander; Bogorodsky, Peter; Eleftheriadis, Kostantinos; Diapouli, Evangelia; Shonia, Natalia; Uttal, Taneil

    2016-04-01

    Aerosol may serve as a tracer of arctic pollution, allowing a link to climate response if its major characteristics relating to natural and anthropogeneous sources are defined. It has been shown that BC and sulfates are the most important aerosol constituents measured in the Arctic boundary layer; these species demonstrate similar seasonal variations with a peak during winter to early spring and a minimum in summer. Long - time gap in consistent aerosol observations in the Russian Arctic strongly limits the assessment of air pollution and climate impacts. On-line monitoring, sampling, and analyses of atmospheric aerosols were carried out at the Tiksi Hydrometeorological Observatory, Northern Siberia, during one year from September 2014 to 2015. Physico-chemical characterization combining aethalometry, thermo-optical analysis, and analytical chemistry was used in order to identify the seasonal variability of aerosols and to link their composition to possible sources, as well as to characterize the differences in aerosol chemical composition between natural background conditions and BC-pollution episodes. The present study reports the first results from the Tiksi Observatory on season-dependent and source-influenced characteristics of aerosol species, such as carbon fractions (OC, EC), inorganic and organic functionalities of chemical compounds, sulfates, nitrates and other ion components, and elements. In addition, data obtained by individual particles analysis provide insight into micromarkers of combustion sources. Aerosol at the Tiksi Observatory is found to be originated from natural marine, biogenic, and continental sources as well as influenced by local residential activity and regional pollution. Characterization of aerosols during OC and BC-pollution episodes, combined with analysis of the wind direction, atmosphere stability, and air mass trajectories, allows for the identification of the sources which are responsible for the emission of hazardous compounds

  2. The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin

    Directory of Open Access Journals (Sweden)

    Tadahiro Nagaoka

    2014-03-01

    Full Text Available Although regulators of the Wnt/planar cell polarity (PCP pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic PCP component, inhibits the N-cadherin-Vangl2 interaction and is required for normal spine formation. These results demonstrate direct control of classic cadherin by PCP factors; this control may play a central role in the precise formation and maturation of cell-cell adhesions at the synapse.

  3. Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Seinfeld, John H.; Bretherton, Christopher S.; Carslaw, K. S.; Coe, H.; DeMott, Paul J.; Dunlea, Edward J.; Feingold, G.; Ghan, Steven J.; Guenther, Alex B.; Kahn, Ralph; Kraucunas, Ian P.; Kreidenweis, Sonia M.; Molina, Mario J.; Nenes, Athanasios; Penner, J.; Prather, Kimberly; Ramanathan, Veerabhadran; Ramaswamy, V.; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, R.

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  4. Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling.

    Science.gov (United States)

    Egea, Sophie C; Dickerson, Ian M

    2012-04-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.

  5. TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001

    Energy Technology Data Exchange (ETDEWEB)

    SCHWARTZ,S.E.; LUNN,P.

    2001-03-01

    The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

  6. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    Science.gov (United States)

    Ekman, A. M. L.; Engström, A.; Söderberg, A.

    2010-03-01

    A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008). However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1) account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2) better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3) increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the Aitken mode (here

  7. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    Directory of Open Access Journals (Sweden)

    A. M. L. Ekman

    2010-03-01

    Full Text Available A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008. However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1 account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2 better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3 increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the

  8. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically-resolved aerosol fluxes

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2010-12-01

    Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM1 fluxes. Average deposition velocity for total NR-PM1 aerosol at noon was 2.05 ± 0.04 mm/s. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm/s and are dominated by deposition of ammonium sulphate.

  9. Aerosol observation in Fengtai area, Beijing

    Institute of Scientific and Technical Information of China (English)

    Zengdong Liu; Jianguo Liu; Bei Wang; Fan Lu; Shuhua Huang; Dexia Wu; Daowen Han

    2008-01-01

    Measurements of aerosol number concentration and particulate matter with diameter less than 10μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carbon (BC) was collected simultaneously from the ground and analyzed to determine the particulate matter components. To satisfy the interest in continuous monitoring of temporal and spatial distribution of aerosols, the relationship between extinction coefficient (visibility) measured by lidar remote sensing and the aerosol number concentration measured from the ground was derived by using statistical method. Vertical particle number concentration profile within the planetary boundary layer could be inversed through the lidar data as well as the statistical relation.

  10. Aerosols in and Above the Bornean Rainforest

    OpenAIRE

    Robinson, Niall Hamilton

    2011-01-01

    Atmospheric aerosols affect climate directly by scattering and absorbing solar radiation, and indirectly by affecting the albedo and lifetime of clouds through their role as cloud condensation nuclei. Aerosol sources, and the processes that govern their evolution in the atmosphere are not well understood, making the aerosol effects a significant source of uncertainty in future climate predictions. The tropics experience a large solar flux meaning that any radiative forcing in this region is p...

  11. From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction.

    Directory of Open Access Journals (Sweden)

    Simona Cocco

    Full Text Available Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to extract functional and structural information. Among those are principal component analysis (PCA, which identifies the most correlated groups of residues, and direct coupling analysis (DCA, a global inference method based on the maximum entropy principle, which aims at predicting residue-residue contacts. In this paper, inspired by the statistical physics of disordered systems, we introduce the Hopfield-Potts model to naturally interpolate between these two approaches. The Hopfield-Potts model allows us to identify relevant 'patterns' of residues from the knowledge of the eigenmodes and eigenvalues of the residue-residue correlation matrix. We show how the computation of such statistical patterns makes it possible to accurately predict residue-residue contacts with a much smaller number of parameters than DCA. This dimensional reduction allows us to avoid overfitting and to extract contact information from multiple-sequence alignments of reduced size. In addition, we show that low-eigenvalue correlation modes, discarded by PCA, are important to recover structural information: the corresponding patterns are highly localized, that is, they are concentrated in few sites, which we find to be in close contact in the three-dimensional protein fold.

  12. Evidence for Novel Atmospheric Organic Aerosol Measured in a Bornean Rainforest

    Science.gov (United States)

    Robinson, N. H.; Hamilton, J. F.; Allan, J. D.; Langford, B.; Oram, D. E.; Chen, Q.; Ward, M. W.; Hewitt, C. N.; Martin, S. T.; Coe, H.; McFiggans, G. B.

    2009-12-01

    The tropics emit a huge amount of volatile organic compounds (VOCs) into the Earth’s atmosphere. The processes by which these gases are oxidised to form secondary organic aerosol (SOA) are currently not well understood or quantified. Intensive field measurements were carried out as part of the Oxidant and Particle Photochemical Processes (OP3) and the Aerosol Coupling in the Earth System (ACES) projects around pristine rainforest in Malaysian Borneo. This is the first campaign of its type in a South East Asian rainforest. We present detailed organic aerosol composition measurements made using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) at Bukit Atur, a Global Atmosphere Watch site located in the Danum Valley Conservation Area. This is a state-of-the-art field deployable instrument that can provide real time composition, mass loading and aerodynamic particle sizing information. In addition, the mass spectral resolution is sufficient to perform an analysis of the elemental composition of the organic species present. Off line analysis of filter samples was performed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GCxGC/ToFMS). This technique provide a more detailed chemical characterisation of the SOA, allowing direct links back to gas phase precursors. The ground site data are compared with Aerodyne Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) measurements made on the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. Airborne measurements were made above pristine rainforest surrounding the Danum Valley site, as well as nearby oil palm agricultural sites and palm oil rendering plants. Proton Transfer Reaction Mass Spectrometry (PTRMS) measurements of VOCs were made at the ground site and from the FAAM aircraft. Novel organic aerosol was measured by both AMSs, and identified by GCxGC/ToFMS analysis. The aerosol component was

  13. Toxicity of atmospheric aerosols on marine phytoplankton

    Science.gov (United States)

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  14. Long term measurements of the elemental composition and optical properties of aerosols in Amazonia

    Directory of Open Access Journals (Sweden)

    Arana A. A.

    2013-04-01

    Full Text Available Aerosols are being collected and analyzed for trace elements in two sites in Amazonia since January 2008. On eof the site, Manaus is located in a very pristine area in Central Amazonia. The site is nt affected directly by any urban plume for thousands of kilometers. A second site is located in Porto Velho, in a region with heavy land use change and deforestation. Optical properties (light scattering ad absorption are also being measured in order to study the climatic impact of aerosols. It was observed a clear seasonal pattern for both sites, with higher concentrations in the dry season. But the difference in seasonal concentrations observed for Porto Velho is much larger due to stronger anthropogenic influences. In Manaus during the wet season, very low concentrations of heavy metals, maybe the smallest measured in continental regions are reported. Positive Matrix Factorization (PMF was used to separate the different aerosol components. In general, for fine and coarse mode and wet and dry season, 3 aerosol components could be observed: 1 Natural biogenic aerosol; 2 biomass burning component; 3 Soil dust both locally and long range transported Sahara dust

  15. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    Science.gov (United States)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  16. Sensitivity of aerosol radiative forcing calculations to spectral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K.E.

    1996-10-01

    Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

  17. New Concepts In Retrieving Aerosol Properties Using MISR

    Science.gov (United States)

    Martonchik, J.; Diner, D.; Kahn, R.; Bull, M.; Paradise, S.; Gaitley, B.; Garay, M.

    2006-12-01

    Since March 2000 the nine camera Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's EOS Terra platform has been providing information about aerosols over both land and ocean. During this period many incremental improvements to the individual ocean and land aerosol retrieval algorithms have been made but the fundamental ideas behind each have remained essentially unchanged. Here we explore some new algorithmic concepts, multiangular in nature, which may provide a considerable increase in the accuracy of retrieved aerosol properties from space. The current MISR retrieval algorithm over ocean nominally utilizes only the red (672 nm) and near IR (866 nm) spectral bands, assuming that neither band has any significant contamination from water-leaving radiance (WLR). This approach provides a good determination of aerosol optical depth but the retrieved Angstrom exponent is subject to much more uncertainty because of the relatively small wavelength separation of the red and near IR bands. The concept being explored for improving the ocean algorithm is to also include the remaining blue (446 nm) and green (558 nm) MISR bands under the assumptions that 1) only the near IR band has near-zero WLR and 2) the WLR in the remaining three bands is isotropic. An algorithm with these conditions should provide a more accurate retrieval of aerosol properties and, simultaneously, the retrieval of WLR (ocean color). Over land the current aerosol retrieval algorithm is composed of two parts. The first is an angular shape comparison of the directional surface reflectance among the four MISR spectral bands, testing for similarity, a constraint that filters out the least probable aerosol models in the retrieval process. This procedure is then followed by a principal component analysis of the change in surface contrast with view angle and the final selection of retrieved aerosol models. This algorithm has produced high quality retrievals of aerosol optical depth over a wide variety of

  18. An overview of geoengineering of climate using stratospheric sulphate aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Philip J.; Tilmes, S.; Turco, Richard P.; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy; Garcia, Rolando R.

    2010-01-01

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  19. An overview of geoengineering of climate using stratospheric sulphate aerosols.

    Science.gov (United States)

    Rasch, Philip J; Tilmes, Simone; Turco, Richard P; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy L; Garcia, Rolando R

    2008-11-13

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of 'acid rain' that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  20. Improved understanding of atmospheric organic aerosols via innovations in soft ionization aerosol mass spectrometry.

    Science.gov (United States)

    Zahardis, James; Geddes, Scott; Petrucci, Giuseppe A

    2011-04-01

    Organic molecules are a significant and highly varied component of atmospheric aerosols. Measurement of aerosol composition and improvements in our understanding of the complex chemistry involved in their formation and aging are being aided by innovations in soft ionization aerosol MS. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  1. The Role of Aerosol Composition in Arctic Cloud Formation

    Science.gov (United States)

    Brooks, S. D.; Hiranuma, N.; Moffet, R.; Laskin, A.; Gilles, M. K.; Glen, A.

    2010-12-01

    While it has been shown that aerosol size has a direct correlation with its ability to act as an ice nucleus, the role of the composition of freshly emitted and evolving aerosol in nucleation is poorly understood. Here we use combined measurements of ice nucleation and high resolution single particle composition to provide insight on the connection between aerosol composition in ice nucleation. These measurements were collected during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, AK in the springtime of 2008. In-situ ice nucleation measurements were conducted using the Texas Continuous Flow Diffusion Chamber (CFDC). The composition of ambient particles as well as residuals of cloud droplets and ice crystals were studied on a particle by particle basis using computer controlled scanning electron microscopy with energy dispersive X-ray analysis (CCSEM/EDX) and scanning transmission X-Ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFAS). Observed IN concentrations varied from frequent values of 0.01 per liter to more than 10 per liters, depending on conditions and the availability of ice-nucleating aerosols. Ice crystals residuals collected in a fully glaciated cloud demonstrate that both particle chemistry and size requirement must be met for a particle to be an efficient ice nucleus. According to the STXM/NEXAFAS spectral maps, ice crystals residuals are characterized by insoluble cores of either large brown or black carbon (BBC) or carbonates coated by water soluble organics. In contrast, in ambient air samples collected from a biomass burning plume, many organic particles were also observed, but these were smaller and did not have insoluble cores. In-situ ice nucleation measurements show that these biomass particles have inferior ice nuclei ability, relative to those collected in the glaciated cloud. Taken together our measurements suggest that two key elements, a critical size (provided by BBC and/or carbonate

  2. Aerosol meteorology and Philippine receptor observations of Maritime Continent aerosol emissions for the 2012 7SEAS southwest monsoon intensive study

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Lynch, Peng; Posselt, Derek J; Simpas, James B; Uy, Sherdon N; Zaiger, Kimo; Blake, Donald R; Bucholtz, Anthony; Campbell, James A.; Chew, Boon Ning; Cliff, Steven; Holben, Brent N; Holz, Robert E.; Hyer, Edward J.; Ogren, John A.; Kriedendweiss, Sonia; Kuciaskas, Arunas; Lolli, Simone; Oo, Min; Perry, Kevin; Salinas, Santo V.; Sessions, Walter; Smirnov, Alexander; Walker, Annette; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-15

    Since 2007 the 7 Southeast Asian Studies (7SEAS) program has been collecting in situ data and analyzing satellite and model fields for aerosol phenomenon throughout Southeast Asia. The most significant intensive operations period associated with the boreal summertime southwest monsoon biomass burning season across the Maritime Continent occurred in August-September 2012, with enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. These deployments were largely within or near pollution and biomass burning aerosol source regions. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon monsoonal trough. In this paper we describe the nature of the overall 2012 southwest monsoon biomass burning season, but focus on the findings of the research cruise and the aerosol meteorology that explains the measured variability in marine boundary layer aerosol characteristics in this convectively active region. This 2012 cruise was a follow-on to a 2 week cruise in 2011, and was in part consistent with the findings of that cruise and previous conceptual models of how smoke emission and transport relates to monsoonal flows, the propagation of the Madden Julian Oscillation (MJO), tropical cyclones, and covariance between smoke transport events and the atmosphere’s thermodynamic structure. High-resolution observations in the 2011 cruise also highlighted the importance of squall lines and cold pools as they propagate across the South China Sea scavenging aerosol particles in their path. For 2012, the research cruise experienced some different environments. While ENSO was on a borderline positive phase and enhanced emissions were observed over climatologically average years, the MJO was weak and stalled over the Maritime Continent during the cruise. The monsoonal flow direction was

  3. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  4. Aerosol and monsoon climate interactions over Asia

    Science.gov (United States)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  5. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  6. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  7. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  8. Multi-Sensor Aerosol Products Sampling System

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This pape