WorldWideScience

Sample records for complexes left bracercnc6h3pr2i2right

  1. Synthesis, characterization, and reactivity of nickel hydride complexes containing 2,6-C6H3(CH2PR2)2 (R = tBu, cHex, and iPr) pincer ligands.

    Science.gov (United States)

    Boro, Brian J; Duesler, Eileen N; Goldberg, Karen I; Kemp, Richard A

    2009-06-15

    The syntheses and full characterization of nickel hydrides containing the PCP "pincer"-type ligand, where PCP = 2,6-C(6)H(3)(CH(2)PR(2))(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((R)PCP)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((R)PCP)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products. While NaBH(4) was effective in the preparation of pure ((tBu)PCP)NiH, Super-Hydride solution (LiEt(3)BH in THF) was required to prepare either ((cHex)PCP)NiH or ((iPr)PCP)NiH. Attempts to prepare a Ni-H from ((Ph)PCP)NiCl with a variety of hydride reagents yielded only the free ligand as an identifiable product. Two of the derivatives, tBu and cHex, have also been subjected to single crystal X-ray analysis. The solid-state structures each showed a classic, near-square planar arrangement for Ni in which the PCP ligand occupied three meridional ligand points with the Ni-H trans to the Ni-C bond. The resulting Ni-H bond lengths were 1.42(3) and 1.55(2) A for the tBu and cHex derivatives, respectively.

  2. Diazadienes in chemistry of lanthanides: latest view on old ligands. Synthesis, structure and properties of complexes {[(R)CNC6H3Pr2i]2}Lu(THF)2(μ-Cl)2Li(THF2 (R=CH3, CH2)

    International Nuclear Information System (INIS)

    Makhrova, T.V.; Fukin, G.K.; Cherkasov, A.V.; Trifonov, A.A.

    2008-01-01

    Reaction of dianion derivative [DADLi 2 ] (DAD -1,4-bis(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene) prepared in situ by the reduction of corresponding DAD by the excess of metal lithium in THF with anhydrous LuCl 3 (1:1) results in the formation of the metal cyclic complex {[(R)CNC 6 H 3 Pr 2 i ] 2 }Lu(THF) 2 (μ-Cl) 2 Li(THF) 2 (1) containing the fragment N-C(Me)=C(Me)-N. DAD Treatment by two equivalents BuLi in the mixture ether-hexane (20 Deg C) results in the activation of the C-H bond of methyl substitutes at imine carbon. By the reaction of dilithium derivative [DAD - 2 H Li 2 ] formed in situ with LuCl 3 in THF the complex {[(CH 2 )CNC 6 H 3 Pr 2 i ] 2 }Lu(THF) 2 (μ-Cl) 2 Li(THF) 2 (2) with diamide ligand N-C(=CH 2 )-C(=CH 2 )-N was prepared. Structures of 1 and 2 complexes have been established by X-ray structure analysis [ru

  3. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    Science.gov (United States)

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  4. Gold(I) Complexes with N-Donor Ligands. 2.(1) Reactions of Ammonium Salts with [Au(acac-kappaC(2))(PR(3))] To Give [Au(NH(3))L](+), [(AuL)(2)(&mgr;(2)-NH(2))](+), [(AuL)(4)(&mgr;(4)-N)](+), or [(AuL)(3)(&mgr;(3)-O)](+). A New and Facile Synthesis of [Au(NH(3))(2)](+) Salts. Crystal Structure of [{AuP(C(6)H(4)OMe-4)(3)}(3)(&mgr;(3)-O)]CF(3)SO(3).

    Science.gov (United States)

    Vicente, José; Chicote, María-Teresa; Guerrero, Rita; Jones, Peter G.; Ramírez De Arellano, M. Carmen

    1997-09-24

    The complexes [Au(acac-kappaC(2))(PR(3))] (acac = acetylacetonate, R = Ph, C(6)H(4)OMe-4) react with (NH(4))ClO(4) to give amminegold(I), [Au(NH(3))(PR(3))]ClO(4), amidogold(I), [(AuPR(3))(2)(&mgr;(2)-NH(2))]ClO(4), or nitridogold(I), [(AuPR(3))(4)(&mgr;(4)-N)]ClO(4), complexes, depending on the reaction conditions. Similarly, [Au(acac-kappaC(2))(PPh(3))] reacts with (NH(3)R')OTf (OTf = CF(3)SO(3)) (1:1) or with [H(3)N(CH(2))(2)NH(2)]OTf (1:1) to give (amine)gold(I) complexes [Au(NH(2)R')(PPh(3))]OTf (R' = Me, C(6)H(4)NO(2)-4) or [(AuPPh(3))(2){&mgr;(2)-H(2)N(CH(2))(2)NH(2)}](OTf)(2), respectively. The ammonium salts (NH(2)R'(2))OTf (R' = Et, Ph) react with [Au(acac-kappaC(2))(PR(3))] (R = Ph, C(6)H(4)OMe-4) (1:2) to give, after hydrolysis, the oxonium salts [(AuPR(3))(3)(&mgr;(3)-O)]OTf (R = Ph, C(6)H(4)OMe-4). When NH(3) is bubbled through a solution of [AuCl(tht)] (tht = tetrahydrothiophene), the complex [Au(NH(3))(2)]Cl precipitates. Addition of [Au(NH(3))(2)]Cl to a solution of AgClO(4) or TlOTf leads to the isolation of [Au(NH(3))(2)]ClO(4) or [Au(NH(3))(2)]OTf, respectively. The crystal structure of [(AuPR(3))(3)(&mgr;(3)-O)]OTf.Me(2)CO (R = C(6)H(4)OMe-4) has been determined: triclinic, space group P&onemacr;, a = 14.884(3) Å, b = 15.828(3) Å, c = 16.061(3) Å, alpha = 83.39(3) degrees, beta = 86.28(3) degrees, gamma = 65.54(3) degrees, R1 (wR2) = 0.0370 (0.0788). The [(AuPR(3))(3)(&mgr;(3)-O)](+) cation shows an essentially trigonal pyramidal array of three gold atoms and one oxygen atom with O-Au-P bond angles of ca. 175 degrees and Au.Au contacts in the range 2.9585(7)-3.0505(14) Å. These cations are linked into centrosymmetric dimers through two short Au.Au [2.9585(7), 3.0919(9) Å] contacts. The gold atoms of the dimer form a six-membered ring with a chair conformation.

  5. Mononuclear Amido and Binuclear Imido Zirconium Complexes Supported by Dibenzotetraaza[14]annulene Ligands. X-ray Structure of [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] (R = Bu(t) or 2,6-C(6)H(3)Me(2)).

    Science.gov (United States)

    Nikonov, Georgii I.; Blake, Alexander J.; Mountford, Philip

    1997-03-12

    Reaction of 2 equiv of Li[NH-2,6-C(6)H(3)R(2)] with [(Me(4)taa)ZrCl(2)] (Me(4)taaH(2) = tetramethyldibenzotetraaza[14]annulene) gives the bis(amido) derivatives [(Me(4)taa)Zr(NH-2,6-C(6)H(3)R(2))(2)] [R = Pr(i) (1) and Me (2)]. Addition of Me(4)taaH(2) to [Zr(N-2,6-C(6)H(3)Pr(i)(2))(NH-2,6-C(6)H(3)Pr(i)(2))(2)(py)(2)] also affords 1. The reaction of 2 equiv of aryl or alkyl amines H(2)NR with the bis(alkyl) complex [(Me(4)taa)Zr(CH(2)SiMe(3))(2)] is the most versatile method for preparing [(Me(4)taa)Zr(NHR)(2)] (R = 2,6-C(6)H(3)Pr(i)(2), 2,6-C(6)H(3)Me(2), Ph, or Bu(t)). Reaction of 1 equiv of Me(4)taaH(2) with the binuclear complexes [(Bu(t)NH)(2)Zr(&mgr;-NBu(t))(2)Zr(NHBu(t))(2)] or [(py)(HN-2,6-C(6)H(3)Me(2))(2)Zr(&mgr;-N-2,6-C(6)H(3)Me(2))(2)Zr(NH-2,6-C(6)H(3)Me(2))(2)(py)] gives the asymmetrically substituted derivatives [(Me(4)taa)Zr(&mgr;-NR)(2)Zr(NHR)(2)] [R = Bu(t) (6) or 2,6-C(6)H(3)Me(2) (8)], which have been crystallographically characterized.

  6. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3.3H2O and Pr[M(CN)2]3.3H2O (M=Ag, Au)

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, Richard G.; Sykora, Richard E.

    2008-01-01

    We have prepared Cm[Au(CN) 2 ] 3 .3H 2 O and Cm[Ag(CN) 2 ] 3 .3H 2 O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN) 2 ] 3 .3H 2 O were obtained from the reaction of CmCl 3 and KAu(CN) 2 under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6 3 /mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo Kα, λ=0.71073 A): Cm[Au(CN) 2 ] 3 .3H 2 O (1), a=6.6614(5) A, c=18.3135(13) A, V=703.77(9), Z=2; Pr[Au(CN) 2 ] 3 .3H 2 O (3), a=6.6662(8) A, c=18.497(3) A, V=711.83(17), Z=2; Pr[Ag(CN) 2 ] 3 .3H 2 O (4), a=6.7186(8) A, c=18.678(2) A, V=730.18(14), Z=2. The Cm 3+ and/or Pr 3+ ions are coordinated to six N-bound CN - groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the 6 D 7/2 → 8 S 7/2 transition. This transition is observed at 16,780 cm -1 , with shoulders at 17,080 and 16,840 cm -1 for the Ag complex, while the emission is red shifted by ∼100 cm -1 in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. - Graphical abstract: Coordination polymeric compounds between a trans-plutonium element, curium and transition metal ions, gold(I) and silver(I), were prepared using the hydrothermal synthetic procedure. The curium ion and the transition metals are interconnected through cyanide bridging. The Cm ion has a tricapped trigonal prismatic coordination environment with coordination number of nine. Detail photoluminescence studies of the complexes are also reported

  7. Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes supported by the imidodiphosphinate ligand [N(i-Pr2PO)2]-.

    Science.gov (United States)

    Wang, Guo-Cang; Sung, Herman H Y; Dai, Feng-Rong; Chiu, Wai-Hang; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2013-03-04

    Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes containing the imidodiphosphinate ligand [N(i-Pr2PO)2](-) have been synthesized, and their reactivity was investigated. Treatment of Ce[N(i-Pr2PO)2]3Cl (1) with AgMO4 (M = Re, Mn) afforded Ce[N(i-Pr2PO)2]3(ReO4) (2) or Ce2[N(i-Pr2PO)2]6(MnO4)2 (3). In the solid state, 3 is composed of a [Ce2{N(i-Pr2PO)2}6(MnO4)](+) moiety featuring a weak Ce-OMn interaction [Ce-OMn distance = 2.528(8) Å] and a noncoordinating MnO4(-) counteranion. While 3 is stable in the solid state and acetonitrile solution, it decomposes readily in other organic solvents, such as CH2Cl2. 3 can oxidize ethylbenzene to acetophenone at room temperature. Treatment of 1 with AgBF4, followed by reaction with [n-Bu4N]2[MoO4], afforded [Ce{N(i-Pr2PO)2}3]2(μ-MoO4) (4). Reaction of trans-Ce[N(i-Pr2PO)2]2(NO3)2 (5), which was prepared from (NH4)2Ce(NO3)6 and K[N(i-Pr2PO)2], with 2 equiv of [n-Bu4N][Cp*MoO3] yielded trans-Ce[N(i-Pr2PO)2]2(Cp*MoO3)2 (6). 4 can catalyze the oxidation of methyl phenyl sulfide with tert-butyl hydroperoxide with high selectivity. The crystal structures of complexes 3-6 have been determined.

  8. Polymerization of 1,3-butadiene catalyzed by pincer cobalt(II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands

    KAUST Repository

    Gong, Dirong

    2013-08-01

    A new class of air stable and structurally well-defined cobalt complexes with unsymmetrical pincer type ligands ([2-(ArNCMe)-6-(Py)C5H 3N]CoCl2) (Ar = C6H5, Py = pyrazol-1-yl, 5a; Ar = 2,4,6-Me3C6H2, Py = pyrazol-1-yl, 5b; Ar = 2,6-iPr2C6H3, Py = pyrazol-1-yl, 5c; Ar = C6H5, Py = 3,5-Me 2pyrazol-1-yl, 5d; Ar = 2,4,6-Me3C6H 2, Py = 3,5-Me2pyrazol-1-yl, 5e; Ar = 2,6- iPr2C6H3, Py = 3,5-Me 2pyrazol-1-yl, 5f; Ar = 2,6-iPr2C 6H3, Py = 3,5-iPr2pyrazol-1-yl, 5g and [2-(OCMe)-6-(3,5-diphenylpyrazol-1-yl)C5H3N]CoCl 2 5h) were prepared and the molecular structures of 5a, 5c and 5f were determined by single crystal X-ray crystallography. Upon activation by methylaluminoxane (MAO) in toluene at room temperature, all complexes initiate polymerization of 1,3-butadiene (polymer yields: 65-99%), affording polybutadiene with excellent cis-1,4 regularity (97.5-98.7%). The polymer yields and properties in terms of molecular weight and distribution are well controlled by the substituents on iminoaryl rings and pyrazole rings. Selectivity switch from cis-1,4 to syndio-1,2 was also achievable by adding phosphine as microstructure regulator. © 2013 Elsevier B.V. All rights reserved.

  9. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  10. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    Science.gov (United States)

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  11. Effects of the η(5)-C5H4(i)Pr Ligand on the Properties Exhibited by Its Tungsten Nitrosyl Complexes.

    Science.gov (United States)

    Fabulyak, Diana; Baillie, Rhett A; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C

    2016-02-15

    Reaction of Na[η(5)-C5H4(i)Pr] with W(CO)6 in refluxing THF for 4 days generates a solution of Na[(η(5)-C5H4(i)Pr)W(CO)3] that when treated with N-methyl-N-nitroso-p-toluenesulfonamide at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)(CO)2 (1) that is isolable in good yield as an analytically pure orange oil. Treatment of 1 with an equimolar amount of I2 in Et2O at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)I2 (2) as a dark brown solid in excellent yield. Sequential treatment at low temperatures of 2 with 0.5 equiv of Mg(CH2CMe3)2 and Mg(CH2CH═CMe2)2 in Et2O produces the alkyl allyl complex, (η(5)-C5H4(i)Pr)W(NO)(CH2CMe3)(η(3)-CH2CHCMe2) (3), as a thermally sensitive yellow liquid. Complex 3 may also be synthesized, albeit in low yield, in one vessel at low temperatures by reacting 1 first with 1 equiv of PCl5 and then with the binary magnesium reagents specified above. Interestingly, similar treatment of 1 in Et2O with PCl5 and only 0.5 equiv of Mg(CH2CH═CMe2)2 results in the formation of the unusual complex (η(5)-C5H4(i)Pr)W(NO)(PCl2CMe2CH═CH2)Cl2 (4), which probably is formed via a metathesis reaction of the binary magnesium reagent with (η(5)-C5H4(i)Pr)W(NO)(PCl3)Cl2. The C-D activation of C6D6 by complex 3 has been investigated and compared to that exhibited by its η(5)-C5Me5, η(5)-C5Me4H, and η(5)-C5Me4(n)Pr analogues. Kinetic analyses of the various activations have established that the presence of the η(5)-C5H4(i)Pr ligand significantly increases the rate of the reaction, an outcome that can be attributed to a combination of steric and electronic factors. In addition, mechanistic studies have established that in solution 3 loses neopentane under ambient conditions to generate exclusively the 16e η(2)-diene intermediate complex (η(5)-C5H4(i)Pr)W(NO)(η(2)-CH2═CMeCH═CH2), which then effects the subsequent C-D activations. This behavior contrasts with that exhibited by the η(5)-C5Me5 analogue of 3 which forms both η(2

  12. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  13. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  14. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  15. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  16. Stabilization and reactivity of a terminal phosphidounit on Pt(II). Synthesis and X-ray structure of cationic diphelylphosphine [Pt{C6H3(CH2NMe2)2-2,6}(PHPh2)][CF3SO3] and Diphenyl-phosphido Bridged Pt(II)-Pd(II) Complex [Pt{C6H3(CH2NMe2)2-2,6} (µ-PPh2) Pd(C6H4CH2NMe2-2)(H2O)][BF4] CH2Cl2

    NARCIS (Netherlands)

    Koten, G. van; Maassarani, F.; Davidson, M.F.; Wehman-Ooyevaar, ICM; Grove, D.M.; Koten, M.A. van; Smeets, W.J.J.; Spek, A.L.

    1995-01-01

    Reaction of diphenylphosphine with the complexes [Pt(NCN)(H{2}O)]X (NCN = C{6}H{3}(CH{2}NMe{2}){2}-2, 6; X = BF{4} (1a), OSO{2}CF{3} (1b)) leads to substitution of the H{2}O ligand to afford the ionic Pt(II) complexes [Pt(NCN)(PHPh{2})]X (X = BF{4} (2a), OSO{2}CF{3} (2b)). The X-ray structure of the

  17. Competition of the Peierls relief and structural defects in damping the domain walls in [Mn left brace (R/S)-pn right brace]2[Mn left brace(R/S)-pn right brace2(H2O)][Cr(CN)6]2 ferrimagnet

    International Nuclear Information System (INIS)

    Talantsev, A.D.; Kollak, O.V.; Kirman, M.V.; Morgunov, R.B.

    2015-01-01

    The [ [Mn left brace (R/S)-pn right brace] 2 [Mn left brace(R/S)-pn right brace 2 (H 2 O)][Cr(CN) 6 ] 2 molecular ferrimagnet exhibits an inverse sequence of changes in the domain wall motion regimes with increasing temperature in alternative magnetic field of 0.04-1400 Hz frequency. Initiation of the relaxation regime on the background of creep indicates that there are two different systems of the domain walls damping. The threshold amplitude of the alternative magnetic field corresponds to the Peierls relief contribution to the domain wall dynamics as well as the defect contribution usually considered.

  18. Polymerization of 1,3-butadiene catalyzed by pincer cobalt(II) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands

    KAUST Repository

    Gong, Dirong; Jia, Weiguo; Chen, Tao; Huang, Kuo-Wei

    2013-01-01

    A new class of air stable and structurally well-defined cobalt complexes with unsymmetrical pincer type ligands ([2-(ArNCMe)-6-(Py)C5H 3N]CoCl2) (Ar = C6H5, Py = pyrazol-1-yl, 5a; Ar = 2,4,6-Me3C6H2, Py = pyrazol-1-yl, 5b; Ar = 2,6-iPr2C6H3, Py

  19. Electronic and electrochemical properties of platinum(II) and platinum-mercury-carboxylato complexes containing 2-Me2NCH2C6H4, 2,6-(Me2NCH2)2C6H3- and 2-Me2NC6H4CH2 - ligands

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Schmitz, J.E.J.; Linden, J.G.M. van der

    1982-01-01

    The organoplatinum(II) compounds [{2, 6-(Me{2}NCH{2}){2}C{6}H{3}}PtBr] and cis-[(C-N){2}Pt] (C-N = 2-Me{2}NCH{2}C{6}H{4}, 2-Me{2}NC{6}H{4}CH{2}) can be chemically irreversibly oxidized in the potential range 1.00 to 1.35 V vs. an Ag/AgCl electrode, whereas the organoplatinum@?mercury complexes

  20. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  1. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    Science.gov (United States)

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  2. Synthesis and reactivity towards diiodine of palladium(II) and platinum(II) complexes with non-cyclic and cyclic ligands (C6H3{CH=NR1R2}2-2,6)-. End-on diiodine-platinum(II) bonding in macrocyclic [PtI(C6H3{CH2NMe(CH2)7MeNCH2}-2,6)(h1-I2)

    NARCIS (Netherlands)

    Koten, G. van; Beek, J.A.M. van; Dekker, G.P.C.M.; Wissing, E.; Zoutberg, M.C.; Stam, C.H.

    1990-01-01

    Several new organo-platinum(II) and -palladium(II) complexes [MX(C{6}H{3}{CH{2}NR}1{R}2{}{2}-2, 6)] (X = halide, M = Pt, Pd; R}1{ = R}2{ = Et; R}2{ = Me, R}1{ = }t{Bu, M = Pt: R}2{ = Me, R}1{ = Ph) have been synthesized from [PtCl{2}(SEt{2}){2}] or [PdCl{2}(COD)] (COD = 1, 5-cyclooctadiene) by

  3. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  4. Cs2SO4-Pr2(SO4)3-H2O and NiSO4-Pr2(SO4)3-H2O systems at 75 deg C

    International Nuclear Information System (INIS)

    Onishchenko, M.K.; Skorikov, V.M.; Shevchuk, V.G.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1979-01-01

    To investigate physico-chemical properties of equilibrium saturated solutions and to elucidate the chemical changes under way, the aqueous systems of cesium, nickel and praseodymium (3) sulfates are studied. The method of isothermal saturation of salts at 75 deg C is used. It has been found that in the system Cs 2 SO 4 -Pr 2 (SO 4 ) 3 -H 2 O in a wide concentration range the soluble binary salt Cs 2 SO 4 xPr 2 (SO 4 ) 3 csytallizes in a congruent way. For the system NiSO 4 -Pr 2 (SO 4 ) 3 -H 2 O a solubility curve of the eutonic type is obtained, there being no chemical interaction between the components. The solubility isotherms for the system are given

  5. Molybdenum (VI) Bisimidoaryl Phenoxide and Alkoxide Complexes : Molecular Structures of [Mo(NAr)2(OCMe2-2py)(CH2SiMe3)] and [{Mo(NAR)2Me(OMe}2

    NARCIS (Netherlands)

    Koten, G. van; Brandts, J.A.M.; Boersma, J.; Spek, A.L.

    1999-01-01

    The synthesis and characterisation is reported of new, five-coordinate molybdenum(VI) bisimidoaryl complexes [Mo(NAr)2(O-N)(R)] [Ar = C6H3(iPr)2-2,6; O-N = 2-pyridyldiphenylmethoxide (a), 2-pyridyldimethylmethoxide (b), 8-quinolinolate (c); R = Cl, Me, CH2SiMe3] and the corresponding bisalkoxide (a,

  6. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  7. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

    Science.gov (United States)

    Pandey, Krishna K

    2012-03-21

    Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of

  8. Thermochemical Properties of the Complexes RE(HSal)3·2H2O (RE=La, Ce, Pr, Nd, Sm)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Five solid rare earth salicylate complexes were synthesized by low hydrated lathanide chloride and salicylic acid. The complexes in this experiment were identified as the general formula RE(Hsal)3·2H2O(RE=La, Ce, Pr, Nd, Sm) by elemental analysis and EDTA volumetric analysis. IR spectra of the complexes show that carboxyl of salicylic acid coordinates to RE3+ ions. Electrochemical behaviors of the complexes on the glass-carbon electrode were researched with cyclic voltammetry (CV). It is indicated that the electrochemical process of the complexes is a one-electron redox process and the electrochemical reversibility of complexes is less than that of the lanthanide chlorides. The constant-volume combustion energies of complexes, ΔcU, were determined with a precise rotating-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated.

  9. Magnetic properties of cyano-bridged Ln3+-M3+ complexes. Part I: trinuclear complexes (Ln3+ = La, Ce, Pr, Nd, Sm; M3+ = FeLS, Co) with bpy as blocking ligand.

    Science.gov (United States)

    Figuerola, Albert; Ribas, Joan; Llunell, Miquel; Casanova, David; Maestro, Miguel; Alvarez, Santiago; Diaz, Carmen

    2005-10-03

    The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.

  10. Bis(arene) actinide sandwich complexes, (η6-C6H3R3)2An: Linear or bent?

    International Nuclear Information System (INIS)

    Li, J.; Bursten, B.E.

    1999-01-01

    The syntheses of the sandwich complexes ferrocene, (η 5 -C 5 H 5 ) 2 -Fe, in 1951 and uranocene, (η 8 -C 8 H 8 ) 2 U, in 1968 ushered in the modern eras of organotransition metal and organoactinide chemistry, respectively. Ferrocene and uranocene are examples of linear sandwich complexes, that is, those in which the (ring centroid)-M-(ring centroid) angle (denoted θ) is 180 degree. In the case of (η 5 -C 5 H 5 ) 2 M chemistry, a number of bent (θ 2 An (An = Th-Am) and (η 6 -C 6 H 3 R 3 ) 2 An (An = Th, U, Pu; R = Me, t Bu) obtained by using local density approximation (LDA) and Perdew-Wang (PW91) gradient-corrected relativistic density functional theory (DFT) methods. These DFT methods are found to be able to reproduce the experimental geometries and vibrational frequencies of organoactinide complexes with satisfactory accuracy. The (TTB) 2 An calculations that are reported here are, to date, the largest full geometry optimizations to be carried out on an actinide system

  11. N-Heterocyclic Carbene Coinage Metal Complexes of the Germanium-Rich Metalloid Clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3

    Directory of Open Access Journals (Sweden)

    Felix S. Geitner

    2017-07-01

    Full Text Available We report on the synthesis of novel coinage metal NHC (N-heterocyclic carbene compounds of the germanium-rich metalloid clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3. NHCDippCu{η3Ge9R3} with R = Si(iPr3 (1 represents a less bulky silyl group-substituted derivative of the known analogous compounds with R = Si(iBu3 or Si(TMS3. The coordination of the [NHCDippCu]+ moiety to the cluster unit occurs via one triangular face of the tri-capped trigonal prismatic [Ge9] cluster. Furthermore, a series of novel Zintl cluster coinage metal NHC compounds of the type (NHCM23Ge9RI2} (RI = Si(TMS3 M = Cu, Ag and Au; NHC = NHCDipp or NHCMes is presented. These novel compounds represent a new class of neutral dinuclear Zintl cluster coinage metal NHC compounds, which are obtained either by the stepwise reaction of a suspension of K12Ge17 with Si(TMS3Cl and the coinage metal carbene complexes NHCMCl (M = Cu, Ag, Au, or via a homogenous reaction using the preformed bis-silylated cluster K2[Ge9(Si(TMS32] and the corresponding NHCMCl (M = Cu, Ag, Au complex. The molecular structures of NHCDippCu{η3Ge9(Si(iPr33} (1 and (NHCDippCu23-Ge9(Si(TMS32} (2 were determined by single crystal X-ray diffraction methods. In 2, the coordination of the [NHCDippCu]+ moieties to the cluster unit takes place via both open triangular faces of the [Ge9] entity. Furthermore, all compounds were characterized by means of NMR spectroscopy (1H, 13C, 29Si and ESI-MS.

  12. Energy transfer of the quantum-cutter couple Pr{sup 3+}–Mn{sup 2+} in CaF{sub 2}:Pr{sup 3+}, Mn{sup 2+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanoski, Ana [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany); Pankratov, Vladimir, E-mail: vpank@latnet.lv [Research Center of Molecular Materials, University of Oulu, PO Box 3000, 90014 Oulu (Finland); Feldmann, Claus, E-mail: claus.feldmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, D-76131 Karlsruhe (Germany)

    2016-11-15

    CaF{sub 2}:Pr (1 mol%), CaF{sub 2}:Mn (5 mol%) and CaF{sub 2}:Pr,Mn (1 mol%, 5 mol%) nanoparticles are prepared via a microwave-mediated synthesis in ionic liquids. The nanoparticles are highly crystalline and exhibit particle diameters <50 nm.In contrast to bulk-CaF{sub 2}:Pr,Mn,energy transfer between Pr{sup 3+}and Mn{sup 2+}under {sup 1}S{sub 0}→{sup 1}I{sub 6} relaxation on Pr{sup 3+} and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} is observed for the first time. Such energy transfer represents the essential first step of the quantum-cutting cascade via the Pr{sup 3+}–Mn{sup 2+} couple, which is most interesting as both expected photons – {sup 3}P{sub 0}→{sup 3}H{sub 4} emission of Pr{sup 3+}and {sup 4}G({sup 4}T{sub 1g})→{sup 6}S(A{sub 1g}) emission of Mn{sup 2+} – are emitted in the green spectral range. While bulk crystals were said not to show energy transfer due to prohibiting selection rules, vacuum ultraviolet (VUV) spectroscopy of CaF{sub 2}:Pr, Mn nanoparticles firstly proves efficient Pr{sup 3+}→Mn{sup 2+} energy transfer, which can be ascribed to the reduced site symmetry and considerable spin–orbit interaction in the nanocrystals.

  13. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  14. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  15. Extracting performance of cesium by 25,27-bis (2-propyloxy) calix[4]-26,28-crown-6 (iPr-C[4]C-6) in n-octanol

    International Nuclear Information System (INIS)

    Jianchen Wang; Xiaowen Zhu; Chongli Song

    2005-01-01

    In this work, the extraction of cesium (Cs + ) in nitric acid and in a simulated high level liquid waste (HLLW) by iPr-C[4]C-6 was investigate in the dilluent n-octanol. The slope of the extractant dependency equals 1, indicating that the complex has 1:1[Cs + .iPr-C[4]C-6]Cs + to ligand. 0.025mol/L iPr-C[4]C-6 in n-octanol (abbreviated to iPr-C[4]C-6-n-octanol) has a stronger extracting ability to Cs when acidities are between 1.0mol/L and 4.0mol/L. The stripping properties of Cs loading in 0.025mol/L iPr-C[4]C-6-n-octanol was studied. Cs loading in iPr-C[4]C-6-n-octanol can be stripped easily into the aqueous phase because the distribution ratios of Cs are lower than 0.5 when pH is between 2 and 10 in the aqueous phase. On above basis, the better parameters were selected and the cold cascade test for removing Cs from the simulated HLLW was investigated on miniature centrifugal contactors. The results of the test are attractive. The removing ratio of Cs from the simulated HLLW is 99.5% and the stripping ratio of Cs loading in 0.025mol/L iPr-C[4]C-6-n-octanol is 99.2%. The results show that 0.025mol/L iPr-C[4]C-6-n-octanol is an effective process for removing Cs from HLLW. (author)

  16. Synthesis and vibrational spectra of cooper(II) and erbium(III) complexes with 2-diazo[2'-(oxymethyldiphenylphosphinyl)phenyl]-4-tert-butylphenol (HL) - [CuL22H2O and Er(NO3)3·2HL·2H2O. Crystal structure of [CuL22H2O

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Minacheva, L.Kh.; Ivanova, I.S.; Pyatova, E.N.; Sergienko, V.S.; Baulin, V.E.

    2008-01-01

    Paper describes synthesis of CuL 2 ·2H 2 O (I) complex cupric salt and of Er(NO 3 ) 3 ·2HL·2H 2 O (II) erbium nitrate complex (HL=2-diazo-[2'(oxymethyl-diphenyl-phosphinyl)phenyl]-4-tert-butylphenol). One interprets the fundamental frequencies within the IR-spectra of (I) and (II) compounds. One has performed X-ray diffraction analysis of I compound. The crystals are monoclinic ones, a=15.157(3), b=17.080(2), c=22.451(9) A, β=106.09(3) Deg, V=5584(3) A 3 , Z=4, C2/c sp.gr., R=0.0546 as to 1152 reflections with I>2σ(I). The copper atom coordination polyhedron (C 2 symmetry) may be described as a symmetrically-prolonged square bipyramid (4+2). Cu polyhedron central square is formed by substituted phenol oxygen atom and by one of diazo-group nitrogen atoms of either of two deprotonated ligands, namely: L - (Cu-N 1.969(6), Cu-O 1.899(5) A). The angles between lying opposite O and N atoms constitute 157.6 Deg, while the rest equatorial angles range within 90.6 Deg-95.9 Deg. The axial positions are occupied by O(2) and O(2A) anisole atoms (Cu-O 2.737(6) A, O(2)Cu(1)O(2A) angle constitutes 132.3 Deg). Within crystal I the complex molecules and the crystallization molecules of water are combined by by the hydrogen bond system. According to the IR-spectra data, within complex II in contrast to compound I erbium atom coordination by HL ligand involves oxygen phosphoryl atom [ru

  17. The nido-osmaboranes [2,2,2-(CO)(PPh(3))(2)-nido-2-OsB(5)H(9)] and [6,6,6-(CO)(PPh(3))(2)-nido-6-OsB(9)H(13)].

    Science.gov (United States)

    Bould, J; Kennedy, J D; Thomas, R L; Rath, N P; Barton, L

    2001-11-01

    The structural characterization of the osmahexaborane 2-carbonyl-2,2-bis(triphenylphosphine)-nido-2-osmahexaborane(9), [Os(B(5)H(9))(C(18)H(15)P)(2)(CO)], (I), a metallaborane analogue of B(6)H(10), confirms the structure proposed from NMR spectroscopy. The structure of the osmadecaborane 6-carbonyl-6,6-bis(triphenylphosphine)-nido-6-osmadecaborane(13), [Os(B(9)H(13))(C(18)H(15)P)(2)(CO)], (IV), is similarly confirmed. The short basal B-B distance of 1.652 (8) A in (I), not bridged by an H atom, mirrors that in the parent hexaborane(10) [1.626 (4) A].

  18. Bis{2-[(diisopropylphosphanylamino]pyridine-κ2N1,P}copper(I hexafluoridophosphate

    Directory of Open Access Journals (Sweden)

    Özgür Öztopcu

    2010-07-01

    Full Text Available The crystal structure of the title compound, [Cu(C11H19N2P2]PF6, is composed of discrete [Cu(PN-iPr2]+ cations [PN-iPr is 2-(diisopropylphosphanylaminopyridine] and PF6− anions. The Cu(I atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetrahedral coordination by two P atoms [Cu—P = 2.2277 (4 and 2.2257 (4 Å] and two pyridine N atoms [Cu—N = 2.0763 (11 and 2.0845 (12 Å]. Bond angles about Cu vary from 85.11 (3 (P—Cu—N to 130.37 (2° (P—Cu—P. In the crystal, N—H...F hydrogen bonds link the Cu complexes and the PF6− anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H...F interactions contribute to the coherence of the structure.

  19. Interconversion of η3-H2SiRR' σ-complexes and 16-electron silylene complexes via reversible H-H or C-H elimination.

    Science.gov (United States)

    Lipke, Mark C; Neumeyer, Felix; Tilley, T Don

    2014-04-23

    Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling

  20. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  1. [4,6-Dimethylpyrimidine-2(1H-thione-κS]iodidobis(triphenylphosphane-κPcopper(I

    Directory of Open Access Journals (Sweden)

    Chaveng Pakawatchai

    2012-06-01

    Full Text Available In the mononuclear title complex, [CuI(C6H8N2S(C18H15P2], the CuI ion is in a slightly distorted tetrahedral coordination geometry formed by two P atoms from two triphenylphosphane ligands, one S atom from a 4,6-dimethylpyrimidine-2(1H-thione ligand and one iodide ion. There is an intramolecular N—H...I hydrogen bond. In the crystal, π–π stacking interactions [centroid–centroid distance = 3.594 (1 Å] are observed.

  2. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  3. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  4. Mass spectrometric investigation of neutral and charged constituents in saturated vapor over PrI3

    International Nuclear Information System (INIS)

    Motalov, V.B.; Vorobiev, D.E.; Kudin, L.S.; Markus, T.

    2009-01-01

    The Knudsen effusion mass spectrometric technique was used to study vapor species over praseodymium triiodide. The monomer, PrI 3 , and dimer, Pr 2 I 6 , molecules and the negative ions, PrI 4 - and Pr 2 I 7 - , were observed in saturated vapor in the temperature range from 856 K to 1048 K. The partial vapor pressures of neutral constituents were determined and the enthalpies of sublimation obtained using the second and the third laws of thermodynamics (Δ s H deg. (298.15 K) = 291 ± 4 kJ mol -1 for PrI 3 , and Δ s H deg. (298.15 K) = 400 ± 30 kJ mol -1 for Pr 2 I 6 ). The equilibrium constants for various ion molecular reactions were measured and the enthalpies of reactions obtained. The enthalpies of formation, Δ f H deg. (298.15 K) kJ mol -1 , of gaseous molecules and ions were calculated and are as follows: -374 ± 6 (PrI 3 ), -929 ± 30 (Pr 2 I 6 ), -867 ± 30 (PrI 4 - ), -1432 ± 50 (Pr 2 I 7 - )

  5. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunfeng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Guo, Haitao, E-mail: guoht_001@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Xu, Yantao; Hou, Chaoqi; Lu, Min [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Pengfei; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Peng, Bo, E-mail: bpeng@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China)

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a new material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.

  6. Rational synthesis of high nuclearity Mo/Fe/S clusters: the reductive coupling approach in the convenient synthesis of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et, (n)Pr, (n)Bu] and the new [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl]-1/2(Fe(PEt(3))(2)(MeCN)(4)) and (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) clusters.

    Science.gov (United States)

    Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D

    2001-11-05

    A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo

  7. Exploring the crystallization landscape of cadmium bis(N-hydroxyethyl, N-isopropyldithiocarbamate), Cd[S2CN(iPr)CH2CH2OH]2

    International Nuclear Information System (INIS)

    Tan, Yee Seng; Halim, Siti Nadiah Abdul; Tiekink, Edward R.T.; Sunway Univ., Bandar Sunway

    2016-01-01

    Crystallization of Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 from ethanol yields the coordination polymer [{Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 }.EtOH] ∞ (1) within 3 h. When the solution is allowed to stand for another hour, the needles begin to dissolve and prisms emerge of the supramolecular isomer (SI), binuclear {Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 2 .2EtOH (2). These have been fully characterized spectroscopically and by X-ray crystallography. Polymeric 1 has 2-fold symmetry and features dithiocarbamate ligands coordinating two octahedral Cd atoms in a μ 2 κ 2 -tridentate mode. Binuclear 2 is centrosymmetric with two ligands being μ 2 κ 2 -tridentate as for 1 but the other two being κ 2 -chelating leading to square pyramidal geometries. The conversion of the kinetic crystallization product, 1, to thermodynamic 2 is irreversible but transformations mediated by recrystallization (ethanol and acetonitrile) to related literature SI species, namely coordination polymer [{Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 3 .MeCN] ∞ and binuclear {Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 2 .2H 2 O.2MeCN, are demonstrated, some of which are reversible. Three other crystallization outcomes are described whereby crystal structures were obtained for the 1:2 co-crystal {Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 2 :2[3-(propan-2-yl)-1,3-oxazolidine-2-thione] (3), the salt co-crystal [iPrNH 2 (CH 2 CH 2 OH)] 4 [SO 4 ] 2 {Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 2 (4) and the salt [iPrNH 2 (CH 2 CH 2 OH)]{Cd[S 2 CN(iPr)CH 2 CH 2 OH] 3 } (5). These arise as a result of decomposition/oxidation of the dithiocarbamate ligands. In each of 3 and 4 the binuclear {Cd[S 2 CN(iPr)CH 2 CH 2 OH] 2 } 2 SI, as in 2, is observed strongly suggesting a thermodynamic preference for this form.

  8. Pr4N2S3 and Pr4N2Se3: two non-isostructural praseodymium(iii) nitride chalcogenides

    International Nuclear Information System (INIS)

    Lissner, Falk; Schleid, Thomas

    2005-01-01

    The non-isostructural nitride chalcogenides of praseodymium, Pr 4 N 2 S 3 and Pr 4 N 2 Se 3 , are formed by the reaction of the praseodymium metal with sodium azide (NaN 3 ), praseodymium trihalide (PrX 3 ; X = Cl, Br, I) and the respective chalcogen (sulfur or selenium) at 900 C in evacuated silica ampoules after seven days. Both crystallize monoclinically in space group C2/c (Pr 4 N 2 S 3 : a = 1788.57(9), b = 986.04(5), c = 1266.49(6) pm, β = 134.546(7) , Z = 8; Pr 4 N 2 Se 3 : a = 1311.76(7), b = 1017.03(5), c = 650.42(3) pm, β = 90.114(6) , Z = 4). The crystal structures of both compounds show a layered construction, dominated by N 3- -centred (Pr 3+ ) 4 tetrahedra which share a common edge first. Continuing linkage of the so resulting bitetrahedral [N 2 Pr 6 ] 12+ units via the non-connected vertices to layers according to [stack ∞ 2 ]{[N(Pr) 2/2 e (Pr') 2/2 v ] 3+ } forms different kinds of tetrahedral nets which can be described as layers consisting of ''four- and eight-rings'' for Pr 4 N 2 S 3 and as layers of ''six-rings'' for Pr 4 N 2 Se 3 . Whereas the crystal structure of Pr 4 N 2 S 3 exhibits four different Pr 3+ cations with coordination numbers of six (2 x) and seven (2 x) against N 3- and S 2- , the number of cations in the nitride selenide (Pr 4 N 2 Se 3 ) is reduced to half (Pr1 and Pr2) also having six- and sevenfold anionic coordination spheres. Further motifs for the connection of [NM 4 ] 9+ tetrahedra in crystal structures of nitride chalcogenides and halides of the rare-earth elements with ratios of N: M = 1: 2 are presented and discussed. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [de

  9. Platinum complexes of 5,6-Dihydroacenaphtho[5,6-cd]-1,2-dichalcogenoles

    OpenAIRE

    Benson, Callum G. M.; Schofield, Catherine M.; Randall, Rebecca A. M.; Wakefield, Lucy; Knight, Fergus R.; Slawin, Alexandra M. Z.; Woollins, J. Derek

    2013-01-01

    Six bis(phosphane) platinum complexes bearing dichalcogen acenaphthene ligands have been prepared by metathesis from cis-[PtCl2(PR3)(2)] (R-3 = Ph-3, Ph2Me, PhMe2) and the dilithium salts of the parent 5,6-dihydroacenaphtho[5,6-cd]-1,2-dichalcogenoles (AcenapE(2), L1 E = S, L2 E = Se). For their synthesis, the appropriate disulfide or diselenide species was treated with super hydride [LiBEt3H] to afford the dilithium salt by in situ reduction of the AcenapE(2) E-E bond. Further reaction, by m...

  10. Cu4Pr6(MoO4)11-Pr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Arzumanyan, G.A.

    1982-01-01

    Existence boundaries and Dalton compositions (CuPr(MoO 4 ) 2 , CuPr 3 (MoO 4 ) 5 ) of solid solutions that in the mojority are of shcheelite dsitored structure have been determined in the Cu 4 Pr 6 (MoO 4 ) 11 -Pr 2 (MoO 4 ) 3 system. It has been revealed that regions of homogeneity near the CuPr(MoO 4 ) 2 composition have a horseshoeshaped profile

  11. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  12. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    Science.gov (United States)

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Completing the series. New coordination networks of composition {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O with RE = Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Y and ADC{sup 2-} = acetylenedicarboxylate ({sup -}O{sub 2}C-C≡C-CO{sub 2}{sup -})

    Energy Technology Data Exchange (ETDEWEB)

    Gramm, Verena K.; Schuy, Andrea; Ruschewitz, Uwe [Institut fuer Anorganische Chemie, Koeln Univ. (Germany); Suta, Markus; Wickleder, Claudia [Anorganische Chemie, Universitaet Siegen (Germany); Sternemann, Christian [Fakultaet Physik / DELTA, Technische Universitaet Dortmund (Germany)

    2018-02-01

    The crystal structures of {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O (RE = Pr, Nd, Sm, Eu, Tb, Dy) were solved and refined from X-ray single crystal data. They crystallize in a structure type already known for RE = La, Ce and Gd (P1, no. 2, Z = 2), which is characterized by REO{sub 9} polyhedra forming dimeric units being the nodes of a 3D framework structure linked by ADC{sup 2-} anions ({sup -}O{sub 2}C-C≡C-CO{sub 2}{sup -} = acetylenedicarboxylate). From synchrotron powder diffraction data it was shown that isostructural coordination networks are formed for RE = Ho, Er, Y, whereas for RE = Tm, Yb, Lu a new structure type crystallizing in a highly complex crystal structure with a large orthorhombic unit cell is found. All compounds are obtained by slow evaporation of an aqueous solution containing RE(OAc){sub 3}.xH{sub 2}O and acetylenedicarboxylic acid (H{sub 2}ADC). The coordination networks of composition {sup 3}{sub ∞}[RE{sub 2}(ADC){sub 3}(H{sub 2}O){sub 6}].2H{sub 2}O were thoroughly investigated by thermal analysis and for RE = Eu, Tb, a strong red and green photoluminescence was observed and investigated by means of UV/Vis spectroscopy. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Synthesis, crystal structure and characterization of a 1D polyoxometalate-based compound: {l_brace}[Pr(H{sub 2}O){sub 7}][CrMo{sub 6}H{sub 6}O{sub 24}]{r_brace} . 4H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lijie; Shen Shuchang; Yu Haiming [Qiqihar Univ., HL (China). Dept. of Chemistry and Chemical Engineering

    2008-07-15

    A novel polyoxometalated-based compound, {l_brace}[Pr(H{sub 2}O){sub 7}][CrMo{sub 6}H{sub 6}O{sub 24}]{r_brace} . 4H{sub 2}O, was prepared and characterized by elemental analysis, infrared and ultraviolet spectroscopy, TG measurement and single crystal X-ray diffraction. A chain-like coordination polymer is formed from a heteropolyanion [CrMo{sub 6}H{sub 6}O{sub 24}]{sup 3} as a building unit and [Pr(H{sub 2}O){sub 7}]{sup 3+} cations as linker. The chains are linked into an extensive three-dimensional supramolecular network through hydrogen bonding. The synthesis of 1 is accomplished only from pre-synthesized Anderson clusters, but not from simple starting materials. (orig.)

  15. Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF A theoretical study of molecular properties of C2H4···2HF, C2H2···2HF AND C3H6···2HF trimolecular hydrogen-bonded complexes

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2008-01-01

    Full Text Available We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p calculations, the most important structural deformations are related to the C=C (C2H4, C≡C (C2H2, C-C (C3H6 and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.

  16. Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br): steric interaction between the organic and inorganic layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B; Dimitrakopoulos, Christos D; Maxcy, Karen R

    2003-03-24

    Two new semiconducting hybrid perovskites based on 2-substituted phenethylammonium cations, (2-XC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) (X = Br, Cl), are characterized and compared with the previously reported X = F compound, with a focus on the steric interaction between the organic and inorganic components. The crystal structure of (2-ClC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) is solved in a disordered subcell [C2/m, a = 33.781(7) A, b = 6.178(1) A, c = 6.190(1) A, beta = 90.42(3)(o), and Z = 2]. The structure is similar to the known (2-FC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) structure with regard to both the conformation of the organic cations and the bonding features of the inorganic sheet. The (2-BrC(6)H(4)C(2)H(4)NH(3))(2)SnI(4) system adopts a fully ordered monoclinic cell [P2(1)/c, a = 18.540(2) A, b = 8.3443(7) A, c = 8.7795(7) A, beta = 93.039(1)(o), and Z = 2]. The organic cation adopts the anti conformation, instead of the gauche conformation observed in the X = F and Cl compounds, apparently because of the need to accommodate the additional volume of the bromo group. The steric effect of the bromo group also impacts the perovskite sheet, causing notable distortions, such as a compressed Sn-I-Sn bond angle (148.7(o), as compared with the average values of 153.3 and 154.8(o) for the fluoro and chloro compounds, respectively). The optical absorption features a substantial blue shift (lowest exciton peak: 557 nm, 2.23 eV) relative to the spectra of the fluoro and chloro compounds (588 and 586 nm, respectively). Also presented are transport properties for thin-film field-effect transistors (TFTs) based on spin-coated films of the two hybrid semiconductors.

  17. A potential method using Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2}, (Et{sub 3}Si){sub 2}Te and anhydrous hydrazine for germanium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liyong; Du, Shulei; Ding, Yuqiang [School of Chemical and Material Engineering, Jiangnan University, Wuxi (China)

    2017-12-29

    A germanium(II)-guanidine derivative of formula Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2} (1) was synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, elemental analysis, and X-ray diffraction method. Thermal property was also studied to identify its thermal stability and volatility. More importantly, compound 1 was synthesized to develop a new method for germanium tellurides, where anhydrous hydrazine was introduced to prompt the activity of germanium(II) guanidines (or derivatives) towards (Et{sub 3}Si){sub 2}Te. Solution reaction of compound 1, (Et{sub 3}Si){sub 2}Te, and anhydrous hydrazine was investigated to pre-identify the feasibility of this combination for ALD process. The EDS data of the black precipitate from this reaction verified the potential of this method to manufacture germanium tellurides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Magnetic order in PrBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Nutley, M.P.; Boothroyd, A.T.

    1994-01-01

    We have studied the magnetic ordering of the Cu and Pr ions in PrBa2Cu3O6+x by neutron diffraction on single crystals with different oxygen contents. Two types of Cu ordering were observed, qualitatively similar to the anti-ferromagnetic phases reported in some studies of YBa2Cu3O6+x. A third...... magnetic structure was observed below 15K, which we believe corresponds to the magnetic ordering of the Pr sub-lattice....

  19. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  20. Synthesis, crystal structure and luminescent properties of one 3D Cd(II) coordination polymer [Cd(H3BPTC)2(bpy)]n (H4BPTC = 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid, bpy = 4,4'-bipyridine).

    Science.gov (United States)

    Mei, Chong-Zhen; Shan, Wen-Wen; Liu, Bing-Tao

    2011-10-15

    A new 3D metal-organic coordination polymer [Cd(H(3)BPTC)(2)(bpy)](n) (1) (H(4)BPTC = 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid, bpy =4,4'-bipyridine) has been synthesized and characterized by single X-ray diffraction and IR spectroscopy. The one-dimensional metal-organic chains of the title complex, namely [Cd(H(3)BPTC)(2)](n), are held together through hydrogen bonding and bridging "second" ligand 4,4'-bpy to give a three-dimensional metal-organic network. The thermal stability of complex 1 was studied by thermal gravimetric (TG) and differential thermal analysis (DTA). Compound 1 exhibits photoluminescence with an emission maximum at ca. 380 nm upon excitation at ca. 251 nm. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Cationic polyhydrido cluster complexes. Crystal and molecular structures of (Ir3(Ph2P(CH2)3PPh2)3(H)7(CO))2+ and (Ir3(Ph2P(CH2)2(2-py))3(H)7)2+

    International Nuclear Information System (INIS)

    Hsienhau Wang; Casalnuovo, A.L.; Johnson, B.J.; Mueting, A.M.; Pignolet, L.H.

    1988-01-01

    Two new cationic polyhydrido cluster complexes of iridium have been synthesized and characterized by single-crystal x-ray diffraction and by ir and 1 H and 31 P NMR spectroscopy (Ir 3 (dppp) 3 (H) 7 (CO)) 2+ (2) and (Ir3 (PN) 3 (H) 7)2+ (5), where dppp = 1,3-bis(diphenylphosphino)propane and PN = 1-(2-pyridyl)-2-(diphenylphosphino)ethane, were synthesized by the reaction of CO with (Ir 3 (dppp) 3 (H) 7 ) 2+ (1) in CH 2 Cl 2 solution and H 2 with (Ir(PN)(COD)) + (4) in CH 3 OH solution, respectively. Crystal structures for both compounds is reported. The hydride positions were not located in the crystal structure analyses but were deduced from structural and 1 H NMR data. The molecular structure of 2 consists of a bilateral triangle of three iridium atoms with a carbonyl at the vertex and a chelating dppp ligand on each iridium atom. 1 H NMR data with use of acetone-d 6 as solvent showed that 2 possesses four doubly bridging hydrides and three terminal hydrides, yielding C 1 symmetry. The molecular structure of 5 consists of an approximately equilateral triangle of three iridium atoms (average Ir-Ir distance 2.746 (1) angstrom) with one PN ligand chelated to each iridium atom. 1 H NMR analysis, with use of CD 2 Cl 2 as solvent, showed that 5 has one triply bridging hydride and six terminal hydrides, giving C 3 symmetry. (Ir 3 (dppp) 3 (H) 7 (CH 3 C 6 H 4 NC)) 2+ (3) a complex structurally analogous to 2, was synthesized from 1 and p-tolyl isocyanide in CH 2 Cl 2 solution and characterized by ir and 1 H and 31 P NMR spectroscopy. 44 refs., 3 figs., 3 tabs

  2. Synthesis, spectral, thermal and biological studies of transition metal complexes of 4-hydroxy-3-[3-(4-hydroxyphenyl-acryloyl]-6-methyl-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    BALASAHEB R. ARBAD

    2011-09-01

    Full Text Available The solid complexes of Mn(II, Fe(III, Co(II, Ni(II, and Cu(II with 4-hydroxy-3-[(2E-3-(4-hydroxyphenylprop-2-enoyl]-6-methyl-2H-pyran-2-one, derived from 3-acetyl-6-methyl-2H-pyran-2,4(3H-dione (dehydroacetic acid and 4-hydroxybenzaldehyde, were synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic measurements, IR, 1H-NMR and UV–Vis spectroscopy and a biological study. From the analytical and spectral data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand. The physico–chemical data suggest a distorted octahedral geometry for the Cu(II complexes and an octahedral geometry for all the other complexes. The thermal decomposition of all the complexes was studied by the TG–DTA method. The synthesized ligand and its metal complexes were screened for their in vitro antibacterial activity against Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacterial strains and for in vitro antifungal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum. The results of these studies showed the metal complexes to be more antibacterial/antifungal against one or more species as compared with the non-complexed ligand.

  3. Thiolato-technetium complexes. 5. Synthesis, characterization, and electrochemical properties of bis(o-phenylenebis(dimethylarsine))technetium(II) and -technetium(III) complexes with thiolato ligands. Single-crystal structural analyses of trans-[Tc(SCH3)2(DIARS)2]PF6 and trans-[Tc(SC6H5)2(DIARS)2]0

    International Nuclear Information System (INIS)

    Konno, Takumi; Heineman, W.R.; Deutsch, E.; Kirchhoff, J.R.; Heeg, M.J.; Stuckey, J.A.

    1992-01-01

    Three different thiols have been brought into reaction with trans-[Tc(OH)(O)(DIARS) 2 ] 2+ to produce initially the Tc(II) complex, [Tc(SR) 2 (DIARS) 2 ] 0 , which can be oxidized to the Tc(III) complex, [Tc(SR) 2 (DIARS) 2 ] + (DIARS = o-phenylenebis(dimethylarsine)). In the case of SR = SCH 3 and SCH 2 C 6 H 5 , the Tc(II) and Tc(III) products were found to be in the trans geometry, while for SR = SC 6 H 5 , both cis and trans isomers were generated. Two of the complexes were structurally characterized by X-ray diffraction. trans-[Tc(SCH 3 ) 2 (DIARS) 2 ]PF 6 , chemical formula TcAs 4 S 2 PF 6 C 22 H 38 , crystallizes in the monoclinic space group. The Tc atom occupies an inversion center. Representative elemental analyses, FAB mass spectra, and visible-UV spectra are reported. Electrochemical and spectroelectrochemical measurements were taken on trans-[Tc(SCH 3 ) 2 (DIARS) 2 ] + , trans-[Tc(SCH 2 C 6 H 5 ) 2 (DIARS) 2 ] + , and cis-[Tc(SC 6 H 5 ) 2 (DIARS) 2 ] + , which exhibit a reversible Tc(III/II) redox couple in the range -0.32 to -0.47 V vs. Ag/AgCl. Another redox couple is present in the range -1.22 to -1.70 V; this is ascribed to Tc(II/I) and is reversible only for SR = SCH 2 C 6 H 5 at 20C. At room temperature, chemically irreversible couples are exhibited at ca. +1.0 V for Tc(IV/III)

  4. Synthesis, Characterization and Biological Evaluation of Mononuclear Dichloro-bis[2-(2-chloro-6,7-substituted Quinolin-3-yl-1H-benzo[d]imidazole]Co(II Complexes

    Directory of Open Access Journals (Sweden)

    Minaxi Samatbhai Maru

    2015-06-01

    Full Text Available A series of Co(II complexes 3¢a-g of 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g were prepared and characterized by various spectroscopic and physico-chemical methods viz. FT-IR, ESI mass, 1H NMR, 13C NMR and UV-Visible spectroscopy, Thermogravimetric analysis, Magnetic susceptibility, Molar conductance and Elemental analysis. The 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g have been synthesized by cyclocondensation of benzene-1,2-diamine with 2-chloroquinoline-3-carbaldehydes by using ceric ammonium nitrate as a catalyst in presence of hydrogen peroxide as an oxidant. The structures of all ligands were confirmed by IR, Mass, UV-Visible, 1H NMR and 13C NMR spectroscopy. All ligands 3a-g and their Co(II complexes 3¢a-g were screened for their in vitro antimicrobial activity using twofold serial dilution technique against standard MTCC strains of two Gram-positive Staphylococcus aureus and Streptococcus pyogenes, two Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria and three Candida albicans, Aspergillus niger and Aspergillus clavatus fungus in comparison with standard drugs. All ligands 3a-g and complexes 3¢a-g also evaluated for antimycobacterial activity against standard Mycobacterium tuberculosis H37Rv strain. DOI: http://dx.doi.org/10.17807/orbital.v7i2.530

  5. Synthesis and structure of [(NH2)2CSSC(NH2)2]2[OsBr6]Br2 . 3H2O

    International Nuclear Information System (INIS)

    Rudnitskaya, O. V.; Kultyshkina, E. K.; Stash, A. I.; Glukhova, A. A.; Venskovskii, N. U.

    2008-01-01

    The complex [(NH 2 ) 2 CSSC(NH 2 ) 2 ] 2 [OsBr 6 ]Br 2 . 3H 2 O is synthesized by the reaction of K 2 OsBr 6 with thiocarbamide in concentrated HBr and characterized using electronic absorption and IR absorption spectroscopy. Its crystal structure is determined by X-ray diffraction. The crystals are orthorhombic, a = 11.730(2) A, b = 14.052(3) A, c = 16.994(3) A, space group Cmcm, and Z = 4. The [OsBr 6 ] 2- anionic complex has an octahedral structure. The Os-Br distances fall in the range 2.483-2.490 A. The α,α'-dithiobisformamidinium cation is a product of the oxidation of thiocarbamide. The S-S and C-S distances are 2.016 and 1.784 A, respectively. The H 2 O molecules, Br - ions, and NH 2 groups of the cation are linked by hydrogen bonds.

  6. Density effects on high-n molecular Rydberg states: CH3I and C6H6 in H2 and Ar

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; Rupnik, K.; McGlynn, S.P.; Ascarelli, G.

    1989-01-01

    The absorption spectra of high-n Rydberg states of methyl iodide and benzene perturbed by varying number densities of hydrogen or argon, range 0.9x10 20 --10.5x10 20 cm -3 for H 2 and 0.6x10 20 --7.5x10 20 cm -3 for Ar, have been investigated. The high-n molecular states of both absorbers were found to shift linearly with the number density of atomic Ar and molecular H 2 scatterers. The Fermi formula modified by the Alekseev--Sobel'man polarization term provides an excellent fit of the shift data. The electron scattering lengths obtained are: 0.93 a 0 for H 2 and -1.63 a 0 for Ar using the CH 3 I absorber; and 0.99 a 0 for H 2 and -1.57 a 0 for Ar using the C 6 H 6 absorber. The electron scattering lengths for H 2 and Ar agree with the results of an empirical model that correlates scattering lengths and the polarizabilities α(spherical) for inert atoms and α 2 (nonspherical) for H 2 molecule

  7. New lanthanide(III) complexes of chiral nonadendate macrocyclic amine derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, Marta [Department of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Lisowski, Jerzy [Department of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland)], E-mail: jurekl@wchuwr.chem.uni.wroc.pl

    2008-02-28

    The series of complexes [LnH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.nH{sub 2}O (Ln = La, Ce, Pr, Nd, Gd, Tb, Ho, Er, Tm) of the positively charged protonated form of a chiral macrocyclic amine H{sub 4}L{sup +}, derived from the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, have been synthesized. The series of complexes Na{sub x}[LnL](X){sub y}(OH){sub x-y}.n(solv) (X = NO{sup 3-} or Cl{sup -}, and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) of the deprotonated anionic form of the ligand, L{sup 3-}, have also been synthesised. The complexes have been characterised by elemental analyses, {sup 1}H NMR and ESI MS spectra. The X-ray crystal structures of the [LaH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.5CH{sub 3}OH and [GdH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.5CH{sub 3}OH complexes have been determined. The two complexes are isostructural, and the protonated macrocycle acts as pentadentate ligand. The Ln(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the macrocyclic ligand and its coordination sphere is completed by the two axial bidendate nitrate anions.

  8. Exploring the crystallization landscape of cadmium bis(N-hydroxyethyl, N-isopropyldithiocarbamate), Cd[S{sub 2}CN(iPr)CH{sub 2}CH{sub 2}OH]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yee Seng; Halim, Siti Nadiah Abdul [Malaya Univ., Kuala Lumpur (Malaysia). Dept. of Chemistry; Tiekink, Edward R.T. [Malaya Univ., Kuala Lumpur (Malaysia). Dept. of Chemistry; Sunway Univ., Bandar Sunway (Malaysia). Centre for Chemical Crystallography

    2016-04-01

    Crystallization of Cd[S{sub 2}CN(iPr)CH{sub 2}CH{sub 2}OH]{sub 2} from ethanol yields the coordination polymer [{Cd[S_2CN(iPr)CH_2CH_2OH]_2}.EtOH]{sub ∞} (1) within 3 h. When the solution is allowed to stand for another hour, the needles begin to dissolve and prisms emerge of the supramolecular isomer (SI), binuclear {Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 2}.2EtOH (2). These have been fully characterized spectroscopically and by X-ray crystallography. Polymeric 1 has 2-fold symmetry and features dithiocarbamate ligands coordinating two octahedral Cd atoms in a μ{sub 2}κ{sup 2}-tridentate mode. Binuclear 2 is centrosymmetric with two ligands being μ{sub 2}κ{sup 2}-tridentate as for 1 but the other two being κ{sup 2}-chelating leading to square pyramidal geometries. The conversion of the kinetic crystallization product, 1, to thermodynamic 2 is irreversible but transformations mediated by recrystallization (ethanol and acetonitrile) to related literature SI species, namely coordination polymer [{Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 3}.MeCN]{sub ∞} and binuclear {Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 2}.2H{sub 2}O.2MeCN, are demonstrated, some of which are reversible. Three other crystallization outcomes are described whereby crystal structures were obtained for the 1:2 co-crystal {Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 2}:2[3-(propan-2-yl)-1,3-oxazolidine-2-thione] (3), the salt co-crystal [iPrNH{sub 2}(CH{sub 2}CH{sub 2}OH)]{sub 4}[SO{sub 4}]{sub 2}{Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 2} (4) and the salt [iPrNH{sub 2}(CH{sub 2}CH{sub 2}OH)]{Cd[S_2CN(iPr)CH_2CH_2OH]_3} (5). These arise as a result of decomposition/oxidation of the dithiocarbamate ligands. In each of 3 and 4 the binuclear {Cd[S_2CN(iPr)CH_2CH_2OH]_2}{sub 2} SI, as in 2, is observed strongly suggesting a thermodynamic preference for this form.

  9. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  10. A Linear trans-Bis(imido) Neptunium(V) Actinyl Analog: Np(V)(NDipp)2((t)Bu2bipy)2Cl (Dipp = 2,6-(i)Pr2C6H3).

    Science.gov (United States)

    Brown, Jessie L; Batista, Enrique R; Boncella, James M; Gaunt, Andrew J; Reilly, Sean D; Scott, Brian L; Tomson, Neil C

    2015-08-05

    The discovery that imido analogs of actinyl dioxo cations can be extended beyond uranium into the transuranic elements is presented. Synthesis of the Np(V) complex, Np(NDipp)2((t)Bu2bipy)2Cl (1), is achieved through treatment of a Np(IV) precursor with a bipyridine coligand and lithium-amide reagent. Complex 1 has been structurally characterized, analyzed by (1)H NMR and UV-vis-NIR spectroscopies, and the electronic structure evaluated by DFT calculations.

  11. Studies of a series of [Ni(P(R)2N(Ph)2)2(CH3CN)]2+ complexes as electrocatalysts for H2 production: substituent variation at the phosphorus atom of the P2N2 ligand.

    Science.gov (United States)

    Kilgore, Uriah J; Stewart, Michael P; Helm, Monte L; Dougherty, William G; Kassel, W Scott; DuBois, Mary Rakowski; DuBois, Daniel L; Bullock, R Morris

    2011-11-07

    A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate. © 2011 American Chemical Society

  12. Incommensurate magnetism in PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; Boothroyd, A.T.; Andersen, N.H.

    1998-01-01

    We report resonant x-ray magnetic scattering and high-resolution neutron-diffraction studies of the Pr site magnetism in high quality single crystals of PrBa2Cu3O6.92. These studies reveal that the Pr sublattice orders at 19 K in a well correlated, long period incommensurate structure with probable...

  13. The thermodynamic characteristics of vaporization in the NaI-PrI3 system

    Science.gov (United States)

    Motalov, V. B.; Kudin, L. S.; Markus, T.

    2009-05-01

    The vaporization of the NaI-PrI3 quasi-binary system was studied by high-temperature mass spectrometry over the whole concentration range. At 623-994 K, saturated vapor contained not only (NaI) n and (PrI3) n molecules ( n = 1, 2) and Na+(NaI) n ( n = 0-4) and I-(PrI3) n ( n = 1-2) ions but also mixed molecular and ionic associates recorded for the first time (NaPrI4, Na2PrI5, NaPrI{3/+}, Na2PrI{4/+}, Na3PrI{5/+}, Na4PrI{6/+}, NaPrI{5/-}, and NaPr2I{8/-}). The partial vapor pressures of molecules were calculated, and the equilibrium constants of the dissociation of neutral and charged associates were measured. The enthalpies of molecular and ion-molecular reactions were determined, and the enthalpies of formation of gaseous molecules and ions were obtained.

  14. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  15. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  16. Novel synthetic route to molybdenum hydrido-thiocarbamoyl and hydrosulfido-carbyne complexes by reactions of trans-Mo(N{sub 2}){sub 2}(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} with N,N-dimethylthioformamide

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.L.; Kubas, G.J.; Burns, C.J.; Butcher, R.J. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The reactions of bis(dinitrogen)molybdenum complexes trans-Mo(N{sub 2}){sub 2}(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph, Et) with N,N-dimethylthioformamide (HC(S)NMe{sub 2}) in refluxing benzene under argon give the molybdenum hydrido-thiocarbamoyl complexes MoH({eta}{sup 2}-C(S)NMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph (1a), Et (1b)). On heating at 125{degree}C in toluene solutions, compounds 1a and 1b rearrange to form the molybdenum hydrosulfido-aminocarbyne complexes trans-Mo(SH)-(=CNMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2} (R = Ph (2a), Et (2b)). A mechanism is proposed for this thermal rearrangement which involves migration of the hydride ligand from molybdenum to the sulfur atom of the thiocarbamoyl ligand to give the 16-electron Fischer carbene intermediate Mo-(=C(SH)NMe{sub 2})(R{sub 2}PC{sub 2}H{sub 4}PR{sub 2}){sub 2}, followed by migration of the hydrosulfido group from the carbene carbon to molybdenum. The molecular structures of compounds 1a and 2a have been determined by single-crystal X-ray diffraction studies. 30 refs., 4 figs., 4 tabs.

  17. 2-(2-Oxo-1,4-dihydro-2H-quinazolin-3-yl)- and 2-(2,2-dioxo-1,4-dihydro-2H-2lambda6-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides as potent and selective peptide deformylase inhibitors.

    Science.gov (United States)

    Apfel, C; Banner, D W; Bur, D; Dietz, M; Hubschwerlen, C; Locher, H; Marlin, F; Masciadri, R; Pirson, W; Stalder, H

    2001-06-07

    Potent, selective, and structurally new inhibitors of the Fe(II) enzyme Escherichia coli peptide deformylase (PDF) were obtained by rational optimization of the weakly binding screening hit (5-chloro-2-oxo-1,4-dihydro-2H-quinazolin-3-yl)-acetic acid hydrazide (1). Three-dimensional structural information, gathered from Ni-PDF complexed with 1, suggested the preparation of two series of related hydroxamic acid analogues, 2-(2-oxo-1,4-dihydro-2H-quinazolin-3-yl)-N-hydroxy-acetamides (A) and 2-(2,2-dioxo-1,4-dihydro-2H-2lambda(6)-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides (B), among which potent PDF inhibitors (37, 42, and 48) were identified. Moreover, two selected compounds, one from each series, 36 and 41, showed good selectivity for PDF over several endoproteases including matrix metalloproteases. However, these compounds showed only weak antibacterial activity.

  18. Silver(I) complexes of the weakly coordinating solvents SO(2) and CH(2)Cl(2): crystal structures, bonding, and energetics of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)].

    Science.gov (United States)

    Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing

    2009-06-22

    Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand

  19. Cathodoluminescence properties of SiO2:Pr3+and ZnO.SiO2:Pr3+ phosphor nanopowders

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2010-10-01

    Full Text Available regardless of the incorporation of Pr3+ and nanocrystalline ZnO or annealing at 600 °C. The particles were mostly spherical and agglomerated as confirmed by Field Emission Scanning Electron Microscopy. Thermogravimetric analysis of dried gels performed... Science, vol. 45(19): 5228-5236 Cathodoluminescence properties of SiO2:Pr 3+and ZnO·SiO2:Pr 3+ phosphor nanopowders G. H. Mhlongo, O. M. Ntwaeaborwa, M. S. Dhlamini, H. C. Swart, K. T. Hillie ABSTRACT: The successful incorporation of Zn...

  20. Energy Transfer between Er3+ and Pr3+ for 2.7 μm Fiber Laser Material

    Directory of Open Access Journals (Sweden)

    Xiangtan Li

    2014-01-01

    Full Text Available Energy transfer mechanisms between Er3+ and Pr3+ in Er3+/Pr3+ codoped germinate glass are investigated in detail. Under 980 nm LD pumping, 2.7 μm fluorescence intensity enhanced greatly. Meanwhile, 1.5 μm lifetime and fluorescence were suppressed deeply due to the efficient energy transfer from Er3+:4I13/2 to Pr3+:3F3,4, which depopulates the 4I13/2 level and promotes the 2.7 μm transition effectively. The obvious change in J-O parameters indicates that Pr3+ influences the local environment of Er3+ significantly. The increased spontaneous radiative probability in Er3+/Pr3+ glass is further evidence for enhanced 4I11/2 → 4I13/2 transition. The Er3+:4I11/2Pr3+:1G4 process is harmful to the population accumulation on 4I11/2 level, which inhibits the 2.7 μm emission. The microscopic energy transfer coefficient of Er3+:4I13/2Pr3+:3F3,4 is 42.25 × 10−40 cm6/s, which is 11.5 times larger than that of Er3+:4I11/2Pr3+:1G4. Both processes prefer to be non-phonon assisted, which is the main reason why Pr3+ is so efficient in Er3+:2.7 μm emission.

  1. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  2. Study of NaBH4 reaction with RhCl3·4H2O and H2PtCl6·6H2O in dimethylformamide

    International Nuclear Information System (INIS)

    Khain, V.S.; Val'kova, V.P.

    1988-01-01

    Data on study of NaBH 4 reactions with RhCl 3 x4H 2 O and H 2 PtCl 6 x6H 2 O in dimethylformamide, which is a good solvent of both complex hydride and compounds of platinum metals are presented. Rhodium (3) and platinum (4) reduction by sodium tetrahydridoborate in dimethylformamide proceeds quantitatively up to element state. Depositions of powder-like rhodium and platinum or their sols stable up to 8 months are formed depending on the ratio of concentrations of the reacting substances. Stoichiometry of redox-reactions is established based on spectrophotometric, gasovolumetric measurements,

  3. 1,3-dialkyl- and 1,3-diaryl-3,4,5,6-tetrahydropyrimidin-2-ylidene rhodium(i) and palladium(II) complexes: synthesis, structure, and reactivity.

    Science.gov (United States)

    Mayr, Monika; Wurst, Klaus; Ongania, Karl-Hans; Buchmeiser, Michael R

    2004-03-05

    The synthesis of novel 1,3-diaryl- and 1,3-dialkylpyrimidin-2-ylidene-based N-heterocyclic carbenes (NHCs) and their rhodium(i) and palladium(II) complexes is described. The rhodium compounds bromo(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (7), bromo(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (8) (cod=eta(4)-1,5-cyclooctadiene, mesityl=2,4,6-trimethylphenyl), chloro(cod)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (9), and chloro(cod)[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (10) were prepared by reaction of [[Rh(cod)Cl](2)] with lithium tert-butoxide followed by addition of 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium bromide (3), 1,3-dimesityl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate (4), 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium bromide (6), and 1,3-di-2-propyl-3,4,5,6-tetrahydropyrimidinium tetrafluoroborate, respectively. Complex 7 crystallizes in the monoclinic space group P2(1)/n, and 8 in the monoclinic space group P2(1). Complexes 9 and 10 were used for the synthesis of the corresponding dicarbonyl complexes dicarbonylchloro(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)rhodium (11), and dicarbonylchloro[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene]rhodium (12). The wavenumbers nu(CO I)/nu(CO II) for 11 and 12 were used as a quantitative measure for the basicity of the NHC ligand. The values of 2062/1976 and 2063/1982 cm(-1), respectively, indicate that the new NHCs are among the most basic cyclic ligands reported so far. Compounds 3 and 6 were additionally converted to the corresponding cationic silver(i) bis-NHC complexes [Ag(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(2)]AgBr(2) (13) and [Ag[1,3-bis(2-propyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene](2)]AgBr(2) (14), which were subsequently used in transmetalation reactions for the synthesis of the corresponding palladium(II) complexes Pd(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2

  4. Thermogravimetric investigations on A(H2O)6BX6 complexes and the formation of ABX6 and ABO3 structures

    NARCIS (Netherlands)

    Heilbron, M.A.; Gellings, P.J.

    1976-01-01

    Thermogravimetry (TG) of A(H2O)6BX6 complexes are presented, with A = Cd2+, Co2+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+, B=Si4+, Sn4+, Ti4+, Zr4+, and X=Cl−, F−. On a selected number of complexes, differential thermal analyses (DTA) and differential scanning calorimetric measurements (DSC) have

  5. An i.r. investigation on some calcium aluminate hydrates, Ca2Al(OH)6+X-.yH2O (= 3CaO.Al2O3.CaX2.nH2O, X- = univalent anion)

    NARCIS (Netherlands)

    Houtepen, C.J.M.; Stein, H.N.

    1976-01-01

    The i.r. spectra of some hydrated and dehydrated calcium aluminate hydrates of the type Ca2Al(OH)6+X-·yH2O with X- = Cl-, Br-, J-, ClO3-, NO3-, ClO4- (y = 2) and X- = BrO3-, JO3- (2

  6. Optical spectroscopy of two-dimensional layered (C(6)H(5)C(2)H(4)-NH(3))(2)-PbI(4) perovskite.

    Science.gov (United States)

    Gauthron, K; Lauret, J-S; Doyennette, L; Lanty, G; Al Choueiry, A; Zhang, S J; Brehier, A; Largeau, L; Mauguin, O; Bloch, J; Deleporte, E

    2010-03-15

    We report on optical spectroscopy (photoluminescence and photoluminescence excitation) on two-dimensional self-organized layers of (C(6)H(5)C(2)H(4)-NH(3))(2)-PbI(4) perovskite. Temperature and excitation power dependance of the optical spectra gives a new insight into the excitonic and the phononic properties of this hybrid organic/inorganic semiconductor. In particular, exciton-phonon interaction is found to be more than one order of magnitude higher than in GaAs QWs. As a result, photoluminescence emission lines have to be interpreted in the framework of a polaron model.

  7. Three PbII coordination polymers based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid: Syntheses, crystal structures, and fluorescent properties

    International Nuclear Information System (INIS)

    Yu, Xiao-Yang; Xin, Rui; Gao, Wei-Ping; Wang, Na; Zhang, Xiao; Yang, Yan-Yan; Qu, Xiao-Shu

    2013-01-01

    Three lead coordination polymers, [PbCl(C 10 H 6 N 3 O 4 )(H 2 O)·H 2 O] n (1), [Pb(C 10 H 6 N 3 O 4 ) 2 (H 2 O)] n (2) and [Pb 3 (C 10 H 5 N 3 O 4 ) 3 ] n (3) (C 10 H 7 N 3 O 4 =2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. In 1, Cl anions connected neighboring wave-like 2D layers, which are constructed with left- and right-handed helical chains, into a 3D network structure with a (6 3 )(6 5 ·8) topology. In 2, Pb cations are linked into a 3D 6 6 network with left- and right-handed helixes by μ 2 -bridging C 10 H 6 N 3 O 4 − ligands. In 3, C 10 H 5 N 3 O 4 2− ligands link Pb 6 O 12 clusters into a 3D (4 12 ·6 3 ) network. Their fluorescent properties were also investigated. - Graphical abstract: Three 3D lead compounds based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid have been hydrothermally synthesized. Four new coordination modes of the organic ligand are first reported. Display Omitted - Highlights: • Three new Pb(II) complexes have been synthesized and characterized. • Left- and right-handed helical chains can be found in the 3D networks of 1 and 2. • Pb 6 O 12 clusters are connected into (4 12 ·6 3 ) network in 3

  8. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH2)3]CdI3 and [4-ClC6H5NH3]3CdBr5

    International Nuclear Information System (INIS)

    Gesing, Thorsten M.; Lork, Enno; Terao, Hiromitsu; Ishihara, Hideta

    2016-01-01

    The crystal structures of [C(NH 2 ) 3 ]CdI 3 (1) and [4-ClC 6 H 5 NH 3 ] 3 CdBr 5 (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2 1 /c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI 4 ] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr 6 ] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three 127 I (m = ±1/2 <-> m = ±3/2), five 81 Br, and three 35 Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd 5 I 16 ] 6- for 1 and [Cd 3 Br 16 ] 10- for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  9. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complex I and III

    Directory of Open Access Journals (Sweden)

    Daniel P Lindsay

    2015-03-01

    Full Text Available Excessive mitochondrial reactive oxygen species (ROS emission is a critical component in the etiolo-gy of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complex I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rote-none, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore. These results indicate that ROS production by complex I and by III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study sug-gests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III.

  10. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltametry

    Science.gov (United States)

    Cady, Clyde W.; Shinopoulos, Katherine E.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(H2O)](NO3)3 [terpy = 2,2′:6′,2″-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments will show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen. PMID:20372724

  11. Dentritic Carbosilanes Containing Silicon-Bonded 1-[C6H2(CH2NMe2)2-3,5-Li-4] or 1-[C6H3(CH2NMe2)-4-Li-3] Mono-and Bis(amino)aryllithium End Groups: Structure of {[CH2SiMe2C6H3(CH2NMe2)-4-Li-3]2}2

    NARCIS (Netherlands)

    Koten, G. van; Kleij, A.W.; Kleijn, H.; Jastrzebski, J.T.B.H.; Smeets, W.J.J.; Spek, A.L.

    1999-01-01

    A useful synthetic procedure for the incorporation of the potentially multidentate monoanionic 1-[C6H2(CH2NMe2)2-3,5]- (=NCN) and 1-[C6H3(CH2NMe2)-4]- (=CN) ligands via the para-position on the periphery of carbosilane (CS) dendrimers has been developed. Lithiation of suitable brominated precursors

  12. Bis[μ-3-(1H-benzimidazol-2-ylbenzoato]dicopper(I

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Su

    2010-12-01

    Full Text Available The dimeric title complex, [Cu2(C14H9N2O22], resides on a center of symmetry. In the crystal, the molecules are packed via π–π stacking interactions alternating between imidazole and benzene rings [mean interplanar distances = 3.754 (3 and 3.624 (3 Å]. An intermolecular N—H...O hydrogen bond links the dimers together. The two-coordinate CuI atom displays an O—Cu—N bond angle of 176.3 (2°. The Cu...Cu distance within the dimer is 5.100 (2 Å.

  13. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle

  14. Mercury(II) and methylmercury(II) complexes of novel sterically hindered thiolates: 13C and 199Hg NMR studies and the crystal and molecular structures of [MeHg(SC6H2-2,4,6-Pri3)], [Hg(SC6H4-2-SiMe3)2], [Hg(2-SC5H3N-3-SiMe3)2], and [Hg{(2-SC6H4)2SiMe2}]2

    International Nuclear Information System (INIS)

    Block, E.; Brito, M.; Gernon, M.; McGowty, D.; Kang, Hyunkyu; Zubieta, J.

    1990-01-01

    Several series of complexes of the types [MeHg(SR)] and [Hg(SR) 2 ] have been synthesized, where the ligands are members of new classes of sterically hindered thiolates, including (triorganosilyl)methanethiols, 2-(triorganosilyl)benzenethiols, 3-(triorganosilyl)pyridine-2-thiols, and bis(2-mercaptophenyl) derivatives. Detailed 1 H, 13 C, and 199 Hg NMR studies revealed several general trends. The 199 Hg chemical shifts moved upfield in the order [MeHg(SR)] 2 ] 2 ] 2 ]. For the [MeHg(SR)] series of complexes, 1 J(Hg-C) correlates with δ( 13 C(methyl)) and with the type of thiolate ligand. Anomalous behavior is observed for oligomeric species. There is only a limited correlation of δ( 199 Hg) with steric cone angles for a subset of the complexes. Crystal data for the complexes are reported. 86 refs., 7 figs., 11 tabs

  15. [4,6-Dimethyl­pyrimidine-2(1H)-thione-κS]iodidobis(triphenyl­phosphane-κP)copper(I)

    Science.gov (United States)

    Pakawatchai, Chaveng; Wattanakanjana, Yupa; Choto, Patcharanan; Nimthong, Ruthairat

    2012-01-01

    In the mononuclear title complex, [CuI(C6H8N2S)(C18H15P)2], the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two triphenyl­phosphane ligands, one S atom from a 4,6-dimethyl­pyrimidine-2(1H)-thione ligand and one iodide ion. There is an intra­molecular N—H⋯I hydrogen bond. In the crystal, π–π stacking inter­actions [centroid–centroid distance = 3.594 (1) Å] are observed. PMID:22719327

  16. (E-3-Methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-04-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(thiophen-2-yl-1-propenyl-2(3H-benzothiazolone, was synthesized by Claisen-Schmidt condensation of 3-methyl-2(3H-benzothiazolone-6-carbaldehyde with 2-acetylthiophene in 94% yield. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  17. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  18. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  19. Crystal and molecular structure of the coordination compounds of Er3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL21(NO3)2]2[Er(NO3)2(H2O)5]0.333(NO3)2.333 · 2.833H2O and its ethyl substituted derivative [ErL22(NO3)2][Er(NO3)5]0.5 · 0.5H2O

    International Nuclear Information System (INIS)

    Polyakova, I. N.; Baulin, V. E.; Ivanova, I. S.; Pyatova, E. N.; Sergienko, V. S.; Tsivadze, A. Yu.

    2015-01-01

    The coordination compounds of Er 3+ with 1-(methoxydiphenylphosphoryl)-2-diphenylphosphorylbenzene [ErL 2 1 (NO 3 ) 2 ] 2 [Er(NO 3 ) 2 (H 2 O) 5 ] 0.333 (NO 3 ) 2.333 · 2.833H 2 O (I) and its ethyl substituted derivative [ErL 2 2 (NO 3 ) 2 ][Er(NO 3 ) 5 ] 0.5 · 0.5H 2 O (II) are synthesized and their crystal structures are studied. I and II contain [ErL 2 (NO 3 ) 2 ] + complex cations of identical composition and close structure. The eight-vertex polyhedron of the Er atom in the shape of a distorted octahedron with two split trans vertices is formed by the O atoms of the phosphoryl groups of L ligands and nitrate anions. L ligands close nine-membered metallocycles. The structures contain spacious channels which are populated differently, namely, by disordered [Er(NO 3 ) 2 (H 2 O) 5 ] + complex cations, NO 3 − anions, and crystallization water molecules in I and disordered [Er(NO 3 ) 5 ] 2complex anions and crystallization water molecules in II. The IR spectra of I and II are studied

  20. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus–nitrogen PN3-pincer cobalt(ii) complexes

    KAUST Repository

    Gong, Dirong

    2016-11-11

    A new family of cobalt complexes (CoCl2-H, CoCl2-Me, CoCl2-iPr, CoBr2-H, CoBr2-Me, CoBr2-iPr, CoI2-H, CoI2-Me, and CoI2-iPr) supported by a PN3 ligand (6-(N,N′-di-t-butylphosphino)-2-pyrazol-yl-aminopyridine) have been prepared and fully characterized by FT-IR, elemental analysis, and X-ray analysis. The X-ray analysis reveals a trigonal bipyramidal conformation in the solid state for all representative complexes, CoCl2-H, CoBr2-H, CoBr2-iPr and CoI2-Me. The cobalt center is chelated by the PN3 ligand through the pyridinyl nitrogen, the pyrazol nitrogen and the phosphorus donor, with a long Co-P bond distance indicating a labile character. On activation with AlEt2Cl, Al2Et3Cl3, MAO, [Ph3C]+[B(C6F5)4]-/AliBu3 or AliBu3, cis-1,4 selective butadiene polymerization was achieved with up to 98.6% selectivity. The polymerization results show that the cis-1,4 selectivity is influenced by the steric hindrance, increasing with the bulkiness of the substituent groups (CoX2-iPr > CoX2-Me > CoX2-H) at the 3,5-positions of the pyrazole moiety, together with a slight decrease in activity. The activity changes in the order CoCl2L ≈ CoBr2L > CoI2L (for the same ligand L) when MAO is used as the activator, while the high level of cis-1,4 selectivity is maintained. It is possible to switch the selectivity from cis-1,4 to syndiotactic-1,2 by adding PPh3 © The Royal Society of Chemistry.

  1. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  2. Aspects of transmetallation reactions of 2-Me2NCH2C6H4- and 2,6-(Me2NCH2)-C6H3-metal (Pd,Pt,Hg,Tl) complexes with metal carboxylates and low-valent metal (Pd,Pt) complexes

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Vrieze, K.

    1981-01-01

    A study has been made of reactions involving organometallic compounds containing ortho-Me{2}NCH{2} substituted aryl ligands. The single step syntheses of the new compounds [(2-Me{2}NCH{2}C{6}H{4}){2}TlCl], [ [{(S)-2-Me{2}NCH(Me)C{6}H{4}}{2}TlCl], [{(S)-2-Me{2}NCH(Me)C{6}H{4}}TlCl{2}], [{2,

  3. 2-Methylpyridinium/pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olates as potent anticonvulsant agents—synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Mangaiyarkarasi, G.; Kalaivani, D., E-mail: kalaivbalaj@yahoo.co.in [Affiliated to Bharathidasan University, Post Graduate and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli-620 002 (India)

    2013-12-15

    The molecular salt, 2-methylpyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropy-rimidin-4-olate) (I), is prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, pyrimidine-2,4,6-(1H,3H,5H)-trione (barbituric acid) and 2-methylpyridine at room temperature, and the molecular salt, pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (II), is prepared from the same reactants, by dissolving them in hot DMSO and ethanol mixture at 70°C. The structures of I and II are characterized by visible, IR, {sup 1}H-NMR, {sup 13}C-NMR and elemental analysis and confirmed by single crystal X-ray analysis. Both the salts crystallize in triclinic crystal system with sp. gr. P-bar1. They possess noticeable anticonvulsant activity even at low concentration (25 mg/kg). Acute toxicity studies of these complexes indicate that LD{sub 50} values are greater than 1500 mg/kg and the tested animals do not show any behavioural changes.

  4. 2-Methylpyridinium/pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olates as potent anticonvulsant agents—synthesis and crystal structure

    International Nuclear Information System (INIS)

    Mangaiyarkarasi, G.; Kalaivani, D.

    2013-01-01

    The molecular salt, 2-methylpyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropy-rimidin-4-olate) (I), is prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, pyrimidine-2,4,6-(1H,3H,5H)-trione (barbituric acid) and 2-methylpyridine at room temperature, and the molecular salt, pyridinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (II), is prepared from the same reactants, by dissolving them in hot DMSO and ethanol mixture at 70°C. The structures of I and II are characterized by visible, IR, 1 H-NMR, 13 C-NMR and elemental analysis and confirmed by single crystal X-ray analysis. Both the salts crystallize in triclinic crystal system with sp. gr. P-bar1. They possess noticeable anticonvulsant activity even at low concentration (25 mg/kg). Acute toxicity studies of these complexes indicate that LD 50 values are greater than 1500 mg/kg and the tested animals do not show any behavioural changes

  5. Enhanced ~2.7 µm emission investigation of Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition in Yb,Er,Pr:SrLaGa{sub 3}O{sub 7} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Baotong [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007 (China); Li, Jianfu; Zhu, Zhaojie; You, Zhenyu [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Tu, Chaoyang, E-mail: tcy@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2017-03-15

    The bulk crystal of 5at% Yb{sup 3+}, 20 at% Er{sup 3+} and 0.2 at% Pr{sup 3+} triply doped SrLaGa{sub 3}O{sub 7} (abbr. as Yb,Er,Pr:SLGO) was grown by the Czochralski method. The effects of co-dopant Yb{sup 3+} and Pr{sup 3+} on the spectroscopic properties and the mutual energy transfer mechanism were investigated, via the measurements of its absorption, near-infrared and mid-infrared fluorescence spectra, as well as the fluorescence decay curves of Er{sup 3+}:{sup 4}I{sub 13/2} and {sup 4}I{sub 11/2} levels at room temperature. As compared with 20at% Er{sup 3+} singly doped SrLaGa{sub 3}O{sub 7} crystal, ~2.7 µm emission intensity corresponding to Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition is enhanced greatly in the Yb,Er,Pr:SLGO crystal. Spectral analyses indicate that the sensitization of Yb{sup 3+} to Er{sup 3+} improves the ~2.7 µm emission in Yb,Er,Pr:SLGO crystal, meanwhile, the depopulation of Pr{sup 3+} from Er{sup 3+} decreases the ~1.5 µm emission and inhibits the self-termination effect. The energy transfer efficiencies of Yb{sup 3+}→Er{sup 3+} (ET1), Er{sup 3+}→Pr{sup 3+} (ET2) and Er{sup 3+}→Pr{sup 3+} (ET3) were estimated and discussed. The above results conclude that Yb,Er,Pr:SLGO crystal is a good candidate for LD pumped mid-infrared laser. - Graphical abstract: As compared with Er: SrLaGa{sub 3}O{sub 7} crystal, ~2.7 µm MIR emissions corresponding to Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition were enhanced in Yb{sup 3+}, Er{sup 3+} and Pr{sup 3+} triply doped SrLaGa{sub 3}O{sub 7} crystal owing to the sensitization of co-dopant Yb{sup 3+} via ET1, at the same time, ~1.5 µm NIR emissions were weakened owing to the depopulation of co-dopant Pr{sup 3+} via ET3.

  6. Improved Dehydrogenation Properties of 2LiNH2-MgH2 by Doping with Li3AlH6

    Directory of Open Access Journals (Sweden)

    Shujun Qiu

    2017-01-01

    Full Text Available Doping with additives in a Li-Mg-N-H system has been regarded as one of the most effective methods of improving hydrogen storage properties. In this paper, we prepared Li3AlH6 and evaluated its effect on the dehydrogenation properties of 2LiNH2-MgH2. Our studies show that doping with Li3AlH6 could effectively lower the dehydrogenation temperatures and increase the hydrogen content of 2LiNH2-MgH2. For example, 2LiNH2-MgH2-0.1Li3AlH6 can desorb 6.43 wt % of hydrogen upon heating to 300 °C, with the onset dehydrogenation temperature at 78 °C. Isothermal dehydrogenation testing indicated that 2LiNH2-MgH2-0.1Li3AlH6 had superior dehydrogenation kinetics at low temperature. Moreover, the release of byproduct NH3 was successfully suppressed. Measurement of the thermal diffusivity suggests that the enhanced dehydrogenation properties may be ascribed to the fact that doping with Li3AlH6 could improve the heat transfer for solid–solid reaction.

  7. Study into non-quasibinary sections of Pr2S3-Bi2S3-Pr2O3 triple system (Bi2S3)0. 45(Pr2O3)0. 55 - (Bi2S3)0. 45(Pr2S3)0. 55 and (Bi2S3)0. 75 (Pr2S3)0. 25 - (Bi2S3)0. 75(Pr2O3)0. 25

    OpenAIRE

    НЕЙМАТОВА А.В.; МАМЕДОВ Ф.М.; БАХТИЯРЛЫ И.Б.

    2016-01-01

    Методами дифференциальнo-термическoго (ДТ), рентгенофазового (РФ), микроструктурного (МС) методов анализа исследованы неквазибинарные разрезы (Bi2S3)0.45(Pr2O3)0.55 (Bi2S3)0.45(Pr2S3)0.55 и (Bi2S3)0.75 (Pr2S3)0.25 (Bi2S3)0.75(Pr2O3)0.25 тройной системы Pr2S3-Bi2S3-Pr2O3 построена диаграмма состояния, определены координанты нони моновариантныхравновесий....

  8. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4) 2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4) 2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table

  9. Interaction between exo-nido-ruthenacarborane [Cl(Ph3P)2Ru]-5,6,10-(μ-H)3-10-H-7,8-C2B9H8 and bromine

    International Nuclear Information System (INIS)

    Timofeev, S.V.; Lobanova, I.A.; Petrovskij, P.V.; Starikova, Z.A.; Bregadze, V.I.

    2001-01-01

    Interaction between exo-nido-ruthenacarborane [Cl(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 with bromine in CH 2 Cl 2 solutions at 0 deg C studied using the methods of elementary analysis, NMR, IR spectroscopy and X-ray diffraction analysis. It was ascertained that the reaction gives rise to bromine atom substitution for chlorine atom in octahedral surrounding of ruthenium atom with formation of complex [Br(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 . The complex is crystallized in monoclinic crystal system with the following unit cell parameters a = 12.592 (1), b = 20.687 (2), c = 16.628 (2) A, β = 94.372 (3) deg, sp. gr. P2 1 /n, Z = 4. Coordination octahedron of ruthenium atom is formed by three hydrogen atoms bound with boron atoms in one triangular face of carborane, two phosphorus atoms and one bromine atom [ru

  10. Synthesis, structure characterization and biological studies on a new aromatic hydrazone, 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione, and its transition metal complexes

    Science.gov (United States)

    Kumar, Shubha S.; Biju, S.; Sadasivan, V.

    2018-03-01

    A new aromatic hydrazone 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione has been synthesized by Japp-Klingemann reaction from diazotized 4-aminoantipyrine and Meldrum's acid. A few 3d-metal ion complexes of this hydrazone were synthesized. The compound and its complexes were characterized by UV-Visible, 1H NMR, ESR, Mass spectral, molar conductance and magnetic susceptibility measurements. The compound was found to exist in hydrazone form in solid state and solution from SXRD and 1H NMR study. The influence of pH on the molecule was studied and found that it shows azo/enol-hydrazone tautomerism in solution. This molecule act as a univalent tridentate ligand and the complexes were assigned to have a 1:2 stoichiometry (M:L). The antioxidant properties of the compounds were explored by DPPH assay and found that the ligand possesses better free radical scavenging effect than the complexes. Antimicrobial activities of these compounds were investigated and were found to be active.

  11. Diarylhalotelluronium(IV) cations [(8-Me2NC10H6)2TeX]+ (X = Cl, Br, I) stabilized by intramolecularly coordinating N-donor substituents.

    Science.gov (United States)

    Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela

    2013-09-14

    The stoichiometrically controlled halogenation of the intramolecularly coordinated diaryltelluride (8-Me2NC10H6)2Te using SO2Cl2, Br2 and I2 was studied. At an equimolar ratio, the diarylhalotelluronium cations [(8-Me2NC10H6)2TeX](+) (1, X = Cl; 2, X = Br; 3, X = I) formed and were isolated as 1·Cl(-)·H2O·1/2THF, 2·Br(-), and 3·I(-), respectively. When the same reactions were carried out in the presence of KPF6, 1·PF6(-) and 22·Br(-)·PF6(-) were obtained. The chlorination of (8-Me2NC10H6)2Te with an excess of SO2Cl2 occurred with a double electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the ortho- and para-positions) and afforded the diaryltellurium dichloride (5,7-Cl2-8-Me2NC10H4)2TeCl2 (4). The bromination of (8-Me2NC10H6)2Te with three equivalents of Br2 took place with a single electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the para-positions) and provided the diaryltellurium dibromide (5-Br-8-Me2NC10H5)2TeBr2 (5), while an excess of Br2 produced the diarylbromotelluronium cation [(5-Br-8-Me2NC10H5)2TeBr](+) (6) that was isolated as 6·Br3(-). The reaction of (8-Me2NC10H6)2Te with two or three equivalents of iodine provided 3·I3(-) and 3·I3(-)·I2, respectively. In the presence of water, 1·Cl(-)·H2O·1/2THF, 2·Br(-), 3·I(-) and 3·I3(-) hydrolyzed to give the previously known diarylhydroxytelluronium cation [(8-Me2NC10H6)2TeOH](+) (7) that was isolated as 7·Cl(-), 7·Br(-)·H2O·THF, 7·I(-) and 7·I3(-)·H2O, respectively. The molecular structures of 1-7 were investigated in the solid-state by (125)Te MAS NMR spectroscopy and X-ray crystallography and in solution by multinuclear NMR spectroscopy ((1)H, (13)C, (125)Te), electrospray mass spectrometry and conductivity measurements. The stabilization of cations 1-3 by the intramolecular coordination was estimated by DFT calculations at the B3PW91/TZ level of theory.

  12. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  13. Crystal structures and luminescence properties of two Cd(II) complexes based on 2-(1H-imidazol-1methyl)-6-methyl-1H-benzimidazole

    International Nuclear Information System (INIS)

    Zhang, Yuhong; Meng, Xiangru; Wen, Yu; Li, Peng; Ma, Lin; Zhang, Qiuju

    2015-01-01

    Two new complexes, {[Cd(immb)I 2 ].DMF} n (1) and {[Cd 3 (immb)(btc) 2 ]. H 2 O} n (2) (immb = 2-(1H-imidazol- 1-methyl)-6-methyl-1H-benzimidazole, btc = 1,2,3-benzenetricarboxylate, DMF = dimethyl formamide), have been synthesized and characterized. Single crystal X-ray diffraction shows that 1 exhibits a chain structure constructed by immb ligands bridging Cd(II) ions. In 2, Cd(II) ions are linked by immb ligands with bridging mode and btc3- anions with the μ 22 :η 1 bonding pattern leading to a 2D structure. Luminescent properties have been investigated in the solid state at room temperature.

  14. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  15. Pyrrolophenanthridines. I. Synthesis of 2!H and 13C NMR spectra of 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]-phenanthridines

    International Nuclear Information System (INIS)

    Frolova, E.P.; Akhvlediani, R.N.; Krasnokut-skii, S.N.; Kurkovskaya, L.N.; Suvorov, N.N.

    1987-01-01

    A preparative method is proposed for the synthesis of 3- and 8-aminophenanthridines, from which the new heterocyclic systems 1H-pyrrolo[2,3-c]- and 1H-pyrrolo[3,2-i]phenanthridines were synthesized by means of the Fischer reaction

  16. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  17. On the synthesis of CoAPO-46, -11 and -44 molecular sieves from a Co(Ac)2 · 4H2O· Al(iPrO)3·H3PO4 · Pr2NH·H2O gel via experimental design

    NARCIS (Netherlands)

    Gao, Q.; Weckhuysen, B.M.; Schoonheydt, R.A.

    1999-01-01

    The hydrothermal synthesis of cobalt-substituted microporous alumino-phosphates from an r[Pr2NH] ·[CoxAl1−xP1]O4 · y[H2O] gel is described. A well-defined set of experiments, based on an experimental design, was carried out in order to rationalize the influence of the crystallization

  18. Synthesis and crystal structure of a new homoleptic tetraarylruthenium(IV) complex Ru(2,4,5-Me{sub 3}C{sub 6}H{sub 2}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chang-Jiu; Wu, Xiu-Li; Ma, Xiu-Fang; Jia, Ai-Quan; Zhang, Qian-Feng [Anhui Univ. of Technology, Anhui (China). Inst. of Molecular Engineering and Applied Chemistry and Anhui Province Key Lab. of Metallurgy Engineering and Resources Recycling

    2017-08-01

    Treatment of [Ru(acac){sub 3}] (acac-=acetylacetonate) with (2,4,5-Me{sub 3}C{sub 6}H{sub 2})MgBr, followed by column chromatography in air, afforded the homoleptic tetraaryl-ruthenium(IV) complex [Ru(2,4,5-Me{sub 3}C{sub 6}H{sub 2}){sub 4}] (1) in moderate yield. The product was characterized by proton NMR spectroscopy and microanalyses. Its crystal structure has also been established by X-ray crystallography.

  19. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  1. Synthesis, crystal structures and spectral properties of 6'-phenyl-2,2'-bipyridine derivatives and their CdLI(2) complexes.

    Science.gov (United States)

    Zhao, Xuesong; Chen, Yanxin; Luo, Junshan; Wang, Hui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-04-05

    Two novel 6'-phenyl-2,2'-bipyridine ligands (L1, L2) and their CdL(1,2)I2 complexes (1, 2) were synthesized and characterized by elemental analysis, (1)H NMR, IR, MALDI-TOF spectroscopy, and single crystal X-ray diffraction analysis. The results reveal that the central cadmium(II) atom in the complexes was coordinated by two iodide ions and two nitrogen atoms from L1, L2, forming a distorted coordination geometry. The electronic absorption properties of them were investigated on the basis of theoretical calculations (TD-DFT). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Densities, viscosities, and refractive indexes for {C2H5CO2(CH2)2CH3+C6H13OH+C6H6} at T=308.15 K

    International Nuclear Information System (INIS)

    Casas, Herminio; Garcia-Garabal, Sandra; Segade, Luisa; Cabeza, Oscar.; Franjo, Carlos; Jimenez, Eulogio

    2003-01-01

    In this work we present densities, kinematic viscosities, and refractive indexes of the ternary system {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH+C 6 H 6 } and the corresponding binary mixtures {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 6 }, {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH}, and {C 6 H 13 OH+C 6 H 6 }. All data have been measured at T=308.15 K and atmospheric pressure over the whole composition range. The excess molar volumes, dynamic viscosity deviations, and changes of the refractive index on mixing were calculated from experimental measurements. The results for binary mixtures were fitted to a polynomial relationship to estimate the coefficients and standard deviations. The Cibulka equation has been used to correlate the experimental values of ternary mixtures. Also, the experimental values obtained for the ternary mixture were used to test the empirical methods of Kohler, Jacob and Fitzner, Colinet, Tsao and Smith, Toop, Scatchard et al., and Hillert. These methods predict excess properties of the ternary mixtures from those of the involved binary mixtures. The results obtained for dynamic viscosities of the binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, McAllister, Auslaender, and Teja-Rice. Finally, the experimental refractive indexes were compared with the predicted results for the Lorentz-Lorenz, Gladstone-Dale, Wiener, Heller, and Arago-Biot equations. In all cases, we give the standard deviation between the experimental data and that calculated with the above named relations

  3. Reactivity of the Donor-Stabilized Silylenes [iPrNC(Ph)NiPr]2 Si and [iPrNC(NiPr2 )NiPr]2 Si: Activation of CO2 and CS2.

    Science.gov (United States)

    Mück, Felix M; Baus, Johannes A; Nutz, Marco; Burschka, Christian; Poater, Jordi; Bickelhaupt, F Matthias; Tacke, Reinhold

    2015-11-09

    Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six-coordinate silicon(IV) complexes 4 (previous work) and 8, respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six-coordinate silicon(IV) complex 10, the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2, however, yields the five-coordinate silicon(IV) complex 13 with a carbon-bound CS2 (2-) ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV) complexes 5 and 6 with CO2 also affords the six-coordinate carbonatosilicon(IV) complexes 4 and 8, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Expression, refolding and crystallization of murine MHC class I H-2Db in complex with human β2-microglobulin

    International Nuclear Information System (INIS)

    Sandalova, Tatyana; Michaëlsson, Jakob; Harris, Robert A.; Ljunggren, Hans-Gustaf; Kärre, Klas; Schneider, Gunter; Achour, Adnane

    2005-01-01

    Mouse MHC class I H-2Db in complex with human β2m and the LCMV-derived peptide gp33 has been produced and crystallized. Resolution of the structure of this complex combined with the structural comparison with the previously solved crystal structure of H-2Db/mβ2m/gp33 should lead to a better understanding of how the β2m subunit affects the overall conformation of MHC complexes as well as the stability of the presented peptides. β 2 -Microglobulin (β 2 m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human β 2 m (hβ 2 m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse β 2 m (mβ 2 m) by hβ 2 m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific β 2 m subunits on MHC class I conformation, murine MHC class I H-2D b in complex with hβ 2 m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P2 1 , with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 Å, β = 102.4°, were obtained

  5. 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-ylmethyl]-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-yl-methyl]-6-hydroxy-1,3-di-methylpyrimidine-2,4(1H,3H-dione 3 was synthesized via a multicomponent reaction. The Aldol–Michael addition reactions of N,N-dimethylbarbituric acid, cyclohexane-1,3-dione, and 3-fluorobenzaldehyde in aqueous solution gave the product in high yield. The molecular structure of the compound was confirmed by spectroscopic methods and X-ray crystallography. The title compound (C19H19FN2O5·H2O crystallizes in the Monoclinic form, P21/c, a = 7.8630 (5 Å, b = 20.0308 (13 Å, c = 11.3987 (8 Å, β = 104.274 (3°, V = 1739.9 (2° Å3, Z = 4, Rint = 0.117, wR(F2 = 0.124, T = 100 K.

  6. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    Science.gov (United States)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  7. Bis[μ-1,2-bis(1H-imidazol-1-ylmethylbenzene-κ2N3:N3′]disilver(I 3-carboxylato-4-hydroxybenzenesulfonate methanol solvate trihydrate

    Directory of Open Access Journals (Sweden)

    Hong-Mei Sun

    2009-09-01

    Full Text Available In the title compound, [Ag2(C14H14N42](C7H4O6S·CH3OH·3H2O, the complex dication has a binuclear structure in which each AgI ion is two-coordinated in a slightly distorted linear coordination geometry. The two AgI atoms are bridged by two 1,2-bis[(1H-imidazol-1-ylmethyl]benzene (IBI ligands, forming a 22-membered ring. In the dication, π–π interactions are observed between the imidazole rings with centroid–centroid distances of 3.472 (3 and 3.636 (3 Å. In the crystal, the uncoordinated water molecules, anions and methanol solvent molecules are linked into chains along the b axis by O—H...O hydrogen bonds. In addition, π–π interactions are observed between the benzene rings of the IBI ligands, with a centroid–centroid distance of 3.776 (2 Å. The sulfonate group is disordered over two orientations with occupancies of 0.676 (12 and 0.324 (12.

  8. Comparative study of the catalytic activity of the complexes Cp*RuCl(PAr3)2 [Ar = -C6H5 and 4-CF3-C6H4] in the ATRP of styrene

    International Nuclear Information System (INIS)

    Villa-Hernandez, Alejandro M.; Rosales-Velazquez, Claudia P.; Torres-Lubian, Jose R.; Saldivar-Guerra, Enrique

    2011-01-01

    Styrene polymerization by ATRP was conducted independently using the complexes Cp * RuCl(PPh 3 ) 2 , and Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 as catalysts, in order to evaluate the influence of the electronic properties of the phosphine ligands on the rate and control of the polymerization. The kinetic data for polymerizations carried out with Cp * RuCl(PPh 3 ) 2 , show that molecular weights increase linearly with conversion with an average initiation efficiency of 0.77. The molecular weights obtained in the kinetic study with Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 also increase with conversion but show a marked deviation below the theoretical molecular weights. This behavior was explained by the gradual, irreversible, oxidation of catalyst Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 as confirmed by 31 P-NMR spectroscopy. Catalyst Cp * RuCl(PPh 3 ) 2 promotes the polymerization with a rate of polymerization higher than that obtained using Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 ; this is consistent with the better electron donating properties of PPh 3 versus P(4-CF 3 -C 6 H 4 ) 3 . Preliminary studies of styrene polymerization by ATRP in supercritical CO 2 , shows that only catalyst Cp * RuCl[P(4-CF 3 -C 6 H 4 ) 3 ] 2 , with fluorinated ligands, was active. (author)

  9. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  10. Periphery-palladated carbosilane dendrimers : Synthesis and reactivity of model organopalladium(II) and (IV) complexes : Crystal structure of [PdMe(C6H4(OCH2Ph)-4)(bpy)] (bpy=2,2'-bipyridine

    NARCIS (Netherlands)

    Koten, G. van; Hovestad, N.J.; Hoare, J.L.; Jastrzebski, J.T.B.H.; Canty, A.J.; Smeets, W.J.J.; Spek, A.L.

    1999-01-01

    A carbosilane dendrimer with 12 peripheral iodoarene groups, [Si{(CH2)3Si((CH2)3SiMe2(C6H4CH2OC6H4I-4))3}4] (G1-ArI, 9), and the corresponding G0 model compound [Si{(CH2)3SiMe2(C6H4CH2OC6H4I-4)}4] (G0-ArI, 8) have been prepared from [Si{(CH2)3Si((CH2)3SiMe2(C6H4CH2Br))3}4] (G1-Br, 7) and the

  11. NH (X 3 summation -, v=1--3) formation and vibrational relaxation in electron-irradiated Ar/N2/H2 mixtures

    International Nuclear Information System (INIS)

    Dodd, J.A.; Lipson, S.J.; Flanagan, D.J.; Blumberg, W.A.M.; Person, J.C.; Green, B.D.

    1991-01-01

    Measurements of the dynamics of NH(X 3 summation - , v =1--3), created in electron-irradiated N 2 /H 2 and Ar/N 2 /H 2 mixtures, have been performed. Time-resolved Fourier spectroscopy was used to observe NH(v→v--1) vibrational fundamental band emission. Time-dependent populations were then determined by spectral fitting. Subsequent kinetic fitting of these populations using a single-quantum relaxation model and a power-law dependence of k v on v yielded the following NH(v =1--3) relaxation rate constants (units of 10 -14 cm 3 s -1 ): k v=1 (N 2 )=1.2±0.5, k v=2 (N 2 )=3.8±1.5, k v=3 (N 2 )=7.5±2.5; k v=1 (Ar)=0.2±0.1, k v=2 (Ar)=0.5±0.2, k v=3 (Ar)=0.8±0.3; k v=1 (H 2 )≤50, k v=2 (H 2 )≤100, k v=3 (H 2 )≤150. In addition, the N 2 /H 2 data provided a measurement of the nascent excited vibrational state distribution resulting from the reaction N( 2 D)+H 2 →NH(X,v)+H. The ratio NH(1):NH(2):NH(3) was found to be 1.0:0.97:0.81 (±0.28 in each value). Comparison of the observed nascent distribution with that of a statistical model suggests that the ratio NH(0):NH(1)=0.47. Using this derived distribution, we find the average product level left-angle v right-angle =1.6, and the fraction of the available product energy in vibration left-angle f v right-angle =0.44

  12. Influence of the valence states of atoms on conducting properties of PrBa2Cu3O6+x

    International Nuclear Information System (INIS)

    Romanenko, A.I.; Zakharchuk, N.F.; Naumov, N.G.; Fedorov, V.E.; Paek, U.H.

    1997-01-01

    Pr 3+ valent state only was discovered in PrBa 2 Cu 3 O 6+x within the oxygen content range 0.4 ≤ x ≤ 0.6. Out of this range, Pr 4+ state appears also. All the samples obtained showed insulating behavior of resistivity r(T). In PrBa 2 Cu 3 O 6+x (0.4 ≤ x ≤ 0.6), the resistivity is Mott variable-range hopping conduction type and is connected with oxygen disorder only. Out of this range, the localization is much stronger; this increase is due to Pr 4+ /Pr 3+ position disorder. Also, the localization decreases after annealing at room temperature is the result of ordering. Thus, the absence of metallic (and therefore superconducting) state in PrBa 2 Cu 3 O 6+x is due to the presence of both Pr 4+ and Pr 4+ /Pr 3+ disorder

  13. Crystal structure of catena-poly[[silver(I-μ-N-(pyridin-2-ylmethylpyridine-3-amine-κ2N:N′] trifluoromethanesulfonate

    Directory of Open Access Journals (Sweden)

    Suk-Hee Moon

    2014-11-01

    Full Text Available In the asymmetric unit of the title compound, {[Ag(C11H11N3]CF3SO3}n, there are two AgI atoms, two N-(pyridine-2-ylmethylpyridine-3-amine ligands (A and B and two CF3SO3− anions. Both AgI atoms are bridged by two pyridine N atoms from two symmetry-related A or B ligands, forming right- or left-handed helical chains, respectively. The AgI atom of the right-handed helical chain adopts a slightly distorted linear coordination geometry [N—Ag—N = 170.69 (14°], while that of the left-handed helical chain adopts a bent geometry [N—Ag—N = 149.42 (14°]. Both helical chains have the same pitch length [10.8437 (5 Å], propagate along the b-axial direction and are alternately arranged via Ag...Ag [3.0814 (5 Å] and π–π stacking interactions [centroid–centroid distances = 3.514 (3 and 3.487 (3 Å], resulting in the formation of a two-dimensional supramolecular network extending parallel to the ab plane. Weak Ag...O [2.861 (4, 2.617 (3, and 2.624 (4 Å] and Ag...F [3.017 (3 Å] interactions as well as N—H...O and C—H...O, C—H...N and C—H...F hydrogen-bonding interactions occur between the helical chains and the anions.

  14. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  15. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Incommensurate magnetism in non-superconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Hill, J.P.; McMorrow, D.F.

    1999-01-01

    We report the discovery of incommensurate magnetic order in non-superconducting single crystals PrBa2Cu3O6.92. Resonant X-ray magnetic scattering at the Pr L-II and L-III edges and high resolution neutron diffraction were used to characterise the magnetic order on the different magnetic sublattices...

  17. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  18. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    Science.gov (United States)

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  19. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    Science.gov (United States)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  20. Upconversion excitations in Pr3+-doped BaY2F8 crystal

    Science.gov (United States)

    Piramidowicz, R.; Mahiou, R.; Boutinaud, P.; Malinowski, M.

    2011-09-01

    We report the orange-to-blue and infrared-(IR)-to-blue wavelengths upconversion luminescence in Pr3+:BaY2F8 crystals. Mechanism of the orange light upconversion into blue 3P0 state emission was confirmed to be energy transfer between two Pr3+ ions in the 1D2 state. IR-to-blue upconversion has only been observed under two different color IR pumping. The first resonant step was the 3H4→1G4 ground state absorption transition, and the second resonant transition was the excited state absorption from the 1G4 to 1I6 and 3PJ levels. A comparison of the efficiency of the IR-to-blue upconversion in several praseodymium activated host is presented and discussed. A model of the IR pumped upconversion praseodymium blue laser is presented and the population inversion conditions are calculated.

  1. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage

    Science.gov (United States)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay

    2018-04-01

    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  2. Synthesis and the crystal and molecular structures of (H3L . Cl)[CoCl4] and H2L[CuBr4] (L is 2,4,6-Tri(N,N-dimethylamino)methylphenol)

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Strashnova, S. B.; Romashkina, E. P.; Zaitsev, B. E.

    2010-01-01

    The complex compounds (H 3 L . Cl)[CoCl 4 ] (I) and H 2 L[CuBr 4 ] (II), where L is 2,4,6-tri(N,N-dimethylamino)methylphenol, were isolated in the crystalline state and studied by X-ray diffraction. The organic cations were found to be outer-sphere ligands. All three nitrogen atoms of the tertiary amino groups are protonated. In compound I, the H 3 L 3+ cation exists as the cis tautomer. In compound II, the H 2 L 2+ dication exists as the trans isomer. In the crystal structure, the dications are arranged in layers via hydrogen bonds.

  3. Poly[(6-carboxypicolinato-κ3O2,N,O63-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  4. H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2016-02-01

    Full Text Available A search of the Cambridge Structural Database (CSD was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NCP:OH2, H2FP:OH2, H2(CNP:OH2, and H2(OHP:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCHP:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P, 1hJ(H-P, and 1J(O-H across hydrogen bonds, and 1pJ(P-O across pnicogen bonds.

  5. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  6. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  7. X-ray and NQR studies of bromoindate(III) complexes. [C2H5NH3]4InBr7, [C(NH2)3]3InBr6, and [H3NCH2C(CH3)2CH2NH3]InBr5

    International Nuclear Information System (INIS)

    Iwakiri, Takeharu; Ishihara, Hideta; Terao, Hiromitsu; Lork, Enno; Gesing, Thorsten M.

    2017-01-01

    The crystal structures of [C 2 H 5 NH 3 ] 4 InBr 7 (1), [C(NH 2 ) 3 ] 3 InBr 6 (2), and [H 3 NCH 2 C(CH 3 ) 2 CH 2 NH 3 ]InBr 5 (3) were determined at 100(2) K: monoclinic, P2 1 /n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2 1 2 1 2 1 , a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr 6 ] 3- ion and a Br - ion. The structure of 2 contains three different isolated octahedral [InBr 6 ] 3- ions. The structure of 3 has a corner-shared double-octahedral [In 2 Br 11 ] 5- ion and an isolated tetrahedral [InBr 4 ] - ion. The 81 Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The 81 Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr 6 ] 3- of 1 and for [In 2 Br 11 ] 5- and [InBr 4 ] - of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of 81 Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  8. Comparison of the reactivity of 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} with MCl{sub 4} (M=Th, U). Isolation of a thorium aryl complex or a uranium benzyne complex

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, Lani A.; Pedrick, Elizabeth A.; Wu, Guang; Hayton, Trevor W. [California Univ., Santa Barbara, CA (United States). Dept. of Chemistry and Biochemistry; Tsuchiya, Takashi; Jakubikova, Elena [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry

    2013-09-27

    Individualism under actinoids: The reaction of 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} with [MCl{sub 4} (dme) {sub n}] (M=Th, n=2; M=U, n=0) gives the thorium aryl complex [Th(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 4}] or the uranium benzene complex Li[U(2,3-C{sub 6}H{sub 3}CH{sub 2}NMe{sub 2})(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 3}]. A DFT analysis suggests that the formation of a benzyne complex with uranium but not with thorium is a kinetic and not thermodynamic effect. [German] Individualismus unter Actinoiden: Die Reaktion von 2-Li-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2} mit [MCl{sub 4} (dme) {sub n}] (M=Th, n=2; M=U, n=0) ergibt den Thoriumarylkomplex [Th(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 4}] bzw. den Uranbenz-inkomplex Li[U(2,3-C{sub 6}H{sub 3}CH{sub 2}NMe{sub 2})(2-C{sub 6}H{sub 4}CH{sub 2}NMe{sub 2}){sub 3}]. Einer dichtefunktionaltheoretischen Analyse zufolge ist es kinetisch und nicht thermodynamisch bedingt, dass der Benz-inkomplex im Fall von Uran entsteht, nicht aber im Fall von Thorium.

  9. MOCVD of zirconium oxide from the zirconium guanidinate complex |ZrCp′{2-(iPrN)2CNMe2}2Cl

    NARCIS (Netherlands)

    Blackman, C.S.; Carmalt, C.J.; Moniz, S.J.A.; Potts, S.E.; Davies, H.O.; Pugh, D.C.

    2009-01-01

    Parallel to successful studies into use of [ZrCp'{¿ 2-(iPrN)2CNMe2} 2Cl] as a precursor to the deposition of zirconium carbonitride via CVD the same precursor was utilised for the MOCVD of thin films of ZrO 2 using borosilicate glass substrates. The deposited films were of mixed phase; films

  10. Tuning of tantalum alkylidene reactivity with a terdentate arylamine ligand : synthesis, structure and reactivity of [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBu-tert)

    NARCIS (Netherlands)

    Abbenhuis, H.C.L.; Grove, D.M.; Koten, van G.; Sluijs, van der P.; Spek, A.L.

    1990-01-01

    The terdentate aryldiamine ligand in the aryltantalum(V) alkylidene complex [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBut)] (1) controls alkylidene reactivity in a range of metal-mediated Wittig reactions. An X-ray diffraction study of (1) shows that the hexacoordinate tantalum centre has a very irregular ligand

  11. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    Science.gov (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  12. Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

    International Nuclear Information System (INIS)

    Kiritani, Reiko; Asano, Takeyoshi; Fujita, Shin-ichi; Dohmaru, Takaaki; Kawanishi, Tetsuro

    1986-01-01

    Syntheses of [5- 2 H]-, [6- 2 H]-uracil and [5- 2 H]-, [6- 2 H]-cytosine were investigated. The catalytic reaction of uracil or cytosine with 2 H 2 gas in alkaline media gave rise to [6- 2 H]-compounds almost exclusively. On the other hand, the reaction of 5-bromouracil or 5-bromocytosine with 2 H 2 gas gave rise to a mixture of [5- 2 H]-, [6- 2 H]- and [5- 2 H, 6- 2 H]-compounds depending on the experimental conditions. By controlling the temperature, the pressure of 2 H 2 gas and the amount of catalyst, [5- 2 H]-uracil and [5- 2 H]-cytosine were obtained. The isotopic distribution in each product was measured by 1 H NMR spectroscopy combined with an HPLC method. (author)

  13. (C6H16N2)Zn3(HPO3)4H2O: a new layered zinc phosphite templated by diprotonated trans-1,4-diaminocyclohexane

    International Nuclear Information System (INIS)

    Wang Yu; Yu Jihong; Li Yi; Du Yu; Xu Ruren; Ye Ling

    2003-01-01

    Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C 6 H 16 N 2 )Zn 3 (HPO 3 ) 4 H 2 O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P2 1 /n with a=10.458(2) A, b=14.720(3) A, c=13.079(3) A, β=97.93(3) deg. , V=1994.1(7) A 3 , Z=4, R 1 =0.0349 (I>2σ(I)) and wR 2 =0.0605 (all data). The inorganic layer is built up by alternation of ZnO 4 tetrahedra and HPO 3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds

  14. A single-phase white light emitting Pr3+ doped Ba2CaWO6 phosphor: synthesis, photoluminescence and optical properties

    Science.gov (United States)

    Sreeja, E.; Vidyadharan, Viji; Jose, Saritha K.; George, Anns; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2018-04-01

    Pr3+ doped Ba2CaWO6 phosphor were prepared by traditional high-temperature solid-state reaction technique. The structure evolution was systematically investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The X-ray powder diffraction patterns indicate that the prepared phosphors crystallized in the cubic double-perovskite structure. The functional groups were identified using FTIR spectra and the elements present in the composition were confirmed by the EDS profile. The morphology of the phosphor was identified using SEM and TEM analysis. The PL spectra illustrated that these phosphors could be efficiently excited by charge transfer band of host and the maximum luminescence intensity was observed at 0.06 wt% of Pr3+ ion. Upon the charge transfer band excitation, emission spectra showed peaks at 489, 532, 647, 685 and 737 nm corresponding to 3P0→3H4, 3P1→3H5, 3P0→3F2, 3P0→3F3 and 3P0→3F4 transitions respectively. The concentration quenching of Ba2CaWO6:Pr3+ phosphor can be mainly attributed to dipole-dipole interaction. The CIE coordinates were estimated to be close to the white region. The decay curves are well fitted with double exponential decay models. The standard and modified Judd-Ofelt (JO) theories were used to determine the Judd-Ofelt intensity parameters, radiative transition probabilities and branching ratios. The optical properties indicate that Ba2CaWO6:Pr3+ phosphors can produce white light emission from a single phase host and its potential application for solid-state lighting and display devices.

  15. Spectroscopic studies of some lanthanide(III nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A.S. Sall

    2003-06-01

    Full Text Available The ligand 2,6-bis-(salicylaldehydehydrazone-4-chlorophenol (H5L and its binuclear lanthanide(III nitrate complexes {[Ln2(H4L3(NO3](NO32.mH2O} where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb and Y, have been synthesized. The complexes were characterized by chemical analysis, conductance, magnetic moment measurements and infrared spectra. Infrared study indicates that the ligand behaves both as neutral and ionic O donors and as neutral N donors.

  16. Mixed ligand complexes of Cu(II)/Zn(II) ions containing (m-)/(p-) carboxylato phenyl azo pentane 2,4-dione and 2,2'-bipyridine/1,10 phenanthroline: Synthesis, characterization, DNA binding, nuclease and topoisomerase I inhibitory activity.

    Science.gov (United States)

    Hasan, Md Amin; Kumari, Niraj; Singh, Kanhaiya; Singh, Kiran; Mishra, Lallan

    2016-01-05

    Metal complexes of type [Cu(L1H)2(bpy)] (1), [Zn(L1H)2(bpy)] (2), [Cu(L2H)2(bpy)] (3) and [Cu(L2H)2(Phen)] (4) (L1H2=3-[N'-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, L2H2=4-[N'-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, bpy=2,2'-bipyridine, Phen=1,10 phenanthroline) are synthesized and characterized using spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, electronic absorption and emission) and elemental analysis data. The assembly of the complexes involving intramolecular H-bonding is displayed using corresponding crystal structure. Binding of the complexes separately with Calf Thymus DNA is monitored using UV-vis spectral titrations. The displacement of ethidium bromide (EB) bound to DNA by the complexes, in phosphate buffer solution (pH∼7.2) is monitored using fluorescence spectral titrations. Nuclease activity of the complexes follow the order 4>3>1>2. The gel electrophoretic mobility assay measurement in presence of minor groove binder 4',6-diamidino-2-phenylindole (DAPI), suggests that complexes preferably bind with the minor groove of DNA. Topoisomerase I inhibitory activity of the complexes 3 and 4 inhibit topoisomerase I activity with IC50 values of 112 and 87μM respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    Science.gov (United States)

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  18. Molecular structure and vibrational spectrum of the complex [ErL(H2O)(NO3)3] (L 1,4,10,13-tetraoxi-7,16-diaza(diphenylphosphinylmethyl) cyclooctadecane

    International Nuclear Information System (INIS)

    Minacheva, L.Kh.; Ivanova, I.S.; Kireeva, I.K.; Sakharova, V.G.; Tsivadze, A.Yu.; Sergienko, V.S.; Baulin, V.E.

    2000-01-01

    Synthesis of podandocoronand on the basis of diazo-18-crown-6 (DA18K6) 1,4,10,13-tetraoxi-7,16-diazo (diphenylphosphynylmethyl)cyclooctadecane (L) and erbium nitrate complex with L of the [ErL(H 2 O)(NO 3 ) 3 ] (I) composition is described. The IR-spectra of the free ligand L and complex I are studied and interpreted.The crystals are monoclinic: a = 10.432(2), b = 19.909(4), c = 21.361(4), β = 100.39(3) Deg, V = 4364(2) A 3 , sp. gr. P2 1 /n, Z = 4, ρ = 1.617 g/cm 3 . The structure I is formed of discrete molecular complexes. The Er atom coordination number is equal to 9. Three nitrate groups are bidentate-cyclic coordinated; two of them are in trans-position to each other; the H 2 O molecule is trans-position to the third NO 3 -group. The ligand L is coordinated by metal through two oxygen phosphoryl atoms. Thus, the Er atom coordination polyhedron may be described as octahedron, if each NO 3 -group occupies one coordination position. The Er-O(L) and Er-O(NO 3 ) overage distances are equal to 2.25 and 2.43 A correspondingly. Er-O(H 2 O) - 2.29 A. The H 2 O coordinated molecule forms intermolecular hydrogen atom and two oxygen atoms of the DA18K6 macrocycle [ru

  19. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  20. A new antibacterial silver(I) complex incorporating 2,5-dimethylpyrazine and the anti-inflammatory diclofenac.

    Science.gov (United States)

    Hamamci Alisir, Sevim; Dege, Necmi

    2016-12-01

    Ag I -containing coordination complexes have attracted attention because of their photoluminescence properties and antimicrobial activities and, in principle, these properties depend on the nature of the structural topologies. A novel two-dimensional silver(I) complex with the anti-inflammatory diclofenac molecule, namely bis{μ-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ 3 O,O':O}bis(μ-2,5-dimethylpyrazine-κ 2 N:N')silver(I), [Ag 2 (C 14 H 10 Cl 2 NO 2 ) 2 (C 6 H 8 N 2 )] n , (I), has been synthesized and characterized by single-crystal X-ray diffraction, revealing that the Ag I ions are chelated by the carboxylate groups of the anionic 2-[2-(2,6-dichloroanilino)phenyl]acetate (dicl) ligand in a μ 3 -η 1 :η 2 coordination mode. Each dicl ligand links three Ag I atoms to generate a one-dimensional infinite chain. Adjacent chains are connected through 2,5-dimethylpyrazine (dmpyz) ligands to form a two-dimensional layer structure parallel to the crystallographic bc plane. The layers are further connected by C-H...π interactions to generate a three-dimensional supramolecular structure. Additionally, the most striking feature is that the structure contains an intramolecular C-H ...Ag anagostic interaction. Furthermore, the title complex has been tested for its in vitro antibacterial activity and is determined to be highly effective on the studied microorganisms.

  1. Phonon dispersion relations in PrBa2Cu3O6+x (x approximate to 0.2)

    DEFF Research Database (Denmark)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa2Cu3O6+x (xapproximate to0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all...

  2. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  3. Synthesis, density functional theory calculations and luminescence of lanthanide complexes with 2,6-bis[(3-methoxybenzylidene)hydrazinocarbonyl] pyridine Schiff base ligand.

    Science.gov (United States)

    Taha, Ziyad A; Ababneh, Taher S; Hijazi, Ahmed K; Abu-Salem, Qutaiba; Ajlouni, Abdulaziz M; Ebwany, Shroq

    2018-02-01

    A pyridine-diacylhydrazone Schiff base ligand, L = 2,6-bis[(3-methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X-ray diffraction. Lanthanide complexes, Ln-L, {[LnL(NO 3 ) 2 ]NO 3 .xH 2 O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra-red (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln-L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO 3 ) 2 ] + complexes were carried out at the B3LYP/6-31G(d) level of theory. The FT-IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln-L indicated that Tb-L and Eu-L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln-L complexes show higher antioxidant activity than the parent L ligand. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Synthesis of iridacarborane halide complexes [(η-9-SMe2-7,8-C2B9H10)IrX2]2 (X=Cl, Br, I)

    International Nuclear Information System (INIS)

    Kudinov, A.R.; Perekalin, D.S.; Petrovskij, P.V.

    2001-01-01

    By interaction between Na[9-SMe 2 -7,8-C 2 B 9 H 10 ] and [(Cod)IrCl] 2 (Cod - cycloocta-1,5-diene) iridium complex (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(Cod), which under the action of anhydrous hydrohalogenic acids HX (X=Cl, Br, I) yields iridacarborane halide complexes [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrX 2 ] 2 , being analogs of cyclopentadienyl complexes [(C 5 Me 5 )IrX 2 ] 2 . The complexes prepared were characterized on the basis of data of elementary analysis and 1 H, 11 B NMR spectra [ru

  5. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  6. The mixed-valent copper thiolate complex hexakis{μ3-2-[(1,3-dimethylimidazolideneamino]benzenethiolato}dicopper(IItetracopper(I bis(hexafluoridophosphate acetonitrile disolvate dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Adam Neuba

    2013-01-01

    Full Text Available The molecular structure of the title compound, [Cu4ICu2II(C11H14N3S6](PF62·2CH3CN·2CH2Cl2, shows a mixed-valent copper(I/II thiolate complex with a distorted tetrahedral coordination of the CuI and CuII cations by one guanidine N atom and three S atoms each. Characteristic features of the Cu6S6 skeleton are a total of six chemically identical μ3-thiolate bridges and almost planar Cu2S2 units with a maximum deviation of 0.110 (1 Å from the best plane. Each Cu2S2 unit then shares common Cu–S edges with a neighbouring unit; the enclosed dihedral angle is 60.14 (2°. The geometric centre of the Cu6S6 cation lies on a crystallographic inversion centre. Cu—S bond lengths range from 2.294 (1 to 2.457 (1 Å, Cu—N bond lengths from 2.005 (3 to 2.018 (3 Å and the non-bonding Cu...Cu distances from 2.5743 (7 to 2.5892 (6 Å. C—H...F hydrogen-bond interactions occur between the PF6− anion and the complex molecule and between the PF6− anion and the acetonitrile solvent molecule.

  7. Influence of bulky substituents on the regioselective group-transfer reactions of diorganozinc compounds with N,N'-bis(2,6-di-isopropylphenyl)-1,4-diaza-1,3-butadiene

    NARCIS (Netherlands)

    Koten, G. van; Wissing, E.; Gorp, K. van; Boersma, J.

    1994-01-01

    Diorganozinc compounds R{2}Zn (R=alkyl or aryl) react with N, N'-bis(2,6-di-isopropylphenyl)-1,4-diaza-1,3-butadiene, (i-Pr{2}Ph)N@?CHCHp@?N(i-Pr{2}Ph) (i-Pr{2}Ph-DAB) to give thermally unstable 1:1 coordination complexes R{2}Zn(i-Pr2Ph-DAB), which subsequently undergo a slow regioselective alkyl or

  8. Thermodynamics of complexation of lanthanides with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, N.; Bhattacharyya, A.; Tomar, B.S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Ghosh, S.K.; Gadly, T. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.

    2011-07-01

    Solvent extraction studies on separation of trivalent actinides from lanthanides using 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl) pyridines have shown promising results with respect to separation factor and efficiency in acidic medium. In order to understand their complexation behavior, the stability constant (log {beta}) of trivalent lanthanides (La, Nd, Eu, Tb, Ho, Tm, Lu) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)pyridine (ethyl-BTP) have been determined in methanol medium (ionic strength 0.01 M) using spectrophotometric titrations. The stoichiometry of the complexes is found to vary with the ionic size of lanthanide ion. The variation in log {beta} across the lanthanide series is attributed to variation in solvation characteristics of the metal ion. Comparison of log {beta} for Ln(III)-ethyl-BTP complexes with other alkyl derivatives showed increase in the stability with increasing length of the alkyl group due to hydrophobic interaction. In the case of Eu(III), the speciation was also corroborated by time resolved fluorescence spectroscopy. The thermodynamic parameters ({delta} G, {delta} H, {delta} S) for complexation of Eu(III) with ethyl-BTP, were determined by microcalorimetry, which revealed strong metal ion-ligand interaction with the reactions driven mainly by enthalpy. (orig.)

  9. Translocation of {sup 3}H-DNA, {sup 131}I-ribonuclease and {sup 3}H-DNA {sup 131}I-ribonuclease complexes in germinated barley grains; Translocation des ADN{sup 3}H, RNase{sup 131}I et complexes ADN{sup 3}H - RNase {sup 131}I dans les orges en germination

    Energy Technology Data Exchange (ETDEWEB)

    Tshitenge, G. [Centre nucléaire TRICO, Kinshasa (Congo, The Democratic Republic of the); Ledoux, L. [Centre d’étude de l' énergie nucléaire Mol (Belgium)

    1970-01-15

    Barley grains, after germinating for 11 hours in the presence of water, were cut into sections at the end opposite the embryo. They were incubated in solutions of {sup 3}H-DNA, {sup 13I}I-ribonuclease, and {sup 3}H-DNA {sup 131}I-ribonuclease complex for three hours. They were then placed in a water-saturated atmosphere for 24 hours. At this stage the different organs of the seedlings were separated and homogenized in a solution containing 0.15M sodium chloride and 0.1 M sodium ethylenediaminetetraacetate at pH 7. By measuring the radioactivity found in the homogenates one can estimate the penetration of the macromolecules under study. The results show that the quantity found varies from one case to the other and depends both on the nature of the macromolecule and of the organ studied. (author) [French] Des orges qui ont germé pendant 11 h en présence d’eau sont sectionnées au bout opposé à l’embryon. Elles sont incubées avec des solutions d’ADN{sup 3}H, de RNase{sup 131}1 et de complexe ADN{sup 3}H - RNase {sup 131}I, pendant 3 h. Elles sont ensuite placées dans une atmosphère saturée d'eau pendant 24 h. A ce moment, les différents organes des plantules sont séparés et homogénéisés en présence d'une solution 0,15M en NaCl et 0,1M en éthylènediamine-tétracétate de Na à pH 7. La mesure de la radioactivité retrouvée dans les homogénats permet d'évaluer la pénétration des macromolécules considérées. Les résultats montrent que la quantité retrouvée varie d'un cas â l'autre et dépend à la fois de la nature de la macromolécule et de l'organe considéré. (author)

  10. Poly[{μ2-1,2-bis[4-(3-pyridylpyrimidin-2-ylsulfanyl]ethane}di-μ2-cyanido-dicopper(I

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2008-07-01

    Full Text Available The asymmetric unit of the title complex, [Cu2(CN2(C20H16N6S2]n, contains one CuI cation, one cyanide ligand and half of a centrosymmetric 1,2-bis[4-(3-pyridylpyrimidin-2-ylsulfanyl]ethane (bppe ligand. The CuI atom displays a trigonal coordination geometry, being surrounded by one C atom from one cyanide anion and two N atoms from one cyanide and one bppe ligand. In the complex, each cyanide anion links two CuI atoms in a bis-monodentate mode into a zigzag [–Cu—CN–]n chain. Two parallel chains are linked by bppe ligands into a ladder chain.

  11. Synthesis and Characterization of Mixed Chalcogen Triangular Complexes with New Mo-3(mu(3)-S)(mu(2)-Se-2)(3)(4+) and M-3(mu(3)-S)mu(2)-Se)(3)(4+) (M = Mo, W) Cluster Cores

    DEFF Research Database (Denmark)

    Gushchin, Artem; Ooi, Bee Lean; Harris, Pernille

    2009-01-01

    In our pursuit of mixed chalcogen-bridged cluster complexes, solids of the compositions Mo3SSe6Br4 and W3SSe6Br4 were prepared using high-temperature synthesis from the elements. Treatment of Mo3SSe6Br4 with Bu4NBr in a vibration mill yielded (Bu4N)(3)([Mo-3(mu(3)-S)(mu(2)-Se-2)(3)Br-6]Br} (I). Its......), was isolated and its structure determined using X-ray crystallography. W3SSe6Br4 upon reaction with H3PO2 gave a mixture of all of the [W3SxSe4-x(H2O)(9)](4+) species. After repeated chromatography, crystals of {[W-3(mu(3)-S)(mu(2)-Se)(3)(H2O)(7)Cl--(2)](2)CB[6]}Cl-4 center dot 12H(2)O (IV) were crystallized...

  12. Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O)

    International Nuclear Information System (INIS)

    Sibille, Romain; Didelot, Emilie; Mazet, Thomas; Malaman, Bernard; François, Michel

    2014-01-01

    Magnetic refrigerants incorporating Gd 3+ ions and light organic ligands offer a good balance between isolation of the magnetic centers and their density. We synthesized the framework material Gd 2 (C 2 O 4 ) 3 (H 2 O) 6 ⋅0.6H 2 O by a hydrothermal route and characterized its structure. The honeycomb lattice of Gd 3+ ions interlinked by oxalate ligands in the (a,c) plane ensures their decoupling in terms of magnetic exchange interactions. This is corroborated by magnetic measurements indicating negligible interactions between the Gd 3+ ions in this material. The magnetocaloric effect was evaluated from isothermal magnetization measurements. The maximum entropy change −ΔS M max reaches 75.9 mJ cm −3 K −1 (around 2 K) for a moderate field change (2 T)

  13. Superstructure formation in PrNi_2Al_3 and ErPd_2Al_3

    International Nuclear Information System (INIS)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter; Janka, Oliver; Oldenburg Univ.

    2017-01-01

    The intermetallic phase ErPd_2Al_3 was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd_2Al_3 was refined from X-ray diffraction data and revealed a superstructure of PrNi_2Al_3 - a CaCu_5 derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F"2 values, 48 variables). The same superstructure was subsequently found for PrNi_2Al_3 (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F"2 values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T_2Al_3]"δ"-, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi_2Al_3 type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  14. Energy transfer in Pr3+ and Mn2+ co-doped SrB6O10 and SrB4O7

    International Nuclear Information System (INIS)

    Chen Yonghu; Yan Wuzhao; Shi Chaoshu

    2007-01-01

    The luminescent properties of Pr 3+ and Mn 2+ -doped SrB 6 O 10 and SrB 4 O 7 powder samples were investigated from the point of view of energy transfer between Pr 3+ and Mn 2+ . The emission from the 1 S 0 level of Pr 3+ was found in the SrB 6 O 10 :Pr 3+ sample as well as in the SrB 4 O 7 :Pr 3+ sample, indicating the 1 S 0 level is below the lowest 4f5d energy level in these hosts. The spectral overlaps between the emission spectra of Pr 3+ -doped samples and the excitation spectra of Mn 2+ -doped sample were found in both kinds of strontium borates. These spectral overlaps are in favor of the energy transfer from Pr 3+ to Mn 2+ . However, in the emission spectra of the SrB 6 O 10 :Pr 3+ , Mn 2+ , no indication of energy transfer was observed, though the emission spectra of SrB 4 O 7 :Pr 3+ , Mn 2+ did show evidence of energy transfer from Pr 3+ to Mn 2+ . The possible reasons were discussed

  15. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.1 (ν1), 2915.62), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  16. Synthesis and characterization of [Ru(η6-C6Me6)Cl2(CNPy)] and [Cl26-C6Me6)Ru-(μ-CNPy)-Ru(η6-C6Me6)Cl2] and reactivity of [Ru(η6-C6Me6)Cl2(CNPy)] with various bases

    International Nuclear Information System (INIS)

    Pandey, D.S.; Sahay, A.N.; Agarwala, U.C.

    1996-01-01

    Reactions of [(Ru(η 6 -C 6 Me 6 )Cl 2 ) 2 ] with 4-cyanopyridine leads to the formation of neutral mono and dimeric complexes viz., [Ru(η 6 C 6 Me 6 )Cl 2 (CNPy)] (I) and [Cl 26 -C 6 Me 6 ) Ru-(μ-CNPy)-Ru(η 6 -C 6 Me 6 )Cl 2 ] (II). Complex (I) undergoes metathetical reactions with EPh 3 (E=P, As and Sb) and N-donor heterocyclic bases yielding corresponding substitutional products which have been characterized by elemental analyses and spectroscopic: (IR, UV/vis, 1 H and 13 C NMR) studies. (author). 21 refs., 1 tab

  17. Crystal structure of [bis(2,6-diisopropylphenyl phosphato-κO]tris(methanol-κOlithium methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Mikhail E. Minyaev

    2015-05-01

    Full Text Available Crystals of the title compound, [Li{OOP(O-2,6-iPr2C6H32}(CH3OH3]·CH3OH or [Li(C24H34O4P(CH3OH3]·CH3OH, have been formed in the reaction between HOOP(O-2,6-iPr2C6H32 and LiOH in methanol. The title compound is of interest as it represents the first reported crystal structure of the family of lithium phosphate diesters. The {Li(CH3OH3[O2P(O-iPr2C6H32]} unit displays the Li atom in a slightly distorted tetrahedral coordination environment and exhibits one intramolecular O—H...O hydrogen bond between a coordinating methanol molecule and the terminal non-coordinating O atom of the phosphate group. The unit is connected with two non-coordinating methanol molecules through two intermolecular O—H...O hydrogen bonds, and with a neighbouring unit through two other O—H...O interactions. These intermolecular hydrogen bonds lead to the formation of infinite chains along [100]. There are no significant interactions between the chains.

  18. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, M P; Singh, V K

    1982-05-01

    The nitrato-complexes, (Y(PyBzH)/sub 2/(NO/sub 3/)/sub 2/)NO/sub 3/.H/sub 2/O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole) are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm/sup -1/cm/sup 2/mol/sup -1/) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the positive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C/sub 2/v) and uncoordinated (D/sub 3/h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms.

  19. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    International Nuclear Information System (INIS)

    Mishra, A.; Singh, M.P.; Singh, V.K.

    1982-01-01

    The nitrato-complexes, [Y(PyBzH) 2 (NO 3 ) 2 ]NO 3 .H 2 O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole] are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm -1 cm 2 mol -1 ) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the terpositive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C 2 v) and uncoordinated (D 3 h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms. (author)

  20. Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)62H2O and [Au(en)2][Rh(NO2)6

    Science.gov (United States)

    Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.

    2015-11-01

    Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)62H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.

  1. Crystal structure of (CH3H6)3[Y(Edta)F2]xH2O

    International Nuclear Information System (INIS)

    Mistryukov, V.Eh.; Sergeev, A.V.; Chuklanova, E.B.; Mikhajlov, Yu.N.; Shchel okov, R.N.

    1997-01-01

    Difluoroethylenediaminetetraacetatoyttriate of guanidinium of the composition (CH 3 H 6 ) 3 [Y(Edta)F 2 ]xH 2 has been synthesized and studied by X-ray diffraction method. The crystals are monoclinic, unit cell parameters are as follows: a = 17.61(1), b = 10.435 (5), c = 13.467(8) A, β 100.70 (5), Z = 4, sp.gr. P2 1 /n. The structure is solved by the method of heavy atom and refined by means of the least square method in anisotropic approximation for other than hydrogen atoms up to R = 0.050; hydrogen atoms except H atoms in water molecule, localized from difference synthesis, are incorporated in the refining in fixed positions

  2. Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia)

    Science.gov (United States)

    Yakovenchuk, Victor N.; Ivanyuk, Gregory Yu.; Pakhomovsky, Yakov A.; Panikorovskii, Taras L.; Britvin, Sergei N.; Krivovichev, Sergey V.; Shilovskikh, Vladimir V.; Bocharov, Vladimir N.

    2018-02-01

    Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, is a new Ba-Sc phosphate from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia). It is orthorhombic, Pnma, a = 11.256(1), b = 8.512(1), c = 27.707(4) Å, V = 2654.6(3) Å3 and Z = 4 (from powder diffraction data) or a = 11.2261(9), b = 8.5039(6), c = 27.699(2) Å, V = 2644.3(3) Å3 (from single-crystal diffraction data). The mineral was found in a void within the calcite-magnetite phoscorite (enriched in hydroxylapatite and Sc-rich baddeleyite) inside the axial zone of the Kovdor phoscorite-carbonatite pipe. Kampelite forms radiated aggregates (up to 1.5 mm in diameter) of platy crystals grown on the surfaces of crystals of quintinite-2 H in close association with pyrite, bobierrite and quintinite-3 R. Kampelite is colourless, with a pearly lustre and a white streak. The cleavage is perfect on {001}, the fracture is smooth. Mohs hardness is about 1. In transmitted light, the mineral is colourless without pleochroism or dispersion. Kampelite is biaxial + (pseudouniaxial), α ≈ β = 1.607(2), γ = 1.612(2) (589 nm), and 2 V calc = 0°. The calculated and measured densities are 3.28 and 3.07(3) g·cm-3, respectively. The mean chemical composition determined by electron microprobe is: MgO 4.79, Al2O3 0.45, P2O5 31.66, K2O 0.34, Sc2O3 16.17, Mn2O3 1.62, Fe2O3 1.38, SrO 3.44, and BaO 29.81 wt%. The H2O content estimated from the crystal-structure refinement is 7.12 wt%, giving a total of 96.51 wt%. The empirical formula calculated on the basis of P = 6 apfu (atoms per formula unit) is (Ba2.62Sr0.45K0.10Ca0.06)Σ3.23Mg1.60Mn0.28(Sc3.15Fe3+ 0.23Al0.12)Σ3.50(PO4)6(OH)2.61·4.01H2O. The simplified formula is Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O. The mineral easily dissolves in 10% cold HCl. The strongest X-ray powder-diffraction lines [listed as d in Å ( I) ( hkl)] are as follows: 15.80(100)(001), 13.86(45)(002), 3.184(18)(223), 3.129(19)(026), 2.756(16)(402), 2.688(24)(10 10). The crystal structure of kampelite was

  3. A Computational Study of Chalcogen-containing H2 X…YF and (CH3 )2 X…YF (X=O, S, Se; Y=F, Cl, H) and Pnicogen-containing H3 X'…YF and (CH3 )3 X'…YF (X'=N, P, As) Complexes.

    Science.gov (United States)

    McDowell, Sean A C; Buckingham, A David

    2018-04-20

    A computational study was undertaken for the model complexes H 2 X…YF and (CH 3 ) 2 X…YF (X=O, S, Se; Y=F, Cl, H), and H 3 X'…YF and (CH 3 ) 3 X'…YF (X'=N, P, As), at the MP2/6-311++G(d,p) level of theory. For H 2 X…YF and H 3 X'…YF, noncovalent interactions dominate the binding in order of increasing YF dipole moment, except for H 3 As…F 2 , and possibly H 3 As…ClF. However, for the methyl-substituted complexes (CH 3 ) 2 X…YF and (CH 3 ) 3 X'…YF the binding is especially strong for the complexes containing F 2 , implying significant chemical bonding between the interacting molecules. The relative stability of these complexes can be rationalized by the difference in the electronegativity of the X or X' and Y atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of 14C- and 2H-labeled 1,3 dihydro-3, 3-dimethyl-5-(1,4,5,6,- tetrahydro-6-oxo-3-pyridazinyl)-2H-indol-2-one (LY195115), an orally effective positive inotrope

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Kau, D.

    1986-01-01

    The synthesis of 14 C- and 2 H-labeled 1,3-dihydro-3,3-dimethyl-5-(1,4,5,6-tetrahydro-6-oxo-3-pyridazinyl)-2H-indol -2-one (LY195115), an extremely potent, orally-effective cardiotonic with inotropic and vasodilator activities is described. The 14 C-label was introduced in the antepenultimate step by reaction of a β-chloroketone precursor with Na 14 CN; acid-catalyzed hydrolysis and cyclization with hydrazine provided the tetrahydropyridazinone bearing the 14 C-label in the oxo-carbon. 1,3-Dihydro-3,3-di(methyl-d 3 ) -2H-indol-2-one was prepared by exhaustive methylation of 1-acetyl-1,3-dihydro-2H-indol-2-one with sodium hydride and iodomethane-d 3 , followed by removal of the nitrogen protecting group. This labeled material was converted in two steps to [ 2 H 6 ]-LY195115. (author)

  5. Investigation of ZnI2-KI-C3H7NO system by ultrasonic method

    International Nuclear Information System (INIS)

    Shevchenko, V.M.; Surovtsev, V.I.; Gorenbejn, E.Ya.

    1975-01-01

    Applicability of the ultrasonic impulses for the research of complex formation in the solutions was demonstrated using ZnI 2 -KI-C 3 H 7 NO system as an example. Changing the solvent structure during complexing was studied. It was determined that ion solvation numbers reflect electrostriction influence of ions on the surrounding solvent moleculas. The maximum effect on dimethylformamide (C 3 H 7 NO) was made by the complex compound KZnI 3 acting as destrictor and the sound speed decrease was the highest in its solution. Possibility of using adiabatic compressibility of the solutions for complexing studies is analysed

  6. C-H and H-H Bond Activation via Ligand Dearomatization/Rearomatization of a PN3P-Rhodium(I) Complex

    KAUST Repository

    Huang, Kuo-Wei

    2015-04-13

    A neutral complex PN3P-Rh(I)Cl (2) was prepared from a reaction of the PN3P pincer ligand (1) with [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene). Upon treatment with a suitable base, H–H and Csp2H activation reactions can be achieved through the deprotonation/reprotonation of one of the N–H arms and dearomatization/rearomatization of the central pyridine ring with the oxidation state of Rh remaining I.

  7. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  8. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  9. Preparation, spectroscopic studies and X-ray structure of homobinuclear lanthanide(III complexes derived from 2,6-diformyl-4-chlorophénol-bis-(2’-hydroxy-benzoylhydrazone

    Directory of Open Access Journals (Sweden)

    Pepe Marcel Haba

    2006-06-01

    Full Text Available Reaction of the 2,6-diformyl-4-chlorophenol-bis-(2'-hydroxy-benzoylhydrazone with Ln(NO33.nH2O (n = 5 or 6 and Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er and Yb produces homobinuclear complexes. These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also found to be ionic in all the complexes. An X-ray structure determination of [C66H48N12O15Cl3Er2]Cl2NO3.5H2O confirms the conclusion from the spectroscopic studies and show that the erbium is at the centre of a tricapped trigonal prism with coordination number nine. In all the complexes the lanthanide ions have substantially similar coordination.

  10. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  11. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  12. Thermodynamic Studies of (H2Rh(diphosphine)2)+ and (HRh(diphosphine)2(CH3CN))2+ Complexes in Acetonitrile

    International Nuclear Information System (INIS)

    Wilson, Aaron D.; Miller, Alexander J.M.; DuBois, Daniel L.; Labinger, Jay A.; Bercaw, John E.

    2011-01-01

    Thermodynamic studies of a series of (H2Rh(PP)2)+ and (HRh(PP)2(CH3CN))2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to (Rh(PP)2)+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for (HRh(PP)2(CH3CN))2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of (H2Rh(PP)2)+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents.

  13. C-H and H-H Bond Activation via Ligand Dearomatization/Rearomatization of a PN3P-Rhodium(I) Complex

    KAUST Repository

    Huang, Kuo-Wei; Wang, Yuan; Zheng, Bin; Pan, Yupeng; Pan, Chengling; He, Lipeng

    2015-01-01

    A neutral complex PN3P-Rh(I)Cl (2) was prepared from a reaction of the PN3P pincer ligand (1) with [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene). Upon treatment with a suitable base, H–H and Csp2H activation reactions can be achieved through

  14. DNA-Binding Study of Tetraaqua-bis(p-nitrobenzoatocobalt(II Dihydrate Complex: [Co(H2O4(p-NO2C6H4COO2]·2H2O

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2007-06-01

    Full Text Available The interaction of [Co(H2O4(p-NO2C6H4COO2]. 2H2O with sheep genomicDNA has been investigated by spectroscopic studies and electrophoresis measurements.The interaction between cobalt(II p-nitrobenzoate and DNA has been followed by gelelectrophoresis while the concentration of the complex was increased from 0 to 14 mM.The spectroscopic study and electrophoretic experiments support the fact that the complexbinds to DNA by intercalation via p-nitrobenzoate into the base pairs of DNA. Themobility of the bands decreased as the concentration of complex was increased, indicatingthat there was increase in interaction between the metal ion and DNA.

  15. Preparation, description and properties of {sup 3}H- DNA - {sup 131}I-ribonuclease complexes; Preparation, caracterisation et proprietes des complexes ADN{sup 3}H - RNase {sup 131}I

    Energy Technology Data Exchange (ETDEWEB)

    Tshitenge, G. [Centre nucléaire TRICO, Kinshasa (Congo, The Democratic Republic of the); Ledoux, L. [Centre d’étude de l' énergie nucléaire Mol (Belgium)

    1970-01-15

    Bacterial DNA, both radioactive and non-radioactive, and pancreatic ribonuclease labelled with iodine-131 are mixed together at a high ion strength and neutral pH. They are then dialysed against 0.009M sodium chloride. During dialysis a precipitate is formed, which is then separated with a centrifuge and redissolved at a neutral pH in a 0.1M phosphate buffer solution, or in 0.15M sodium chloride and 0.015M sodium citrate solution adjusted to pH 7. This solution is then analysed: (1) by DEAE-cellulose paper chromatography using a centrifuge; (2) by sedimentation of caesium chloride along a gradient; (3) by electrophoresis in agar gel. The results obtained show that a stable complex is formed between the DNA and ribonuclease. The properties of this complex are such that it can be compared with natural nucleoproteins. (author) [French] Des ADN bactériens radioactifs ou non et de la ribonucléase pancréatique marquée a l'iode-131 sont mélangés, à force ionique élevée et à pH neutre. Ils sont ensuite dialyses contre du NaCl 0.009M. Au cours de cette dialyse, un précipité se forme. Ce précipité est séparé par centrifugation et redissous à pH neutre dans du tampon phosphate 0,1M, ou dans une solution 0.015M en citrate de Na et 0,15M en NaCl ajustée à pH 7. Cette solution a été analysée: 1) par Chromatographie centrifugée sur pulpe de papier de DEAE- cellulose; 2) par sédimentation en gradient de CsCl; 3) par électrophorèse en gel d'agar. Les résultats obtenus montrent qu'un complexe stable sfest formé entre l'ADN et la RNase. Les propriétés de ce complexe permettent de le comparer aux nucléoprotéines naturelles. (author)

  16. Thiocyanate cadmium(II) complexes of 2,4,6-tri(2-pyridyl)-1,3,5-triazine – Synthesis, structure and luminescence properties

    International Nuclear Information System (INIS)

    Nawrot, I.; Machura, B.; Kruszynski, R.

    2014-01-01

    Two new thiocyanate cadmium(II) complexes of 2,4,6-tri(2-pyridyl)-1,3,5-triazine were synthesized and characterized. The resulted complexes [Cd(SCN)(NO 3 )(tptz)(H 2 O)] (1) and [Cd(SCN) 2 (tptz)(MeOH)] (2) were studied by IR, UV–vis spectroscopy and single crystal X-ray analysis. The luminescent properties of 1 and 2 were studied in solution and solid state and compared with the free ligand. To get detailed insight into the electronic structure and spectroscopic properties of [Cd(SCN)(NO 3 )(tptz)(H 2 O)] and [Cd(SCN) 2 (tptz)(MeOH)], the density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. - Highlights: • Two novel thiocyanate cadmium(II) compounds of 2,4,6-tri(2-pyridyl)-1,3,5-triazine were synthesized. • The compounds were identified by IR, UV–vis spectroscopy and X-ray analysis. • The fluorescence properties of the complexes were examined and compared with the free ligand. • The electronic spectra were investigated at the TD-DFT level employing B3LYP/LANL2DZ

  17. Proximity effect in YBa2Cu3O7/Y0.6Pr0.4Ba2Cu3O7/YBa2Cu3O7 junctions

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Cohen, D.; Aharoni, E.; Deutscher, G.

    1991-01-01

    We report critical-current measurements in all high-T c superconducting-normal-superconductor junctions using Y 0.6 Pr 0.4 Ba 2 Cu 3 O 7 (with T cN =40 K) as the normal metal. Above T cN , we find a clear exponential dependence of I c on the thickness of the barrier which is characteristic of the proximity effect. The order-parameter decay length is about 120 A for T>60 K, and it diverges as T cN is approached. We estimate that ξ 0 for this material is 80±25 A

  18. Isolation of elusive HAsAsH in a crystalline diuranium(IV) complex

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Benedict M.; Wooles, Ashley J.; Tuna, Floriana; McInnes, Eric J.L.; Liddle, Stephen T. [Manchester Univ. (United Kingdom). School of Chemistry; Balazs, Gabor; Scheer, Manfred [Regensburg Univ. (Germany). Inst. of Inorganic Chemistry; McMaster, Jonathan; Lewis, William; Blake, Alexander J. [Nottingham Univ. (United Kingdom). School of Chemistry

    2015-12-07

    The HAsAsH molecule has hitherto only been proposed tentatively as a short-lived species generated in electrochemical or microwave-plasma experiments. After two centuries of inconclusive or disproven claims of HAsAsH formation in the condensed phase, we report the isolation and structural authentication of HAsAsH in the diuranium(IV) complex [{U(Tren"T"I"P"S)}{sub 2}(μ-η{sup 2}:η{sup 2}-As{sub 2}H{sub 2})] (3, Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiPr{sup i}{sub 3}){sub 3}; Pr{sup i}=CH(CH{sub 3}){sub 2}). Complex 3 was prepared by deprotonation and oxidative homocoupling of an arsenide precursor. Characterization and computational data are consistent with back-bonding-type interactions from uranium to the HAsAsH π*-orbital. This experimentally confirms the theoretically predicted excellent π-acceptor character of HAsAsH, and is tantamount to full reduction to the diarsane-1,2-diide form.

  19. Crystal and Molecular Structure Studies of Ethyl 4-(4-Hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate and Ethyl 4-(3-Bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Badiadka Narayana

    2012-08-01

    Full Text Available The crystal and molecular structures of the title compounds, ethyl 4-(4-hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (I and ethyl 4-(3-bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (II, are reported and confirmed by single crystal X-ray diffraction data. Compound (I, C26H24O5, crystallizes from a methanol solution in the monoclinic C2/c space group with eight molecules in the unit cell. The unit cell parameters are: a = 25.4114(5 Å, b = 8.47440(10 Å, c = 20.6921(4 Å, β = 108.328(2° and V = 4229.92(13 Å3. Disorder is observed throughout the entire molecule with an occupancy ratio 0.690(2:0.310(2. Compound (II, C26H23O4Br, crystallizes from an ethyl acetate solution in the monoclinic P21/c spacegroup with four molecules in the unit cell. The unit cell parameters are a = 17.8991(9 Å, b = 11.4369(6 Å, c = 10.8507(5 Å, β = 92.428(4° and V = 2219.25(19 Å3. Disorder is observed in the cyclohexenone ring and the carboxylate group with an occupancy ratio 0.830(6:0.170(6. Weak O–H...O (I or C–H...O (II intermolecular interactions are observed which influence crystal packing stability. These chalcone derivative types of molecules are important in their ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts which exhibit a multitude of biological activities.

  20. A variant of fibroblast growth factor receptor 2 (Fgfr2 regulates left-right asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Da-Wei Liu

    Full Text Available Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  1. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish.

    Science.gov (United States)

    Liu, Da-Wei; Hsu, Chia-Hao; Tsai, Su-Mei; Hsiao, Chung-Der; Wang, Wen-Pin

    2011-01-01

    Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  2. Chelate-size effects on the structures, chemical behavior, properties, and catalytic activity of the new palladium(II)-allyl complexes [Pd(eta(3)-1-R-1-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), n=2 or 1, and R-1 = h or ph}

    NARCIS (Netherlands)

    Pérez, S.; López, C.; Bosque, R.; Solans, X.; Font-Bardía, M.; Roig, A.; Molins, E.; van Leeuwen, P.W.N.M.; van Strijdonck, G.P.F.; Freixa, Z.

    2008-01-01

    The synthesis, X-ray crystal structures, and the study of the solution behavior of the palladium(II) allyl complexes [Pd(eta(3)-1R(1)-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {with Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), R-1 = H, and n = 2 (4) or 1 (5) or R-1 = Ph and n = 2 (6) or 1 (7)} are described. The

  3. Organometallic Trinuclear Niobium Cluster Complex in Aqueous Solution: Synthesis and Characterization of Niobium Complexes Containing Nb-3(mu-eta(2):eta(2) (perpendicular to)-NCCH3)(mu(2)-O)(3)(6+) Cluster Core

    DEFF Research Database (Denmark)

    Joensen, H.A.N.; Hansson, G. K.; Kozlova, S.G.

    2010-01-01

    ) and a broad peak at 565 nm (epsilon similar to 335 M-1 cm(-1)) in the UV-visible region. It is electron paramagnetic resonance (EPR)-active (g = 1.98), but no hyperfine interaction with the Nb-93 nuclear spin (I = 9/2) was observed. The cyclic voltammogram of [Nb-3(mu-eta(2):eta(2)-NCCH3)O-3(H2O)(9)](6+) in 4...

  4. Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1H-imidazol-1-yl]methane}(MeCN)(PMe3)](PF6)2: structure of the ligand decomposition product trapped via coordination to iron(II).

    Science.gov (United States)

    Haslinger, Stefan; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-01

    Iron is of interest as a catalyst because of its established use in the Haber-Bosch process and because of its high abundance and low toxicity. Nitrogen-heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron-NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1'-bis(pyridin-2-yl)-2,2-bi(1H-imidazole)-κN(3)][3,3'-bis(pyridin-2-yl-κN)-1,1'-methanediylbi(1H-imidazol-2-yl-κC(2))](trimethylphosphane-κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C-C-coupled biimidazole, is trapped by coordination to still-intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.

  5. Investigation into complexing in Re7-H3O+-SO42--H2O system

    International Nuclear Information System (INIS)

    Sinyakova, G.S.

    1979-01-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO 4 - -H 3 O + -SO 4 2- -H 2 O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK 1 =3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK 2 =0.93+-0.13 and lgK 3 =0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK 1 =1.86+-0.02 and lgK 2 =2.35+-0.03

  6. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gó mez, Javier Alexandra M; Larkin, Ivan A.; Schwingenschlö gl, Udo

    2010-01-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  7. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gómez, Javier Alexandra M

    2010-11-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  8. Synthesis and X-ray Powder Structure of a New Pillared Layered Cadmium Phosphonate, Giving Evidence that the Intercalation of Alkylamines into Cd(O(3)PR).H(2)O Is Topotactic.

    Science.gov (United States)

    Fredoueil, Florence; Massiot, Dominique; Janvier, Pascal; Gingl, Franz; Bujoli-Doeuff, Martine; Evain, Michel; Clearfield, Abraham; Bujoli, Bruno

    1999-04-19

    A new pillared layered phosphonate, cadmium 2-aminoethylphosphonate, Cd(O(3)PC(2)H(4)NH(2)) (1), has been synthesized, and its structure was solved ab initio from X-ray powder diffraction data and refined by Rietveld methods. Compound 1 is orthorhombic: space group Pna2(1), a = 15.4643(2) Å, b = 5.16512(7) Å, c = 6.27650(8) Å, and Z = 4. Its layer arrangement is similar to that in Cd(O(3)PR).H(2)O, except that the water molecule coordinated to cadmium in Cd(O(3)PR).H(2)O is replaced by the nitrogen atom from the amino ends of the ethyl chains borne by phosphorus of the upper and lower layers. The strong similarity of the IR, (31)P, and (113)Cd NMR data for Cd(O(3)PC(2)H(4)NH(2)) and Cd(O(3)PCH(3)).n-NH(2)C(4)H(9) clearly shows the topotactic character of the intercalation of n-alkylamines in the dehydrated form of Cd(O(3)PR).H(2)O to yield Cd(O(3)PR).n-NH(2)R'.

  9. Activation of sp3-CH Bonds in a Mono(pentamethylcyclopentadienyl)yttrium Complex. X-ray Crystal Structures and Dynamic Behavior of Cp*Y(o-C6H4CH2NMe2)2 and Cp*Y[o-C6H4CH2NMe(CH2-μ)][μ-o-C6H4CH2NMe(CH2-μ)]YCp*[THF

    NARCIS (Netherlands)

    Booij, Martin; Kiers, Niklaas H.; Meetsma, Auke; Teuben, Jan H.; Smeets, Wilberth J.J.; Spek, Anthony L.

    1989-01-01

    Reaction of Y(o-C6H4CH2NMe2)3 (1) with Cp*H gives Cp*Y(o-C6H4CH2NMe2)2 (2), which crystallizes in the monoclinic space group P21/n (No. 14) with a = 18.607 (4) Å, b = 15.633 (3) Å, c = 8.861 (3) Å, β = 102.73 (3)°, and Z = 4. Least-squares refinement with 3006 independent reflections (F > 4.0σ(F))

  10. catena-Poly[[bromidocopper(I)]-?-?2,?1-3-(2-allyl-2H-tetra?zol-5-yl)pyridine

    OpenAIRE

    Wang, Wei

    2008-01-01

    The title compound, [CuBr(C9H9N5)] n , has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra?zol-5-yl)pyridine. It is a new homometallic CuI olefin coord?ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra?zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-...

  11. Complexation of Cm(III) and Eu(III) with 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine and 2-bromohexanoic acid studied by time-resolved laser fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Bremer, A.; Panak, P.J.; Heidelberg Univ.; Geist, A.

    2013-01-01

    The complexation of Cm(III) and Eu(III) with 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) and 2-bromohexanoic acid as lipophilic anion has been investigated by time-resolved laser fluorescence spectroscopy. Upon increasing ligand concentration three different Cm(III)-C5-BPP species with emission bands at 604.1 nm, 607.9 nm and 611.4 nm, respectively, are found and attributed to complexes with one, two and three C5-BPP molecules in the inner coordination sphere. Comparison with results of TRLFS experiments without 2-bromohexanoic acid shows that the C5-BPP ligand is able to completely displace the lipophilic anion from the inner coordination sphere, forming [Cm(C5-BPP) 3 ] 3+ complexes. This complex is also found in the organic phase of an extraction experiment performed with Cm(III), demonstrating that the lipophilic anion required for the extraction is not directly coordinated to the metal ion in the species formed during extraction. In case of Eu(III) the number of different species formed cannot be determined accurately. Nevertheless, the formation of the complex [EU(C5-BPP) 3 ] 3+ in the presence of 2-bromohexanoic acid is confirmed. (orig.)

  12. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  13. An expeditious I sub(2)-catalyzed entry into 6H-indolo[2,3-b]quinoline system of cryptotackieine

    Digital Repository Service at National Institute of Oceanography (India)

    Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G.

    A synthesis of a series of novel 6H-indolo[2,3-b]- quinolines with different substituents on the quinoline ring is described. The method involves reaction of indole-3-carboxyaldehyde with aryl amines in the presence of a catalytic amount of iodine...

  14. Superacid univalent metal phosphites (MH2PO3)2·H3PO3 (M Rb, Tl+) and MH2PO3·H3PO3 (M = K, Cs): synthesis and structure

    International Nuclear Information System (INIS)

    Kosterina, E.V.; Troyanov, S.I.; Aslanov, L.A.; Kemnits, Eh.

    2001-01-01

    Crystal superacid phosphites α-CsH 2 PO 3 ·H 3 PO 3 (1) and β-CsH 2 PO 3 ·H 3 PO 3 (2) were prepared by means of interaction between cesium carbonate and phosphoric acid excess. The structure of the compounds, i.e.: 1-rhombic crystal system, sp.gr. P2 1 2 1 2 1 , a = 6.033 (1), b = 6.444 (1), c = 18.345 (4) A: 2-monoclinic crystal system, sp.gr. C2/c, a = 9.990 (3), b = 12.197 (4), c = 6.866 (2) A, β = 118.14 (3) deg, was determined by the method of X-ray diffraction analysis of monocrystals at 150 K. Comparative analysis of the crystal structure and hydrogen bond systems in acid phosphites of different composition was conducted [ru

  15. Determination of the differences in oxidation potentials for the Pr3+/Pr2+ and Ce3+/Ce2+ pairs in halide melts

    International Nuclear Information System (INIS)

    Mikheev, N.B.; Auerman, L.N.; Rumer, I.A.; D'yachkova, R.A.

    1983-01-01

    Cocrystallization has been used with the (PrOCl)/sub s. ph/ - (PrCl 2 , PrCl 3 , SrCl 2 ) melt system to examine the dependence of the cerium(III) cocrystallization coefficient on the X/sub Pr 2+ /X/sub Pr 3+ / ratio in the melt. Measurement has been made in this way of the difference in oxidation potentials for the pairs Pr 3+ /Pr 2+ and Ce 3+ /Ce 2+ : ΔE/sub Pr 3+ /Pr 2+0 -E/sub Ce 3+ /Ce 2+ / 0 , which is 0.08 +/- 0.04 V for chloride

  16. A quantum dynamical study of the rotation of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 coordination complex

    Science.gov (United States)

    Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill

    2018-04-01

    Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.

  17. Schatten Class Operators in ℒ(La2(ℂ+\\msbm=MTMIB${\\cal L}\\left( {L_a^2 \\left( {{\\msbm C}_+ } \\right} \\right$

    Directory of Open Access Journals (Sweden)

    Das Namita

    2017-12-01

    and φ ∈ Sp. We also use these results to obtain Schatten class characterizations of little Hankel operators and bounded operators defined on the Bergman space La2(ℂ+\\msbm=MTMIB$L_a^2 \\left( {{\\msbm C}_+ } \\right$

  18. Construction of New Coordination Polymers from 4’-(2,4-disulfophenyl)- 3,2’:63”-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Li, Chao-Jie; He, Jia-En; Chen, Yin-Yu [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Sheng-Run, E-mail: zhengsr@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China); Fan, Jun [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Wei-Guang, E-mail: wgzhang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006 (China)

    2016-01-15

    Nine new coordination compounds, namely, [Co(HDSPTP){sub 2}(H{sub 2}O){sub 4}]·4H{sub 2}O (H{sub 2}DSPTP=4’-(2,4-disulfophenyl)-3,2’:63”-terpyridine, 1 and 2), {[Ni(DSPTP)(H_2O)_4]·3H_2O}{sub n} (3), {[Cu(HDSPTP)_2(H_2O)_3]·8H_2O}{sub n} (4), {[Cu(HDSPTP)_2(H_2O)_36H_2O}{sub n} (5), {[Cu(DSPTP)(H_2O)_2H_2O}{sub n} (6), {[Zn(DSPTP)(H_2O)_22H_2O}{sub n} (7), {[Cd(DSPTP)(H_2O)_22H_2O}{sub n} (8), and [Ag{sub 2}(DSPTP)(H{sub 2}O)]{sub n} (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H{sub 2}DSPTP with Co(NO{sub 3}){sub 2}.6H{sub 2}O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H{sub 2}DSPTP with Ni(NO{sub 3}){sub 26H{sub 2}O resulted in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H{sub 2}DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H{sub 2}DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ{sub 7}-mode) and conformations (cis–cis and cis–trans) of HDSPTP{sup −}/DSPTP{sup 2−} ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits

  19. Synthesis and photoluminescence properties of microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur 441111 (India); Park, K. [Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India)

    2014-12-25

    Graphical abstract: CIE chromaticity coordinate diagram (1931) indicating different colors of Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu (a), Dy (b and c), Sm (d–f) and Pr (g and h)) phosphor under different excitation 466 nm (a), 312 nm (b), 454 nm (c), 313 nm (d), 408 nm (e), 482 nm (f), 315 nm (g) and 450 nm (h). - Highlights: • Microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid state method. • Photoluminescence properties of phosphor were investigated. • Color of the phosphor for different excitation has been verified by chromaticity diagram. • The host absorption and energy transfer were investigated. - Abstract: The novel microcrystalline Sr{sub 2}ZnWO{sub 6}:RE{sup 3+} (RE = Eu, Dy, Sm and Pr) phosphors were synthesized by solid-state reaction method at 1250 °C and their photoluminescence properties were investigated. The Eu{sup 3+} and Dy{sup 3+} activated phosphors show intense red (616 nm) and yellow (574 nm) emission respectively; which indicate that the rare earth ions are substituted at non-centrosymmetric site in the host lattice. Near white (Dy{sup 3+}) and reddish-orange (Sm{sup 3+}) emissions of rare earth ions in the host lattice show strong host absorption and energy transfer from the host to activator ion. Pr{sup 3+} activated phosphor shows a series of emission peaks in the visible region with the most intense peak in the blue region at 491 and 499 nm.

  20. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  1. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  2. Solution Synthesis, Structure, and CO2 Reduction Reactivity of a Scandium(II) Complex, {Sc[N(SiMe3 )2 ]3 }.

    Science.gov (United States)

    Woen, David H; Chen, Guo P; Ziller, Joseph W; Boyle, Timothy J; Furche, Filipp; Evans, William J

    2017-02-13

    The first crystallographically characterizable complex of Sc 2+ , [Sc(NR 2 ) 3 ] - (R=SiMe 3 ), has been obtained by LnA 3 /M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR 2 ) 3 with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)] + , [K(18-c-6)] + , and [Cs(crypt)] + salts of the [Sc(NR 2 ) 3 ] - anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 45 Sc nucleus. The Sc(NR 2 ) 3 reduction differs from Ln(NR 2 ) 3 reactions (Ln=Y and lanthanides) in that it occurs under N 2 without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR 2 ) 3 ] reacts with CO 2 to produce an oxalate complex, {K 2 (18-c-6) 3 }{[(R 2 N) 3 Sc] 2 (μ-C 2 O 4 -κ 1 O:κ 1 O'')}, and a CO 2 - radical anion complex, [(R 2 N) 3 Sc(μ-OCO-κ 1 O:κ 1 O')K(18-c-6)] n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH{sub 2}){sub 3}]CdI{sub 3} and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gesing, Thorsten M.; Lork, Enno [Bremen Univ. (Germany). MAPEX Center for Material and Processes; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education

    2016-05-01

    The crystal structures of [C(NH{sub 2}){sub 3}]CdI{sub 3} (1) and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5} (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2{sub 1}/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI{sub 4}] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr{sub 6}] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three {sup 127}I (m = ±1/2 <-> m = ±3/2), five {sup 81}Br, and three {sup 35}Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd{sub 5}I{sub 16}]{sup 6-} for 1 and [Cd{sub 3}Br{sub 16}]{sup 10-} for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  4. Systematic study of photoluminescence upon band gap excitation in perovskite-type titanates R 1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y)

    International Nuclear Information System (INIS)

    Inaguma, Yoshiyuki; Tsuchiya, Takeshi; Katsumata, Tetsuhiro

    2007-01-01

    Pr 3+ -doped perovskites R 1/2 Na 1/2 TiO 3 :Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R 1/2 Na 1/2 TiO 3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr 3+ . This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R 1/2 Na 1/2 TiO 3 :Pr are governed by the relative energy level between the ground and excited state of 4f 2 for Pr 3+ , and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO 6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion. - Graphical abstract: The red intense emission assigned to f-f transition of Pr 3+ from the excited 1 D 2 level to the ground 3 H 4 state upon the band gap photo-excitation (UV) was observed upon the band gap photo-excitation in perovskites R 1/2 Na 1/2 TiO 3 :Pr(R=La, Gd, Lu, and Y). It was found that the systematic changes in their luminescent properties are strongly dependent on the structure

  5. Synthesis and reactivity of TADDOL-based chiral Fe(II) PNP pincer complexes-solution equilibria between κ(2)P,N- and κ(3)P,N,P-bound PNP pincer ligands.

    Science.gov (United States)

    Holzhacker, Christian; Stöger, Berthold; Carvalho, Maria Deus; Ferreira, Liliana P; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Realista, Sara; Gil, Adrià; Calhorda, Maria José; Müller, Danny; Kirchner, Karl

    2015-08-07

    Treatment of anhydrous FeX2 (X = Cl, Br) with 1 equiv. of the asymmetric chiral PNP pincer ligands PNP-R,TAD (R = iPr, tBu) with an R,R-TADDOL (TAD) moiety afforded complexes of the general formula [Fe(PNP)X2]. In the solid state these complexes adopt a tetrahedral geometry with the PNP ligand coordinated in κ(2)P,N-fashion, as shown by X-ray crystallography and Mössbauer spectroscopy. Magnetization studies led to a magnetic moment very close to 4.9μB reflecting the expected four unpaired d-electrons (quintet ground state). In solution there are equilibria between [Fe(κ(3)P,N,P-PNP-R,TAD)X2] and [Fe(κ(2)P,N-PNP-R,TAD)X2] complexes, i.e., the PNP-R,TAD ligand is hemilabile. At -50 °C these equilibria are slow and signals of the non-coordinated P-TAD arm of the κ(2)P,N-PNP-R,TAD ligand can be detected by (31)P{(1)H} NMR spectroscopy. Addition of BH3 to a solution of [Fe(PNP-iPr,TAD)Cl2] leads to selective boronation of the pendant P-TAD arm shifting the equilibrium towards the four-coordinate complex [Fe(κ(2)P,N-PNP-iPr,TAD(BH3))Cl2]. DFT calculations corroborate the existence of equilibria between four- and five-coordinated complexes. Addition of CO to [Fe(PNP-iPr,TAD)X2] in solution yields the diamagnetic octahedral complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)X2], which react further with Ag(+) salts in the presence of CO to give the cationic complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)2X](+). CO addition most likely takes place at the five coordinate complex [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. The mechanism for the CO addition was also investigated by DFT and the most favorable path obtained corresponds to the rearrangement of the pincer ligand first from a κ(2)P,N- to a κ(3)P,N,P-coordination mode followed by CO coordination to [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. Complexes bearing tBu substituents do not react with CO. Moreover, in the solid state none of the tetrahedral complexes are able to bind CO.

  6. Versatility of {l_brace}M(30-crown-10){r_brace} (M = K{sup +}, Ba{sup 2+}) as a guest in UO{sub 2}{sup 2+} complexes of 3.1.3.1 - and 3.3.3 homo-oxa-calixarenes

    Energy Technology Data Exchange (ETDEWEB)

    Masci, B. [Univ Roma La Sapienza, Dipartimento Chim, I-00185 Rome, (Italy); Thuery, P. [CEA Saclay, DSM/DRECAM/SCM, CNRS-URA 331, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    The reaction between p-R-[3.1.3.1]- or [3.3.3] homo-oxa-calixarenes and uranyl salts in the presence of 30-crown-10 and the alkali or alkaline-earth metal cations K{sup +} or Ba{sup 2+} gives various supramolecular assemblages characterized by 'complex-within-complex' architectures. These can be of the simple nesting or sandwich types, as in [{l_brace}Ba(30-crown-10){r_brace}{l_brace}UO{sub 2}(L{sup 1}){r_brace}]. 2H{sub 2}O.3CHCl{sub 3} (L{sup 1}H{sub 4} p-tert-butyl[3.1.3.1] homo-oxa-calixarene) and [{l_brace}Ba(30-crown-10){r_brace}{l_brace}UO{sub 2}(L{sup 4}){r_brace}{sub 2}].2CHCl{sub 3} (L{sup 4}H{sub 3} p-bromo[3.3.3]homo-oxa-calixarene), respectively, with the cation held in the cavity of the homo-oxa-calixarene complexes in cone conformation by weak interactions, but more original structures arise when uranyl-cation bonds are present. In [{l_brace}Ba(30-crown-10){r_brace}{l_brace}UO{sub 2}(L{sup 2}){r_brace}] (L{sup 2}H{sub 4} p-phenyl[3.1.3.1] homo-oxa-calixarene), the barium ion included in the crown ether is bound to the uranyl oxo group located out of the calixarene cavity, resulting in the formation of a neutral species which self-organizes to form a columnar assembly by auto-inclusion. In [{l_brace}K(30-crown-10){r_brace}{l_brace}UO{sub 2}K(L{sup 1})(H{sub 2}O){sub 3}{r_brace}]{sub 2}.6H{sub 2}O, the nesting-type subunit dimerizes around two oxo-bound potassium ions. Finally, the use of the coordinating solvent dimethylsulfoxide leads to the neutral complex [UO{sub 2}Ba(L{sup 3})(dmso){sub 2}(MeOH)]{sub 2} (L{sup 3}H{sub 4} = p-methyl[3.1.3.1] homo-oxa-calixarene), in which the crown ether is absent and two oxo-, phenoxo- and ether-bound barium atoms ensure the dimerization of the uranyl complex. (authors)

  7. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  8. Preparation of deuteriated adipic [2H2]-, [2H4]-, [2H6]-, and [2H8]-acids by use of Kolbe electrolysis as a key reaction

    International Nuclear Information System (INIS)

    Tashiro, Masahi; Tsuzuki, Hirohisa; Mataka, Shuntaro; Goto, Hideyuki; Ogasahara, Shoji

    1990-01-01

    Using Kolbe electrolysis of methyl hydrogen [ 2 H 0 ]-, [ 2 H 2 ]-, and [ 2 H 4 ]-succinates as a key reaction, adipic [2,2- 2 H 2 ]-, [2,3- 2 H 2 ]-, [2,2,3,3- 2 H 4 ]-, [2,3,4,5- 2 H 4 ]-, [2,3,5,5- 2 H 4 ]-, [2,2,3,3,5,5- 2 H 6 ]-, and [2,2,3,3,4,4,5,5- 2 H 8 ]-acids were prepared in high deuterium contents. (author)

  9. Magnetic ordering in PrBa2Cu3-yAlyO6+x

    DEFF Research Database (Denmark)

    Longmore, A.; Boothroyd, A.T.; Chen, C.K.

    1996-01-01

    The magnetic ordering in single crystals of PrBa2CU3O6+x has been investigated by elastic neutron scattering over the full range of temperatures for reduced and oxygenated crystals. The crystals were grown in alumina crucibles and therefore contained dissolved aluminum on the Cu(1) site. Both...... aluminum and oxygen contents were analyzed in detail in order to establish their effects on the magnetic ordering, Our crystals exhibited Pr ordering and the two types of antiferromagnetic Cu ordering frequently reported in related compounds, but our results differ in several respects from previous studies...... axis, we find the moment to be aligned well away from the c axis, in agreement with recent Yb-170(3+) Mossbauer spectroscopy results. Ridges of scattering indicative of 2D magnetic ordering were seen in both oxygenated and reduced crystals, though we believe different magnetic moments are responsible...

  10. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  11. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  12. Reaction of ReH sub 7 (PPh sub 3 ) sub 2 with silanes: Preparation and characterization of the first silyl polyhydride complexes, ReH sub 6 (SiR sub 3 )(PPh sub 3 ) sub 2 (SiR sub 3 = SiPh sub 3 , SiEt sub 3 , SiHEt sub 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaoliang; Baudry, D.; Boydell, P.; Charpin, P.; Nierlich, M.; Ephritikhine, M.; Crabtree, R.H. (Yale Univ., New Haven, CT (USA) CEA-CEN Saclay, Gif-sur-Yvette (France))

    1990-04-18

    Reaction of silanes with ReH{sub 7}(PPh{sub 3}){sub 2} (1) gives the novel rhenium silyl hexahydride complexes ReH{sub 6}(SiR{sub 3})(PPh{sub 3}){sub 2} (SiR{sub 3} = SiPh{sub 3} (2a), SiEt{sub 3} (2b), SiHEt{sub 2} (2c)), which have been fully characterized by IR and {sup 1}H, {sup 31}P, and {sup 13}C NMR spectroscopy and, in the case of 2a, by single-crystal x-ray crystallography. The spectroscopic and x-ray diffraction data suggest that 2a-c probably have a classical nine-coordinate tricapped trigonal-prismatic structure with the two phosphine ligands and the silyl group occupying the three equatorial sites and the six hydride ligands occupying the six axial positions. 2a has been obtained in two crystalline forms, one solvated (CH{sub 2}Cl{sub 2}) and the other unsolvated, and structures were determined on both. The crystal structures of crystals of unsolvated 2a and 2a {times} CH{sub 2} Cl{sub 2} are reported. The Re-Si bond lengths, 2.474 (4) {angstrom} (2a) and 2.475 (4) {angstrom} (2a {times} CH{sub 2}Cl{sub 2}), are shorter than the sum of the covalent radii of the Re and Si atoms (2.65 {angstrom}), which is unusual for a transition-metal silyl complex with a formal d{sup 0} configuration. 35 refs., 2 figs., 4 tabs.

  13. Study of Sr sup 2+ and Eu sup 2+ complexing with 18-crown-6 in aqueous-ethanolic solutions. Izuchenie kompleksoobrazovaniya Sr sup 2+ i Eu sup 2+ s 18-kraun-6 v vodno-ehtanol'nykh rastvorakh

    Energy Technology Data Exchange (ETDEWEB)

    Kulyukhin, S A; Majorov, A V; Kamenskaya, A N; Mikheev, N B

    1989-01-01

    Using cocrystallization and conductometry methods Sr{sup 2+} and Eu{sup 2+} complexing with 18-crown-6 in aqueous-ethanolic solutions at (H{sub 2}O)=10 mol/l is studied. Stability constants of Sr{sup 2+} and Eu{sup 2+} complexes with 18-crown-6 in C{sub 2}H{sub 5}OH, for which lg{beta} is equal to (4.76{plus minus}0.12) and (4.72{plus minus}0.13) respectively, are determined. Comparison of the investigated elements features during complexing with 18-crown-6 in aqueous and aqueous-ethanolic solutions is carried out. It is shown that both in water and in C{sub 2}H{sub 5}OH -10 mol/l H{sub 2}O system under Sr{sup 2+} and Eu{sup 2+} complexing with 18-crown-6 the differences in properties of these elements are not detected.

  14. Formation of nitrogen complexes when [Ru(NH3)5H2O]2+ ion reaction with diazo-acetic ester and aromatic salts of diazonium

    International Nuclear Information System (INIS)

    Shur, V.B.; Tikhonova, I.A.; Vol'pin, M.E.

    1978-01-01

    A possibility of formation of nitrogen complexes during transition metal compound interaction with aliphatic and aromatic diazo compounds is studied. It is shown that at the interaction of [Ru(NH 3 ) 5 H 2 O] 2+ with diazo-acetic ester in water (pH7) at 20 deg, quick splitting of the CN-bond in the ester molecule takes place with the formation of [Ru(NH 3 ) 5 N 2 ] 2+ and [(NH 3 ) 5 RuN 2 Ru(NH 3 ) 5 ] 4+ (NRRN) nitrogen complexes. The sum yield of complexes comprises 86% taking into acount diazo-acetic ester. Aromatic salts of diazonium, n-O 3 SC 6 H 4 N 2 and p-quinone diazide react with the [Ru(NH 3 ) 5 H 2 O] 2+ excess forming NRRN (the yield equals 40-53%). The reaction mechanism is discussed

  15. Modeling 4f–4f intensity parameters as a function of structural distortions in Ln(2,2′-bipyridine-1,1′-dioxide){sub 4}(ClO{sub 4}){sub 3} complexes (Ln=Pr{sup 3+}, Nd{sup 3+})

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, A.N. [Departamento de Química Fundamental, Universidade Federal de Pernambuco-CCEN, Cidade Universitária, Recife-PE 50670-901 (Brazil); Huskowska, E.; Gawryszewska, P. [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie Street, Wroclaw (Poland); Legendziewicz, J., E-mail: janina.legendziewicz@chem.uni.wroc.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie Street, Wroclaw (Poland); Malta, O.L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco-CCEN, Cidade Universitária, Recife-PE 50670-901 (Brazil)

    2016-01-15

    This work reports on the influence of structural distortions on 4f–4f intensity parameters. These distortions in the first coordination sphere were applied to two complexes with similar structures, Ln(bpyO{sub 2}){sub 4}(ClO{sub 4}){sub 3} (Ln=Pr{sup 3+}, Nd{sup 3+} ions and bpyO{sub 2}=2,2′-bipyridine-1,1′-dioxide). The 4f–4f intensity theory and the PM3/Sparkle model were used. It is concluded that larger distortions are predicted in the case of the Pr complex, and that this point might contribute to the rationalization of the much higher values of the Ω{sub λ} intensity parameters in the Pr complex than in the Nd one. - Highlights: • The influence of structural distortions on 4f–4f intensity parameters was demonstrated for Nd and Pr complexes with 2,2′-bipyridine-1,1′-dioxide.

  16. (Phosphinoalkyl)silanes. 4.(1) Hydrozirconation as a Non-Photochemical Route to (Phosphinopropyl)silanes: Facile Assembly of the Bis(3-(diphenylphosphino)propyl)silyl ("biPSi") Ligand Framework. Access to the Related Poly(3-(dimethylsilyl)propyl)phosphines R(n)()P(CH(2)CH(2)CH(2)SiMe(2)H)(3)(-)(n)() (n = 1, R = Ph; n = 0).

    Science.gov (United States)

    Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.

    1997-08-13

    Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation

  17. Tricarbonyl[tris(1-methyl-1H-imidazol-2-yl-κN3methanol]manganese(I trifluoromethanesulfonate

    Directory of Open Access Journals (Sweden)

    Guido J. Reiss

    2012-09-01

    Full Text Available In the title compound, [Mn(C13H16N6O(CO3](CF3O3S, the MnI atom has a slightly distorted octahedral geometry. The three CO ligands have C—Mn—C angles in the range 89.44 (10–92.31 (9°, while the three N atoms of the tripodal ligand form significantly smaller N—Mn—N angles of 82.76 (2–85.51 (6°. The three N atoms of the tripodal ligand and the three carbonyl ligands coordinate facially. In the crystal, the trifluoromethanesulfonate counter anion is connected by a medium-strength O—H...O hydrogen bond to the hydroxyl group of the manganese complex.

  18. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    Science.gov (United States)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  19. Synthesis and reactions of 4-(p-methoxybenzyl-6-[5,6,7,8-tetrahydro-2-naphthyl]-pyridazin-3(2H-one

    Directory of Open Access Journals (Sweden)

    NAGWA M.S. EL-DIN HARB

    1999-11-01

    Full Text Available The condensation of 4-(p-methoxybenzyl-6-[5,6,7,8-tetrahydro-2-naphthyl]-pyridazin-3(2H-one (3, prepared by the reaction of 6-[5,6,7,8-tetrahydro-2-naphthyl]-4,5-dihydropyridazin-3(2H-one (1 and anisaldehyde, with dimethyl sulphate, formaldehyde and acrylonitrile, and also the formation of the Mannich base, proceeded smoothly at the 2-position to give compounds 4,5,6,7, respectively. 4-p-Methoxybenzyl-3-chloro-6-[5,6,7,8-tetrahydro-2-naphthyl]-pyridazine (9 was prepared in law yield by the action of phosphorus oxychloride on 3. The reaction of 9 with benzylamine, aniline and piperidine gave 10a,b,c, respectively. 4-p-Methoxybenzyl-6-[5,6,7,8-tetrahydro-2-napthyl]pyridazine-3(2H-thione (12 was prepared either by the action of thiourea on 9, or by the reaction of 3 with phosphorus pentasulphide. The reaction of these thiones with acrylonitrile, morpholine and piperidine to give 13 and 14 a,b, respectively, were also investigated.

  20. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Semmineh, Natenael; Bililign, Solomon; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2009-01-01

    Collisions of excited Li(4p) states with C 2 H 4 , C 2 H 6 and C 3 H 8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C 2 H 4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C 2 H 4 , C 2 H 6 and C 3 H 8 ) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C 2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  1. Magnetic excitations of single-crystal PrBa2Cu3O6.2

    DEFF Research Database (Denmark)

    Lister, S.J.S.; Boothroyd, A.T.; Andersen, N.H.

    2000-01-01

    Measurements of the low-energy magnetic excitations in single-crystal PrBa2Cu3O6.2, and in YBa2Cu3O6.2 for comparison, have been performed using inelastic neutron scattering. An excitation with weak dispersion is seen, which is compared to a spin-wave model based on the lowest lying crystal field...

  2. Preparation and characterization of some pyridine-2,6-dicarboxylato thorium(IV) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Degetto, S; Baracco, L [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Graziani, R [Padua Univ. (Italy). Istituto di Chimica Generale ed Inorganica; Celon, E [Padua Univ. (Italy). Istituto di Chimica Organica

    1978-12-01

    The preparation of complexes of pyridine-2,6-dicarboxylic acid (H/sub 2/PDC) with thorium(IV) is reported and discussed. The reactivity of Th(PDC)/sub 2/(H/sub 2/O)/sub 4/ was tested by preparing adducts with some neutral ligands. The complexes were characterized by i.r. spectroscopy, elemental analysis and thermal behaviour. Preliminary information on the structure obtained by x-ray analysis is also reported.

  3. Current transport and electronic states in a,b-axis-oriented YBa2Cu3O7/PrBa2Cu3O7/YBa2Cu3O7 sandwich-type junctions

    International Nuclear Information System (INIS)

    Yoshida, J.; Nagano, T.; Hashimoto, T.

    1996-01-01

    Precise measurement of the temperature and voltage dependence of junction conductance has been carried out for a,b-axis-oriented YBa 2 Cu 3 O 7 /PrBa 2 Cu 3 O 7 /YBa 2 Cu 3 O 7 sandwich-type junctions to investigate the possible origin of Josephson coupling in these junctions. Regardless of the presence or absence of the Josephson effect, most of the junctions exhibited a dip in conductance around zero voltage in their dI/dV profiles at low temperatures. This dI/dV anomaly was attributed to the existence of a minimum in the density of states due to electron-electron interaction in disordered metals in the vicinity of a tunneling barrier within the junctions. The complex temperature dependence of junction conductance was reproduced well by a theoretical model in which both tunneling conduction paths and variable range hopping paths were assumed to exist within the PrBa 2 Cu 3 O 7 barrier layer. No definite evidence of current transport through a small number of localized levels or a metallic conduction path in PrBa 2 Cu 3 O 7 has been confirmed, even for junctions with a 20-nm-thick barrier layer. copyright 1996 The American Physical Society

  4. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  5. 6,6″-Dimethyl-2,2':6',2″-terpyridine revisited: new fluorescent silver(I) helicates with in vitro antiproliferative activity via selective nucleoli targeting.

    Science.gov (United States)

    Fik, Marta A; Gorczyński, Adam; Kubicki, Maciej; Hnatejko, Zbigniew; Fedoruk-Wyszomirska, Agnieszka; Wyszko, Eliza; Giel-Pietraszuk, Małgorzata; Patroniak, Violetta

    2014-10-30

    6,6″-Dimethyl-2,2':6',2″-terpyridine ligand (L) reacts in equimolar ratio with Ag(I) ions what results in formation of dinuclear double helicates, which differ in terms of framework and complexity in accordance to counterions and solvent applied. Obtained complexes were thoroughly studied in terms of their biological activity, with the positive antiproliferative outcome on three human cancer cell lines: human breast cancer (T47D), human cervical carcinoma (HeLa) and human lung cancer (A-549). Performed DNA binding experiments showed that given Ag(I) species specifically interact with DNA double helix via intercalation and were visualized by confocal microscopy to specifically bind to the nuclei. All newly synthesized helical systems exhibit promising antimicrobial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacterial strains. Spectrophotometric properties were described as fulfilment of structural studies of newly presented complexes confirming their helical structure in solution. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Simple formation of products of exo-nido→closo-regrouping during substitution of PPh3-ligands by bis(diphenyl phosphino)alkanes in three-bridging ruthena carborane 5,6,10-[RuCl(PPh3)2]-5,6,10-(μ-H)3-10-H-exo-nido-7,8-C2B9H8

    International Nuclear Information System (INIS)

    Cheredilin, D.N.; Balagurova, E.V.; Godovikov, I.A.; Solodovnikov, S.P.; Chizhevskij, I.T.

    2005-01-01

    It is established that the substitution of PPh 3 -ligands by diphosphines [Ph 2 P(CH 2 ) n PPh] (n=3, 4) in three-bridging exo-nido-ruthena carborane 5,6,10-[RuCl(PPh 3 ) 2 ]-5,6,10-(μ-H) 3 -10-H-exo-nido-7,8-C 2 B 9 H 8 (1) decreases temperature of exo-nido→closo-regrouping (22 Deg C). It is demonstrated that the exo-nido-ruthena carborane complex (1) is well suited and available as reagent for preparation of closo-ruthena carboranes with different chelate diphosphines. Formation of closo-products follows through the stage of exo-nido→closo-regrouping of diphosphine complexes with exo-nido-structure [ru

  7. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)23H2O, a New Mineral of the Eudialyte Group

    Science.gov (United States)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  8. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Synthesis, crystal structure and magnetic properties of [Cu(mal(abpt(H2O].3/2H2O and [Cu2(sq(abpt 2].2H2O (mal = malonate, sq = squarate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole

    Directory of Open Access Journals (Sweden)

    Eno A. Ededet

    2011-04-01

    Full Text Available Two new mixed-ligand complexes of formula [Cu(mal(abpt(H2O].3/2H2O (1 and [Cu2(sq(abpt2].2H2O (2 [mal = malonate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole and sq = squarate], have been prepared and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a = 14.0086(2 Å, b = 10.0980(2 Å, c = 25.630(4 Å; β = 97.5900(10 o, and Z = 8. Complex 2 crystallizes in the triclinic system, space group P-1 with a = 7.5696(15 Å, b = 8.4697(17 Å, c = 11.049(2 Å; β = 93.00(3o, α = 96.98(3, γ = 90.111(3 and Z = 1. Complex 1 consist of a neutral mononuclear [Cu(mal(abpt(H2O] unit and water molecule of crystallization in a distorted square pyramidal coordination sphere, while complex 2 is viewed as being made up of [Cu(sq(abpt2] units with the squarato ligand bridging the two copper(II cations. Variable temperature magnetic behaviour of the complexes reveals the existence of weak antiferromagnetic interaction for complex 1 and weak ferromagnetic intrachain interaction for complex 2.

  10. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  11. Formation constants of Sm(III), Dy(III), Gd(III), Pr(III) and Nd(III) complexes of tridentate schiff base, 2-[(1H-benzimidazol-2-yl-methylene) amino] phenol

    International Nuclear Information System (INIS)

    Omprakash, K.L.; Chandra Pal, A.V.; Reddy, M.L.N.

    1982-01-01

    A new tridentate schiff base, 2- (1H-benzimidazol-2-yl-methylene)amino phenol derived from benzimididazole-2-carbo-xaldehyde and 2-aminophenol has been synthesised and characterised by spectral and analytical data. Proton-ligand formation constants of the schiff base and metal-ligand formation constants of its complexes with Sm(III), Dy(III), Gd(III), Nd(III) and Pr(III) have been determined potentiometrically in 50% (v/v) aqueous dioxane at an ionic strength of 0.1M (NaClO 4 ) and at 25deg C using the Irving-Rossotti titration technique. The order of stability constants (logβ 2 ) is found to be Sm(III)>Dy(III)>Gd(III)>Pr(III)>Nd(III). (author)

  12. Formation constants of Sm(III), Dy(III), Gd(III), Pr(III) and Nd(III) complexes of tridentate schiff base, 2-((1H-benzimidazol-2-yl-methylene) amino) phenol

    Energy Technology Data Exchange (ETDEWEB)

    Omprakash, K L; Chandra Pal, A V; Reddy, M L.N. [Osmania Univ., Hyderabad (India). Dept. of Chemistry

    1982-03-01

    A new tridentate schiff base, 2- (1H-benzimidazol-2-yl-methylene)amino phenol derived from benzimididazole-2-carbo-xaldehyde and 2-aminophenol has been synthesised and characterised by spectral and analytical data. Proton-ligand formation constants of the schiff base and metal-ligand formation constants of its complexes with Sm(III), Dy(III), Gd(III), Nd(III) and Pr(III) have been determined potentiometrically in 50% (v/v) aqueous dioxane at an ionic strength of 0.1M (NaClO/sub 4/) and at 25deg C using the Irving-Rossotti titration technique. The order of stability constants (log..beta../sub 2/) is found to be Sm(III)>Dy(III)>Gd(III)>Pr(III)>Nd(III).

  13. Electronic structure of layered ferroelectric high-k titanate Pr{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Grivel, J.-C. [Materials Research Division, National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000, Roskilde (Denmark); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Troitskaia, I.B. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-11-15

    The spectroscopic parameters and electronic structure of binary titanate Pr{sub 2}Ti{sub 2}O{sub 7} have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr{sub 2}Ti{sub 2}O{sub 7} have been determined as {alpha}{sub Ti}=872.8 and {alpha}{sub O}=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences {Delta}{sub Ti}=(BE O 1s-BE Ti 2p{sub 3/2})=71.6 eV and {Delta}{sub Pr}=BE(Pr 3d{sub 5/2})-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides. Highlights: Black-Right-Pointing-Pointer Solid state synthesis of polar titanate Pr{sub 2}Ti{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Structural and spectroscopic properties and electronic structure determination. Black-Right-Pointing-Pointer Ti-O and Pr-O bonding analysis using Ti 2p{sub 3/2}, Pr 3d{sub 5/2} and O 1s core levels.

  14. {4,4′,6,6′-Tetraiodo-2,2′-[(2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene]diphenolato}nickel(II

    Directory of Open Access Journals (Sweden)

    Hadi Kargar

    2012-07-01

    Full Text Available The asymmetric unit of the title compound, [Ni(C19H16I4N2O2], comprises half of a Schiff base complex. The NiII atom is located on a twofold rotation axis which also bisects the central C atom of the 2,2-dimethylpropane group of the ligand. The geometry around the NiII atom is distorted square-planar, with a dihedral angle of 21.7 (3° between the symmetry-related N/Ni/O coordination planes. The dihedral angle between the symmetry-related benzene rings is 27.9 (3°. In the crystal, short intermolecular I...I [3.8178 (9 and 3.9013 (10 Å] interactions are present.

  15. Crystal structure of Sm(NO3)3x6H2O

    International Nuclear Information System (INIS)

    Espenbetov, A.A.; Gerr, R.G.; Struchkov, Yu.T.; Sal'nikova, N.A.; Akimov, V.M.; Odinets, Z.K.

    1985-01-01

    X-ray diffraction study of a salt, prepared when mixing concentrated nitric acid solutions of NaNO 3 and Sm(NO 3 ) 3 , has been carried out. It is established, that the salt is a concretion of two crystals: NaNO 3 and Sm(NO 3 ) 3 x6H 2 O (1). X-ray diffraction study of 1 is carried out (lambda Mo, diffractometer, 1511 reflections, the method of heavy atom, the least square method in anisotropic approximation up to R=0.0348). The crystals of 1 are triclinic: a=6.755, b=9.168, c=11.684 A, α=69.93, β=88.86, γ=69.28, Z=2, Fedorov group P anti 1. Symmetery of 10-vertex coordination polyhedron (CP) of Sm atom is close to Csub(s). Sm atom coordination can be described as 4;5:1. Four H 2 O molecules are included into CP, at the expense of two remaining H 2 O molecules CP are bound with each other

  16. Solvated copper(I) hexafluorosilicate π-complexes based on [Cu2(amtd)2]2+ (amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer

    OpenAIRE

    Goreshnik, E.A.; Veryasov, G.; Morozov, Dmitry; Slyvka, Yu.; Ardan, B.; Mys'kiv, M.G.

    2016-01-01

    [Cu2(amdt)2]SiF6·C6H6 and [Cu2(amdt)2(H2O)2]SiF6·CH3CN·2H2O (amdt = 2-allylamino-5- methyl-1,3,4-thiadiazole) were obtained by alternating-current electrochemical synthesis, starting from water–acetonitrile–benzene mixtures containing 2-allylamino-5-methyl-1,3,4- thiadiazole and CuSiF6·4H2O. The electrochemical reduction of the saturated copper hexafluorosilicate water solution beneath the neatly poured layer of acetonitrile-benzene amdt solution resulted in the formation of cr...

  17. Selective recognition of Pr3+ based on fluorescence enhancement sensor

    International Nuclear Information System (INIS)

    Ganjali, M.R.; Hosseini, M.; Ghafarloo, A.; Khoobi, M.; Faridbod, F.; Shafiee, A.; Norouzi, P.

    2013-01-01

    (E)-2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene) hydrazinecarbothioamide (L) has been used to detect trace amounts of praseodymium ion in acetonitrile–water solution (MeCN/H 2 O) by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to Pr 3+ ions in MeCN/H 2 O (9/1:v/v) solution. The fluorescence enhancement of L is attributed to a 1:1 complex formation between L and Pr 3+ , which has been utilized as the basis for selective detection of Pr 3+ . The sensor can be applied to the quantification of praseodymium ion with a linear range of 1.6 × 10 −7 to 1.0 × 10 −5 M. The limit of detection was 8.3 × 10 −8 M. The sensor exhibits high selectivity toward praseodymium ions in comparison with common metal ions. The proposed fluorescent sensor was successfully used for determination of Pr 3+ in water samples. - Highlights: • A new fluorescent sensor is introduced as a selective probe for Pr 3+ detection. • Fluorescent intensity of the chemical probe enhances upon binding to Pr 3+ ion. • The sensor can be used for Pr 3+ determination in the range of 1.6 × 10 −7 –1.0 × 10 −5 M

  18. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    Science.gov (United States)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  19. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4

    Science.gov (United States)

    Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Triki, S.; Abid, Y.; Boukheddaden, K.

    2015-12-01

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C6H11NH3)2[PbI4] (abbreviated as C6PbI4) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C6PbI4, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ˜138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI6 octahedron. The resulting incommensurate spatial modulation of the Pb-I distances (and Pb-I-Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ˜130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties.

  20. Poly[μ-aqua-diaqua(μ2-pyrazine-2,3-dicarboxylatodilithium(I

    Directory of Open Access Journals (Sweden)

    Kutalmis Guven

    2009-12-01

    Full Text Available The asymmetric unit of the title compound, [Li2(C6H2N2O4(H2O3]n, consists of two independent Li+ cations, one pyrazine-2,3-dicarboxylate dianion and three water molecules. One of the Li+ cations has a distorted tetrahedral geometry, coordinated by one of the carboxylate O atoms of the pyrazine-2,3-dicarboxylate ligand and three O atoms from three water molecules, whereas the other Li+ cation has a distorted trigonal-bipyramidal geometry, coordinated by a carboxylate O atom of a symmetry-related pyrazine-2,3-dicarboxylate ligand, two water molecules and a chelating pyrazine-2,3-dicarboxylate ligand (by utilizing both N and O atoms of an adjacent molecule. The synthesis of a hydrated polymeric dinuclear lithium complex formed with two pyrazine-2,3-dicarboxylic acid ligands has been reported previously [Tombul et al. (2008a. Acta Cryst. E64, m491–m492]. By comparision to the complex reported here, the dinuclear complex formed with two pyrazine-2,3-dicarboxylic acid ligands differs in the coordination geometry of both Li atoms. The crystal structure further features O—H...O and O—H...N hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.

  1. Hydrothermal synthesis and characterization of the praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Teresa S.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-10-01

    The praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O was obtained in a hydrothermal synthesis. It crystallizes monoclinically in the space group P2{sub 1}/n (no. 14) with four formula units (Z=4) and unit cell parameters of a=641.9(3), b=1551.8(7), c=1068.4(5) pm, with β=90.54(2) yielding V=1.0643(8) nm{sup 3}. The defect variant constitutes the missing member in the series of isostructural, early rare earth borate-nitrates of the composition RE[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub x}]NO{sub 3}.2H{sub 2}O [RE=La (x=0; 1), Ce (x=1), Nd (x=0.85), Sm (x=0)]. In addition to powder and single-crystal X-ray diffraction data, the novel borate-nitrate was characterized through IR and Raman spectroscopy.

  2. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    Science.gov (United States)

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  3. Temperature dependence of third order ion molecule reactions. The reaction H+3 + 2H2 = H+5 + H2

    International Nuclear Information System (INIS)

    Hiraoka, K.; Kebarle, P.

    1975-01-01

    The rate constants k 1 for Reaction (1): H + 3 +2H 2 = H + 5 +H 2 were measured in the temperature range 100--300 degreeK. The temperature dependence of k 1 has the form k 1 proportionalT - /subn/, where n=2.3. Pierce and Porter have reported a much stronger negative temperature dependence with n=4.6. The difference arises from a determination of k 1 at 300 degreeK obtained by Arifov and used by Porter. The present k 1 (300 degreeK) =9times10 -30 (cm 6 molecules -2 center-dotsec -1 ). This is more than an order of magnitude larger than the Arifov value. The temperature dependence of third body dependent association reactions like (1) is examined on the basis of the energy transfer theory and the recently proposed trimolecular complex transition state theory by Meot-Ner, Solomon, Field, and Gershinowitz. The temperature dependence of the rate constant for the reverse reaction (-1) is obtained from k 1 and the previously determined temperature dependence of the equilibria (1). k/sub -//sub 1/ gives a good straight line Arrhenius plot leading to k/sub -//sub 1/ =8.7times10 -6 exp(-8.4/RT) cm 3 molecules -1 center-dotsec -1 . The activation energy is in kcal/mole. The preexponential factor is much larger than the rate constant for Langevin collisions. This is typical for pyrolysis of ions involving second order activation

  4. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    Science.gov (United States)

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  5. The Deceptively Simple Thermolysis of Trivalent Permethyltitanocene Derivatives (η5-C5Me5)2TiR. Formation of a Tetramethylfulvene Titanium Compound (η6-C5Me4CH2)(η5-C5Me5)Ti and RH, Catalyzed by Permethyltitanocene Hydride, (η5-C5Me5)2TiH

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1992-01-01

    The complexes Cp*2TiR (Cp* = η5-C5Me5; R = Me, Et, n-Pr, C2H3, CH2CMe3, Ph) undergo thermolysis to yield the fulvene complex Cp*FvTi (Fv = η6-C5Me4CH2) and RH. Kinetic measurements and deuterium labeling studies show that the decomposition is catalyzed by Cp*2TiH, which is formed either by

  6. Lanthanide complexes of 2-aminoacetophenone and 2-acetylaminoacetophenone 2-thenoylhydrazone

    International Nuclear Information System (INIS)

    Singh, Praveen K.; Singh, B.

    1998-01-01

    The reaction of lanthanide chlorides with 2-aminoacetophenone-2-thenoyl- hydrazone and 2-acetylaminoacetophenone-2-thenoylhydrazone yield complexes of the type [Ln(aath) 2 Cl 2 (H 2 )O]Cl and [Ln(acaath) 2 Cl 2 ]Cl. These complexes have been characterized by molar conductance, magnetic susceptibility, TGA, DTA and various spectroscopic techniques such as mass, IR, NMR, UV - visible and emission spectra. Mass spectral data indicate the aath complexes to be monomeric. Thermal stability of the complexes and presence of one water molecule in aath complex is indicated by TGA and DTA studies. Electronic spectra of Pr(III) and Nd(III) complexes show the coordination number to be nine and eight around the metal ions in the aath and acaath complexes, respectively. This has also been inferred from the spectral features of the hypersensitive transition in the Nd(III) complexes. The lowering in coordination number from aath to acaath complexes may be attributed to increase in chelate ring size and/or steric/inductive effect of methyl group. Emission spectral studies of the [Eu(aath) 2 Cl 2 (H 2 O)]Cl and [Eu(acaath) 2 Cl 2 ]Cl suggest tricapped trigonal prismatic (D 3h ) and square antiprismatic (D 4d ) geometry, respectively. (author)

  7. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    Science.gov (United States)

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  8. Experimental ion mobility measurements in Xe-C2H6

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-10-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

  9. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    Science.gov (United States)

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  10. Underestimation of glucose turnover measured with [6-3H]- and [6,6-2H]- but not [6-14C]glucose during hyperinsulinemia in humans

    International Nuclear Information System (INIS)

    McMahon, M.M.; Schwenk, W.F.; Haymond, M.W.; Rizza, R.A.

    1989-01-01

    Recent studies indicate that hydrogen-labeled glucose tracers underestimate glucose turnover in humans under conditions of high flux. The cause of this underestimation is unknown. To determine whether the error is time-, pool-, model-, or insulin-dependent, glucose turnover was measured simultaneously with [6-3H]-, [6,6-2H2]-, and [6-14C]glucose during a 7-h infusion of either insulin (1 mU.kg-1.min-1) or saline. During the insulin infusion, steady-state glucose turnover measured with both [6-3H]glucose (8.0 +/- 0.5 mg.kg-1.min-1) and [6,6-2H2]glucose (7.6 +/- 0.5 mg.kg-1.min-1) was lower (P less than .01) than either the glucose infusion rate required to maintain euglycemia (9.8 +/- 0.7 mg.kg-1.min-1) or glucose turnover determined with [6-14C]glucose and corrected for Cori cycle activity (9.8 +/- 0.7 mg.kg-1.min-1). Consequently negative glucose production rates (P less than .01) were obtained with either [6-3H]- or [6,6-2H2]- but not [6-14C]glucose. The difference between turnover estimated with [6-3H]glucose and actual glucose disposal (or 14C glucose flux) did not decrease with time and was not dependent on duration of isotope infusion. During saline infusion, estimates of glucose turnover were similar regardless of the glucose tracer used. High-performance liquid chromatography of the radioactive glucose tracer and plasma revealed the presence of a tritiated nonglucose contaminant. Although the contaminant represented only 1.5% of the radioactivity in the [6-3H]glucose infusate, its clearance was 10-fold less (P less than .001) than that of [6-3H]glucose. This resulted in accumulation in plasma, with the contaminant accounting for 16.6 +/- 2.09 and 10.8 +/- 0.9% of what customarily is assumed to be plasma glucose radioactivity during the insulin or saline infusion, respectively (P less than .01)

  11. Synthesis of zirconium aryloxide complexes containing pendent vinyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W.J.; Ansari, M.A.; Ziller, J.W. [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    1999-03-22

    The attachment of pendent olefin groups to oxygen-ligated zirconium complexes using olefin-substituted phenols and alcohols and readily accessible zirconium reagents is described. Syntheses of three crystallographically characterizable complexes isolable in 55--90% yield are reported. Eugenol, HOC{sub 6}H{sub 3}(OMe-2)(CH{sub 2}CH{double_bond}CH{sub 2}-4)(HOAr) reacts with [Zr(O{sup i}Pr){sub 4}(HO{sup i}Pr)]{sub 2} in toluene to form [({sup i}PrO){sub 2}(ArO)Zr({mu}-O{sup i}Pr)]{sub 2}, 1. CH{sub 2}{double_bond}CHCH{sub 2}OH reacts with [Zr(NMe{sub 2}){sub 4}]{sub 2} in the presence of 2,6-dimethylphenol to form the mixed ligand salt, {l_brace}Me{sub 2}NH{sub 2}{r_brace}[(2,6-Me{sub 2}C{sub 6}H{sub 3}O){sub 3}Zr]{sub 2}({mu}-OCH{sub 2}CH{double_bond}CH{sub 2}){sub 3}{r_brace}, 2. The potassium salt derived from eugenol, KOAr, reacts with Zr(OEt){sub 4} in THF to form [K{sub 2}Zr(OAr){sub 4}(OEt)]{sub 2}(O), 3.

  12. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4

    International Nuclear Information System (INIS)

    Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Boukheddaden, K.; Triki, S.; Abid, Y.

    2015-01-01

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C 6 H 11 NH 3 ) 2 [PbI 4 ] (abbreviated as C 6 PbI 4 ) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C 6 PbI 4 , revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI 6 octahedron. The resulting incommensurate spatial modulation of the Pb–I distances (and Pb–I–Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties

  13. Preparation of Anatase TiO{sub 2} Thin Films with (O{sup i}Pr){sub 2}Ti(CH{sub 3}COCHCONEt{sub 2}){sub 2} Precursor by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kwang Yeol [Korea University, Seoul (Korea, Republic of); Kim, Keun Chong [Hong-Ik University, Chochiwon (Korea, Republic of)

    2004-11-15

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O{sup i}Pr){sub 2}(CH{sub 3}COCHCONEt{sub 2}){sub 2} (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and {sup 1}H/{sup 13}C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt{sub 2}), trans(COCH{sub 3}) configuration (1a) in a distorted octahedral environment. Variable-temperature {sup 1}H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d{sub 8} solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method.

  14. Coupled magnetic excitations in single crystal PrBa2Cu3O6.2

    DEFF Research Database (Denmark)

    Lister, S.J.S.; Boothroyd, A.T.; Andersen, N.H.

    2001-01-01

    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin waves, is well described by a model of the coupled Cu...

  15. Comparative study of the catalytic activity of the complexes Cp{sup *}RuCl(PAr{sub 3}){sub 2} [Ar = -C{sub 6H}5 and 4-CF{sub 3}-C{sub 6}H{sub 4}] in the ATRP of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Hernandez, Alejandro M.; Rosales-Velazquez, Claudia P.; Torres-Lubian, Jose R., E-mail: rtorres@ciqa.mx [Departamento de Sintesis de Polimeros, Centro de Investigacion en Quimica Aplicada, Coah. (Mexico); Saldivar-Guerra, Enrique [Departamento de Procesos de Polimerizacion, Centro de Investigacion en Quimica Aplicada, Coah. (Mexico)

    2011-09-15

    Styrene polymerization by ATRP was conducted independently using the complexes Cp{sup *}RuCl(PPh{sub 3}){sub 2}, and Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} as catalysts, in order to evaluate the influence of the electronic properties of the phosphine ligands on the rate and control of the polymerization. The kinetic data for polymerizations carried out with Cp{sup *}RuCl(PPh{sub 3}){sub 2}, show that molecular weights increase linearly with conversion with an average initiation efficiency of 0.77. The molecular weights obtained in the kinetic study with Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} also increase with conversion but show a marked deviation below the theoretical molecular weights. This behavior was explained by the gradual, irreversible, oxidation of catalyst Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2} as confirmed by {sup 31}P-NMR spectroscopy. Catalyst Cp{sup *}RuCl(PPh{sub 3}){sub 2} promotes the polymerization with a rate of polymerization higher than that obtained using Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2}; this is consistent with the better electron donating properties of PPh{sub 3} versus P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}. Preliminary studies of styrene polymerization by ATRP in supercritical CO{sub 2}, shows that only catalyst Cp{sup *}RuCl[P(4-CF{sub 3}-C{sub 6}H{sub 4}){sub 3}]{sub 2}, with fluorinated ligands, was active. (author)

  16. Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    G. Mohammadi Ziarani

    2012-06-01

    Full Text Available In this article, simple, convenient synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazole (1,2-disubstituted benzimidazoles via condensation of 1,2-phenylenediamine and aromatic aldehydes using SBA-Pr-SO3H as a nanoporous solid acid catalyst in green protocol was reported.

  17. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  18. Crystal structures of bis- and hexakis[(6,6′-dihydroxybipyridinecopper(II] nitrate coordination complexes

    Directory of Open Access Journals (Sweden)

    Deidra L. Gerlach

    2015-12-01

    Full Text Available Two multinuclear complexes synthesized from Cu(NO32 and 6,6′-dihydroxybipyridine (dhbp exhibit bridging nitrate and hydroxide ligands. The dinuclear complex (6,6′-dihydroxybipyridine-2κ2N,N′[μ-6-(6-hydroxypyridin-2-ylpyridin-2-olato-1:2κ3N,N′:O2](μ-hydroxido-1:2κ2O:O′(μ-nitrato-1:2κ2O:O′(nitrato-1κOdicopper(II, [Cu2(C10H7N2O2(OH(NO32(C10H8N2O2] or [Cu(6-OH-6′-O-bpy(NO3(μ-OH(μ-NO3Cu(6,6′-dhbp], (I, with a 2:1 ratio of nitrate to hydroxide anions and one partially deprotonated dhbp ligand, forms from a water–ethanol mixture at neutral pH. The hexanuclear complex bis(μ3-bipyridine-2,2′-diolato-κ3O:N,N′:O′tetrakis(6,6′-dihydroxybipyridine-κ2N,N′tetrakis(μ-hydroxido-κ2O:O′bis(methanol-κOtetrakis(μ-nitrato-κ2O:O′hexacopper(II, [Cu6(C10H6N2O22(CH4O2(OH4(NO34(C10H8N2O24] or [Cu(6,6′-dhbp(μ-NO32(μ-OHCu(6,6′-O-bpy(μ-OHCu(6,6′dhbp(CH3OH]2, (II, with a 1:1 NO3–OH ratio and two fully protonated and fully deprotonated dhbp ligands, was obtained by methanol recrystallization of material obtained at pH 3. Complex (II lies across an inversion center. Complexes (I and (II both display intramolecular O—H...O hydrogen bonding. Intermolecular O—H...O hydrogen bonding links symmetry-related molecules forming chains along [100] for complex (I with π-stacking along [010] and [001]. Complex (II forms intermolecular O—H...O hydrogen-bonded chains along [010] with π-stacking along [100] and [001].

  19. Zirconium bisamidinate complexes with sterically demanding ligands : structure, solution dynamics, and reactivity

    NARCIS (Netherlands)

    Otten, Edwin; Dijkstra, Peter; Visser, Cindy; Meetsma, Auke; Hessen, Bart

    2005-01-01

    Bisamidinate zirconium dichloride and dimethyl complexes with the sterically demanding amidinate ligands [PhC(NAr)(2))](-) (A) and [PhC(NAr)(NAr')](-) (B) (Ar = 2,6-(Pr2C6H3)-Pr-i; Ar' = 2,6-Me2C6H3) were prepared. The steric demand of ligand A induces the unusual trans geometry in

  20. (3aS,7aS-5-[(S-3,3,3-Trifluoro-2-methoxy-2-phenylpropanoyl]-2,3,4,5,6,7-hexahydro-1H-pyrrolo[3,4-c]pyridin-3(2H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Huichun Zhu

    2010-01-01

    Full Text Available rac-Benzyl 3-oxohexahydro-1H-pyrrolo[3,4-c]pyridine-5(6H-carboxylate was separated by chiral chromatography, and one of the enantiomers ([α]22D = +10° was hydrogenated in the presence of Pd/C in methanol, producing octahydro-3H-pyrrolo[3,4-c]pyridin-3-one. The latter was reacted with (2R-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride [(R-(−-Mosher acid chloride], giving rise to the title compound, C17H19F3N2O3·H2O. The present structure established the absolute configuration of the pyrrolopiperidine fragment based on the known configuration of the (R-Mosher acid chloride. The piperidine ring has a somewhat distorted chair conformation and is cis-fused with the five-membered envelope-shaped ring; the plane of the exocyclic amide bond is approximately orthogonal to the plane of the phenyl ring, making a dihedral angle of 82.31 (3°. The water molecule acts as an acceptor to the proton of the amino group in an N—H...O interaction, and as a double proton donor in O—H...O hydrogen bonds, generating infinite bands along the a axis.

  1. Investigation into complexing in Re/sup 7/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system

    Energy Technology Data Exchange (ETDEWEB)

    Sinyakova, G S [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1979-10-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO/sub 4//sup -/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK/sub 1/=3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK/sub 2/=0.93+-0.13 and lgK/sub 3/=0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK/sub 1/=1.86+-0.02 and lgK/sub 2/=2.35+-0.03.

  2. K3[Fe(CN)6].3H2O supported on silica gel: An efficient and selective ...

    Indian Academy of Sciences (India)

    Department of Chemistry, Payame Noor University, 19395-4697 Tehran, I. R. of IRAN e-mail: ... K3[Fe(CN)6].3H2O, Silica gel; oxime; aldehyde; ketone. 1. Introduction .... ysis, hydrogenation, etc., using organic and inorganic reagents. Besides ...

  3. Synthesis, crystal structure and thermal decomposition mechanism of the complex [Sm(p-BrBA)3bipy.H2O]2.H2O

    International Nuclear Information System (INIS)

    Zhang Haiyan; Zhang Jianjun; Ren Ning; Xu Suling; Tian Liang; Bai Jihai

    2008-01-01

    A new binuclear samarium (III) complex [Sm(p-BrBA) 3 bipy.H 2 O] 2 .H 2 O (p-BrBA = p-bromobenzoic acid; bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analysis, UV, IR, molar conductance and TG-DTG techniques. The structure of the complex was established by single crystal X-ray diffraction. It crystallizes in triclinic, space group P1-bar with a = 8.2476(7) A, b = 13.3483(10) A, c = 15.9035(13) A, α 73.9160(10) o , β = 78.9630(10) o , γ = 74.4770(10) o , Z = 1, D c 1.947 g cm -3 , F(000) = 910. The carboxylic groups are bonded to the samarium ion in two modes: bidentate bridging, monodentate. Each center Sm 3+ ion is eight-coordinated by one 2,2'-bipyridine molecular, four bidentate bridging and a monodentate carboxylic group, as well as one water molecular. The coordination polyhedron around each Sm 3+ ion can be described as bi-capped triangular prism geometry. The thermal decomposition behavior of the title complex in a static air atmosphere was investigated by TG-DTG and IR techniques

  4. Expeditious Entry to Novel 2-Methylene-2,3-dihydrofuro[3,2-c] chromen-2-ones from 6-Chloro-4-hydroxychromen-2-one and Propargylic Alcohols

    Directory of Open Access Journals (Sweden)

    Josefina Díez

    2011-08-01

    Full Text Available A catalytic system consisting of the ruthenium(II complex [Ru(η3-2-C3H4Me(CO(dppf][SbF6] (dppf = 1,1’-bis(diphenylphosphinoferrocene and trifluoroacetic acid has been used to promote the coupling of secondary propargylic alcohols with 6-chloro-4-hydroxychromen-2-one. The reactions afforded unusual 2-methylene-2,3-dihydrofuro[3,2-c]chromen-2-ones in good yields.

  5. Synthesis and reactivity of bis(tetramethylcyclopentadienyl) yttrium metallocenes including the reduction of Me(3)SiN(3) to [(Me(3)Si)(2)N](-) with [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)).

    Science.gov (United States)

    Lorenz, Sara E; Schmiege, Benjamin M; Lee, David S; Ziller, Joseph W; Evans, William J

    2010-07-19

    The metallocene precursors needed to provide the tetramethylcyclopentadienyl yttrium complexes (C(5)Me(4)H)(3)Y, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), and [(C(5)Me(4)H)(2)Y(mu-H)](2) for reactivity studies have been synthesized and fully characterized, and their reaction chemistry has led to an unexpected conversion of an azide to an amide. (C(5)Me(4)H)(2)Y(mu-Cl)(2)K(THF)(x), 1, synthesized from YCl(3) and KC(5)Me(4)H reacts with allylmagnesium chloride to make (C(5)Me(4)H)(2)Y(eta(3)-C(3)H(5)), 2, which is converted to [(C(5)Me(4)H)(2)Y][(mu-Ph)(2)BPh(2)], 3, with [Et(3)NH][BPh(4)]. Complex 3 reacts with KC(5)Me(4)H to form (C(5)Me(4)H)(3)Y, 4. The reduced dinitrogen complex, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), 5, can be synthesized from either [(C(5)Me(4)H)(2)Y](2)[(mu-Ph)(2)BPh(2)], 3, or (C(5)Me(4)H)(3)Y, 4, with potassium graphite under a dinitrogen atmosphere. The (15)N labeled analogue, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-(15)N(2)), 5-(15)N, has also been prepared, and the (15)N NMR data have been compared to previously characterized reduced dinitrogen complexes. Complex 2 reacts with H(2) to form the corresponding hydride, [(C(5)Me(4)H)(2)Y(mu-H)](2), 6. Complex 5 displays similar reactivity to that of the analogous [(C(5)Me(4)H)(2)Ln(THF)](2)(mu-eta(2):eta(2)-N(2)) complexes (Ln = La, Lu), with substrates such as phenazine, anthracene, and CO(2). In addition, 5 reduces Me(3)SiN(3) to form (C(5)Me(4)H)(2)Y[N(SiMe(3))(2)], 7.

  6. Spectroscopy features of Pr{sup 3+} and Er{sup 3+} ions in Li{sub 2}O-ZrO{sub 2}-SiO{sub 2} glass matrices mixed with some sesquioxides

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, Ch. [Department of Physics, Acharya Nagarjuna University - Nuzvid Campus, Nuzvid-521201, A.P. (India); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Technical University of Czestochowa, Aleja Armii, Krajowej 17/19, PL-42-201 Czestochowa (Poland); Srikumar, T.; Naga Raju, G.; Ravi Kumar, V.; Gandhi, Y.; Veeraiah, N. [Department of Physics, Acharya Nagarjuna University - Nuzvid Campus, Nuzvid-521201, A.P. (India)

    2011-09-15

    Highlights: > Optical spectra of Pr{sup 3+} and Er{sup 3+} ions in Li{sub 2}O-ZrO{sub 2}-SiO{sub 2}: Pr{sub 2}O{sub 3}/Er{sub 2}O{sub 3} with sesquioxides (viz., Al{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, Y{sub 2}O{sub 3}) studied. > The highest branching ratios {beta}{sub r} and quantum efficiencies of {sup 3}P{sub 0} {yields} {sup 3}H{sub 4} (Pr{sup 3+}) and {sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} (Er{sup 3+}) emissions have shown principal role of Y{sub 2}O{sub 3}. > Principal role of disorder around rare earth is established. - Abstract: The glasses of the composition Li{sub 2}O-ZrO{sub 2}-SiO{sub 2}: Pr{sub 2}O{sub 3}/Er{sub 2}O{sub 3} mixed with three interesting sesquioxides (viz., Al{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, Y{sub 2}O{sub 3}) were synthesized. Optical absorption and fluorescence spectra (in the spectral range 350-2100 nm were studied at ambient temperature. The Judd-Ofelt theory was applied to characterize the absorption and luminescence spectra of Pr{sup 3+} and Er{sup 3+} ions in these glasses. Following the luminescence spectra, various radiative properties like transition probability A, branching ratio {beta} and the radiative life time {tau} for different emission levels of two rare earth ions have been evaluated. The radiative life times for the upper levels {sup 3}P{sub 0} (Pr{sup 3+}) and {sup 4}S{sub 3/2} (Er{sup 3+}) have also been measured and quantum efficiencies were estimated. The variations observed in these parameters were discussed in the light of changing environment of rare earth ions due to mixing of different sesquioxides in the glass network.

  7. Synthesis and the crystal and molecular structures of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 Mono- and dibromohydrates (HL)Br . 3H2O and (H2L)Br2 . 3H2O

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Belsky, V. K.; Strashnova, S. B.; Zaitsev, B. E.; Ryabov, M. A.

    2009-01-01

    4-(Piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 monobromohydrate (HL)Br . 3H 2 O (I) and 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 dibromohydrate (H 2 L)Br 2 . 3H 2 O (II) are isolated in the crystalline state. The crystal structures of compounds I and II are determined using X-ray diffraction. It is established that the protonation of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 proceeds primarily through the pyridine atom at pH 2-3. The attachment of the second proton occurs through the piperidine nitrogen atom at pH ∼ 1.

  8. Novel selective catalytic reduction with tritium: synthesis of the GABAA receptor radioligand 1-(4-ethynylphenyl)-4-[2,3-3H2]propyl-2,6,7-trioxabicyclo[2.2.2 ]octane

    International Nuclear Information System (INIS)

    Palmer, C.J.; Casida, J.E.

    1991-01-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo[2.2.2] octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-[2,3- 3 H 2 ] propyl-2,6,7-trioxabicyclo-[2.2.2] octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-[2,3- 3 H 2 ]propyl-1-[4-[(trimethylsilyl)ethynyl]phenyl]-2,6,7-trioxabicyclo[2.2.2]octane is useful for studies on the metabolic activation of this selective proinsecticide. (author)

  9. Bis[bis(3,5-diamino-1H-1,2,4-triazol-4-ium)copper(I)] tris(hexafluoridosilicate)

    OpenAIRE

    Marian Mys'kiv; Evgeny Goreshnik

    2010-01-01

    In the title compound, [Cu(C2H6N5)2]2(SiF6)3, the asymmetric unit is composed of one [Cu(HL)2]3+ cation (where L is 3,5-diamino-1,2,4-triazole) and one and a half SiF62− anions. The rather large positively charged guanazole ligand moiety promotes the low metal coordination number of 2 for the CuI atom. The compound was obtained using the electrochemical alternating-current technique starting from an ethanol–methanol solution of CuSiF6·4H2O and guanazole. In the cr...

  10. Crystal structures of N2,N3,N5,N6-tetrakis(pyridin-2-ylmethylpyrazine-2,3,5,6-tetracarboxamide and N2,N3,N5,N6-tetrakis(pyridin-4-ylmethylpyrazine-2,3,5,6-tetracarboxamide

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-02-01

    Full Text Available The title compounds, C32H28N10O4· unknown solvent, (I, and C32H28N10O4, (II, are pyrazine-2,3,5,6-tetracarboxamide derivatives. In (I, the substituents are (pyridin-2-ylmethylcarboxamide, while in (II, the substituents are (pyridin-4-ylmethylcarboxamide. Both compounds crystallize in the monoclinic space group P21/n, with Z′ = 1 for (I, and Z′ = 0.5 for (II. The whole molecule of (II is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I, the four pyridine rings are inclined to the pyrazine ring by 83.9 (2, 82.16 (18, 82.73 (19 and 17.65 (19°. This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intramolecular C—H...O hydrogen bond. In compound (II, the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3 and 81.71 (10°. There are two symmetrical intramolecular C—H...O hydrogen bonds present in (II. In the crystal of (I, molecules are linked by N—H...O and N—H...N hydrogen bonds, forming layers parallel to (10-1. The layers are linked by C—H...O and C—H...N hydrogen bonds, forming a three-dimensional framework. In the crystal of (II, molecules are linked by N—H...N hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker N—H...N hydrogen bond, forming layers parallel to the (101 plane, which are in turn linked by C—H...O hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I, a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. Their contribution was not taken into account during refinement. In compound (II, one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car—Car—Npy atoms is 0.58 (3:0.42 (3.

  11. Ionic complexation of N 2O 4 by 18-crown-6

    Science.gov (United States)

    Ricard, S.; Audet, P.; Savoie, R.

    1988-08-01

    An ionic complex has been obtained from N 2O 4 in the presence of the macrocyclic ether 18-crown-6. This crystalline compound has been shown from its Raman spectrum to have the formula NO +·crown·H(NO 3) 2-, with the nitrosonium ion closely associated with the crown ether rather than with the hydrogen dinitrate accompanying ion. This adduct decomposes readily in moist air to give the known complex (HNO 3·H 2O) 2·crown.

  12. Phase equilibrium in the AgI-RbI-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Stepin, B.D.; Serebrennikova, G.M.; Sazikova, L.A.; Starikova, Z.A.

    1977-01-01

    The triple system of AgI-RbI-H 2 O at 25 deg C was studied by the isothermal method. The formation of the Rb 2 AgI 3 complex compound, which dissolves in water with decomposition, was established. A powder pattern of Rb 2 AgI 3 was indexed

  13. Luminescence, scintillation, and energy transfer in SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3}:Ce{sup 3+},Pr{sup 3+} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lertloypanyachai, Prapon; Chewpraditkul, Weerapong; Pattanaboonmee, Nakarin [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Chen, Danping [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai (China); Babin, Vladimir; Beitlerova, Alena; Nikl, Martin [Institute of Physics, AS CR, Prague (Czech Republic)

    2017-09-15

    Ce{sup 3+},Pr{sup 3+}-codoped SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} glasses (SABG:Ce,Pr) were prepared by melt quenching under a CO reducing atmosphere. Luminescence properties were investigated under UV and X-ray excitations. A dominant emission band at 430 nm belonging to the Ce{sup 3+}:5d{sub 1} → 4f transition was observed in the photo- and radio-luminescence spectra. The energy transfer occurs from this Ce{sup 3+} band toward the {sup 3}P{sub J} levels of Pr{sup 3+} with an efficiency of up to 24%, followed by the reduction of integrated luminescence intensity with an increasing Pr{sup 3+} concentration. This result is attributed to the increase in the reabsorption of Ce{sup 3+} luminescence and the non-radiative energy transfer toward the {sup 3}P{sub J} levels of Pr{sup 3+}. The cross-relaxation process within the Pr{sup 3+} pairs can further diminish the total luminescence yield at high Pr{sup 3+} concentrations. The integral scintillation efficiency and light yield measurements were carried out and compared to the reference Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) crystal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermally activated 3D to 2D structural transformation of [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O flexible coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Nebojša N. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Institute of General and Physical Chemistry, Belgrade (Serbia); Blagojević, Vladimir A. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Ostojić, Sanja B.; Radulović, Aleksandra M. [Institute of General and Physical Chemistry, Belgrade (Serbia); Poleti, Dejan [Faculty of Technology and Metallurgy, University of Belgrade (Serbia); Minić, Dragica M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade (Serbia); Department of Biomedical Sciences, State University of Novi Pazar (Serbia)

    2015-01-15

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system.

  15. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang-Hong [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xiao, Dong-Rong, E-mail: xiaodr98@yahoo.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Luo, Qun-Li, E-mail: qlluo@swu.edu.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang, En-Bo, E-mail: wangeb889@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  16. Infrared laser spectroscopy of H2 and D2 Rydberg states. II. Diode laser spectra and assignment of 5g--4f, 6h--5g, and 8i--6h systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Guest, M.A.; Stickland, R.J.

    1990-01-01

    Infrared diode laser absorption spectra of portions of the 5g--4f, 6h--5g, and 8i--6h Rydberg bands of H 2 and D 2 have been measured at Doppler limited resolution in low pressure A. C. discharges. The spectra, arising from L uncoupled states of H 2 and D 2 , are assigned using an ab initio polarization model supported by intensity calculations. Details of the different implementations of this polarization model are given in the preceding paper. The most useful was the single channel vibrationally extended (1)/(2) V 6 model which became progressively better at higher n (and L). Results of multichannel calculations for a selected set of transitions are also reported

  17. Scintillation properties of (C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons

    CERN Document Server

    Shibuya, K; Takeoka, Y; Asai, K

    2002-01-01

    We report a new type of scintillator especially suitable for pulse-radiation detection. Thin films of organic/inorganic perovskite compound (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 , which is characterized by a multiple quantum well structure, were bombarded by 2.0 MeV protons, and their radiation-induced emission spectra were obtained. A single and sharp emission peak due to an exciton was observed at the wavelength of 524 nm. This emission was clearly detected even at room temperature, and its quantum efficiency was very high. The line shape of this emission did not change, retaining its sharpness, and no other emissions appeared throughout the irradiation. The optical response of (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 is very fast. (n-C sub 6 H sub 1 sub 3 NH sub 3) sub 2 PbI sub 4 is a promising scintillator material, meeting requirements not satisfied by conventional scintillators.

  18. Superstructure formation in PrNi{sub 2}Al{sub 3} and ErPd{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Eustermann, Fabian; Hoffmann, Rolf-Dieter [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Oldenburg Univ. (Germany). Inst. fuer Chemie

    2017-09-01

    The intermetallic phase ErPd{sub 2}Al{sub 3} was obtained by arc-melting of the elements and subsequent annealing for crystal growth. The sample was studied by X-ray diffraction on powders and single crystals. The structure of ErPd{sub 2}Al{sub 3} was refined from X-ray diffraction data and revealed a superstructure of PrNi{sub 2}Al{sub 3} - a CaCu{sub 5} derivative (P6/m, a=1414.3(1), c=418.87(3) pm wR=0.0820, 1060 F{sup 2} values, 48 variables). The same superstructure was subsequently found for PrNi{sub 2}Al{sub 3} (P6/m, a=1407.87(4), c=406.19(2) pm, wR=0.0499, 904 F{sup 2} values, 47 variables). In the crystal structure, the aluminium and transition metal atoms form a polyanionic network according to [T{sub 2}Al{sub 3}]{sup δ-}, while rare earth atoms fill cavities within the networks. They are coordinated by six transition metal and twelve aluminum atoms. In contrast to the PrNi{sub 2}Al{sub 3} type structure reported so far, two crystallographic independent rare-earth sites are found of which one (1b) is shifted by 1/2 z, causing a distortion in the structure along with a recoloring of the T and Al atoms in the network.

  19. Crystal structures of a copper(II and the isotypic nickel(II and palladium(II complexes of the ligand (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Souheyla Chetioui

    2016-08-01

    Full Text Available In the copper(II complex, bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}copper(II, [Cu(C16H8Br3N2O2], (I, the metal cation is coordinated by two N atoms and two O atoms from two bidentate (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tribromobenzene ring is inclined to the naphthalene ring system by 37.4 (5°, creating a weak intramolecular Cu...Br interaction [3.134 (2 Å], while in the other ligand, the tribromobenzene ring is inclined to the naphthalene ring system by 72.1 (6°. In the isotypic nickel(II and palladium(II complexes, namely bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}nickel(II, [Ni(C16H8Br3N2O2], (II, and bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}palladium(II, [Pd(C16H8Br3N2O2], (III, respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tribromobenzene rings are inclined to the naphthalene ring systems by 80.79 (18° in (II and by 80.8 (3° in (III. In the crystal of (I, molecules are linked by C—H...Br hydrogen bonds, forming chains along [010]. The chains are linked by C—H...π interactions, forming sheets parallel to (011. In the crystals of (II and (III, molecules are linked by C—H...π interactions, forming slabs parallel to (10-1. For the copper(II complex (I, a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of the disordered solvent molecules were not taken into account during refinement.

  20. Spectrophotometric analysis of vitamin E using Cu(I)-Bathocuproine or/and Fe(II)-2,4,6-tris-(2'-pyridyl)-s-triazine complexes

    International Nuclear Information System (INIS)

    Devi, I.; Memon, S. A.; Khuhawar, M.Y.

    2004-01-01

    Vitamin E (tocopherols and tocotrienols) antioxidants are determined by reducing Cu(II) to Cu(I) or Fe(III) to Fe(II) in presence of vitamin E and subsequent complexation of Cu(I) with bathocuproine and/or Fe(II) with 2,4,6-tris-(2'-pyridyl)-s-triazine (TPTZ). Both the reactions are monitored separately, Cu(I)-bathocuproine at 479 nm where as, Fe(II)-(TPTZ) at 595 nm spectrophotometrically. Linear calibration curves are achieved for both complexes between I to 5mu g ml-1 for vitamin E. The methods were applied for the determination of vitamin E in pharmaceutical preparations and edible oils. Vitamin E, from edible oils, was solvent extracted into n-hexane prior to saponification. Furthermore, a single lined flow was also examined. A larger excess of Cu(II) or Fe =(II) with different concentrations of vitamin E in buffer pH 4 was run on the line and constant amounts of reagent bathocuproine or TPTZ in each case was injected through the injector. The peak height shows a linear relationship for vitamin E between 0.5 to 2.5 mu g ml-1 for both complexes. (author)

  1. Synthesis and Structures of Two Lanthanide Complexes Containing a Mixed Ligand System: [Ln(Phen)2(L)3(HL)]·H2O [Ln = La, Ce; Phen = Phenanthroline; HL = Salicylic Acid

    International Nuclear Information System (INIS)

    Iravani, Effat; Nami, Navabeh; Nabizadeh, Fatemeh; Bayani, Elham; Neumueller, Bernhard

    2013-01-01

    The reaction of LnCl 3 ·7H 2 O [Ln = La (1), Ce (2)] with salicylic acid (HL) and 1,10-phenanthroline (Phen) at 20 .deg. C in H 2 O/ethanol gave after work-up and recrystallization two novel lanthanide complexes with general formula [Ln(Phen) 2 (L) 3 (HL)]·H 2 O. Compounds 1 and 2 were characterized by IR and UV-Vis spectroscopy, TGA, CHN as well as by X-ray analysis. According to these results, compounds 1 and 2 are isostructural and contain Ln 3+ ions with coordination number nine. Complexes 1 and 2 consist of two Phen, one neutral HL and three L anions (two L anions act as monodentate ligands and the third one is chelating to Ln 3+ ). Thermal decomposition led to primary loss of the Phen molecules. Then HL molecules and finally L moieties left the material to give Ln 2 O 3

  2. Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.

    Science.gov (United States)

    Martin, Lee; Lopez, Jordan R; Akutsu, Hiroki; Nakazawa, Yasuhiro; Imajo, Shusaku

    2017-11-20

    A new molecular superconductor, β″-(BEDT-TTF) 2 [(H 2 O)(NH 4 ) 2 Cr(C 2 O 4 ) 3 ]·18-crown-6, has been synthesized from the organic donor molecule BEDT-TTF with the anion Cr(C 2 O 4 ) 3 3- . The crystal structure consists of conducting organic layers of BEDT-TTF molecules which adopt the β″ packing motif (layer A), layers of NH 4 + and Λ-Cr(C 2 O 4 ) 3 3- (layer B), layers of (H 2 O)(NH 4 )18-crown-6 (layer C), and layers of NH 4 + and Δ-Cr(C 2 O 4 ) 3 3- (layer D) which produce a superstructure with a repeating pattern of ABCDABCDA. As a result of this packing arrangement, this is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is present (β″). Superconducting critical temperatures at ambient pressure observed by electrical transport and magnetic measurements are 4.0-4.9 and 2.5 K, respectively. The strong 2D nature of this system, the broad transition to T zero at 1.8K, and the transition of α of V ∝ I α from 1 to 3 on I-V curves strongly suggest that the superconducting transition is very close to a Kosterlitz-Thouless transition. The magnetic field dependence of the superconducting critical temperature parallel to the conducting plane gives an upper critical field μ 0 H c2∥ > 8 T, which is over the calculated Pauli-Clogston limit for this material.

  3. CARS spectroscopy of the NaH2 collision complex: The nature of the Na(3 2P)H2 exciplex - ab initio calculations and experimental results

    International Nuclear Information System (INIS)

    Vivie-Riedle, R. de; Hering, P.; Kompa, K.L.

    1990-01-01

    CARS has been used to analyze the rovibronic state distribution of H 2 after collision with Na(3 2 P). New lines, which do not correspond to H 2 lines are observed in the CARS spectrum. The experiments point to the formation of a complex of Na(3 2 P)H 2 in A 2 B 2 symmetry. Ab initio calculations of the A 2 B 2 potential were performed. On this surface the vibrational spectra of the exciplex is evaluated. The observed lines can be attributed to vibrational transitions in the complex, in which combinational modes are involved. The connection of experimental and theoretical results indicates that a collisionally stabilized exciplex molecule is formed during the quenching process. (orig.)

  4. Visible-to-UVC upconversion efficiency and mechanisms of Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} and Y{sub 2}SiO{sub 5}:Pr{sup 3+} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, Ezra L. [Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625 (United States); Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); Wilkinson, Angus P. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kim, Jae-Hong, E-mail: jaehong.kim@yale.edu [Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511 (United States)

    2015-04-15

    Visible-to-UVC upconversion (UC) by Pr{sup 3+}-doped materials is a promising candidate for application to sustainable disinfection technologies, including light-activated antimicrobial surfaces and solar water treatment. In this work, we studied Pr{sup 3+} upconversion in an oxyfluoride host system for the first time, employing Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} ceramics. Compared to the previously studied Y{sub 2}SiO{sub 5}:Pr{sup 3+} reference material, the oxyfluoride host resulted in a 5-fold increase in intermediate state lifetime, likely due to a lower maximum phonon energy; however, only a 60% gain in UC intensity was observed. To explain this discrepancy, luminescence spectral distribution and decay kinetics were studied in both phosphor systems. The Pr{sup 3+} 4f5d band energy distribution in each phosphor was found to play a key role by allowing or disallowing the occurrence of a previously unexplored UC mechanism, which had a significant impact on overall efficiency. - Highlights: • Visible-to-UVC upconversion by Pr{sup 3+} was studied in an oxyfluoride host matrix for the first time. • Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} ceramics were synthesized and characterized. • Lu{sub 7}O{sub 6}F{sub 9}:Pr{sup 3+} shows more intense UV upconversion than Y{sub 2}SiO{sub 5}:Pr{sup 3+}, with differing mechanisms. • 4f5d band energy and {sup 1}D{sub 2} involvement are important in maximizing upconversion efficiency.

  5. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  6. Influence of Li+ charge compensator ion on the energy transfer from Pr3 + to Gd3 + ions in Ca9Mg(PO4)6F2:Gd3 +, Pr3 +, Li+ phosphor

    Science.gov (United States)

    Tamboli, Sumedha; Dhoble, S. J.

    2017-09-01

    Phototherapy is a renowned treatment for curing skin diseases since ancient times. Phototherapeutic treatment for psoriasis and many other diseases require narrow band ultra violet-B (NB-UVB) light with peak intensity at 313 nm to be exposed to the affected part of body. In this paper, we report combustion synthesis of NB-UVB - 313 nm emitting Ca9Mg(PO4)6F2 phosphors doped with Gd3 +, Pr3 + and Li+ ions. The phase formation was confirmed by obtaining X-ray diffraction (XRD) pattern and morphology was studied with the Scanning electron microscopy (SEM) images. Photoluminescence (PL) emission spectra show intense narrow band emission at 313 nm under 274 nm excitation wavelengths. Emission intensity was enhanced when Ca9Mg(PO4)6F2 compound is co-doped with Pr3 + ions. Excitation spectra of Ca9Mg(PO4)6F2:Gd3 +, Pr3 + doped samples shows broad excitation in ultra violet C (UVC) region. Diffuse reflectance spectra (DRS), obtained by UV-visible spectrophotometer, measures the absorption properties of the material. By applying Kubelka Munk function on the diffuse reflectance spectra, band gap of the material is determined. PL decay curves were examined which indicates efficient energy transfer between Pr3 + and Gd3 + ions. Charge compensation effect was also studied by co-doping Li+ ion in host. Emission intensity was found to increase with the addition of charge compensator. The prepared phosphor has potential to convert UVC light into NB-UVB. The luminescence intensity of Gd3 + shows remarkable increase when it is sensitized with Pr3 +, and an addition of charge compensator in the form of Li+, show even better results. This phosphor surely has the potential to be used as phototherapy lamp phosphor.

  7. 3-(Aminocarbonylpyridinium diaqua-bis(pyridine-2,6-dicarboxylatobismuthate(III monohydrate

    Directory of Open Access Journals (Sweden)

    Janet Soleimannejad

    2012-07-01

    Full Text Available The asymmetric unit of the ionic title compound, (C6H7N2O[Bi(C7H3NO42(H2O2H2O or (acpyH[Bi(pydc2(H2O2H2O, contains an [Bi(pydc2(H2O2]− anion (where pydcH2 is pyridine-2,6-dicarboxylic acid, a protonated 3-(aminocarbonylpyridine as counter-ion, (acpyH+, and one uncoordinated water molecule. The anion is an eight-coordinate complex with a square-antiprismatic geometry around the BiIII atom. In the crystal, extensive O—H...O and N—H...O hydrogen bonds, as well as ion pairing, C=O...π interactions [O...centroid distance = 3.583 (5 Å], π–π stacking [centroid–centroid distance = 3.864 (3 Å], and C—H...π and C—H...O interactions, play an important role in the formation and stabilization of the three-dimensional supramolecular structure.

  8. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    Science.gov (United States)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  9. H3O2-, O22- and O2•- bridging ligands in cobalt(III) complexes of an acyclic phenolate-hinged dinucleating ligand

    DEFF Research Database (Denmark)

    Ghiladi, Morten; Gomez, Jonnes T.; Hazell, A.

    2003-01-01

    The dicobalt(III) complex, [Co2(bpbp)(μ-H3O2)2](ClO4)3 (bpbp− = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-tert-butylphenolate), obtained by reaction of cobalt(II) perchlorate with Hbpbp under ambient conditions contains two μ-H3O2− bridging ligands. The H-bonded O⋯O distances in this motif are 2...

  10. Magnetic properties of two new compounds: Pr2Ni3Si5 and Ho2Ni3Si5

    International Nuclear Information System (INIS)

    Mazumdar, C.; Padalia, B.D.; Godart, C.

    1994-01-01

    Formation of two more new materials, Pr 2 Ni 3 Si 5 and Ho 2 Ni 3 Si 5 , of the series, R 2 Ni 3 Si 5 (R = rare earth and Y) and their magnetic properties are reported here. These materials crystallize in the orthorhombic U 2 Co 3 Si 5 -type structure (space group Ibam). Magnetic susceptibility measurement in the temperature range 5 K--300 K show that the compound Pr 2 Ni 3 Si 5 order antiferromagnetically at T N ∼ 8.5 K and Ho 2 Ni 3 Si 5 at ∼ 6 K. Considering T N (Gd 2 Ni 3 Si 5 ) ∼ 15 K, T N (Pr 2 Ni 3 Si 5 ) ∼ 8.5 K is rather high. The magnetic susceptibility of both of the materials, in the paramagnetic state, follows a Curie-Weiss law with effective moment close to that of the corresponding free trivalent rare earth ion

  11. Synthesis and characterization of physical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} semi-nanoflower phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H.R. [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, Isfahan (Iran, Islamic Republic of); Zamani Zeinali, H. [Nuclear Science and Technology Research Institute, Agriculture, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2016-05-15

    Pure gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S:Pr{sup 3+}) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator were studied. Luminescence spectra of Gd{sub 2}O{sub 2}S:Pr{sup 3+} under 320 nm UV excitation show a green emission at near 511 nm corresponding to the {sup 3}P{sub 0}-{sup 3}H{sub 4} of Pr ions. After scintillation properties of synthesized Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator investigated, Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator could be used for radiography applications in which good spatial resolution is needed. (orig.)

  12. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex.

    Science.gov (United States)

    O'Brien, E C; Farkas, E; Gil, M J; Fitzgerald, D; Castineras, A; Nolan, K B

    2000-04-01

    Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.

  13. Ruthenium(II) carbonyl compounds with the 4'-chloro-2,2':6',2''-terpyridine ligand.

    Science.gov (United States)

    Tatikonda, Rajendhraprasad; Haukka, Matti

    2017-04-01

    Two ruthenium carbonyl complexes with the 4'-chloro-2,2':6',2''-terpyridine ligand (tpy-Cl, C 15 H 10 ClN 3 ), i.e. [RuCl(tpy-Cl)(CO) 2 ][RuCl 3 (CO) 3 ] (I) [systematic name: cis -di-carbonyl-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 3 N )ruthenium(II) fac -tricarbonyltri-chlorido-ruthenate(II)], and [RuCl 2 (tpy-Cl)(CO) 2 ] (II) [ cis -dicarbonyl- trans -di-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 2 N 1 , N 1' )ruthenium(II)], were synthesized and characterized by single-crystal X-ray diffraction. The Ru II atoms in both centrosymmetric structures (I) and (II) display similar, slightly distorted octa-hedral coordination spheres. The coordination sphere in the complex cation in compound (I) is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octa-hedral [Ru(CO) 3 Cl 3 ] - counter-anion. In the neutral compound (II), the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the Ru II atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I) and (II), weak C-H⋯Cl inter-actions are observed.

  14. Aqua complex of iron(III) and 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxybenzenesulfonate: Structure and catalytic activity in Henry reaction

    Science.gov (United States)

    Mahmudov, Kamran T.; Kopylovich, Maximilian N.; Haukka, Matti; Mahmudova, Gunay S.; Esmaeila, Espandi F.; Chyragov, Famil M.; Pombeiro, Armando J. L.

    2013-09-01

    A water-soluble iron(III) complex [Fe(H2O)3(L)]·5H2O (1) was prepared by reaction of iron(III) chloride with 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxy-benzenesulfonic acid (H3L). The complex was characterized by IR, 1H NMR and ESI-MS spectroscopies, elemental and X-ray crystal structural analyses. The coordination environment of the central iron(III) is a distorted octahedron, three sites being occupied by L3- ligand, which chelates in O,N,O fashion, while three other sites are filled with the water molecules. The uncoordinated water molecules are held in the channels of the overall 3D supramolecular structure by the carbonyl and sulfonyl groups of L3- and the ligated waters. Apart from the multiple hydrogen bonds, an intermolecular charge-assisted O···Cl halogen bonding with 3.044 Å distance was described. 1 acts as an effective catalyst in the Henry reaction producing nitroaldols from nitroethane and various aldehydes with yields up to 90% and threo/erythro diastereoselectivity ranging from 3:1 to 1:1.

  15. Lymphoblast-derived integration-free iPSC line AD-TREM2-1 from a 67 year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant

    Directory of Open Access Journals (Sweden)

    Soraia Martins

    2018-05-01

    Full Text Available Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. AD-TREM2–1 was defined as pluripotent based on (i expression of pluripotency-associated markers (ii embryoid body-based differentiation into cell types representative of the three germ layers and (iii the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.947.

  16. Solution synthesis, structure, and CO{sub 2} reduction reactivity of a Scandium(II) complex, {Sc[N(SiMe_3)_2]_3}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Woen, David H.; Chen, Guo P.; Ziller, Joseph W.; Furche, Filipp; Evans, William J. [Department of Chemistry, University of California, Irvine, CA (United States); Boyle, Timothy J. [Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, NM (United States)

    2017-02-13

    The first crystallographically characterizable complex of Sc{sup 2+}, [Sc(NR{sub 2}){sub 3}]{sup -} (R=SiMe{sub 3}), has been obtained by LnA{sub 3}/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR{sub 2}){sub 3} with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]{sup +}, [K(18-c-6)]{sup +}, and [Cs(crypt)]{sup +} salts of the [Sc(NR{sub 2}){sub 3}]{sup -} anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 {sup 45}Sc nucleus. The Sc(NR{sub 2}){sub 3} reduction differs from Ln(NR{sub 2}){sub 3} reactions (Ln=Y and lanthanides) in that it occurs under N{sub 2} without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR{sub 2}){sub 3}] reacts with CO{sub 2} to produce an oxalate complex, {K_2(18-c-6)_3}{[(R_2N)_3Sc]_2(μ-C_2O_4-κ"1O:κ"1O'')}, and a CO{sub 2}{sup -} radical anion complex, [(R{sub 2}N){sub 3}Sc(μ-OCO-κ{sup 1}O:κ{sup 1}O')K(18-c-6)]{sub n}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Perovskites Ba/sub 2/Bsub(1/2)sup(I)Bsub(1/2)sup(III)Tesup(VI)O/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Roller, H; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-07-01

    Compounds of composition Ba/sub 2/Bsub(1/2)sup(I)Bsub(1/2)sup(III)Tesup(VI)O/sub 6/ with Bsup(I) = Li, Na; Bsup(III) = La, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb, Y, In, Sc crystallize in a cubic 1:1 ordered perovskite structure. The vibrational spectroscopic investigations show, that more species of TeO/sub 6/ octahedra are present in the lattice.

  18. Theoretical investigation of elementary reaction of complexing LiH+BeH2 → LiBeH3

    International Nuclear Information System (INIS)

    Charkin, O.P.; Boldyrev, A.I.; Sukhanov, L.P.

    1979-01-01

    In the framework of non-empiric Hartree-Fock-Roothaan method on the basis of gauss functions of Roos and Siegbahn made are calculations of different sections of potential surface elementary reaction of complexing LiH+BeH 2 → LiBeH 3 . Charts of potential surface are presented. Questions of the elementary mechanism of elementary processes of complexing and effect of mutual orientation of the reagents upon the reaction mechanism are considered. Stability of LiBeH 3 molecule to different dissociation channels and different aspects of structural non-rigidity of the L[MXsub(k+1)] complexes at super barrier excitation are discussed

  19. Synthesis, structural and antibacterial study of new silver complex with 3-acetyl-2H chromene-2-one

    Directory of Open Access Journals (Sweden)

    Z. Ali

    2017-01-01

    Full Text Available A new silver complex [Ag(C11H8O32]NO3 was synthesized by the reaction of silver nitrateand coumarin based ligand (3-acetyl-2H-chromene-2-one through solution method. The product was characterized using different analytical techniques like melting point, Infrared spectroscopy, Raman spectroscopy, powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, atomic absorption spectroscopy and mass spectrometry. An antibacterial study of the complex was also studied for its possible use in medical treatment.

  20. Crystallographic isomorphism in the structural type of α-HgI{sub 2} by example of KHgI{sub 3} · H{sub 2}O, β-Ag{sub 2}HgI{sub 4}, and β-Cu{sub 2}HgI{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, S. V., E-mail: borisov@niic.nsc.ru; Magarill, S. A.; Pervukhina, N. V. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)

    2017-03-15

    The structure of KHgI{sub 3} · H{sub 2}O is assigned to the family of crystal structures having the three-layer cubic packing of iodine anions with cations in the tetrahedral voids (the structures of α-HgI{sub 2}, β-Ag{sub 2}HgI{sub 4}, and β-Cu{sub 2}HgI{sub 4} among them). Crystallographic analysis shows that the nodes of the three-layer close packing are populated by iodine anions and K cations in the ratio 3/4: 1/4. Transformation of the structure of α-HgI{sub 2} into the structure of KHgI{sub 3} · H{sub 2}O can be formally represented as the replacement of (HgI){sub n}{sup +} fragments by (KH{sub 2}O){sub n}{sup +} fragments: (Hg{sub 2}I{sub 4})–(HgI){sup +} + (KH{sub 2}O){sub n}{sup +} = KHgI{sub 3} · H{sub 2}O. Perforated layers of vertex-sharing HgI{sub 4} tetrahedra break down into parallel isolated chains. Channels formed in place of I–Hg–I–Hg–fragments are occupied by–H{sub 2}O–K–-H{sub 2}-O-K-H{sub 2}O-chains weakly bound to neighbors.

  1. Polarised neutron diffraction measurements of PrBa2Cu3O6+X and Bayesian statistical analysis of such data

    International Nuclear Information System (INIS)

    Markvardsen, A.J.

    2000-01-01

    The physics of the series Pr y Y 1-y Ba 2 CU 3 O 6+x , and ability of Pr to suppress superconductivity, has been a subject of frequent discussions in the literature for more than a decade. This thesis describes a polarised neutron diffraction (PND) experiment performed on PrBa 2 Cu 3 O 6.24 designed to find out something about the electron structure. This experiment pushed the limits of what can be done using the PND technique. The problem is one of a limited number of measured Fourier components that need to be inverted to form a real space image. To accomplish this inversion the maximum entropy technique has been employed. In some cases, the maximum entropy technique has the ability to increase the resolution of 'inverted' data immensely, but this ability is found to depend critically on the choice of constants used in the method. To investigate this a Bayesian robustness analysis of the maximum entropy method is carried out, resulting in an improvement of the maximum entropy technique for analysing PND data. Some results for nickel in the literature have been te-analysed and a comparison is made with different maximum entropy algorithms. Equipped with an improved data analysis technique and carefully measured PND data for PrBa 2 Cu 3 O 6.24 a number of new interesting features are observed, putting constraints on existing theoretical models of Pr y Y 1-y Ba 2 Cu 3 O 6+x and leaving room for more questions to be answered. (author)

  2. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  3. New zinc-glycine-iodide complexes as a product of equilibrium and non-equilibrium crystallization in the Gly – ZnI2H2O system

    Czech Academy of Sciences Publication Activity Database

    Tepavitcharova, S.; Havlíček, D.; Matulková, I.; Rabadjieva, D.; Gergulova, R.; Plocek, Jiří; Němec, I.; Císařová, I.

    2016-01-01

    Roč. 1120, SEP (2016), s. 42-49 ISSN 0022-2860 Institutional support: RVO:61388980 Keywords : [Zn(gly)I2], [Zn(gly)2I2] * [Zn3(H2O)4(μ-gly)2I6] * Crystal structure * Vibrational spectra * Thermal behaviour Subject RIV: CA - Inorganic Chemistry Impact factor: 1.753, year: 2016

  4. Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin

    International Nuclear Information System (INIS)

    McKenna, D.J.; Peroutka, S.J.

    1989-01-01

    The radioligand binding characteristics of 125I-R-(-)4-iodo-2,5-dimethoxyphenylisopropylamine [125I-R-(-)DOI] and 3H-ketanserin were compared in rat and bovine cortical membranes. In rat cortex, 125I-R-(-)DOI labels a relatively low density of binding sites (Bmax = 2.5 +/- 0.2 pmol/gm tissue) with high affinity (KD = 0.63 +/- 0.09 nM). In bovine cortex, specific binding of 125I-R-(-)DOI represents less than 20% of total binding at radioligand concentrations above 0.6 nM, and, therefore, the data cannot be analyzed adequately by Scatchard transformation. By contrast, 3H-ketanserin displays saturable, specific high-affinity binding in both rat cortex (KD = 1.0 +/- 0.1 nM; Bmax = 11 +/- 0.4 pmol/gm tissue) and bovine cortex (KD = 1.2 +/- 0.2 nM; Bmax = 5.3 +/- 0.4 pmol/gm tissue). Ki values for 30 drugs were determined for 125I-R-(-)DOI-labeled sites in rat cortex and 3H-ketanserin-labeled sites in bovine cortex. 5-Hydroxytryptamine (5-HT) displays 250-fold higher selectivity for the 125I-R-(-)DOI-labeled sites (Ki = 3.0 +/- 0.7 nM) than for the 3H-ketanserin-labeled sites (Ki = 750 +/- 50 nM). Structural congeners of R-(-)DOI display 80- to 160-fold higher affinity for the 125I-R-(-)DOI binding site than for the 3H-ketanserin-labeled binding site. d-LSD and putative 5-HT2 antagonists are approximately equipotent at both sites. Significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and putative 5-HT2A sites labeled previously by 77Br-R-(-)DOB (r = 0.93, p less than 0.01), putative 5-HT2B sites labeled by 3H-ketanserin in bovine cortex (r = 0.63, p less than 0.01), and 5-HT1C binding sites that have been characterized by other investigators (r = 0.78, p less than 0.01). No significant correlations were found between drug affinities for 125I-R-(-)DOI-labeled sites in rat cortex and 5-HT1A, 5-HT1B, 5-HT1D, or 5-HT3 sites, as determined by previous investigators

  5. Crystal structure of bis[1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene]silver(I chloride tetrahydrofuran monosolvate

    Directory of Open Access Journals (Sweden)

    Inge Sänger

    2015-05-01

    Full Text Available In the title salt, [Ag(C27H36N22]Cl·C4H8O, the AgI atom is coordinated by two 1,3-bis(2,6-dimethylphenylimidazol-2-ylidene ligands. The imidazole rings are inclined to one another by 46.69 (13° and the benzene rings in each ligand are almost normal to the imdazole ring to which they are attached, with dihedral angles varying from 82.39 (13 to 88.27 (12°. There are C—H...π interactions present in the cation, involving the two ligands, and the solvent molecule is linked to the cation via a C—H...O hydrogen bond. In the crystal, molecules are linked by trifurcated C—H...(Cl,Cl,Cl hydrogen bonds, forming slabs parallel to (101. One isopropyl group is disordered over two sets of sites with an occupancy ratio of 0.447 (17:0.553 (17 and the THF molecule is disordered over two positions with an occupancy ratio of 0.589 (6:0.411 (6.

  6. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  7. Mixed ligand complexes of Cu(II)/Zn(II) ions containing (m-)/(p-) carboxylato phenyl azo pentane 2,4-dione and 2,2‧-bipyridine/1,10 phenanthroline: Synthesis, characterization, DNA binding, nuclease and topoisomerase I inhibitory activity

    Science.gov (United States)

    Hasan, Md. Amin; Kumari, Niraj; Singh, Kanhaiya; Singh, Kiran; Mishra, Lallan

    2016-01-01

    Metal complexes of type [Cu(L1H)2(bpy)] (1), [Zn(L1H)2(bpy)] (2), [Cu(L2H)2(bpy)] (3) and [Cu(L2H)2(Phen)] (4) (L1H2 = 3-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, L2H2 = 4-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, bpy = 2,2‧-bipyridine, Phen = 1,10 phenanthroline) are synthesized and characterized using spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, electronic absorption and emission) and elemental analysis data. The assembly of the complexes involving intramolecular H-bonding is displayed using corresponding crystal structure. Binding of the complexes separately with Calf Thymus DNA is monitored using UV-vis spectral titrations. The displacement of ethidium bromide (EB) bound to DNA by the complexes, in phosphate buffer solution (pH ∼ 7.2) is monitored using fluorescence spectral titrations. Nuclease activity of the complexes follow the order 4 > 3 > 1 > 2. The gel electrophoretic mobility assay measurement in presence of minor groove binder 4‧,6-diamidino-2-phenylindole (DAPI), suggests that complexes preferably bind with the minor groove of DNA. Topoisomerase I inhibitory activity of the complexes 3 and 4 inhibit topoisomerase I activity with IC50 values of 112 and 87 μM respectively.

  8. Poly[di-μ2-aqua-μ5-(pyridine-2,6-dicarboxylato-μ3-(pyridine-2,6-dicarboxylato-cobalt(IIdisodium

    Directory of Open Access Journals (Sweden)

    Alexander N. Boyko

    2011-12-01

    Full Text Available In the title compound, [CoNa2(C7H3NO42(H2O2]n, the CoII atom is coordinated by two pyridine N atoms and four carboxylate O atoms from two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One Na+ cation is coordinated by three carboxylate O atoms and two water molecules and the other is coordinated by five carboxylate O atoms and two water molecules in an irregular geometry. The bis(pyridine-2,6-dicarboxylatocobalt complex units are connected by Na+ cations and bridging water molecules into a three-dimensional coordination network. O—H...O hydrogen bonds are formed between the water molecules and the carboxylate O atoms.

  9. Ethylene polymerization by PN3-type pincer chromium(III) complexes

    KAUST Repository

    Gong, Dirong

    2014-12-01

    Chromium (III) complexes, Cr1, [2,6-(tBu2PNH) 2C5H4N]CrCl3; Cr2, [2,6-(Ph 2PNH)2C5H4N]CrCl3; Cr3, [2-(tBu2PNH)C5H4N]CrCl3 THF; Cr4, [6-(tBu2PNH)C5H4N-2- CH2NEt2]CrCl3; Cr5, [6-(tBu 2PNH)C5H4N-2-C3H2N 2]CrCl3; Cr6, [6-(tBu2PNH)C 5H4N-2-(3,5-Me2)C3H 2N2]CrCl3; Cr7, [6-(tBu 2PNH)C5H4N-2-(3,5-iPr 2)C3H2N2]CrCl3; Cr8, [6-(tBu2PNH)C5H4N-2-(3,5-Ph 2)C3H2N2]CrCl3, bearing a family of neutral PN3-type pincer ligands have been prepared. The molecular structure of Cr2 was further elucidated by the X-ray crystallographic analysis, showing an octahedral geometry. Treatment of these complexes with MAO or alkylaluminum led to catalysts with moderate activities (about 105 g (PE)/Cr(mol) h) for ethylene polymerization, affording exclusively linear low molecular weight solid PE without any detectable oligomers. Among Cr1-Cr8, the highest activity was achieved for Cr1/MAO at room temperature with production of PE with highest molecular weight, indicating that replacement of both tBu groups in Cr1 with Ph groups, or one PtBu2 with the N (imine) arm, resulted in a lower catalytic activity and lower M w. © 2014 Elsevier B.V.

  10. Potentiometric investigation into complexing of Pr,Eu,Yb with new β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Gritsenko, T.V.; Lozinskij, M.O.; Panyushkin, V.T.; Fialkov, Yu.A.; Berenblit, V.V.; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1983-01-01

    Potentiometric method in the aqueous-methanol media at 25 deg and ionic torce of 0.15 (NaCl) has been used to determine the constants of acidic dissociation of the next β-diketones; Rsub(F)-CO-CHsub(2)-CO-R, where R=-C 6 H 5 , Rsub(F) C 3 F 7 OCF(CF 3 ) - (1), CF 3 O(CF 2 ) 3 OCF(CF 3 ) - (2), CF 3 O(CF 2 O) 4 CF 2 - (3), CF 3 O(CF 2 ) 2 - (4) and R=-C 4 H 3 S, Rsub(F) CF 3 O(CF 2 ) 3 OCF(CF 3 ) - (5), CF 3 O(CF 2 O) 4 CF 2 - (6). Synthesis of the 1-3, 5, 6 is described. Stability constants of Pr 3+ , Eu 3+ , Yb 3+ with 1-6 are calculated. Stability of the complexes for the each β-diketone increases in Pr-Eu-Yb series. Correlation between stability of the chelates and acidic properties of the β-diketonates is traced for the complexes of one metal with different ligands. Thus, the acidic properties of the β-diketones increase in the 1, 6-4 series; stability of their complexes with rare earths decreases in such order

  11. Fragrance material review on 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one when used as a fragrance ingredient is presented. 1-(2,6,6-Trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 1-(2,6,6-trimethyl-2-cyclohexen-1-yl)pent-1-en-3-one were evaluated then summarized and includes physical properties data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones when used as fragrance ingredients. Submitted for publication) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. UV-light promoted C-H bond activation of benzene and fluorobenzenes by an iridium(i) pincer complex.

    Science.gov (United States)

    Hauser, Simone A; Emerson-King, Jack; Habershon, Scott; Chaplin, Adrian B

    2017-03-28

    Iridium(i) carbonyl complex [Ir(2,6-(P t Bu 2 CH 2 ) 2 C 6 H 3 )(CO)] undergoes reversible C-H bond activation of benzene and a series of fluorobenzenes on UV irradiation. Exclusive ortho-selectivity is observed in reactions of fluorobenzene and 1,2-difluorobenzene.

  13. UV-light promoted C–H bond activation of benzene and fluorobenzenes by an iridium(i) pincer complex

    OpenAIRE

    Hauser, Simone A.; Emerson-King, Jack; Habershon, Scott; Chaplin, Adrian B.

    2017-01-01

    Iridium(I) carbonyl complex [Ir(2,6-(PtBu2CH2)2C6H3)(CO)] undergoes reversible C–H bond activation of benzene and a series of fluorobenzenes on UV irradiation. Exclusive ortho-selectivity is observed in reactions of fluorobenzene and 1,2-difluorobenzene.\\ud \\ud

  14. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    International Nuclear Information System (INIS)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-01-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H 2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H 2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass ( ☉ ) YSOs; however, we also detected a massive YSO (∼9 M ☉ ) of Class I nature, embedded in a cloud of visual extinction of ∼24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ∼ 4.5 × 10 6 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ∼4 × 10 6 yr B0 main-sequence star.

  15. Synthesis and spectral studies of Pd(II) complexes with 2, 3-disubstituted quinazolin-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxima Reddy, K.

    1991-01-01

    A number of palladium(II) complexes of bidentate O-O and O-N donors, 2,3-disubstituted quinazoline-(3H)-4-ones, have been synthesized and characterized based on analytical, conductivity, magnetic, thermal, IR, electronic and PMR spectral data. The complexes of Pd(II) with ligands such as 2-(R)-3-(X)-substituted quinazoline-(3H)-4-ones, where R=methyl/phenyl and X=2'-hydroxybenzalimino (MHBQ/PHBQ), carboxymethyl (MCMQ/PCMQ), furfuralimino (MFQ/PFQ), acetamino (MAQ/PAQ), uramino (MUQ/PUQ) and thiouramino (MTUQ/PTUQ), yielded the complexes of the type [Pd(O-N) 2 ]Cl 2 and [Pd(O-O) 2 ]. The IR and PMR spectral data of the metal complexes indicate that MHQB, PHQB, MCMQ, and PCMQ act as uninegative bidentate ligands whereas MFQ, PFQ, MAQ, PAQ, MUQ, PUQ, MTUQ and PTUQ act as neutral bidentate ligands. The electronic spectral studies of these complexes indicate that they were square-planar geometry. (author). 23 refs., 2 tabs

  16. Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) bis­[bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cobaltate(III)] perchlorate dimethyl­formamide hemisolvate 1.3-hydrate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Iskenderov, Turganbay S.

    2012-01-01

    In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. π–π inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å]. PMID:23125573

  17. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    Science.gov (United States)

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  18. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    Science.gov (United States)

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)22.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}22CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  19. X-ray-scattering study of copper magnetism in nonsuperconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; McMorrow, D.F.; Boothroyd, A.T.

    2000-01-01

    X-ray magnetic scattering from ordered Cu spins has been observed in a high-T-c compound. The measurements were made on the anomalous cuprate PrBa2Cu3O6.92 with x-ray photon energies tuned in the vicinity of the Cu K edge. The high wave-vector resolution enabled us to observe an incommensurate...... double-Q Cu spin structure below T-Pr = 19 K that forms as a result of coupling between the magnetically ordered Cu and Pr sublattices. Above T-Pr, the Cu ordering is commensurate, ruling out static spin-charge stripe order as an explanation for the absence of superconductivity in this material....

  20. Synthesis and characterization of technetium(III) complexes containing 2,2'-bipyridine and 1,10-phenanthroline. X-ray crystal structures of cis (Cl),trans(P)-[TcCl2(P(CH3)2C6H5)2(bpy)]B(C6H5)4, cis (Cl),trans(P)-[TcCl2(P(CH3)2C6H5)2(phen)]B(C6H5)4, and cis (Cl),trans(P)-[TcCl2(P(CH3CH2)(C6H5)2)2(bpy)]SO3CF3

    International Nuclear Information System (INIS)

    Wilcox, B.E.; Ho, D.M.; Deutsch, E.

    1989-01-01

    Technetium(III) complexes of the general formula cis(Cl),trans(P)-[TcCl 2 (P) 2 L] + , where (P) is dimethylphenylphosphine (PMe 2 Ph) or ethyldiphenylphosphine (PEtPh 2 ) and L is 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me 2 bpy), or 1,10-phenanthroline (phen), have been synthesized and characterized. They are prepared by L substitution onto, with concomitant displacement of one chloride and one phosphine ligand from, the mer-TcCl 3 (P) 3 starting material in refluxing ethanol. Analysis of these complexes by fast atom bombardment mass spectrometry (in the positive ion mode) provides fingerprint mass spectra that exhibit peaks assigned to the molecular ion M + as well as peaks assigned to M + minus one or more monodentate ligands. Results of single-crystal x-ray structure determinations of cis(Cl),trans(P)-[TcCl 2 (PMe 2 Ph) 2 (bpy)]BPh 4 (A), cis(Cl),trans(P)-[TcCl 2- (PMe 2 Ph) 2 (phen)]BPh 4 (B), and cis(Cl),trans(P)-[TcCl 2 (PEtPh 2 ) 2 (bpy)]SO 3 CF 3 (C), with formula weights of 921.62, 945.64, and 903.65, respectively are reported. 26 refs., 5 figs., 5 tabs

  1. 6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one in dimethylformamide yields the title compound, C12H8BrN3O, which features nitrogen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å; the propynyl chains point in opposite directions relative to the fused ring. One acetylenic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related molecule, forming a dimer; adjacent dimers are linked by a second acetylene–pyridine C—H...N interaction, forming a layer motif.

  2. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  3. New lanthanide hydrogen phosphites LnH (P03H)2 2H20

    International Nuclear Information System (INIS)

    Durand, J.; Tijani, N.; Cot, L.; Loukili, M.; Rafiq, M.

    1988-01-01

    LnH ((P0 3 H) 2 2H 2 0 is prepared from lanthanide oxide and phosphorous acid with Ln = La, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er or Tm. By thermal gravimetric analysis LnH (P0 3 H) 2 and LnH 2 P 2 0 5 (P0 3 H) 2 are obtained. The three salts are orthorhombic. Parameters and space groups are given for the three salts of each lanthanide. 4 tabs., 13 refs

  4. (E-3-Methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone

    Directory of Open Access Journals (Sweden)

    Yordanka Ivanova

    2016-09-01

    Full Text Available The title compound, (E-3-methyl-6-(3-oxo-3-(3,4,5-trimethoxyphenylprop-1-en-1-yl-2(3H-benzothiazolone, was synthesized by both an acid- and base-catalyzed aldol condensation of 3-methyl-6-acetyl-2(3H-benzothiazolone and 3,4,5-trimethoxyacetophenone. The structure of the target compound was confirmed using 1H-NMR, 13C-NMR, IR, MS, and elemental analysis.

  5. Ruthenium(II carbonyl compounds with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand

    Directory of Open Access Journals (Sweden)

    Rajendhraprasad Tatikonda

    2017-04-01

    Full Text Available Two ruthenium carbonyl complexes with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3, i.e. [RuCl(tpy-Cl(CO2][RuCl3(CO3] (I [systematic name: cis-dicarbonylchlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ3Nruthenium(II fac-tricarbonyltrichloridoruthenate(II], and [RuCl2(tpy-Cl(CO2] (II [cis-dicarbonyl-trans-dichlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ2N1,N1′ruthenium(II], were synthesized and characterized by single-crystal X-ray diffraction. The RuII atoms in both centrosymmetric structures (I and (II display similar, slightly distorted octahedral coordination spheres. The coordination sphere in the complex cation in compound (I is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octahedral [Ru(CO3Cl3]− counter-anion. In the neutral compound (II, the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the RuII atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I and (II, weak C—H...Cl interactions are observed.

  6. Satellite line mapping in Eu3+–Ce3+ and Pr3+–Ce3+ codoped Y2SiO5

    International Nuclear Information System (INIS)

    Serrano, D.; Karlsson, J.; Zheng, L.; Dong, Y.; Ferrier, A.; Goldner, P.; Walther, A.; Rippe, L.; Kröll, S.

    2016-01-01

    In this work we perform a high-resolution spectroscopic investigation of Eu 3+ –Ce 3+ and Pr 3+ –Ce 3+ codoped Y 2 SiO 5 crystals. Satellite line spectra were recorded at low temperatures around the Eu 3+ : 7 F 0 → 5 D 0 and the Pr 3+ : 3 H 4 → 1 D 2 transitions. It is observed that the incorporation of Ce 3+ as a codopant notably changes the Eu 3+ and Pr 3+ satellite line patterns. Satellite lines measured in singly doped Eu 3+ :Y 2 SiO 5 were found at the same spectral positions in Eu 3+ –Ce 3+ codoped crystals. These coincident lines were concluded to be due to pairs of Eu 3+ ions. Extra satellite lines appeared in the codoped crystals, which were assigned to Ce 3+ related structures such as Ce 3+ –Eu 3+ pairs. The analysis of the Pr 3+ satellite line spectra presents further challenges. Satellite lines associated to Pr 3+ pairs show weaker intensity, presumably due to the efficient quenching of the Pr 3+1 D 2 emission through cross-relaxation paths ( 1 D 2 → 1 G 4 ; 3 H 4 → 3 F 4 ). The investigation of the Eu 3+ and Pr 3+ satellite line patterns in Y 2 SiO 5 is particularly interesting for their exploitation in rare-earth based quantum computation schemes. - Highlights: • We recorded Eu and Pr satellite lines in Y 2 SiO 5 with and without Ce as a codopant. • The presence of Ce leads to the appearance of extra satellite lines in the spectra. • The satellite lines are associated to minor crystal sites such as ion pairs. • Less than 100 ion pairs were detected per satellite line. • The exploitation of the satellite line structure is proposed for quantum computing.

  7. The reactions of SO3 with HO2 radical and H2O...HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4.

    Science.gov (United States)

    Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M

    2010-03-07

    The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.

  8. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: agnieszka.wojciechowska@pwr.edu.pl [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)

    2016-10-01

    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 4}·6H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2⋯O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  9. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt

  10. Left-right correlation in coupled F-center defects.

    Science.gov (United States)

    Janesko, Benjamin G

    2016-08-07

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  11. Left-right correlation in coupled F-center defects

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.

    2016-01-01

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H 2 . Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  12. Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.

    Science.gov (United States)

    Zhang, Mengying; Liu, Hejun; Gao, Yongxiang; Zhu, Zhongliang; Chen, Zijun; Zheng, Peiyi; Xue, Lu; Li, Jixi; Teng, Maikun; Niu, Liwen

    2016-10-04

    Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer. Our findings reveal that Hif1 interacts with the H2A-H2B dimer and the H3-H4 tetramer via distinct mechanisms, suggesting that Hif1 is a pivotal scaffold on alternate binding of H2A-H2B and H3-H4. These specificities are conserved features of the Sim3-Hif1-NASP interrupted tetratricopeptide repeat proteins, which provide clues for investigating their potential roles in nucleosome (dis)assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6iron(II bis(dicyanamidate 4.5-hydrate

    Directory of Open Access Journals (Sweden)

    R. Cortés

    2010-03-01

    Full Text Available In the title compound, [Fe(C24H16N62][N(CN2]2·4.5H2O, the central iron(II ion is hexacoordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz ligands. Two dicyanamide anions [dca or N(CN2−] act as counter-ions, and 4.5 water molecules act as solvation agents. The structure contains isolated cationic iron(II–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water molecule are disordered with an occupancy ratio of 0.614 (8:0.386 (8. O—H...O, O—H...N and C—H...O hydrogen bonds involving dca, water and tppz molecules are observed.

  14. Synthesis, characterisation and antibacterial activity of [(p-cym)RuX(L)](+/2+) (X = Cl, H2O; L = bpmo, bpms) complexes.

    Science.gov (United States)

    Tripathy, Suman Kumar; Taviti, Ashoka Chary; Dehury, Niranjan; Sahoo, Anupam; Pal, Satyanaryan; Beuria, Tushar Kant; Patra, Srikanta

    2015-03-21

    Mononuclear half-sandwiched complexes [(p-cym)RuCl(bpmo)](ClO4) {[1](ClO4)} and [(p-cym)RuCl(bpms)](PF6) {[2](PF6)} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(μ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives [(p-cym)Ru(H2O)(bpmo)](ClO4)2 {[3](ClO4)2} and [(p-cym)Ru(H2O)(bpms)](PF6)2 {[4](PF6)2} are obtained from {[1](ClO4)} and {[2](PF6)}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, [3](ClO4)2 and [4](PF6)(NO3)} are authenticated by their single crystal X-ray structures. The complexes show the expected piano-stool geometry with p-cym in the η(6) binding mode. The aqua complexes [3](ClO4)2 and [4](PF6)2 show significantly good antibacterial activity towards E. coli (gram negative) and B. subtilis (gram positive) strains, while chloro derivatives ({[1](ClO4)} and {[2](PF6)} are found to be virtually inactive. The order of antibacterial activity of the complexes according to their MIC values is [1](ClO4) (both 1000 μg mL(-1)) < [2](PF6) (580 μg mL(-1) and 750 μg mL(-1)) < [3](ClO4)2 (both 100 μg mL(-1)) < [4](PF6)2 (30 μg mL(-1) and 60 μg mL(-1)) for E. coli and B. subtilis strains, respectively. Further, the aqua complexes [3](ClO4)2 and [4](PF6)2 show clear zones of inhibition against kanamycin, ampicillin and chloramphenicol resistant E. coli strains. The detailed mechanistic aspects of the aforesaid active aqua complexes [3](ClO4)2 and [4](PF6)2 have been explored, and it reveals that both the complexes inhibit the number of nucleoids per cell in vivo and bind to DNA in vitro. The results indeed demonstrate that both [3](ClO4)2 and [4](PF6)2 facilitate the inhibition of

  15. The methylcobalt(III) complex of a tetrapodal pentadentate amine ligand, 2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine

    DEFF Research Database (Denmark)

    Grohmann, Andreas; Heinemann, Frank W; Kofod, Pauli

    1999-01-01

    The pentaamine methylcobalt(III) compound [Co(pyN4)(CH3)](NO3)2 (pyN4=2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine) has been synthesised from [Co(NH3)5(CH3)](NO3)2 and pyN4 by ligand exchange, and characterised by IR, 1H, 13C and 59Co NMR spectroscopy as well as elemental analysis. The str......The pentaamine methylcobalt(III) compound [Co(pyN4)(CH3)](NO3)2 (pyN4=2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine) has been synthesised from [Co(NH3)5(CH3)](NO3)2 and pyN4 by ligand exchange, and characterised by IR, 1H, 13C and 59Co NMR spectroscopy as well as elemental analysis...... nitrogen atom, while the four equivalent primary amino groups take the equatorial positions. The other axial position, trans to the pyridine ring, is occupied by the methyl group. The Co–Npy bond length of 2.018(2) Å is significantly elongated compared with other cobalt(III) complexes of the pyN4 ligand...

  16. Synthesis and crystal structure of the bromide salt of the inside protonated form of the cage amine [(2.3)sup 3]adamanzane, 1,4,8,12-tetraazatricyclo[6.6.3.2 sup 4,12]nonadecane and synthesis of the bowl amine [(2.3)sup 2.2 sup 1]adamanzane, 1,5,9,12-tetraazabicyclo[7.5.2]-hexadecane

    DEFF Research Database (Denmark)

    Springborg, Johan; Nielsen, Bente; Olsen, Carl Erik

    1999-01-01

    .01 M NaOD). From sup 1 H and sup 13C NMR it is concluded that in slightly acidic (pH > 2) and in basic aqueous solutions the dominant form of the cage has all four lone pairs pointing into the cavity. In concentrated strong acid protonation occurs and is believed to involve inversion at one or several......The reaction of 1,4,7-triazacyclononane with tris(3-chloropropyl)amine affords the inside monoprotonated form of the tricyclic amine 1,4,8,12-tetraazatricyclo [6.6.3.2 sup 4,12]nonadecane (3), which was isolated as the bromide salt, [H[(2.3)sup 3]adz]Br (yield 38%). The crystal structure of [H[(2.......3)sup 3]adz]Br x 4H sub 2 O has been solved by X-ray diffraction at T = 120 K. In the i sup +,i,i,i-H[(2.3) sup 3] adz sup + cation (3a) the acidic hydrogen atom and the lone pairs of the nitrogen atoms are oriented towards the inside of the cavity. The acidic hydrogen atom is attached to the apical...

  17. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one

    Science.gov (United States)

    Manimekalai, A.; Vijayalakshmi, N.

    2015-02-01

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, 1H, and 13C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) 13C and 1H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule.

  18. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  19. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  20. Syntheses of 24R,25-dihydroxy-[6,19,19-3H]vitamin D3 and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3

    International Nuclear Information System (INIS)

    Yamada, S.; Shimizu, M.; Fukushima, K.; Niimura, K.; Maeda, Y.

    1989-01-01

    24R,25-Dihydroxy-[6,19,19-3H]vitamin D3 with a specific activity of 54 Ci/mmol and 24R,25-dihydroxy-[6,19,19-2H]vitamin D3 with 2.6 deuterium atoms/mol were synthesized in four steps starting from 24R,25-Dihydroxyvitamin D3 via its sulfur dioxide adduct

  1. Crystal structure of 2-[(3aS,6R-3,3,6-trimethyl-3,3a,4,5,6,7-hexahydro-2H-indazol-2-yl]thiazol-4(5H-one

    Directory of Open Access Journals (Sweden)

    Abdellah N'ait Ousidi

    2016-03-01

    Full Text Available The title compound, C13H19N3OS, is a new thiazolidin-4-one derivative prepared and isolated as the pure (3aS,6R-diastereisomer from (R-thiosemicarbazone pulegone. It crystallized with two independent molecules (A and B in the asymmetric unit. The compound is composed of a hexhydroindazole ring system (viz. a five-membered dihydropyrazole ring fused to a cyclohexyl ring with a thiazole-4-one ring system attached to one of the pyrazole N atoms (at position 2. The overall geometry of the two molecules differs slightly, with the mean planes of the pyrazole and thiazole rings being inclined to one another by 10.4 (1° in molecule A and 0.9 (1° in molecule B. In the crystal, the A and B molecules are linked via C—H...O hydrogen bonds, forming slabs parallel to the ab plane. There are C—H...π interactions present within the layers, and between the layers, so forming a three-dimensional structure.

  2. 75 FR 10026 - Proposed Collection; Comment Request for Forms W-2, W-2c, W-2AS, W-2GU, W-2VI, W-3, W-3c, W-3cPR...

    Science.gov (United States)

    2010-03-04

    ... W-2, W-2c, W-2AS, W-2GU, W-2VI, W-3, W-3c, W-3cPR, W-3PR, and W-3SS AGENCY: Internal Revenue Service....C. 3506(c)(2)(A)). Currently, the IRS is soliciting comments concerning Forms W-2, W-2c, W-2AS, W-2GU, W-2VI, W-3, W-3c, W- 3cPR, W-3PR, and W-3SS. DATES: Written comments should be received on or...

  3. H/D exchange in the reaction of D2 with Bis(triphenyl phosphite)(acetylacetonato)rhodium(I), Rh(P(OPh)3)2(acac)

    International Nuclear Information System (INIS)

    Whitmore, B.C.; Eisenberg, R.

    1984-01-01

    The reaction of Rh(P)OPh) 3 ) 2 (acac) (1) with D 2 benzene has been studied by 1 H NMR spectroscopy, and complex 1 has been found to undergo H/D exchange at the ortho positions of the coordinated phosphite ligands and at the central methine position of the acetylacetonate ligand. At 75 0 C, the exchange reaction proceeds with the extent of deuterium incorporation into P(OPh) 3 being the same as that into acac at all stages of the H/D exchange process. At 60 0 C, deuterium incorporation into P(OPh) 3 is initially more rapid than that into the acac ligand. The initial rate of deuterium incorporation into P(OPh) 3 by 1 in benzene-d 6 under D 2 at 60 0 C proceeds with a first-order rate constant of 9.6 x 10 -5 s -1 . A mechanism for this exchange process is proposed. 13 references, 3 figures, 2 tables

  4. Synthesis and characterization of K2Ln2/3Ta2O7·nH2O (Ln= La, Pr, Nd), layered tantalates photo catalysts for water splitting

    International Nuclear Information System (INIS)

    Valencia S, H.; Tavizon, G.; Pfeiffer, H.; Acosta, D.; Negron M, A.

    2015-01-01

    Three compounds of the K 2 Ln 2/3 Ta 2 O 7 (Ln = La, Nd, Pr) cation-deficient Ruddlesden-Popper series were prepared by the Pechini (polymeric complex) method. The crystal structures of the hydrated form of these compounds were determined by Rietveld analysis of the X-ray power diffraction data and High Resolution Transmission Electron Microscopy (HRTEM). The samples were also analyzed to determine specific area (Bet), degree of hydration (Thermogravimetric analysis), and photo catalytic activity for hydrogen evolution from water and aqueous methanol solution. (Author)

  5. High temperature-induced phase transitions in Sr{sub 2}GdRuO{sub 6} complex perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Triana, C.A.; Corredor, L.T.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. A.A. 14490 (Colombia)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Crystal structure, thermal expansion and phase transitions at high-temperature of Sr{sub 2}GdRuO{sub 6} perovskite has been investigated. Black-Right-Pointing-Pointer X-ray diffraction pattern at 298 K of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with P2{sub 1}/n space group. Black-Right-Pointing-Pointer Evolution of X-ray diffraction patterns at high-temperature shows that the Sr{sub 2}GdRuO{sub 6} perovskite suffers two-phase transitions. Black-Right-Pointing-Pointer At 573 K the X-ray diffraction pattern of Sr{sub 2}GdRuO{sub 6} corresponds to monoclinic perovskite-type structure with I2/m space group. Black-Right-Pointing-Pointer At 1273 K the Sr{sub 2}GdRuO{sub 6} perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr{sub 2}GdRuO{sub 6} complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K {<=} T {<=} 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2{sub 1}/n (no. 14) space group and 1:1 ordered arrangement of Ru{sup 5+} and Gd{sup 3+} cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Angstrom-Sign , b =5.8234(1) Angstrom-Sign , c =8.2193(9) Angstrom-Sign , V = 278.11(2) Angstrom-Sign {sup 3} and angle {beta} = 90.310(5) Degree-Sign . The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Angstrom-Sign , b = 5.8326(3) Angstrom-Sign , c = 8.2449(2) Angstrom-Sign , V = 280.31(3) Angstrom-Sign {sup 3} and angle {beta} = 90.251(3) Degree-Sign . Close

  6. Theoretical investigation of elementary reaction of complexing LiH+BeH/sub 2/. -->. LiBeH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Charkin, O P; Boldyrev, A I; Sukhanov, L P [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1979-01-01

    In the framework of non-empirical Hartree-Fock-Roothaan method on the basis of gauss functions of Roos and Siegbahn made are calculations of different sections of potential surface elementary reaction of complexing LiH+BeH/sub 2/ ..-->.. LiBeH/sub 3/. Charts of potential surface are presented. Questions of the elementary mechanism of elementary processes of complexing and effect of mutual orientation of the reagents upon the reaction mechanism are considered. Stability of LiBeH/sub 3/ molecule to different dissociation channels and different aspects of structural non-rigidity of the L(MXsub(k+1)) complexes at super barrier excitation are discussed.

  7. A Study on Spectro-Analytical Aspects, DNA - Interaction, Photo-Cleavage, Radical Scavenging, Cytotoxic Activities, Antibacterial and Docking Properties of 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione and its Metal Complexes.

    Science.gov (United States)

    Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala

    2015-09-01

    The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.

  8. Evidence and detailed study of a second-order phase transition in the (C6H11NH3)2[PbI4] organic-inorganic hybrid material

    International Nuclear Information System (INIS)

    Yangui, A.; Pillet, S.; Garrot, D.; Boukheddaden, K.; Triki, S.; Abid, Y.

    2015-01-01

    The thermal properties of the organic-inorganic hybrid material (C 6 H 11 NH 3 ) 2 [PbI 4 ] are investigated using diffuse reflectivity, spectroscopic ellipsometry, differential scanning calorimetry, Raman spectroscopy, and X-ray diffraction. The diffuse reflectivity, performed in heating mode, clearly evidences the presence of a singularity at 336 K. This is confirmed by the temperature dependence of the spectroscopic ellipsometry spectra, which points out a second-order phase transition at 336 K with a critical exponent ∼0.5. Differential scanning calorimetry measurements on a polycrystalline powder of (C 6 H 11 NH 3 ) 2 [PbI 4 ] show a reversible phase transition detected at T C  = 336 K without hysteresis. Raman spectroscopy data suggest that this transition arises from a change in the interactions between inorganic sheets (([PbI 4 ] 2− ) ∞ ) and organic protonated molecules ([C 6 H 11 NH 3 ] + ). The structural analysis from power X-ray diffraction reveals an incomplete order-disorder transition of the cyclohexylammonium cation, causing a subtle contraction of the inter-plane distance. The transition results from repulsive close contacts between the organic molecules in the interlayer spacing

  9. Synthesis, solvatochromism and crystal structure of trans-[Cu(Et2NCH2CH2NH2)2.H2O](NO3)2 complex: Experimental with DFT combination

    Science.gov (United States)

    Warad, Ismail; Musameh, Sharif; Badran, Ismail; Nassar, Nashaat N.; Brandao, Paula; Tavares, Carlos Jose; Barakat, Assem

    2017-11-01

    In this study, two dicationic asymmetrical diamine/copper(II) nitrate salt complexes of the general formula trans-[CuII(NN‧)2.H2O](NO3)2 were successfully synthesized using N,N-dimethylethylenediamine and N,N-diethylethylenediamine as asymmetrical diamine ligands. The structure of complex 2 was identified by X-ray single crystal diffraction analysis confirming that the bidentate ligand N,N-dimethylethylenediamine forms a penta-coordinated complex with an H2O molecule located around the copper(II) ion in a trans configuration. It was found that the metal centre is coordinated in a distorted square pyramidal fashion with a τ value of 0.274. The desired complexes were fully characterized using, MS, UV-Vis, CV, FTIR, TG/DTA, and Hirshfeld surface computational analysis. High level theoretical calculations were also performed in order to investigate the complexes structure, conformers, vibrational frequencies, and their excited states.

  10. Complexes of light lanthanides with 2,4-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    WIESLAWA FERENC

    2000-01-01

    Full Text Available The complexes of light lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O43·nH2O where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III, Gd(IIII, and n = 3 for La(III, Gd(III, n = 2 for Sm(III, Eu(III, and n = 0 for Ce(III, Pr(III, Nd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies and X-ray diffraction measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd-white, Sm-cream, Pr-green, Nd-violet. The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the 2,4-dimethoxybenzoates of the light lanthanides decompose in various ways. The hydrated complexes decompose in two or three steps while those of anhydrous ones only in one or two. The trihydrate of lanthanum 2,4-dimethoxybenzoate first dehydrates to form the anhydrous salt, which then decomposes to La2O3via the intermediate formation of La2O2CO3. The hydrates of Sm(III, Eu(III, Gd(III decompose in two stages. First, they dehydrate forming the anhydrous salts, which then decompose directly to the oxides of the respective metals. The anhydrous complexes of Ce(III, Pr(III decompose in one step, while that of Nd(III in two. The solubilities of the 2,4-dimethoxybenzoates of the light lanthanides in water and ethanol at 293 K are in the order of: 10-3 mol dm-3 and 10-4-10-3 mol dm-3, respectively.

  11. Potentiometric investigation into complexing of Pr,Eu,Yb with new. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, T.V.; Lozinskij, M.O.; Panyushkin, V.T.; Fialkov, Yu.A.; Berenblit, V.V. (Kubanskij Gosudarstvennyj Univ., Krasnodar (USSR); AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1983-01-01

    Potentiometric method in the aqueous-methanol media at 25 deg and ionic torce of 0.15 (NaCl) has been used to determine the constants of acidic dissociation of the next ..beta..-diketones; Rsub(F)-CO-CHsub(2)-CO-R, where R=-C/sub 6/H/sub 5/, Rsub(F) C/sub 3/F/sub 7/OCF(CF/sub 3/) - (1), CF/sub 3/O(CF/sub 2/)/sub 3/OCF(CF/sub 3/) - (2), CF/sub 3/O(CF/sub 2/O)/sub 4/CF/sub 2/ - (3), CF/sub 3/O(CF/sub 2/)/sub 2/ - (4) and R=-C/sub 4/H/sub 3/S, Rsub(F) CF/sub 3/O(CF/sub 2/)/sub 3/OCF(CF/sub 3/) - (5), CF/sub 3/O(CF/sub 2/O)/sub 4/CF/sub 2/ - (6). Synthesis of the 1-3, 5, 6 is described. Stability constants of Pr/sup 3 +/, Eu/sup 3 +/, Yb/sup 3 +/ with 1-6 are calculated. Stability of the complexes for the each ..beta..-diketone increases in Pr-Eu-Yb series. Correlation between stability of the chelates and acidic properties of the ..beta..-diketonates is traced for the complexes of one metal with different ligands. Thus, the acidic properties of the ..beta..-diketones increase in the 1, 6-4 series; stability of their complexes with rare earths decreases in such order.

  12. Centrosymmetric [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} vs. noncentrosymmetric polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}: A hydrogen-bonding effect on the out-of-center distortion of TiF{sub 6} octahedra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-ah [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-11-15

    The syntheses, structures, and characterization of organically templated zero-dimensional titanium fluoride materials, A{sub 2}TiF{sub 6} (A=[N(CH{sub 3}){sub 4}] or [C(NH{sub 2}){sub 3}]), are reported. Phase pure samples of A{sub 2}TiF{sub 6} were synthesized by either solvothermal reaction method or a simple mixing method. While [N(CH{sub 3}){sub 4}]{sub 2}TiF{sub 6} crystallizes in a centrosymmetric space group, R-3, [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} crystallizes in a noncentrosymmetric polar space group, Cm. The asymmetric out-of-center distortion of TiF{sub 6} octahedra in polar [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} are attributable to the hydrogen-bonding interactions between the fluorine atoms in TiF{sub 6} octahedra and the nitrogen atoms in the [C(NH{sub 2}){sub 3}]{sup +} cation. Powder second-harmonic generation (SHG) measurements on the [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6}, using 1064 nm radiation, indicate the material has SHG efficiency of 25 Multiplication-Sign that of {alpha}-SiO{sub 2}, which indicates an average nonlinear optical susceptibility, Left-Pointing-Angle-Bracket d{sub eff} Right-Pointing-Angle-Bracket {sub exp} of 2.8 pm/V. Additional SHG measurements reveal that the material is not phase-matchable (Type 1). The magnitudes of out-of-center distortions and dipole moment calculations for TiF{sub 6} octahedra will be also reported. - Graphical abstract: The out-of-center distortion of TiF{sub 6} octahedron in the polar noncentrosymmetric [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} is attributable to the hydrogen-bonding interactions between the F in TiF{sub 6} octahedron and the H-N in the [C(NH{sub 2}){sub 3}]{sup +}. Highlights: Black-Right-Pointing-Pointer Two titanium fluorides materials have been synthesized in high yields. Black-Right-Pointing-Pointer Hydrogen-bonds are crucial for the out-of-center distortion of TiF{sub 6} octahedra. Black-Right-Pointing-Pointer [C(NH{sub 2}){sub 3}]{sub 2}TiF{sub 6} has a SHG efficiency of 25

  13. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Maksym [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Swiss Federal Laboratories for Materials Science and Technology (EMPA), Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Zaremba, Oksana; Gladyshevskii, Roman [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany); Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2012-12-15

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800

  14. 4-(2,4-Dichlorophenyl-6-(1H-indol-3-yl-2,2′-bipyridine-5-carbonitrile

    Directory of Open Access Journals (Sweden)

    M. N. Ponnuswamy

    2009-05-01

    Full Text Available The title compound, C25H14Cl2N4, crystallizes with two independent molecules in the asymmetric unit. The two pyridine rings are almost coplanar, making dihedral angles of 3.2 (1 and 8.6 (1° in the two independent molecules. The dichlorophenyl and indole rings are twisted away from the bipyridine ring by 64.32 (5 and 18.46 (4°, respectively in the first molecule and by 51.0 (1 and 27.99 (5°, respectively in the second molecule. The crystal packing is stabilized by C—H...N, C—H...Cl, N—H...N and C—H...π interactions.

  15. 2,3-Diaminopyridinium 6-carboxypyridine-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Mahsa Foroughian

    2011-12-01

    Full Text Available The asymmetric unit of the title proton-transfer compound, C5H8N3+·C7H4NO4−, consists of one mono-deprotonated pyridine-2,6-dicarboxylic acid as anion and one protonated 2,3-diaminopyridine as cation. The crystal packing shows extensive O—H...O, N—H...O and N—H...N hydrogen bonds. Thre are also several π–π interactions between the anions and also between the cations [centriod–centroid distances = 3.6634 (7, 3.7269 (7, 3.6705 (7 and 3.4164 (7 Å].

  16. Crystal structure of strontium osmate (8) Sr[OsO5(H2O)]x3H2O

    International Nuclear Information System (INIS)

    Nevskij, N.N; Ivanov-Ehmin, B.N.; Nevskaya, N.A.; Belov, N.V.; AN SSSR, Moscow. Inst. Kristallografii)

    1982-01-01

    Crystal structure of the Sr[OsO 5 (H 2 O)]x3H 2 O complex is studied. Rhombic P-cell has the parameters: a=6.426(1), b=7.888(1), c=14.377(5) A, Vsub(c)=729 A 3 . The R-factor equals 0.034. The coordinates of the basis atoms and isotropic temperature corrections, as well as basic interatomic distances, are determined

  17. Synthesis and Structures of Two Lanthanide Complexes Containing a Mixed Ligand System: [Ln(Phen){sub 2}(L){sub 3}(HL)]·H{sub 2}O [Ln = La, Ce; Phen = Phenanthroline; HL = Salicylic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Iravani, Effat [UNiv. of Applied Science and Technology, Tehran (Iran, Islamic Republic of); Nami, Navabeh; Nabizadeh, Fatemeh; Bayani, Elham [Islamic Azad Univ., Mazandaran (Iran, Islamic Republic of); Neumueller, Bernhard [Philipps-Universitat Marburg, Marburg (Germany)

    2013-11-15

    The reaction of LnCl{sub 3}·7H{sub 2}O [Ln = La (1), Ce (2)] with salicylic acid (HL) and 1,10-phenanthroline (Phen) at 20 .deg. C in H{sub 2}O/ethanol gave after work-up and recrystallization two novel lanthanide complexes with general formula [Ln(Phen){sub 2}(L){sub 3}(HL)]·H{sub 2}O. Compounds 1 and 2 were characterized by IR and UV-Vis spectroscopy, TGA, CHN as well as by X-ray analysis. According to these results, compounds 1 and 2 are isostructural and contain Ln{sup 3+} ions with coordination number nine. Complexes 1 and 2 consist of two Phen, one neutral HL and three L anions (two L anions act as monodentate ligands and the third one is chelating to Ln{sup 3+}). Thermal decomposition led to primary loss of the Phen molecules. Then HL molecules and finally L moieties left the material to give Ln{sub 2}O{sub 3}.

  18. X-ray and NQR studies of bromoindate(III) complexes. [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}, [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}, and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Takeharu; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Lork, Enno; Gesing, Thorsten M. [Bremen Univ. (Germany). Inst. of Inorganic Chemistry and Crystallography

    2017-03-01

    The crystal structures of [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}(1), [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}(2), and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}(3) were determined at 100(2) K: monoclinic, P2{sub 1}/n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr{sub 6}]{sup 3-} ion and a Br{sup -} ion. The structure of 2 contains three different isolated octahedral [InBr{sub 6}]{sup 3-} ions. The structure of 3 has a corner-shared double-octahedral [In{sub 2}Br{sub 11}]{sup 5-} ion and an isolated tetrahedral [InBr{sub 4}]{sup -} ion. The {sup 81}Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The {sup 81}Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr{sub 6}]{sup 3-} of 1 and for [In{sub 2}Br{sub 11}]{sup 5-} and [InBr{sub 4}]{sup -} of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of {sup 81}Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  19. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  20. Synthesis of new dithiacobaltaborane clusters derived from arachno-6,8-S2B7H9

    International Nuclear Information System (INIS)

    Kang, S.O.; Sneddon, L.G.

    1988-01-01

    A series of air-stable dithiacobaltaborane clusters has been isolated from either the reaction of the arachno-S 2 B 7 H 8 - anion with cobalt chloride and pentamethylcyclopentadienide or the reaction of neutral arachno-6,8-S 2 B 7 H 9 with cobalt atoms and pentamethylcyclopentadiene. Thus, the reaction of arachno-S 2 B 7 H 8 - with CoCl 2 and C 5 (CH 3 ) 5 - in THF gave, as the major products, the triple-decker compound nido-4,6-η-C 5 (CH 3 ) 52 Co 2 -3,5-S 2 B 2 H 2 (I) and the 11-vertex cluster nido-8,10(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (III). Also isolated in smaller amounts were a chloride derivative of I, nido-1-Cl-4,6-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -3,5-S 2 B 2 H (II), two isomers of III, nido-3,10-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (IV) and nido-3,5-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (V), and the eight-boron cluster nido-8-(η-C 5 (CH 3 ) 5 )Co-7,9-S 2 B 8 H 8 (VI). Other trace products of the reaction included the six-boron clusters nido-5,8-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -6,9-S 2 B 6 H 6 (VII) and arachno-7-(η-C 5 (CH 3 ) 5 )Co-6,8-S 2 B 6 H 8 (VIII). Compound III was found to isomerize at 250 degree C to IV, which could then be converted to V at 300 degree C. The reaction of cobalt atoms with arachno-6,8-S 2 B 7 H 9 in the presence of pentamethylcyclopentadiene gave VIII as the major product; however, a number of other clusters including I, V, VI, and [(η-C 5 (CH 3 ) 5 ) 2 Co] + [(SB 10 H 10 ) 2 Co] - were isolated in trace amounts. 16 references, 6 figures, 3 tables

  1. rac-6-Hydroxy-4-(4-nitrophenyl-5-(2-thienylcarbonyl-6-(trifluoromethyl-3,4,5,6-tetrahydropyrimidin-2(1H-one monohydrate

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2010-11-01

    Full Text Available The title compound, C16H12F3N3O5S·H2O, was prepared by reaction of 4-nitrobenzaldehyde, 4,4,4-trifluoro-1-(thiophen-2-ylbutane-1,3-dione and urea. The asymmetric unit contains two independent molecules, with essentially identical geometries and conformations. The dihydropyrimidine rings adopt a half-chair conformation. The dihedral angles between the benzene ring and the thiophene ring are 54.82 (8 and 58.72 (8° in the two molecules. The molecular conformation of one of the molecules is stabilized by two intramolecular O—H...O hydrogen bonds, generating an S(6 ring. The crystal structure is stabilized by intermolecular O—H...O and N—H...O hydrogen bonds.

  2. Photoluminescent properties of Pr3+ doped YTiAO6 (A= Nb&Ta) euxenite compounds

    Science.gov (United States)

    Venugopal, Meenu; Kumar, H. Padma

    2018-04-01

    Pr3+ doped YTiAO6 (A = Nb and Ta) compounds were prepared by conventional solid state ceramic route. X - ray diffraction studies of the samples confirmed the euxenite orthorhombic phase formation. Effect of Pr3+ doping on the optical and luminescence properties of YTiAO6 (A = Nb and Ta) were studied. The strong absorption in the UV region are due to the absorption by the host YTiAO6 (A = Nb and Ta) and all other peaks can be attributed to that of Pr3+. Host emission peaks are observed around 485 nm and 460 nm in all samples. The red emission observed at 614 nm in the doped samples corresponds to the 1D2 to 3H4 transition of Pr3+ ion. CIE colour coordinates and chromaticity values were also discussed.

  3. New metal-organic polygons involving MM quadruple bonds: M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6 (M=Mo, W).

    Science.gov (United States)

    Byrnes, Matthew J; Chisholm, Malcolm H; Patmore, Nathan J

    2005-12-12

    The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.

  4. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    Science.gov (United States)

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  5. 6,7-Dichloro-3-(2,4-dichlorobenzylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Jinpeng Zhang

    2012-08-01

    Full Text Available In the title compound, C15H8Cl4N2O, the quinoxaline ring system is almost planar, with a dihedral angle between the benzene and pyrazine rings of 3.1 (2°. The 2,4-dichlorophenyl ring is approximately perpendicular to the pyrazine ring, with a dihedral angle of 86.47 (13° between them. The crystal packing features intermolecular N—H...O hydrogen bonds and π–π stacking interactions, with centroid–centroid distances in the range 3.699 (3–4.054 (3 Å.

  6. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr22-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  7. 2-ARYL-6,8-DIBROMO-2,3-DIHYDROQUINAZOLIN-4(1H)

    African Journals Online (AJOL)

    Preferred Customer

    The first task in this investigation was to synthesize the requisite 2-aryl-6 .... carbonate as a base in aqueous DMF at 120 °C. We isolated after 2 h by ..... cool to room temperature and then quenched with saturated sodium thiosulfate solution.

  8. Magnetic and thermodynamic properties of the Pr-based ferromagnet PrGe2

    Science.gov (United States)

    Matsumoto, Keisuke T.; Morioka, Naoya; Hiraoka, Koichi

    2018-03-01

    We investigated the magnetization, M, and specific heat, C, of ThSi2-type PrGe2-δ. A polycrystalline sample of PrGe2-δ was prepared by arc-melting. Magnetization divided by magnetic field, M / B, increased sharply and C showed a clear jump at the Curie temperature, TC, of 14.6 K; these results indicate that PrGe2-δ ordered ferromagnetically. The magnetic entropy at TC reached R ln 3, indicating a quasi-triplet crystalline electric field (CEF) ground state. The maximum value of magnetic entropy change was 11.5 J/K kg with a field change of 7 T, which is comparable to those of other right rare-earth based magnetocaloric materials. This large magnetic entropy change was attributed to the quasi-triplet ground state of the CEF.

  9. Jensenite, Cu3 Te (super 6+) O6 .2H2O, a new mineral species from the Centennial Eureka Mine, Tintic District, Juab County, Utah

    Science.gov (United States)

    Roberts, Andrew C.; Grice, Joel D.; Groat, Lee A.; Criddle, Alan J.; Gault, Robert A.; Erd, Richard C.; Moffatt, Elizabeth A.

    1996-01-01

    Jensenite, ideally Cu 3 Te (super 6+) O 6 .2H 2 O, is monoclinic, P2 1 /n (14), with unit-cell parameters refined from powder data: a 9.204(2), b 9.170(2), c 7.584(1) Aa, beta 102.32(3) degrees , V 625.3(3) Aa 3 , a:b:c 1.0037:1:0.8270, Z = 4. The strongest six reflections of the X-ray powder-diffraction pattern [d in Aa(I)(hkl)] are: 6.428(100)(101,110), 3.217(70)(202), 2.601(40)(202), 2.530(50)(230), 2.144(35)(331) and 1.750(35)(432). The mineral is found on the dumps of the Centennial Eureka mine, Juab County, Utah, where it occurs as isolated crystals or as groups of crystals on drusy white quartz. Associated minerals are mcalpineite, xocomecatlite and unnamed Cu(Mg,Cu,Fe,Zn) 2 Te (super 6+) O 6 .6H 2 O. Individual crystals of jensenite are subhedral to euhedral, and form simple rhombs that are nearly equant. Some crystals are slightly elongate [101], with a length-to-width ratio up to 2:1. The largest crystal is approximately 0.4 mm in size; the average size is between 0.1 and 0.2 mm. Cleavage {101} fair. Forms are: {101} major; {110} medium; {100} minor; {301}, {201}, {203}, {102}, {010} very small. The mineral is transparent, emerald green, with a less intense streak of the same color and an uneven fracture. Jensenite is adamantine, brittle and nonfluorescent; H (Mohs) 3-4; D (calc.) 4.78 for the idealized formula, 4.76 g/cm 3 for the empirical formula. In a polished section, jensenite is very weakly bireflectant and nonpleochroic. In reflected plane-polarized light in air, it is a nondescript grey, and in oil, it is a much darker grey in color with a brownish tint, with ubiquitous bright green internal reflections. Anisotropy is not detectable. Measured values of reflectance, in air and in oil, are tabulated. Electron-microprobe analyses yielded CuO 50.91, ZnO 0.31, TeO 3 38.91, H 2 O (calc.) [8.00], total [98.13] wt.%. The empirical formula, derived from crystal-structure analysis and electron-microprobe analyses, is (Cu (sub 2.92) Zn (sub 0.02) ) (sub

  10. Thermodynamic and structural description of europium complexation in 1-octanol - H2O solutions

    International Nuclear Information System (INIS)

    Vu, T.H.; Charbonnel, M.C.; Boubals, N.; Couston, L.; Arnaud, F.

    2008-01-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPs) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. The first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water was determined by Time-Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and micro-calorimetry; similar stability constants related to the formation of Eu(BTP) 2 3+ and Eu(BTP) 3 3+ were obtained by both techniques (log(β 2 ) = 9.0 ± 0.3 and log(β 3 ) = 13.8 ± 0.2). The presence of water in the octanol diluent has an influence on solvation of europium and also on the [Eu(BTP) 2 3+ ] / [Eu(BTP) 3 3+ ] ratio. (authors)

  11. (E-N-[2-(9-Fluorenylidene-3a,5,7-trimethyl-3,3a-dihydro-2H-indol-3-ylidene]-2,4,6-trimethylaniline

    Directory of Open Access Journals (Sweden)

    Norihiro Tokitoh

    2008-02-01

    Full Text Available The title compound, C33H30N2, has an E configuration at the imine double bond. The angle between the least-squares planes of the imine C=N—C group and the benzene ring of the 2,4,6-trimethylphenyl substituent is 85.38 (11°. The crystal structure is sustained mainly by intermolecular π–π interactions (3.510 Å between the two fluorene rings and some C—H...π interactions.

  12. Spectral and quantum chemical studies on 1,3-bis(N(1)-4-amino-6-methoxypyrimidinebenzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane and its erbium complex.

    Science.gov (United States)

    Al-Mogren, Muneerah M; Alaghaz, Abdel-Nasser M A; El-Gogary, Tarek M

    2014-01-24

    Novel 1,3-bis(N(1)-4-amino-6-methoxypyrimidine-benzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane (L), was prepared and their coordinating behavior towards the lanthanide ion Er(III) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-VIS., (1)H NMR, (13)C NMR, (31)P NMR, SEM, XRD, mass spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of L and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 17.7 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which compared by the measured electronic spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. 2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetragermacyclohexane dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Monika L. Amadoruge

    2009-09-01

    Full Text Available The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4, was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The molecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5 Å and the Ge—O bond distances are 1.790 (2 and 1.785 (2 Å. The torsion angles within the Ge4O2 ring are −56.7 (1 and 56.1 (1° for the Ge—Ge—O—Ge angles and −43.9 (1° for the O—Ge—Ge—O angle.

  14. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

    International Nuclear Information System (INIS)

    Bae, Byoung Jae; Seo, Won Seok; Miah, Arzu; Park, Joon T.; Lee, Kwang Yeol; Kim, Keun Chong

    2004-01-01

    The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti(O i Pr) 2 (CH 3 COCHCONEt 2 ) 2 (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and 1 H/ 13 C NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis(CONEt 2 ), trans(COCH 3 ) configuration (1a) in a distorted octahedral environment. Variable-temperature 1 H NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20 .deg. C in toluene-d 8 solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500 .deg. C under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500 .deg. C using a bubbler-based MOCVD method

  15. Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo

    Science.gov (United States)

    Bessodes, Nathalie; Haillot, Emmanuel; Duboc, Véronique; Röttinger, Eric; Lahaye, François; Lepage, Thierry

    2012-01-01

    During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H+/K+-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H+/K+-ATPase and the Notch signaling pathway. PMID:23271979

  16. Fast hydrogen elimination from the [Ru(PH3)3(CO)(H)2] and [Ru(PH3)4(H)2] complexes in the first singlet excited states: A diabatic quantum dynamics study

    International Nuclear Information System (INIS)

    Vendrell, Oriol; Moreno, Miquel; Lluch, Jose M.

    2004-01-01

    The photodissociation dynamics of [Ru(PH 3 ) 3 (CO)(H) 2 ] and cis-[Ru(PH 3 ) 4 (H) 2 ] is theoretically analyzed in the lowest two excited singlet states. Energies obtained through electronic density functional theory calculations that use the time-dependent formalism are fitted to analytical reduced two-dimensional potential energy surfaces (2D-PES). The metal-H 2 (R) and H-H (r) distances are the variables of these 2D-PES, the rest of the parameters being kept frozen at the values of the minimum energy structure in the ground electronic state. The time evolution in these 2D-PES is exactly followed by means of a fast Fourier transform algorithm applied to solve the time-dependent Schroedinger equation. A simple diabatization scheme is devised to take into account the probability of transitions between both excited states. The quantum dynamics results point out that photoelimination is almost inexistent if the H 2 fragment is to be expelled without further rearrangement of the rest of the complex. Conversely, when the geometries of the complex are optimized by keeping r and R frozen at the hydrogen elimination barrier coordinates, the new 2D-PES so obtained are highly dissociative, the H 2 fragment being expelled in less than 100 fs. Finally the picture of the whole reaction that emerges from our theoretical results is described and the main differences between both complexes are examined

  17. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

    International Nuclear Information System (INIS)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho

    2012-01-01

    was prepared starting from 4,4'-dimethyl-2,2'-bipyridine according to the reported procedure, iridium (III) complex 1 was prepared. Finally iridium (III) complex 1 was treated with 3,9-dithia-6-azaundecane in the presence of NaH in tetrahydrofuran (THF) to afford iridium (III) complex 2 containing two 3,9-dithia-6-azaundecane units

  18. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  19. A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H{sub 3}tda): ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O)6.25){sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang [Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM) (China)

    2017-03-15

    The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through the neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.

  20. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs.

    Science.gov (United States)

    Ren, Kun; Lu, Yan-Ju; Mo, Zhong-Cheng; -Liu, Xing; Tang, Zhen-Li; Jiang, Yue; Peng, Xiao-Shan; Li, Li; Zhang, Qing-Hai; Yi, Guang-Hui

    2017-05-01

    Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.

  1. Interrogating the vibrational relaxation of highly excited polyatomics with time-resolved diode laser spectroscopy: C6H6, C6D6, and C6F6+CO2

    International Nuclear Information System (INIS)

    Sedlacek, A.J.; Weston, R.E. Jr.; Flynn, G.W.

    1991-01-01

    The vibrational relaxation of highly excited ground state benzene, benzene d 6 , and hexafluorobenzene by CO 2 has been investigated with high resolution diode laser spectroscopy. The vibrationally hot polyatomics are formed by single photon 248 nm excitation to the S 1 state followed by rapid radiationless transitions. It has been found that in all cases less than 1% of the energy initially present in the polyatomics is deposited into the high frequency mode of CO 23 ). An investigation of the CO 2 (00 0 1) nascent rotational distribution under single collision conditions reveals that very little rotational excitation accompanies vibrational energy transfer to the ν 3 mode. The CO 23 ) rotational states can be described by temperatures, T rot , as follows: C 6 H 6 , T rot =360±30 K; C 6 D 6 , T rot =350±35 K and C 6 F 6 , T rot =340±23 K. An estimate of left-angle ΔE right-angle ν3 , the mean energy transferred to the CO 2 ν 3 mode per collision, suggests that as the availability of low frequency modes in the excited molecule increases, less energy is deposited into the high frequency mode of CO 2 . Finally, evidence is presented suggesting that even at moderate laser fluences, the two-photon ionization of benzene can lead to substantial CO 2 ν 3 excitation via electron+CO 2 inelastic collisions

  2. Novel selective catalytic reduction with tritium: synthesis of the GABA sub A receptor radioligand 1-(4-ethynylphenyl)-4-(2,3- sup 3 H sub 2 )propyl-2,6,7-trioxabicyclo(2. 2. 2 )octane

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J; Casida, J E [California Univ., Berkeley, CA (United States). Pesticide Chemistry and Toxicology Lab.

    1991-07-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo(2.2.2) octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-(2,3-{sup 3}H{sub 2}) propyl-2,6,7-trioxabicyclo-(2.2.2) octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-(2,3-{sup 3}H{sub 2})propyl-1-(4-((trimethylsilyl)ethynyl)phenyl)-2,6,7-trioxabicyclo(2.2.2)octane is useful for studies on the metabolic activation of this selective proinsecticide. (author).

  3. 9-(3-Bromo-5-chloro-2-hydroxyphenyl-10-(2-hydroxyethyl-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H-dione

    Directory of Open Access Journals (Sweden)

    Mehmet Akkurt

    2014-06-01

    Full Text Available In the title compound, C33H27BrClNO4, the dihydropyridine ring adopts a flattened boat conformation. The molecular conformation is stabilized by an intramolecular O—H...O hydrogen bond, with an S(8 ring motif. In the crystal, O—H...O, C—H...O and C—H...Cl hydrogen bonds, and C—H...π interactions link the molecules, forming a three-dimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5:0.217 (5 and 0.526 (18:0.474 (18, respectively.

  4. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.; Pu, X.-J.; Zhu, B., E-mail: zhubao-999@126.com [Affiliated Wuxi Peoples Hospital, Department of Nuclear Medicine, Nanjing Medical University (China); Jiang, M.-J., E-mail: jmj16888@126.com [Affiliated Wuxi Peoples Hospital, Department of Clinical Laboratory Science, Nanjing Medical University (China)

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  5. Ab initio dynamics trajectory study of the heterolytic cleavage of H2 by a Lewis acid [B(C6F5)3] and a Lewis base [P(tBu)3

    Science.gov (United States)

    Pu, Maoping; Privalov, Timofei

    2013-04-01

    Activation of H2 by a "frustrated Lewis pair" (FLP) composed of B(C6F5)3 and P(tBu)3 species has been explored with high level direct ab initio molecular dynamics (AIMD) simulations at finite temperature (T = 300 K) in gas phase. The initial geometrical conditions for the AIMD trajectory calculations, i.e., the near attack conformations of FLP + H2, were devised using the host-guest model in which suitable FLP conformations were obtained from the dynamics of the B(C6F5)3/P(tBu)3 pair in gas phase. AIMD trajectory calculations yielded microscopic insight into effects which originate from nuclear motion in the reacting complex, e.g., the alternating compression/elongation of the boron-phosphorous distance and the change of the pyramidality of boron in B(C6F5)3. The ensemble averaged trajectory analysis has been compared with the minimum energy path (MEP) description of the reaction. Similar to MEP, AIMD shows that an attack of the acid/base pair on the H-H bond gives rise to the polarization of the H2 molecule and as a consequence generates a large dipole moment of the reacting complex. The MEP and AIMD portrayals of the reaction are fundamentally different in terms of the magnitude of the motion of nuclei in B(C6F5)3 and P(tBu)3 during the H2 cleavage. In the AIMD trajectory simulations, geometries of B(C6F5)3 and P(tBu)3 appear as nearly "frozen" on the short time scale of the H2 cleavage. This is contrary to the MEP picture. Several of the concepts which arise from this work, e.g., separation of time scales of nuclear motion and the time-dependence of the donor-acceptor interactions in the reacting complex, are important for the understanding of chemical reactivity and catalysis.

  6. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    Science.gov (United States)

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  7. (Z-Ethyl 3-(4-chlorophenyl-2-cyano-3-(2,6-difluorobenzamidoacrylate

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyan

    2008-12-01

    Full Text Available The title compound, C19H13ClF2N2O3, was prepared by the reaction of (Z-ethyl 3-amino-3-(4-chlorophenyl-2-cyanoacrylate and 2,6-difluorobenzoyl chloride. The dihedral angle between the chlorobenzene and fluorobenzene rings is 37.0 (1°. The ethyl group is disordered over two positions [occupancies = 0.52 (2:0.48 (2]. In addition to intramolecular N—H...O and N—H...F hydrogen bonds, the crystal packing shows the molecules to be connected by intermolecular C—H...O and C—H...N hydrogen bonds.

  8. The synthesis of [2-3H2] taurine and [2-3H2] hypotaurine

    International Nuclear Information System (INIS)

    Fellman, J.H.

    1981-01-01

    The synthesis of [2- 3 H 2 ]-2-aminoethanesulfonate [2- 3 H]-taurine by the reduction of cyanomethanesulfonic acid with tritium gas is described. The conversion of [2- 3 H]-taurine and its 14 C and 35 S isotopic forms to 2-aminoethanesulfinate (hypotaurine) was accomplished by converting taurine to its corresponding sulfonyl chloride and reducing the latter with metallic zinc. (author)

  9. 1.3.3. Synthesis, characterization and crystal structure of a new ruthenium polypyridyl complex [Ru(phen2(4,4'-dicarboxy-2,2'- bipyridine]PF6

    Directory of Open Access Journals (Sweden)

    Jiaxi Chen, Jing Sun*, Jufang Kong, Wenxiu Chen and Hongqing Hao*

    2015-03-01

    Full Text Available Abstract: A new Ru(II polypyridyl complex, [Ru(phen2(4,4'-dicarboxy-2,2'-bipyridine]PF6·1.5H2O, was synthesized andcharacterized by single crystal X-ray diffraction, elementalanalyses, electrospray ionization mass spectrometry, infraredspectra, ultraviolet (UV spectra, and emission spectra. Thestructure of the cation [Ru(phen2(4,4'-(COO-,(COOH-2,2'-bpy]+ consists of a six-coordinated ruthenium atom chelated bytwo phen ligands and one 4,4'-dicarboxy-2,2'-bipyridine ligand.The absorption spectrum of the Ru(II complex is characterizedby two intense ligand-centered transitions in the UV region andone metal to ligand charge transfer in the visible region. Moreover,the complex can display luminescence in water at roomtemperature, with maximum emission at 623 nm.Supporting information: Cif file

  10. Influence of halogen substitution in the ligand sphere on the antitumor and antibacterial activity of half-sandwich ruthenium(II) complexes [RuX(η{sup 6}-arene)(C{sub 5}H{sub 4}N-2-cH=N-Ar)]{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Gichumbi, Joel M.; Omondi, Bernard; Friedrich, Holger B. [School of Chemistry, University of KwaZulu-Natal, Durban (South Africa); Lazarus, Geraldine; Singh, Moganavelli; Shaikh, Nazia; Chenia, Hafizah Y. [School of Life Sciences, University of KwaZulu-Natal, Durban (South Africa)

    2017-06-01

    New complexes [(η{sup 6}-p-cymene)Ru(C{sub 5}H{sub 4}N-2-CH=N-Ar)X]PF{sub 6} [X = Br (1), I (2); Ar = 4-fluorophenyl (a), 4-chlorophenyl (b), 4-bromophenyl (c), 4-iodophenyl (d), 2,5-dichlorophenyl (e)] were prepared, as well as 3a-3e (X = Cl) and the new complexes [(η{sup 6}-arene)RuCl(N-N)]PF{sub 6} [arene = C{sub 6}H{sub 5}OCH{sub 2}CH{sub 2}OH, N-N = 2,2{sup '}-bipyridine (4), 2,6-(dimethylphenyl)-pyridin-2-yl-methylene amine (5), 2,6-(diisopropylphenyl)-pyridin-2-yl-methylene amine (6); arene = p-cymene, N-N = 4-(aminophenyl)-pyridin-2-yl-methylene amine (7)]. X-ray diffraction studies were performed for 1a, 1b, 1c, 1d, 2b, 5, and 7. Cytotoxicities of 1a-1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco-2) (IC{sub 50}: 35.8-631.0 μM), breast adenocarcinoma (MCF7) (IC{sub 50}: 36.3-128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC{sub 50}: 60.6-439.8 μM), 3a-3e were tested against HepG2 and Caco-2, and 4-7 were tested against Caco-2. 1-7 were tested against non-cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5-fluorouracil (5-FU), but 3a-3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC{sub 50} than 5-FU. Complexes with X = Br or I had moderate activity against Caco-2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a, 2b, 3a, and 7 were tested against antibacterial susceptible and resistant Gram-negative and -positive bacteria. 1a, 2b, and 3a showed activity against methicillin-resistant S. aureus (MIC = 31-2000 μg.mL{sup -1}). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Novel 2D or 3D alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand

    Science.gov (United States)

    Du, Zi-Yi; Wen, He-Rui; Xie, Yong-Rong

    2008-11-01

    Three novel alkaline-earth metal sulfonate-phosphonates based on [O 3S-C 2H 4-PO 3H] 2- ligand, namely, [Ca(O 3SC 2H 4PO 3H)(H 2O) 2] ( 1), [Sr(O 3SC 2H 4PO 3H)] ( 2) and [Ba 2(O 3SC 2H 4PO 3H) 2] ( 3), have been synthesized by hydrothermal reactions. They represent the first structurally characterized alkaline-earth metal complexes of phosphonic acid attached with a sulfonate group. The structure of compound 1 features a 2D layer based on 1D chains of [Ca 2(PO 3) 2] bridged by -CH 2-CH 2-SO 3- groups. Compounds 2 and 3 show pillar-layer architecture based on two different inorganic layers linked by -CH 2-CH 2- groups. The inorganic layer in compound 2 features a 1D chain of edge-sharing SrO 8 polyhedra whereas that in compound 3 features an edge-sharing Ba 2O 14 di-polyhedral unit which is further corner-shared with four neighboring ones. The [O 3S-C 2H 4-PO 3H] 2- ligand shows diverse coordination modes in the three alkaline-earth metal sulfonate-phosphonates.

  12. Syntheses, structures, and photoluminescence of lanthanide coordination polymers based on 4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing; Li, Lei; Peng, Jing-Wei; Qiao, Wei-Wei; Sun, Mei-Mei [College of Chemistry, Tianjin Normal University, Tianjin (China); Gu, Wen [College of Chemistry, Nankai University, Tianjin (China)

    2018-03-15

    Investigating the coordination chemistry of H{sub 2}CDA (4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid) with rare earth salts Ln(NO{sub 3}){sub 3} under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H{sub 2}CDA charged to its position isomer, enol type structure, H{sub 3}CAM (4-hydroxypyridine-2,6-dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H{sub 2}O){sub 3}]{sub n} [Ln = La (1), Pr, (2)] and {[Ln(CAM)(H_2O)_3].H_2O}{sub n} [Ln = Nd, (3), Sm, (4), Eu, (5), Y, (6)] were synthesized and characterized. The X-ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3-6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C{sub 2}/c space group, whereas 3-6 crystallize in the monoclinic system with space group P2{sub 1}/n. In the two kinds of structures, H{sub 3}CAM displays two different coordination modes. The Sm{sup III} and Eu{sup III} complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Reaction of H{sub 2}S with MoRu(CO){sub 6}(dppm){sub 2} to give H{sub 2} and a bridged-sulfide product via hydrido-sulfhydryl intermediates (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani-Motlagh, M. [Sistan and Baluchestan Univ., Zahedan (Iran, Islamic Republic of). Dept. of Chemistry; Safari, N. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Pamplin, C.B.; Patrick, B.O.; James, B.R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry

    2006-02-15

    The reactivity of hydrogen sulphide toward transition metal complexes was studied with particular focus on the reactions of hydrogen sulphide (H{sub 2}S) with solutions of bimetallic-dppm complexes. The complex MoRu(CO){sub 6}({mu}-dppm){sub 2} (1) (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2}) reaction toward hydrogen sulphide was examined because of the fact that Ru is the second-row analogue of Fe and because of the key role of sulphur ligands in the Mo-Fe enzyme systems. This paper reported on the interaction of the Mo-Ru complex with hydrogen sulphide to form the bridged sulphide complex Mo(CO){sub 2}({mu}-CO)({mu}-S)(dppm){sub 2}Ru(CO) which can be synthesized with elemental sulphur. Oxidative addition of H{sub 2}S to MoRu(CO){sub 6}({mu}-dppm){sub 2} (1) at 20 degrees C in toluene yields an isolable complex formulated as Mo(CO){sub 3}({mu}-SH)({mu}-CO)({mu}-dppm){sub 2}RuH(CO) (2) via the possible intermediate Mo(CO){sub 3}({mu}-H)({mu}-CO)({mu}-dppm){sub 2}Ru(SH)(CO) (4) (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2}) that is detectable at lower temperatures. Over 2 days, species 2 in toluene lost H{sub 2} (and CO) to yield the bridged-sulfide product, Mo(CO){sub 2}({mu}-CO)({mu}-S)({mu}-dppm){sub 2}Ru(CO) (5) that is also formed directly from the reaction of 1 with elemental sulfur. The solid-state molecular structure of 5 was determined by X-ray crystallography. A further hydrido-sulfhydryl species was found to be in equilibrium with 2 at ambient temperature. It was concluded that it is not impossible that hydrogen sulphide can react in a concerted manner with dimetallic precursors, without prior formation of an adduct. 24 refs., 2 tabs., 3 figs.

  14. Rotational Spectroscopy of the NH{sub 3}–H{sub 2} Molecular Complex

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, D-50937 Cologne (Germany); Tarabukin, I. V. [Institute of Spectroscopy of Russian Academy of Sciences, Fizicheskaya Str. 5, 108840 Troitsk, Moscow, Russia (Russian Federation); Breier, A. A.; Giesen, T. F. [Institute of Physics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); McCarthy, M. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Avoird, A. van der, E-mail: surin@ph1.uni-koeln.de, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-03-20

    We report the first high resolution spectroscopic study of the NH{sub 3}–H{sub 2} van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH{sub 3}–H{sub 2} in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, ( o )-NH{sub 3}–( o )-H{sub 2} and ( p )-NH{sub 3}–( o )-H{sub 2}, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH{sub 3}–H{sub 2} PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

  15. Preparations, structures and properties of heterobimetallic complexes based on tetrahydrofuran-2,3,4,5-tetracarboxylate

    International Nuclear Information System (INIS)

    Jia, Tian-Jing; Li, Shu-Mu; Cao, Wei; Li, Li-Cun; Zheng, Xiang-Jun; Yuan, Da-Qiang

    2013-01-01

    Transition heterobimetallic metal-organic frameworks based on tetrahydrofuran-2,3,4,5-tetracarboxylicate (FTA), namely [M(H 2 O) 6 ][Cu 2 M(FTA) 2 (H 2 O) 2 ]·4H 2 O [M=Mn (1), Co (2)], and [CuZn(FTA)(H 2 O) 5 ]·H 2 O (3) have been synthesized and characterized. Single-crystal X-ray diffraction indicates that complexes 1 and 2 are isomorphic. In 1 and 2, FTA ligand links the metal ions to a 2-D wave-like negative-charged layer with a topology of (4;6 2 ) 2 (4;6 3 ;8 2 ) 2 (6). They possess 1-D channels with [M(H 2 O) 6 ] 2+ and lattice water molecules enclathrated. While in the complex 3, Cu 2+ and Zn 2+ ions are bridged by FTA to a 2-D neutral layer structure with a (8) 2 (8 4 ;12 2 ) topology. Magnetic properties of 1–3 were analyzed in connection with their structures, which show that there exist weak antiferromagnetic interactions between metal ions. - Graphical abstract: Three heterobimetallic MOFs were constructed through the size-selectivity of TFA coordination sites for different transition metal ions based on the concept of “Hard and Soft Acids and Bases”. Highlights: ► Complexes 1 and 3 contain 2-D wave-like negative-charged layers. ► Complex 2 is a 2-D neutral layer structure with a (8) 2 (8 4 ;12 2 ) topology. ► Complexes 1–3 are the first example of heterobimetallic MOFs based on FTA. ► The coordination sites of FTA show size-selectivity to metal ions

  16. {2-[Bis(2,4-di-tert-butylphenoxyphosphanyloxy-κP]-3,5-di-tert-butylphenyl-κC1}[(1,2,5,6-η-cycloocta-1,5-diene]rhodium(I toluene monosolvate

    Directory of Open Access Journals (Sweden)

    Detlef Selent

    2012-02-01

    Full Text Available The reaction of (η3-allyl[(1,2,5,6-η-cycloocta-1,5-diene]rhodium(I with tris(2,4-di-tert-butylphenylphosphite in toluene produces the title compound, [Rh(C42H62O3P(C8H12]·C7H8, by spontaneous metallation at one of the nonsubstituted phenyl ortho-C atoms of the phosphite molecule. The coordination geometry at the RhI ion is distorted square-planar. The toluene solvent molecule is disordered over two different orientations, with site-occupation factors of 0.810 (2 and 0.190 (2.

  17. 4-Methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic Acid. Peculiarities of Preparation, Structure, and Biological Properties

    Directory of Open Access Journals (Sweden)

    Igor V. Ukrainets

    2018-03-01

    Full Text Available In order to determine the regularities of the structure–analgesic activity relationship, the peculiarities of obtaining, the spatial structure, and biological properties of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid and some of its derivatives have been studied. Using nuclear magnetic resonance (NMR spectroscopy and X-ray diffraction analysis, it has been proven that varying the reaction conditions using alkaline hydrolysis of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate makes it possible to successfully synthesize a monohydrate of the target acid, its sodium salt, or 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine. The derivatographic study of the thermal stability of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid monohydrate has been carried out; based on this study, the optimal conditions completely eliminating the possibility of unwanted decomposition have been proposed for obtaining its anhydrous form. It has been shown that 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine is easily formed during the decarboxylation of not only 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid, but also its sodium salt, which is capable of losing СО2 both in rather soft conditions of boiling in an aqueous solution, and in more rigid conditions of dry heating. The NMR spectra of the compounds synthesized are given; their spatial structure is discussed. To study the biological properties of 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylic acid and its sodium salt, the experimental model of inflammation caused by subplantar introduction of the carrageenan solution in one of the hind limbs of white rats was used. The anti-inflammatory activity and analgesic effect were assessed by the degree of edema reduction and the ability to affect the pain response compared to the animals of control groups. According to the results of the tests performed, it has been found that after intraperitoneal injection

  18. Reactivity of the parent amido complexes of iridium with olefins: C-NH2 bond formation versus C-H activation.

    Science.gov (United States)

    Mena, Inmaculada; García-Orduña, Pilar; Polo, Víctor; Lahoz, Fernando J; Casado, Miguel A; Oro, Luis A

    2017-08-29

    Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH 2 )(tfbb)} 3 ] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH 2 )(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH 2 bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,22 -4-κ-C 12 H 8 F 4 N)(dppp)} 2 (μ-dppp)] (4) has been isolated. On the contrary, the diiridium amido-bridged complex [{Ir(μ-NH 2 )(cod)} 2 ] (2; cod = 1,5-cyclooctadiene) in the presence of dppb (dppb = bis(diphenylphosphane)butane) allows the isolation of a mononuclear complex [Ir(1,2,33 -6-κ-C 8 H 10 )H(dppb)] (5), as a consequence of the extrusion of ammonia. The monitoring of the reaction of 2 with dppb (and dppp) allowed us to detect terminal amido complexes [Ir(NH 2 )(P-P)(cod)] (P-P = dppb (6), dppp (7)) in solution, as confirmed by an X-ray analysis of 7. Complex 7 was observed to evolve into hydrido species 5 at room temperature. DFT studies showed that C-H bond activation occurs through the deprotonation of one methylene fragment of the cod ligand by the highly basic terminal amido moiety instead of C-H oxidative addition to the Ir(i) center.

  19. Synthesis and characterization of 6,6'-(2,4,6-triisopropylphenyl)-2,2'-bipyridine (tripbipy) and its complexes of the late first row transition metals.

    Science.gov (United States)

    Benson, Eric E; Rheingold, Arnold L; Kubiak, Clifford P

    2010-02-15

    The synthesis of tripbipy, a new substituted bipyridine ligand (6,6'-(2,4,6-triisopropylphenyl)-2,2'-bipyridine), and the syntheses, structures, and magnetic properties of the first coordination compounds based on this ligand are described. Tripbipy was synthesized by the Suzuki coupling of 2,4,6-triisopropylphenyl boronic acid and 6,6'-dibromo-2,2'-bipyridine. Reported here are the tripbipy complexes of five late first row transition metal chlorides (MCl(2); M = Fe, Co, Ni, Cu, Zn). Four of the complexes MCl(2)tripbipy (M = Fe, Co, Ni, Zn) crystallize in the space group P2(1)/c and are isomorphous with one solvent molecule of crystallization. The complex CuCl(2)tripbipy crystallizes in the space group P2(1)2(1)2(1) with two solvent molecules of crystallization. All MCl(2)tripbipy complexes are four coordinate and contain distorted tetrahedral metal centers. CuCl(2)tripbipy shows a pseudo Jahn-Teller distortion, and X-band electron paramagnetic resonance (EPR) in a toluene glass gives approximate g( perpendicular, parallel) values of 2.2 and 2.1. Magnetic measurements (M = Fe, Co, Ni, Cu) are consistent with high spin d(n) configurations (n = 6-9, S = 2, 3/2, 1, 1/2) tetrahedral complexes and give chi(M)T values at 300 K of 3.56, 2.10, 1.01, and 0.37 cm(3) M(-1) K, respectively.

  20. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  1. Synthesis and characterization of La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III) complexes of 2-acetylfuran-2-thenoylhydrazone

    International Nuclear Information System (INIS)

    Singh, B.; Singh, Praveen K.

    1998-01-01

    The reaction of 2-acetylfuran-2-thenoylhydrazone(afth) with Ln(III) trichlorides yields complexes of the type [Ln(afth)Cl 2 (H 2 O)(EtOH)]Cl, [Ln(III) = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy]. The complexes have been characterized by molar conductance, magnetic susceptibility and TGA and DTA measurements, magnetic susceptibility and TGA and DTA measurements, FAB mass, infrared, proton NMR, electronic absorption and emission spectra. The terbium complex is found to be monomer from the FAB mass spectrum. The IR and NMR spectra suggest neutral tridentate behaviour of the Schiff base. A coordination number seven is proposed around the metal ions. Emission spectra suggest C 3v , symmetry around the metal ion with capped octahedron geometry for the europium complex. (author)

  2. Crystal structure of 1,3-bis(2,3-dimethylquinoxalin-6-ylbenzene

    Directory of Open Access Journals (Sweden)

    Charles E. Diesendruck

    2015-12-01

    Full Text Available The title compound, C26H22N4 (I, was synthesized by C—H iridium-catalyzed borylation followed by Suzuki coupling. The molecular structure of (I consists of a central benzene ring with 3-dimethylquinoxalin-6-yl groups at the 1 and 3 positions. These 2,3-dimethylquinoxalin-6-yl groups twist significantly out of the plane of the benzene ring. There are intermolecular π–π interactions which result in a two-dimensional extended structure. The layers extend parallel to the ab plane and stack along the c axis.

  3. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    Science.gov (United States)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  4. $^{3}_{\\Lambda}\\mathrm H$ and $^{3}_{\\bar{\\Lambda}} \\overline{\\mathrm H}$ production in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-03-10

    The production of the hypertriton nuclei $^{3}_{\\Lambda}\\mathrm H$ and $^{3}_{\\bar{\\Lambda}} \\overline{\\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\\times \\mathrm{B.R.}_{\\left( ^{3}_{\\Lambda}\\mathrm H \\rightarrow ^{3}\\mathrm{He},\\pi^{-} \\right)} = \\left( 3.86 \\pm 0.77 (\\mathrm{stat.}) \\pm 0.68 (\\mathrm{syst.})\\right) \\times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\\Lambda}\\mathrm H$/($^{3}\\mathrm{He}$ $\\times \\Lambda/\\mathrm{p}$) was measured to be $S_3$ = 0.60 $\\pm$ 0.13 (stat.) $\\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretic...

  5. GAS PHASE STRUCTURE AND STABILITY OF COMPLEX FORMED BY H2O, NH3, H2S AND THEIR METHYL DERIVATIVES WITH THE CATION CO2+

    Directory of Open Access Journals (Sweden)

    Cahyorini Kusumawardani

    2010-06-01

    Full Text Available Ab initio molecular orbital calculations at the Hartree-Fock-Self Consistent Field (HF-SCF have been performed in order to determine the structure and gas phase energies of complex formed by the Lewis bases of H2O, NH3, H2S and their methyl derivatives with the cation Co2+. The relative basicities of the base studied depend on both the substituent. The gas-phase interaction energies computed by the SCF method including electron correlation Møller-Plesset 2 (MP2 dan Configuration Iteration (CI were comparable in accuracy. The binding energies computed by these two methods reach the targeted chemical accuracy.   Keywords: ab initio calculation, cobalt complex, structure stability

  6. Oxidant effect of La(NO{sub 3}){sub 36H{sub 2}O solution on the crystalline characteristics of nanocrystalline ZrO{sub 2} films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Nam Khen [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, Jin-Tae [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Goru; An, Jong-Ki; Nam, Minwoo [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, So Yeon [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Yun, Ju-Young, E-mail: jyun@kriss.re.kr [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of)

    2017-02-01

    Highlights: • The La(NO{sub 3}){sub 36H{sub 2}O aqua solution is introduced as an oxidant in ALD process. • The H{sub 2}O and La(NO{sub 3}){sub 36H{sub 2}O lead different crystalline properties of ZrO{sub 2} films. • Concentration of La(NO{sub 3}){sub 36H{sub 2}O solution minimally influences crystalline status. - Abstract: Nanocrystalline ZrO{sub 2} films were synthesized by atomic layer deposition method using CpZr[N(CH{sub 3}){sub 2}]{sub 3} (Cp = C{sub 5}H{sub 5}) as the metal precursor and La(NO{sub 3}){sub 36H{sub 2}O solution as the oxygen source. La element in the deposited ZrO{sub 2} films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO{sub 3}){sub 36H{sub 2}O solution to conventionally used H{sub 2}O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO{sub 2} films. Specifically, the crystalline structure of the ZrO{sub 2} film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO{sub 2} films prepared from La(NO{sub 3}){sub 36H{sub 2}O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H{sub 2}O oxidant was 142 nm. However, the concentration of La(NO{sub 3}){sub 36H{sub 2}O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO{sub 2} films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  7. Microtropins A-I: 6'-O-(2″S,3″R)-2″-ethyl-2″,3″-dihydroxybutyrates of aliphatic alcohol β-D-glucopyranosides from the branches of Microtropis japonica.

    Science.gov (United States)

    Uemura, Yuka; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki; Takeda, Yoshio; Kawahata, Masatoshi; Yamaguchi, Kentaro

    2013-03-01

    From the branches of Microtropis japonica (Celastraceae), nine aliphatic glucosides, named microtropins A-I, were isolated. The 6-position of glucose was esterified with (2S,3R)-2-ethyl-2,3-dihydroxybutyric acid. Microtropins A-D contained a rare natured product nitrile functional group in their aglycones. The absolute structures of the (2S,3R)-2-ethyl-2,3-dihydroxybutyric acid moiety and aglycone of microtropin A were determined by an X-ray crystallographic method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Bonding and energy parameters for Pr and Nd complexes of benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, S; Vyas, P C; Oza, C K [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1991-01-01

    Complexes of praseodymium(III) and neodymium(III) with benzimidazoles have been synthesized and characterized by their conductance and infrared spectral studies. The values of interelectronic repulsion, i.e. Slater-Condon (F{sub 2}, F{sub 4}, F{sub 6}), Racah (E{sup 1}, E{sup 2}, E{sup 3}) parameters and spin-orbit interaction referred as Lande' ({zeta}4f) parameters have been calculated from their electronic spectral data. A comparison of these parameters for the complexes with Pr{sup 3+} and Nd{sup 3+} free ion parameters is discussed. Using F{sub 2} values, the nephelauxetic ratio({Beta}) and bonding parameter(b{sup 1/2}) have beeen calculated. The relative variation of covalent bonding in the complexes has been reported. (author). 11 refs., 1 tab.

  9. Poly[[{μ3-2-[4-(2-hydroxyethylpiperazin-1-yl]ethanesulfonato}silver(I] trihydrate

    Directory of Open Access Journals (Sweden)

    Stephanie M. Bilinovich

    2011-09-01

    Full Text Available Ethanesulfonic acid-based buffers like 2-[4-(2-hydroxyethylpiperazin-1-yl]ethanesulfonic acid (HEPES are commonly used in biological experiments because of their ability to act as non-coordinating ligands towards metal ions. However, recent work has shown that some of these buffers may in fact coordinate metal ions. The title complex, {[Ag(C8H17N2O4S]·3H2O}n, is a metal–organic framework formed from HEPES and a silver(I ion. In this polymeric complex, each Ag atom is primarily coordinated by two N atoms in a distorted linear geometry. Weaker secondary bonding interactions from the hydroxy and sulfate O atoms of HEPES complete a distorted seesaw geometry. The crystal structure is stabilized by O—H...O hydrogen-bonding interactions.

  10. Multicomponent Biginelli's synthesis of 3,4-dihydropyrimidin-2(1H-ones promoted by SnCl2.2H2O

    Directory of Open Access Journals (Sweden)

    Russowsky Dennis

    2004-01-01

    Full Text Available The ability of SnCl2.2H2O as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, ethyl acetoacetate and urea or thiourea is described. The reaction was carried out in acetonitrile or ethanol as solvents in neutral media and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3.6H2O, NiCl2.6H2O and CoCl2.6H2O which were used with HCl as co-catalyst. The synthesis of 3,4-dihydropyrimidinones was achieved in good to excelent yields.

  11. Left ventricular function in right ventricular overload

    International Nuclear Information System (INIS)

    Iwanaga, Shiro; Handa, Shunnosuke; Abe, Sumihisa; Onishi, Shohei; Nakamura, Yoshiro; Kunieda, Etsuo; Ogawa, Koichi; Kubo, Atsushi

    1989-01-01

    This study clarified regional and global functions of the distorted left ventricle due to right ventricular overload by gated radionuclide ventriculography (RNV). Cardiac catheterization and RNV were performed in 13 cases of atrial septal defect (ASD), 13 of pure mitral stenosis (MS), 10 of primary pulmonary hypertension (PPH), and 10 of normal subjects (NL). Right ventricular systolic pressure (RVSP) was 32.9±13.9, 45.0±12.2, 88.3±17.1, and 21.2±4.5 mmHg, respectively. The end-systolic LAO view of the left ventricle was halved into septal and free-wall sides. The end-diastolic halves were determined in the same plane. Ejection fractions of the global left ventricle (LVEF), global right ventricle (RVEF), the septal half of the left ventricle (SEPEF), and the free-wall half of the left ventricle (FWEF) were obtained. LVEF was 56.8±9.8% in NL, 52.8±10.5% in ASD, and 49.5±12.9% in PPH. In MS, LVEF (47.0±13.0%) was smaller than those in the other groups. RVEF was 37.0±5.2% in NL, 43.7±15.5% in ASD, and 32.8±11.5% in MS. In PPH, RVEF (25.0±10.6%) was smaller than those in the other groups. SEPEF was smaller in ASD (42.5±13.2%), MS (40.4±13.1%), PPH (40.5±12.5%) than in NL (53.5±8.5%). Systolic function of the septal half of the left ventricle was disturbed by right ventricular overload. RVEF (r=-0.35, p<0.05) and SEPEF (r=-0.51, p<0.01) had negative correlations with RVSP. As RVSP rose, systolic function of the septal half of the left ventricle was more severely disturbed. FWEF was the same among the four groups; NL (57.0±12.6%), ASD (48.6±15.2%), MS (50.5±12.0%), and PPH (51.1±12.3%). There was a good correlation between SEPEF and LVEF in NL (r=0.81), although in PPH this correlation was poor (r=0.64). These data showed that the distorted left ventricular due to right ventricular overload maintains its global function with preserved function of the free-wall side. (J.P.N.)

  12. Sorption of Fe3+ , Co2+ , Ce3+ , Cs+ and Ba2+ in zeolite X

    International Nuclear Information System (INIS)

    Martinez M, V.

    1994-01-01

    The sorption behavior of Fe 3+ , Co 2+ , Ce 3+ , Cs + , and Ba 2+ in aqueous solutions, was studied in presence of zeolite X. Solutions of Fe(NO 3 ) 3 . 9 H 2 O, Co(NO 3 ) 2 . 6 H 2 O, Ce(NO 3 ) 3 . 6 H 2 O, Cs NO 3 and Ba(NO 3 ) 2 were labelled with the respectively radioactive isotopes Fe 59 , Co 60 , Cs 134 , Ba 139 and Ce 141 . 20 ml. of each solution was left in contact with 200 mg. of zeolite for different periods. Later the zeolites were separated by centrifugation from the aqueous solutions and the radioactivity of the aqueous phases was measured with a NaI(Tl) solid-state well detector coupled to a single-channel Picker analyzer or with a Gel hyper pure solid-state detector coupled to a 2048 channel pulse height analyzer. When Cs + in the aqueous solutions was left in contact with zeolite X it was found that it does not occupy all cationic sites in the zeolite due to the ionic radium effect. A similar behavior was found for the divalent ions. In all cases, when the pH was not controlled, the zeolite lost part of its crystallinity and when the divalent ions were exchanged again by Na + , the zeolite recovered completely its crystallinity. During the sorption, the ionic radius, and the charge are important parameters as well as the pH. When the pH of the solution was adjusted between 6.5 - 7.0 the crystallinity was maintained in some cases. For Fe 3+ the crystallinity after the ion exchange was 94 % and when the pH was not adjusted the crystallinity was completely lost. It was found as well that the zeolite X induces the formation of H 3 O + which competes with the cations for the sites in the zeolite. (Author)

  13. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO32H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    Science.gov (United States)

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  14. Complexes of molybdenum(III) with 2-(2'-pyridyl)benzimidazole

    International Nuclear Information System (INIS)

    Ghosh, S.P.; Prasad, K.M.

    1979-01-01

    Molybdenum(III) forms with 2-(2'-pyridyl) benzimidazole(LH) the trischelated complexes, [Mo(LH) 3 ]X 3 as well as the cationic-anionic complexes, [Mo(LH) 3 X 2 ] + [Mo(LH)X 4 ] - (X=Cl - ,Br - or NCS - ), depending on pH. These complexes have been synthesised and characterised from elemental analyses, i.r. and electronic spectra, magnetic moments and molar conductance. (auth.)

  15. Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, a new phosphate mineral from Këster tin deposit (Yakutia, Russia): occurrence and crystal structure

    Science.gov (United States)

    Yakovenchuk, Victor N.; Pakhomovsky, Yakov A.; Konopleva, Nataliya G.; Panikorovskii, Taras L.; Bazai, Ayya; Mikhailova, Julia A.; Bocharov, Vladimir N.; Ivanyuk, Gregory Yu.; Krivovichev, Sergey V.

    2017-12-01

    Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3·12H2O, is a new secondary phosphate mineral from the Këster deposit, Arga-Ynnykh-Khai massif, NE Yakutia, Russia. It is monoclinic, P21, a = 8.4264(4), b = 12.8309(6), c = 14.6928(9) Å, β = 98.514(6)o, V = 1571.05(15) Å3 and Z = 2 (from single-crystal X-ray diffraction data). Batagayite crystals are blades up to 2 mm long, flattened on {001} and elongated on [100]; blades often grow in radial aggregates. Associated minerals are arsenolite, native copper, epifanovite, fluorapatite, libethenite, Na-analogue of batagayite, pseudomalachite, quartz, sampleite, tobermorite, and Mg-analogue of hopeite. The streak is white and the luster is vitreous. The mineral is brittle and has a perfect cleavage on {001}, no parting was observed. The Mohs hardness is 3. Density, determined by the float-sink method in Clerici solution, is 2.90(3) g/cm3, and the calculated density is 3.02 g/cm3 (using the empirical formula and single-crystal unit-cell parameters). Batagayite is biaxial, optically negative, α = 1.566 ± 0.002, β = 1.572 ± 0.002, γ = 1.573 ± 0.002 at 589 nm. 2V meas. = 40(5)°, 2V calc = 44.3°. Optical orientation: Z is perpendicular to (001), further details unclear. No dispersion or pleochroism were observed. The mean chemical composition determined by electron microprobe is: Na2O 0.31, MgO 1.39, Al2O3 0.55, SiO2 0.48, P2O5 34.37, K2O 0.17, CaO 2.76, MnO 1.03, CuO 5.80, ZnO 35.62, CdO 0.24 wt%. The H2O content estimated from the crystal-structure refinement is 16.83 wt%, giving a total of 99.55 wt%. The empirical formula calculated on the basis of P + Si = 7 is (Zn6.22Cu1.04Ca0.70Mg0.49Mn0.21Al0.15Na0.14K0.05Cd0.03)Σ9.03(P6.89Si0.11)Σ7.00O24.91(OH)3.09·12.10H2O. The mineral easily dissolves in 10% room-temperature HCl. The eight diagnostic lines in the X-ray powder-diffraction pattern are (I-d[Å]-hkl): 100-14.59-001, 25-6.34-012, 11-6.02-111, 37-4.864-003, 13-4.766-112, 20-3.102-1 \\overline {2} \\overline {4} , 11-2.678-2

  16. Assembly of [Cu2(COO)4] and [M33-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance.

    Science.gov (United States)

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo

    2018-02-20

    A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 33 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.

  17. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]63-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  18. Bis(3-acetyl-6-methyl-2-oxo-2H-pyran-4-olatobis(dimethyl sulfoxidenickel(II

    Directory of Open Access Journals (Sweden)

    Amel Djedouani

    2009-10-01

    Full Text Available In the title compound, [Ni(C8H7O42{(CH32SO}2], the NiII atom is located on a crystallographic centre of symmetry and has a distorted octahedral coordination geometry of type MO6. The bidentate dehydroacetic acid (DHA ligands occupy the equatorial plane of the complex in a trans configuration, and the dimethyl sulfoxide (DMSO ligands are weakly coordinated through their O atoms in the axial positions.

  19. Preparation of YBa2Cu3O7-δ powders by the thermal decomposition of a heteronuclear complex, CuY1/3Ba2/3(dhbaen)(NO3)1/3(H2O)3

    International Nuclear Information System (INIS)

    Hasegawa, E.; Aono, H.; Sadaoka, Y.; Traversa, E.

    1999-01-01

    YBa 2 Cu 3 O 7-δ powders were prepared by the thermal decomposition of a heteronuclear complex, CuY 1/3 Ba 2/3 (dhbaen)(NO 3 ) 1/3 (H 2 O) 3 . The products of the complex thermal decomposition were analyzed by TG-DTA, XRD, SEM-Auger and XPS. The decomposition of the CuY 1/3 Ba 2/3 -complex was obtained at about 500 C and the product was a mixture of oxides and carbonates. The formation of YBa 2 Cu 3 O 7-δ proceeded at 800 C, with a gradual decomposition of the carbonates. A homogeneous distribution of each element, Y, Ba, and Cu, was observed for the decomposed CuY 1/3 Ba 2/3 -complex by SEM-Auger analysis. The binding energy values of Ba3d 5/2 and O1s photolines from Ba and O in the superconductive lattice did not shift during the sputtering period. Furthermore, the formation of Ba rich regions on the surface was depressed by using the complex as a starting material for homogeneous 123-oxide, YBa 2 Cu 3 O 7-δ . (orig.)

  20. 4,6-Dibromo-N-{3-[(4,6-dibromo-2,3-dimethylphenylimino]butan-2-ylidene}-2,3-dimethylaniline

    Directory of Open Access Journals (Sweden)

    Lina Huang

    2013-10-01

    Full Text Available The title compound, C20H20Br4N2, is a product of the condensation reaction of 4,6-dibromo-2,3-dimethylaniline and butane-2,3-dione. The molecule has a center of symmetry at the mid-point of the central C—C bond. The dihedral angle between the benzene ring and the 1,4-diazabutadiene plane is 78.3 (2°. Niether hydrogen bonding nor aromatic stacking is observed in the crystal structure.

  1. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    Science.gov (United States)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  2. Synthesis and some coordination chemistry of the PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4, attempts to prepare the PSiP analogue, and the effect of the E atom on the molecular structures of E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn).

    Science.gov (United States)

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2018-03-26

    The non-donor-stabilized PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4 (1) has been prepared by treating SnCl2 with Li2(NCH2PtBu2)2C6H4. All attempts to synthesize the analogous PSiP silylene by reduction of the (previously unknown) silanes SiCl2(NCH2PtBu2)2C6H4 (2), SiHCl(NCH2PtBu2)2C6H4 (3) and SiH(HMDS)(NCH2PtBu2)2C6H4 (4; HMDS = N(SiMe3)2) have been unsuccessful. The almost planar (excluding the tert-butyl groups) molecular structure of stannylene 1 (determined by X-ray crystallography) has been rationalized with the help of DFT calculations, which have shown that, in the series of diphosphanetetrylenes E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn), the most stable conformation of the compounds with E = Ge and Sn has both P atoms very close to the EN2C6H4 plane, near (interacting with) the E atom, whereas for the compounds with E = C and Si, both phosphane groups are located at one side of the EN2C6H4 plane and far away from the E atom. The size of the E atom and the strength of stabilizing donor-acceptor PE interactions (both increase on going down in group 14) are key factors in determining the molecular structures of these diphosphanetetrylenes. The syntheses of the chloridostannyl complexes [Rh{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η4-cod)] (5), [RuCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η6-cym)] (6) and [IrCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η5-C5Me5)] (7) have demonstrated the tendency of stannylene 1 to insert its Sn atom into M-Cl bonds of transition metal complexes and the preference of the resulting PSnP chloridostannyl group to act as a κ2Sn,P-chelating ligand, maintaining an uncoordinated phosphane fragment. X-ray diffraction data (of 6), 31P{1H} NMR data (of 5-7) and DFT calculations (on 6) are consistent with the existence of a weak PSn interaction involving the non-coordinated P atom of complexes 5-7, similar to that found in stannylene 1.

  3. Ion chemistry of 1H-1,2,3-triazole.

    Science.gov (United States)

    Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl

    2008-01-17

    A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

  4. Investigation of dehydration reaction of BaCl2.2H2O and SrCl2.6H2O by thermal analysis under pressure

    International Nuclear Information System (INIS)

    Homma, Tsuneyuki; Yamada, Tetsuo

    1978-01-01

    The dehydration reactions of BaCl 2 .2H 2 O and SrCl 2 .6H 2 O were investigated by the techniques of thermal analysis, i.e. thermogravimetry (TG and DTG) and differential thermal analysis (DTA) under pressures of 1, 4, 10 and 40 atm. For BaCl 2 .2H 2 O, the DTA curves showed two peaks at 1 atm and three or four peaks at pressures above 4 atm, and the TG curves showed two steps over the range of 1 -- 10 atm and 3 steps at 40 atm. For SrCl 2 .6H 2 O, the DTA curves showed five peaks at respective pressure, and the TG curves showed three steps at 1 atm and two steps at pressures above 4 atm. As a common effect of pressure to the dehydration of these two salts, DTG peaks and some of DTA peaks shifted to higher temperatures with a increase in pressure, but a few peaks remained unshifted on DTA curves in spite of increasing pressure. The peaks which corresponded to these unshifted peaks on DTA curves were not observed on DTG curves. The unshifted peaks on DTA curves were attributed to the endothermic reaction accompanied by the dissociation of coordination water. The DTA and TG curves suggested that both salts formed the intermediate state between anhydrous and monohydrate states. (auth.)

  5. 35Cl/37Cl isotope effects in 103Rh NMR of [RhCln(H2O)6−n]3−n complex anions in hydrochloric acid solution as a unique ‘NMR finger-print’ for unambiguous speciation

    International Nuclear Information System (INIS)

    Geswindt, Theodor E.; Gerber, Wilhelmus J.; Brand, D. Jacobus; Koch, Klaus R.

    2012-01-01

    Graphical abstract: 35 Cl/ 37 Cl isotope effects in 103 Rh NMR as a unique ‘NMR-fingerprints’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n (n = 36) complexes without reliance on accurate δ( 103 Rh) chemical shifts. Highlights: ► Direct 103 Rh NMR (19.11 MHz) spectroscopic method of speciation of [RhCl n (H 2 O) 6−n ] 3−n in HCl. ► 35 Cl/ 37 Cl isotope effects in 103 Rh NMR of [RhCl n (H 2 O) 6−n ] 3−n anions isotopologue and isotopomer induced 103 Rh NMR ‘finger-print’ for unambiguous identification. ► 103 Rh NMR identification of stereoisomers without a need for accurate chemical shifts. - Abstract: A detailed analysis of the 35 Cl/ 37 Cl isotope effects observed in the 19.11 MHz 103 Rh NMR resonances of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 36) in acidic solution at 292.1 K, shows that the ‘fine structure’ of each 103 Rh resonance can be understood in terms of the unique isotopologue and in certain instances the isotopomer distribution in each complex. These 35 Cl/ 37 Cl isotope effects in the 103 Rh NMR resonance of the [Rh 35/37 Cl 6 ] 3− species manifest only as a result of the statistically expected 35 Cl/ 37 Cl isotopologues, whereas for the aquated species such as for example [Rh 35/37 Cl 5 (H 2 O)] 2− , cis-[Rh 35/37 Cl 4 (H 2 O) 2 ] − as well as the mer-[Rh 35/37 Cl 3 (H 2 O) 3 ] complexes, additional fine-structure due to the various possible isotopomers within each class of isotopologues, is visible. Of interest is the possibility of the direct identification of stereoisomers cis-[RhCl 4 (H 2 O) 2 ] − , trans-[RhCl 4 (H 2 O) 2 ] − , fac-[RhCl 3 (H 2 O) 3 ] and mer-[RhCl 3 (H 2 O) 3 ] based on the 103 Rh NMR line shape, other than on the basis of their very similar δ( 103 Rh) chemical shift. The 103 Rh NMR resonance structure thus serves as a novel and unique ‘NMR-fingerprint’ leading to the unambiguous assignment of [RhCl n (H 2 O) 6−n ] 3−n complexes (n = 36

  6. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  7. (E-4-Hydroxy-6-methyl-3-[1-(2-phenylhydrazinylideneethyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Samra Rahmouni

    2016-05-01

    Full Text Available The title compound, C14H14N2O3, crystallized with three crystallographically independent molecules (A, B and C in the asymmetric unit. The three molecules each have an E conformation about the C=N bond but differ in the orientation of the phenyl and pyran rings. The dihedral angles between the phenyl and pyran ring planes are 14.30 (1, 28.38 (1 and 25.58 (1° in molecules A, B and C, respectively. There is an intramolecular O—H...N hydrogen bond in each molecule with an S(6 ring motif. In the crystal, molecules are linked by N—H...O and C—H...O hydrogen bonds, forming layers parallel to (001, enclosing R22(8 and R33(21 ring motifs. The layers are linked via C—H...π interactions, forming bilayers, which are joined by a further C—H...π interaction, forming a three-dimensional structure.

  8. Structure of (NH4)3H(SeO4)2 in high-temperature phases I and II

    International Nuclear Information System (INIS)

    Lukaszewicz, K.; Pietraszko, A.; Augustyniak, M.A.

    1993-01-01

    Triammonium hydrogenbis(tetraoxoselenate), (NH 4 ) 3 H(SeO 4 ) 2 , M r =341.04, Z=3, λ(Mo K anti α)=0.71073 A, F(000)=498. Phase I: trigonal, R anti 3m, a=6.090(1), c=22.759(5) A, V=731.0(2) A 3 , D x =2.32 g cm -3 , μ=68.7 cm -1 , T=355 K, R=0.0336 for 241 unique reflections with I>4σ(I). Phase II: trigonal, R anti 3, a=6.064(1), c=22.904(5) A, V=729.4(2) A 3 , D x =2.33 g cm -3 , μ=68.8 cm -1 , T=310 K, R=0.0374 for 397 unique reflections with I>4σ(I). In both phases, SeO 4 tetrahedra are linked by a dynamic system of symmetrically disordered hydrogen bonds in planes perpendicular to the trigonal axis. In phase II, SeO 4 tetrahedra deviate from the (210) plane owing to a small rotation of about 4 about the trigonal axis. In phase I, owing to symmetry enhancement, both orientations of SeO 4 tetrahedra are equally probable on both sides of (210), which is therefore a mirror plane. (orig.)

  9. Room and high temperature interactions in sodium and rubidium rich ternary nitrate mixtures of UO2(NO3)2.6H2O - NaNO3 - RbNO3

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Reddy, A.V.R.; Raje, Naina

    2016-01-01

    High temperature interaction behavior of nitrates is important for characterizing different intermediate products and their thermal stabilities during the calcination of nuclear waste before their immobilization in the stable glass matrix. Mixtures of UO 2 (NO 3 ) 2 .6H 2 O (UNH) with NaNO 3 (NaN) and RbNO 3 (RbN) were prepared by mixing the weighed amounts of component nitrates and grinding gently in a mortar and pestle. The mixing and grinding of individual nitrate components in a mortar with pestle showed the agglomeration of solid particles and subsequent dissolution probably in the water of crystallization of UNH. The continued grinding and mixing showed the reappearance of the solid powder. The original yellow color of the mixture was changed to greenish yellow color. The mixtures were subjected to thermal measurements using Netzsch Thermobalance (Model No.: STA 409 PC Luxx) coupled to Bruker FTIR system (Model No.: Tensor 27) via a heated Teflon capillary (1 m long, 2 mm i.d.). TG - DTG curves of equimolar mixture are displayed. The plateau was observed on TG curve in the temperature region of 31- 250 °C. It is reported that Na(UO 2 (NO 3 ) 3 ).H 2 O and Rb(UO 2 (NO 3 ) 3 ) formed around 250 °C in the equimolar nitrate mixtures of UNH-NaN and UNH-RbN. Thermal and XRD results indicated the formation of Na(UO 2 (NO 3 ) 3 ).H 2 O and Rb(UO 2 (NO) 3 ) 3 ) even by mixing the UNH, NaN and RbN in equimolar ratios at room temperature

  10. Theoretical studies of the tautomerism in 3-(2-R-Phenylhydrazono)-naphthalene- 1,2,4-triones: synthesis of copper(II) complexes and studies of antibacterial and antitumor activities

    International Nuclear Information System (INIS)

    Francisco, Acacio I.; Vargas, Maria D.; Fragoso, Thais P.; Carneiro, J. Walkimar de M.; Silva, Fernando de C. da; Ferreira, Vitor F.; Pessoa, Claudia; Costa-Lotufo, Leticia V.; Marinho Filho, Jose D.B.; Moraes, Manoel O. de; Mangrich, Antonio S.

    2010-01-01

    DFT calculations using the B3LYP and PBE1PBE functionals with the standard 6-31G(d) and 6-311+G(2d,p) basis sets were carried out for the 3-(2-phenylhydrazone)-naphthalene-1,2,4-trione system in solution (dmso) and in the gas phase, and showed the keto-hydrazone forms (rotamers Ia and Ib) to be more stable than the enol-azo forms (rotamers IIa and IIb, by about 14 kcal mol-1) and III (by approximately 6 kcal mol-1), independently of the nature of the substituent in the phenylene ring. These results were confirmed by spectroscopic data on the derivatives HL1-HL13, obtained from 2-hydroxy-1,4-naphthoquinone and arylamines (R = 4-OMe, 4-N 2 -C 6 H 5 , 4-Cl, 4-I, 3-I, 2-I, 4-COOH, 3-COOH, 4-CN, 3-CN, 4-NO 2 , 3-NO 2 , 2-NO 2 ). The in vitro antitumor (against SF-295, HCT-8, MDAMB-435 and HL-60 cancer cell lines) and antibacterial activities (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) of compounds HL1-HL13 and of their respective copper(II) complexes, [Cu(L1-13) 2 ], were tested. In general, these compounds exhibited low antibacterial activity, except for HL5 (R 3-I), more active than the control; however, the corresponding complex was inactive. In contrast, increased cytotoxicity was observed upon complexation. Complex [Cu(L13) 2 ] (R = 3-NO 2 ) presented moderate cytotoxicity against human leukemia (HL-60). (author)

  11. Data Presentation Report, Army Spill Sites, South Plants Manufacturing Complex. Version 3.2. Phase I

    Science.gov (United States)

    1988-09-01

    h .00I SO .4 60 Oa - Opo UP~g . 75 - A A a 4j 22 U- 4 21. . + A3 82a 4h1 cC 4 ja.340 A a.3 4a a2 a In w al .i.2 +. .2 + aa acca .ar.ac A .3 .4 .2 -0...it .61 0a -: t Cý L LX L - 4" f7 -- C: ~ ~~ ~ ~ ~ < , , : EI t. 0 : D c =l o~c Q0 oc c z c z ;c C c c c Z -0 -0 411 LIL Z z L4 t L I 4... F7 % tq.-- -- ...- .. 2-86 14~1 ~~(26’. - - ~-1 2- [I5]2[5 (4)1a2.] . (40) 220.4D.~~ 2 I29 1551 .... ...... I4 PI A I65. 115 5 13 [ I 7 464 9r 0551T35

  12. SYNTHESIS AND CHARACTERIZATION OF (MU-5-C5ME5)2TI(R)CL (R = ME, ET, NORMAL-PR, CH=CH2, PH, O-NORMAL-PR) AND THEIR SALT METATHESIS REACTIONS - THERMAL-DECOMPOSITION PATHWAYS OF (MU-5-C5ME5)2TI(ME)R' (R' = ET, CH=CH2, PH, CH2PH)

    NARCIS (Netherlands)

    LUINSTRA, GA; TEUBEN, JH

    Complexes Cp*2Ti(R)Cl (Cp* = eta-5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (4), Ph (5), O-n-Pr (6)) have been prepared by oxidation Of CP*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R. was observed. Homolysis of

  13. Synthesis and Characterization of (η5-C5Me5)2Ti(R)Cl (R = Me, Et, n-Pr, CH=CH2, Ph, O-n-Pr) and Their Salt Metathesis Reactions. Thermal Decomposition Pathways of (η5-C5Me5)2Ti(Me)R' (R' = Et, CH=CH2, Ph, CH2Ph)

    NARCIS (Netherlands)

    Luinstra, Gerrit A.; Teuben, Jan H.

    1992-01-01

    Complexes Cp*2Ti(R)Cl (Cp* = η5-C5Me5; R = Me (1), Et (2), n-Pr (3), CH=CH2 (41, Ph (5), O-n-Pr (6)) have been prepared by oxidation of Cp*2TiR with lead dichloride. Not every compound Cp*2Ti(R)Cl was accessible and for R = CH2CMe3 and CH2Ph reduction to Cp*2TiCl and R· was observed. Homolysis of

  14. Synthesis of Aluminum Complexes Bearing 8-Anilide-5,6,7-trihydroquinoline Ligands: Highly Active Catalyst Precursors for Ring-Opening Polymerization of Cyclic Esters

    Directory of Open Access Journals (Sweden)

    Shaofeng Liu

    2017-03-01

    Full Text Available The stoichiometric reactions of 8-(2,6-R1-4-R2-anilide-5,6,7-trihydroquinoline (LH with AlR3 (R = Me or Et afforded the aluminum complexes LAlR2 (Al1–Al5,Al1: R1 = iPr, R2 = H, R = Me; Al2: R1 = Me, R2 = H, R = Me; Al3: R1 = H, R2 = H, R = Me; Al4: R1 = Me, R2 = Me, R = Me; Al5: R1 = Me, R2 = Me, R = Et in high yields. All aluminum complexes were characterized by NMR spectroscopy and elemental analysis. The molecular structures of complexes Al4 and Al5 were determined by single-crystal X-ray diffractions and revealed a distorted tetrahedral geometry at aluminum. In the presence of BnOH, complexes Al1–Al5 efficiently initiated the ring-opening homopolymerization of ε-caprolactone (ε-CL and rac-lactide (rac-LA, respectively, in a living/controlled manner.

  15. Propane-1,3-diaminium–2-carboxypyridine-6-carboxylate–pyridine-2,6-dicarboxylic acid–water (1/2/2/8

    Directory of Open Access Journals (Sweden)

    Hossein Aghabozorg

    2008-01-01

    Full Text Available The title proton-transfer compound, C3H12N22+·2C7H4NO4−·2C7H5NO4·8H2O or (pnH2(pydcH2.2(pydcH2·8H2O, was obtained by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2 and propane-1,3-diamine (pn in aqueous solution. Both neutral and monoanionic forms of the diacid are observed in the crystal structure. The negative charge of two monoanions is balanced by the dicationic propane-1,3-diaminium species. In addition, considerable π–π stacking interactions between the aromatic rings of the (pydcH− and (pydcH2 fragments [with centroid–centroid distances of 3.5108 (11–3.5949 (11 Å] are observed. The most important feature of this crystal structure is the presence of a large number of O—H...O, O—H...N, N—H...O, N—H...N, C—H...O and C—H...N hydrogen bonds, with D...A ranging from 2.445 (2 to 3.485 (3 Å. These interactions as well as ion pairing and π–π stacking connect the various fragments into a supramolecular structure.

  16. Metabolism of the insecticidally active GABAA receptor antagonist 4-sec-[3,4-3H2]butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo[2.2.2]octane

    International Nuclear Information System (INIS)

    Deng, Yanli; Palmer, C.J.; Toia, R.F.; Casida, J.E.

    1990-01-01

    4-sec-[3,4- 3 H 2 ]Butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo[2.2.2]octane (referred to as [ 3 H]COB) was examined as an example of a new class of insecticidally active compounds that block the γ-aminobutyric acid gated chloride channel. Metabolites were identified by thin-layer cochromatography with standards from synthesis and by consideration of their hydrolytic and oxidative degradation products formed in situ on two-dimensional silica gel chromatoplates. Metabolism of [ 3 H]COB by mouse liver and housefly abdomen microsomes is dependent on fortification with NADPH. The O-methylene and sec-butyl sites are sensitive to oxidation. Each carbon of the sec-butyl group is individually functionalized with strong preference for the methylene site in the mouse but not the housefly microsomal system. O-Methylene hydroxylation initiates spontaneous cage opening to form an aldehyde that undergoes metabolic reduction, ultimately yielding the same cyanobenzoate ester of 2,2-bis-(hydroxymethyl)-3-methylpentan-1-ol formed by direct hydrolysis. Houseflies injected with [ 3 H]COB form many if not all of the same metabolites, with major products being the aforementioned cyanobenzoate, the orthoester oxidized at the sec-butyl methylene site, and polar conjugates

  17. Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2 type nanocomposite complexes: Highly efficient and magnetically-recoverable catalysts in vitamin K3 synthesis.

    Science.gov (United States)

    Uruş, Serhan

    2016-12-15

    The synthesis of aminomethylphosphine-metal complexes have opened a new perspective to the catalytic applications of organic compounds. Magnetic Fe3O4 nano-core was synthesized using the closed quartz tube with Teflon cover and microwaved 200°C for 1h with power controlled instrument set to max. 600W. Novel nano-composite supported; Fe3O4@SiO2(CH2)3NHArN(CH2PPh2)2 and Fe3O4@SiO2(CH2)3N(CH2PPh2)2 type bis(diphenylphosphinomethyl)amino ligands and their Pd(II) complexes have been synthesized and characterized with FT-IR, SEM, EDX, TEM, UV-Visible, XRD and TG/DTA techniques. All the complexes were used as heterogeneous catalysts in the oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1, 4-naphthoquinone (vitamin K3, menadione, 2MNQ) in the presence of hydrogen peroxide and acetic acid. Selectivity reached about 55-60% with a conversion of 90-96% using the nano-magnetite supported aminomethylphosphine-Pd(II) complexes. The complexes were very active in three times in the catalytic recycling experiments in five catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  19. Different Dimensional and Structural Variations in Coordination Compounds of Cadmium, Manganese and Nickel Constructed from the Ligand 2,2'-Bipyidine-3,3',6,6'-tetracarboxylic Acid (H{sub 4}bptc)

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Yang, Tiantian; Fu, Lulu; Luo, Ya; Wu, Jiashou [Yangtze Univ., Jingzhou (China)

    2013-09-15

    The reactions of hydrated CdCl{sub 2}, MnCl{sub 2}, and NiCl{sub 2} with 2,2'-bipyidine-3,3',6,6'-tetracarboxylic acid (H{sub 4}bptc) afforded the mononuclear [Cd{sup II}(H{sub 2}bptc)(H{sub 2}O){sub 3}]·H{sub 2}O (1), linear [Cd(H{sub 2}bptc)(H{sub 2}O)]·3H{sub 2}O{sub n} (2), 3-D hetero-bimetallic [NaCd(Hbptc)(H{sub 2}O)] (3), layer [Mn(H{sub 2}bptc)(H{sub 2}O)]n (4) and a dinuclear compound [Ni{sub 2}(H{sub 2}bptc)-(H{sub 2}O){sub 2}]·6H{sub 2}O (5). These compounds have been characterized by elemental analysis, IR, and their structures have been determined by X-ray crystallography. The thermal stabilities of 1-3 were measured by thermogravimetric analysis (TGA) and their solid state luminescence properties together with the free ligand H{sub 4}bptc were investigated at room temperature.

  20. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  1. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  2. Silicate complexation of NpO2+ ion in perchlorate media

    International Nuclear Information System (INIS)

    Pathak, P.N.; Choppin, G.R.

    2007-01-01

    Complexation behavior of NpO 2 + with ortho-silicic acid (o-SA) has been studied using solvent extraction at ionic strengths varying from 0.10 to 1.00M (NaClO 4 ) at pcH 3.68±0.08 and 25 deg C with bis-(2-ethylhexyl) phosphoric acid (HDEHP) as the extractant. The stability constant value (log β 1 ) for the 1:1 complex, NpO 2 (OSi(OH) 3 ), was found to decrease with increase in ionic strength of the aqueous phase [6.83±0.01 at I = 0.10M to 6.51±0.02 at I = 1.00M]. These values have been fitted in the SIT model expression and compared with similar values of complexation of the metal ions Am 3+ , Eu 3+ , UO 2 2+ , PuO 2 2+ , Np 4+ , Ni 2+ and Co 2+ . The speciation of NpO 2 + -o-silicate/carbonate system has been calculated as a function of pcH under ground water conditions. (author)

  3. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    Science.gov (United States)

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-04-26

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radiative transitions for the Cs2NaErCl6 elpasolite crystal. II.- Vibronic intensities for the emissions |(4S3/2Γ8]→4I15/2Γ] in the Cs2NaErCl6

    International Nuclear Information System (INIS)

    Acevedo, R.; Escudero, M; Navarro, G; Meruane, T

    2002-01-01

    We have recently reported explicit vibronic intensity calculations for the emissions |( 4 I 15/ ) Γ k ]→|( 4 I 13/2 )Γ l ] of Er 3+ in the Cs 2 NaErCl 6 elpasolite system. The experimental evidence indicates than over an energy range of about 400cm -1 , a substantial number of transitions take place (about one hundred excitations; twenty five of them are magnetic dipole allowed whereas the remaining seventy five are vibronically allowed in character). The spectrum is very complex indeed and the superposition of various spectral features is most likely to occur and this represents a serious challenge to theoreticians. For this system, there is solid evidence which indicates that for the |( 4 S 3/2 )Γ 8 ]→|( 4 I 15/2 )Γ] transitions, where Γ=Γ 6 , Γ 7 , Γ 8 a , Γ 8 b , Γ 8 c , the most intense features of the spectrum are assigned to one photon electric-dipole vibronic excitations, involving the v 3 (stretching; τ 1u ), v 4 (bending; τ 1u ) and v 6 (bending; τ 2u ) moiety modes of the ErCl 3- 6 clusters in the crystal. It is the aim of this paper to explain on both a qualitative and a quantitative basis the rather unexpected high intensity with these type of transitions for which the static selection rule ΔJ=6 is operative. To achieve our goals, we introduce an intensity path and/or mechanism, according to the following radiative decay cascade: |( S 3/2 )Γ 8 ]→|( 4 I 11/2 )Γ']→|( 4 I 15/2 )]. It is shown that when this mechanism is adopted, then the calculated overall spectral intensity due to the three false origins (v 3 , v 4 , v 6 ) is in a fairly good agreement with experiment (author)

  5. Mechanistic Studies of Cobalt-Catalyzed C(sp2)-H Borylation of Five-Membered Heteroarenes with Pinacolborane.

    Science.gov (United States)

    Obligacion, Jennifer V; Chirik, Paul J

    2017-07-07

    Studies into the mechanism of cobalt-catalyzed C(sp 2 )-H borylation of five-membered heteroarenes with pinacolborane (HBPin) as the boron source established the catalyst resting state as the trans -cobalt(III) dihydride boryl, ( iPr PNP)Co(H) 2 (BPin) ( iPr PNP = 2,6-( i Pr 2 PCH 2 ) 2 (C 5 H 3 N)), at both low and high substrate conversions. The overall first-order rate law and observation of a normal deuterium kinetic isotope effect on the borylation of benzofuran versus benzofuran-2- d 1 support H 2 reductive elimination from the cobalt(III) dihydride boryl as the turnover-limiting step. These findings stand in contrast to that established previously for the borylation of 2,6-lutidine with the same cobalt precatalyst, where borylation of the 4-position of the pincer occurred faster than the substrate turnover and arene C-H activation by a cobalt(I) boryl is turnover-limiting. Evaluation of the catalytic activity of different cobalt precursors in the C-H borylation of benzofuran with HBPin established that the ligand design principles for C- H borylation depend on the identities of both the arene and the boron reagent used: electron-donating groups improve catalytic activity of the borylation of pyridines and arenes with B 2 Pin 2 , whereas electron-withdrawing groups improve catalytic activity of the borylation of five-membered heteroarenes with HBPin. Catalyst deactivation by P-C bond cleavage from a cobalt(I) hydride was observed in the C-H borylation of arene substrates with C-H bonds that are less acidic than those of five-membered heteroarenes using HBPin and explains the requirement of B 2 Pin 2 to achieve synthetically useful yields with these arene substrates.

  6. Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland-Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B.

    Science.gov (United States)

    Clarke, Paul A; Nasir, Nadiah Mad; Sellars, Philip B; Peter, Alejandra M; Lawson, Connor A; Burroughs, James L

    2016-07-12

    6-Substituted-2H-dihydropyran-4-one products of the Maitland-Japp reaction have been converted into tetrahydropyrans containing uncommon substitution patterns. Treatment of 6-substituted-2H-dihydropyran-4-ones with carbon nucleophiles led to the formation of tetrahydropyran rings with the 2,6-trans-stereochemical arrangement. Reaction of the same 6-substituted-2H-dihydropyran-4-ones with l-Selectride led to the formation of 3,6-disubstituted tetrahydropyran rings, while trapping of the intermediate enolate with carbon electrophiles in turn led to the formation 3,3,6-trisubstituted tetrahydropyran rings. The relative stereochemical configuration of the new substituents was controlled by the stereoelectronic preference for pseudo-axial addition of the nucleophile and trapping of the enolate from the opposite face. Application of these methods led to a synthesis of the potent anti-osteoporotic diarylheptanoid natural product diospongin B.

  7. Nqrs Data for C3H2Cl10N2PSb[C3HCl4N2P·Cl6HSb](Subst. No. 0601)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C3H2Cl10N2PSb [C3HCl4N2P·Cl6HSb] (Subst. No. 0601)

  8. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    Science.gov (United States)

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd

    2012-05-31

    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  9. Crystal structures of (Z-5-[2-(benzo[b]thiophen-2-yl-1-(3,5-dimethoxyphenylethenyl]-1H-tetrazole and (Z-5-[2-(benzo[b]thiophen-3-yl-1-(3,4,5-trimethoxyphenylethenyl]-1H-tetrazole

    Directory of Open Access Journals (Sweden)

    Narsimha Reddy Penthala

    2016-05-01

    Full Text Available (Z-5-[2-(Benzo[b]thiophen-2-yl-1-(3,5-dimethoxyphenylethenyl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I, was prepared by the reaction of (Z-3-(benzo[b]thiophen-2-yl-2-(3,5-dimethoxyphenylacrylonitrile with tributyltin azide via a [3 + 2]cycloaddition azide condensation reaction. The structurally related compound (Z-5-[2-(benzo[b]thiophen-3-yl-1-(3,4,5-trimethoxyphenylethenyl]-1H-tetrazole, C20H18N4O3S, (II, was prepared by the reaction of (Z-3-(benzo[b]thiophen-3-yl-2-(3,4,5-trimethoxyphenylacrylonitrile with tributyltin azide. Crystals of (I have two molecules in the asymmetric unit (Z′ = 2, whereas crystals of (II have Z′ = 1. The benzothiophene rings in (I and (II are almost planar, with r.m.s deviations from the mean plane of 0.0084 and 0.0037 Å in (I and 0.0084 Å in (II. The tetrazole rings of (I and (II make dihedral angles with the mean planes of the benzothiophene rings of 88.81 (13 and 88.92 (13° in (I, and 60.94 (6° in (II. The dimethoxyphenyl and trimethoxyphenyl rings make dihedral angles with the benzothiophene rings of 23.91 (8 and 24.99 (8° in (I and 84.47 (3° in (II. In both structures, molecules are linked into hydrogen-bonded chains. In (I, these chains involve both tetrazole and methanol, and are parallel to the b axis. In (II, molecules are linked into chains parallel to the a axis by N—H...N hydrogen bonds between adjacent tetrazole rings.

  10. 3-Benzyl-6-bromo-2-(2-furyl-3H-imidazo[4,5-b]pyridine

    Directory of Open Access Journals (Sweden)

    Younès Ouzidan

    2010-07-01

    Full Text Available In the title molecule, C17H12BrN3O, the imidazopyridine ring system is almost coplanar with the furan ring [dihedral angle = 2.0 (3°]. The benzyl phenyl ring is oriented at dihedral angles of 85.2 (2 and 85.5 (1°, respectively, with respect to the furan ring and the imidazopyridine ring system. In the crystal, molecules are linked into chains propagating along the b axis by C—H...N hydrogen bonds. Adjacent chains are linked via short Br...Br contacts [3.493 (1 Å].

  11. 4-Hydroxy-6-methyl-3-[3-(thiophen-2-ylacryloyl]-2H-pyran-2-one

    Directory of Open Access Journals (Sweden)

    Salima Thabti

    2013-04-01

    Full Text Available The title compound, C13H10O4S, crystallizes with two molecules in the asymmetric unit in which the rings make dihedral angles of 3.9 (1 and 6.0 (1°; this planarity is due in part to the presence of an intramolecular O—H...O hydrogen bond, which generates an S(6 ring in each molecule. Both molecules represent E isomers with respect to the central C=C bond. In the crystal, molecules are linked by C—H...O interactions into a three-dimensional network.

  12. U3Si2 behavior in H2O: Part I, flowing steam and the effect of hydrogen

    Science.gov (United States)

    Wood, E. Sooby; White, J. T.; Grote, C. J.; Nelson, A. T.

    2018-04-01

    Recent interest in U3Si2 as an advanced light water reactor fuel has driven assessment of numerous properties, but characterization of its response to H2O environments is absent from the literature. The behavior of U3Si2 in H2O containing atmospheres is investigated and presented in a two-part series of articles aimed to understand the degradation mechanism of U3Si2 in H2O. Reported here are thermogravimetric data for U3Si2 exposed to flowing steam at 250-470 °C. Additionally the response of U3Si2 to flowing Ar-6% H2 from 350 to 400 °C is presented. Microstructural degradation is observed following hours of exposure at 350 °C in steam. U3Si2 undergoes pulverization on the timescale of minutes when temperatures are increased above 400 °C. This mechanism is accelerated in flowing Ar-H2 at the same temperatures.

  13. Synthesis and photoluminescence properties of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped Ca{sub 2}ZnWO{sub 6} phosphors for phosphor converted LED

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur-441111, Maharashtra (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur-440033, Maharashtra (India)

    2014-06-01

    In this work, we report on the synthesis and photoluminescence (PL) properties of rare earth (Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+}) doped double perovskite tungstate Ca{sub 2}ZnWO{sub 6} phosphor. The phosphors were synthesized by two step modified solid state method. Phase purity and formation of phosphor were confirmed by XRD technique. PL spectra of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped phosphor show intense emission peaks in red region at 615, 604 and 650 nm respectively, upon the visible excitation of 466 nm (Eu{sup 3+}), 410 nm (Sm{sup 3+}) and 491 nm (Pr{sup 3+}). The CIE coordinates of the phosphors are in the yellow (Sm{sup 3+} doped sample) and orange (Eu{sup 3+} and Pr{sup 3+} doped sample) regions near the edge of color space which confirms their applicability in LEDs. -- Highlights: •Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped and undoped samples of Ca{sub 2}ZnWO{sub 6} phosphor synthesized by Solid state method. •The phosphors have intense excitation in violet and blue region of visible spectrum. •Phosphors show intense emission peaks in red region. •CIE coordinates of phosphors are lie in yellow (Sm{sup 3+} doped phosphor) and orange (Eu{sup 3+} and Pr{sup 3+} doped phosphor) region near to edge of color space.

  14. Luminescence dependence of Pr3+ activated SiO2 nanophosphor on Pr3+ concentration, temperature, and ZnO incorporation

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2011-08-01

    Full Text Available Green-emitting ZnO nanoparticles were successfully embedded in Pr3+-doped SiO2 by a sol–gel method resulting in a red-emitting ZnO·SiO2:Pr3+ nanocomposite phosphor. The particle morphology and luminescent properties of SiO2:Pr3+ phosphor powders...

  15. Neutral interstellar gas toward epsilon persei: H I, H2, D I, N I, O I

    International Nuclear Information System (INIS)

    Vidal, A.; Ferlet, R.; Laurent, C.; York, D.G.

    1982-01-01

    The study of the interstellar medium toward epsilon Per, a moderately reddened (E/sub B/-V = 0.1) B0.5 star, through the analysis of H I, D I, H 2 , N I, O I, and Ar I absorption features, revealed the following structure of the line of sight: (1) a main interstellar, cold (Tapprox.100 K; b = 2.9 km s -1 ) component, (2) a weak (approx.1% of the main one) probably cold component, and (3) a weak (also approx.1% of the main one) and hot component (Tapprox.8000 K). All three components have normal abundances. Comparison with ground-based observations or other UV studies reveals the presence on the line of sight of an H II region not detected in the neutral species observed in this study. High-velocity H I gas is also detected, located either in the interstellar medium or very likely in the stellar wind for the blue-shifted components. One of these features is blended with the deuterium lines and therefore obscures our D/H evaluation. All we can say is that the data are compatible with a D/H ratio equal to 1.5 x 10 -5 . This blended feature proved to vary by at least a factor of 3 in column density within few hours, a result which sustains our interpretation of the stellar wind origin of the blueshifted high-velocity H I component. However, the alternative interpretation of a high D/H (approx.10 -4 ) value is also compatible with our data

  16. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)26H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  17. Potentiometric and spectral studies of complex formation of La(3), Pr(3) and Lu(3) with aspartic acid and asparagine

    International Nuclear Information System (INIS)

    Wojciechowska, A.; Lomozik, L.; Zielinski, S.

    1987-01-01

    The composition and stability of La 3+ , Pr 3+ and Lu 3+ complexes with aspartic acid and asparagine were analysed. The formation of complexes of the type ML and MHL was determined for La 3+ and Pr 3+ with aspartic acid, and of the type MHL for Lu 3+ with aspartic acid. For La 3+ , Pr 3+ and Lu 3+ with asparagine the formation of ML(OH) complexes was observed. By means of 1 HNMR and 13 CNMR studies the participation in the coordination of both -COOH groups was determined for aspartic acid, whereas for asparagine the participation of the -COOH group was determined in complexes with La 3+ , Pr 3+ , and of the -COOH and the -NH 2 groups in the complex with Lu 3+ . (Author)

  18. The 1:1 co-crystal of triphenyl(2,3,5,6-tetrafluorobenzylphosphonium bromide and 1,1,2,2-tetrafluoro-1,2-diiodoethane

    Directory of Open Access Journals (Sweden)

    Gabriella Cavallo

    2014-01-01

    Full Text Available The title compound, C25H18F4P+·Br−·C2F4I2, is a 1:1 co-crystal of triphenyl(2,3,5,6-tetrafluorobenzylphosphonium (TTPB bromide and 1,1,2,2-tetrafluoro-1,2-diiodoethane (TFDIE. The crystal structure consists of a framework of TTPB cations held together by C—H...Br interactions. In this framework, infinite channels along [100] are filled by TFDIE molecules held together in infinite ribbons by short F...F [2.863 (22.901 (2Å] interactions. The structure contains halogen bonds (XB and hydrogen bonds (HB in the bromide coordination sphere. TFDIE functions as a monodentate XB donor as only one I atom is linked to the Br− anion and forms a short and directional interaction [I...Br− 3.1798 (7 Å and C—I...Br− 177.76 (5°]. The coordination sphere of the bromide anion is completed by two short HBs of about 2.8 Å (for H...Br with the acidic methylene H atoms and two longer HBs of about 3.0 Å with H atoms of the phenyl rings. Surprisingly neither the second iodine atom of TFDIE nor the H atom on the tetrafluorophenyl group make any short contacts.

  19. Complexes of rhodium (I) and iridium (I) with mixed phosphorus-oxygen and phosphorus-nitrogen glands

    Energy Technology Data Exchange (ETDEWEB)

    Meintjies, E.; Singleton, E.; Schmutzler, R.; Sell, M.

    1985-09-01

    A series of four- and five-coordinate rhodium(I) and iridium(I) complexes of the type (MCl(cod)L) and (M(COD)L/sub 2/) sup(+)(M = Rh or Ir;cod = cycloocta-1,5-diene; L = P(C/sub 6/H/sub 4/OMe-o)/sub 3/, PMe/sub 2/(C/sub 6/H/sub 4/OMe-o), PPh/sub 2/(C/sub 6/H/sub 4/OMe-o), PPh/sub 2/-(C/sub 6/H/sub 4/NMe/sub 2/-o), PMe(C/sub 6/H/sub 4/OMe-o)/sub 2/ and PPh/sub 2/(C/sub 6/H/sub 4/OPr sup(i)-o)) have been prepared from the reactions of ((MCl(cod))/sub 2/) (M = Rh or Ir) with the appropriate stoichiometric amount of L in diethyl ether or methanol solution. N.M.R. evidence (/sup 1/H and /sup 13/C) is presented for non-chelation in the case of the ether ligands and chelation for the amine ligand. Thus, the complexes (MCl(cod)L)(L = ether ligand) are mononuclear square-planar species, whereas the amine ligand chelates to the metal atom, and a distorted trigonal bipyramidal structure is proposed. Attempts at displacing cod from the complexes (MCl(cod)L) with these ether and amine ligands, or with small phosphines, were unsuccessful. However, treatment of (MCl(cod)(P(C/sub 6/H/sub 4/OMe-o)/sub 3/))(M = Rh or Ir) with carbon monoxide gave (MCl(CO)/sub 2/ (P(C/sub 6/H/sub 4/OMe-o)/sub 3/)). In contrast, a disproportionation product, (RhCl(CNBu sup(t)/sub 2/(PPh/sub 2/ (C/sub 6/H/sub 4/OPr sup(i)-o))/sub 2/), was obtained from treatment of (RhCl(cod)(PPh/sub 2/(C/sub 6/H/sub 4/OPr sup(i)-o))) with t-butyl isocyanide. N.M.R. data (/sup 1/H and /sup 13/C) for the complexes are described.

  20. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  1. High-Density Energetic Metal–Organic Frameworks Based on the 5,5′-Dinitro-2H,2H-3,3′-bi-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Yalu Dong

    2017-06-01

    Full Text Available High-energy metal–organic frameworks (MOFs based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II with the rigid polynitro heterocyclic ligands 5,5′-dinitro-2H,2H-3,3′-bi-1,2,4-triazole (DNBT and 5,5′-dinitro-3,3′-bis-1,2,4-triazole-1-diol (DNBTO gave two high-density MOFs: [Cu(DNBT(ATRZ3]n (1 and [Cu(DNBTO(ATRZ2(H2O2]n (2, where ATRZ represents 4,4′-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC. The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane, whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm−3 for complex 1 and ρ = 1.96 g cm−3 for complex 2 and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2, especially because of the introduction of an N–O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials.

  2. Star Formation and Young Population of the H II Complex Sh2-294

    Science.gov (United States)

    Samal, M. R.; Pandey, A. K.; Ojha, D. K.; Chauhan, N.; Jose, J.; Pandey, B.

    2012-08-01

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 μm observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H2 (2.12 μm) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H2 emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M ⊙) YSOs; however, we also detected a massive YSO (~9 M ⊙) of Class I nature, embedded in a cloud of visual extinction of ~24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age ~ 4.5 × 106 yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a ~4 × 106 yr B0 main-sequence star.

  3. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  4. Solvothermal syntheses and characterization of three new silver(I)/copper(I)-thioarsenates based on As{sup 2+}/As{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hua-Gang, E-mail: hgyao@gdpu.edu.cn [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China); Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan 528458 (China); Tang, Cheng-Fei [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China); An, Yong-Lin [Department of Chemistry, Dalian University of Technology, Dalian 116024 (China); Ou, Zi-Jian; Wu, Guo-Hao; Lan, Pei; Zheng, Yi-Long [School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458 (China)

    2017-02-15

    Three new silver(I)/copper(I)-thioarsenates KAgAs{sup II}S{sub 2} (1), RbCu{sub 2}As{sup III}S{sub 3} (2) and RbCu{sub 4}As{sup III}S{sub 4} (3) have been solvothermally synthesized and structurally characterized. 1 exhibits a two-dimensional anionic network built up by As−As bond connecting the left- and right-handed helical [AgS{sub 2}]{sup 4−} chains, and represents the first examples of thioarsenates(II). The structure of 2 consists of two kinds of helical [Cu{sub 2}S{sub 3}]{sup 4–} chains linked by the arsenic atoms to form double layers with rubidium ions between the layers. Compound 3 is built up of infinite [Cu{sub 2}S{sub 2}]{sup 2–} chain and layered [Cu{sub 6}As{sub 2}S{sub 6}] linked to form a three-dimensional anionic framework, [Cu{sub 4}AsS{sub 4}]{sup –}, and containing channels in which the rubidium cations reside. The optical properties of 1–3 have been investigated by UV–vis spectroscopy. - Graphical abstract: Three new silver(I)/copper(I)-thioarsenates have been solvothermally synthesized and structurally characterized. 1 represents the first examples of thioarsenates(II) while compounds 2 and 3 possess noncondensed pyramidal AsS{sub 3}{sup 3–} unit.

  5. Synthesis and Molecular Structure of 6-Amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-03-01

    Full Text Available The title compound 6-amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one (4, molecular formula C11H10N6OS, was obtained by the reaction of3-amino-2-benzyl-6-hydrazino-1,2,4-triazin-5(2H-one (3 with carbon disulfide in awater/pyridine mixture. Compound 4 can also be synthesized by reacting6-amino-3(2Hmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (7 with benzylbromide in methanolic ammonia water. The compound crystallizes in the monoclinicspace group P21/c with a = 7.2926(15, b = 14.456(2, c = 11.436(2 å, β = 105.30(2°, V= 1162.9(4 å3 and Z = 4, resulting in a density Dcalc of 1.567 g/cm3. Molecules of 4 arelinked by extensive intermolecular N-H···N and N-H···O hydrogen bonding [graph set R22 (9]. The structure is further stabilized by π-π stacking interactions. 2

  6. Non-minimal flavored S{sub 3} x Z{sub 2} left-right symmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Izquierdo, Juan Carlos [Tecnologico de Monterrey, Campus Estado de Mexico, Estado de Mexico, Estado de Mexico (Mexico); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2017-08-15

    We propose a non-minimal left-right symmetric model with parity symmetry where the fermion mixings arise as a result of imposing an S{sub 3} x Z{sub 2} flavor symmetry, and an extra Z{sup e}{sub 2} symmetry is considered in the lepton sector. Then the neutrino mass matrix possesses approximately the μ-τ symmetry. The breaking of the μ-τ symmetry induces sizable non-zero θ{sub 13}, and the deviation of θ{sub 23} from 45 {sup circle} is strongly controlled by an ε free parameter and the neutrino masses. So, an analytic study of the CP parities in the neutrino masses is carried out to constrain the ε parameter and the lightest neutrino mass that accommodate the mixing angles. The results are: (a) the normal hierarchy is ruled out for any values of the Majorana phases; (b) for the inverted hierarchy the values of the reactor and atmospheric angles are compatible up to 2, 3 σ C.L.; (c) the degenerate ordering is the most favorable such that the reactor and atmospheric angle are compatible with the experimental data for a large set of values of the free parameters. The model predicts defined regions for the effective neutrino mass, the neutrino mass scale and the sum of the neutrino masses for the favored cases. Therefore, this model may be testable by the future experiments. (orig.)

  7. Thermodynamic and structural description of europium complexation in 1-octanol - H{sub 2}O solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vu, T.H.; Charbonnel, M.C.; Boubals, N.; Couston, L. [CEA Marcoule, DEN/DRCP/SCPS/LCAM, BP 17171, 30207 Bagnols-sur-Ceze (France); Arnaud, F. [Laboratoire de Chimie Physique, IPHC, 25 rue Becquerel, 67087 Strasbourg (France)

    2008-07-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPs) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. The first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water was determined by Time-Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and micro-calorimetry; similar stability constants related to the formation of Eu(BTP){sub 2}{sup 3+} and Eu(BTP){sub 3}{sup 3+} were obtained by both techniques (log({beta}{sub 2}) = 9.0 {+-} 0.3 and log({beta}{sub 3}) = 13.8 {+-} 0.2). The presence of water in the octanol diluent has an influence on solvation of europium and also on the [Eu(BTP){sub 2}{sup 3+}] / [Eu(BTP){sub 3}{sup 3+}] ratio. (authors)

  8. Evaluating cis-2,6-Dimethylpiperidide (cis-DMP) as a Base Component in Lithium-Mediated Zincation Chemistry

    Science.gov (United States)

    Armstrong, David R; Garden, Jennifer A; Kennedy, Alan R; Leenhouts, Sarah M; Mulvey, Robert E; O'Keefe, Philip; O'Hara, Charles T; Steven, Alan

    2013-01-01

    Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6-tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non-TMP based mixed-metal bases and, as cis-2,6-dimethylpiperidide (cis-DMP) was chosen as the alternative amide, developing cis-DMP zincate chemistry which has received meagre attention compared to that of its methyl-rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis-DMP)Et2] (TMEDA=N,N,N′,N′-tetramethylethylenediamine) has been synthesised by co-complexation of Li(cis-DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X-ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N-diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis-DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di-tert-butylzincate, [(TMEDA)LiZn(cis-DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho-deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2-iodo-N,N-diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3-hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis-DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di-tert-butylzincate and crystallographically characterised, namely the pre-metallation complex [{(iPr)2N

  9. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    Science.gov (United States)

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  10. Prediction of Mechanism and Thermochemical Properties of O3 + H2S Atmospheric Reaction

    Directory of Open Access Journals (Sweden)

    Morteza Vahedpour

    2013-01-01

    Full Text Available Ozone and hydrogen sulfide reaction mechanism including a complex was studied at the B3LYP/6-311++G(3df,3pd and CCSD/6-311++G(3df,3pd//B3LYP/6-311++G(3df,3pd levels of computation. The interaction between sulfur atom of hydrogen sulfide and terminal oxygen atom of ozone produces a stable H2S-O3 complex with no barrier. With the decomposition of this complex, four possible product channels have been found. Intrinsic reaction coordinate, topological analyses of atom in molecule, and vibrational frequency calculation have been used to confirm the suggested mechanism. Thermodynamic data at T = 298.15 K and the atmospheric pressure have been calculated. The results show that the production of H2O + SO2 is the main reaction channel with ΔG° = −645.84 kJ/mol. Rate constants of H2S + O3 reaction show two product channels, SO2 + H2O and HSO + HOO, which compete with each other based on the temperature.

  11. Theoretical studies of the tautomerism in 3-(2-R-Phenylhydrazono)-naphthalene- 1,2,4-triones: synthesis of copper(II) complexes and studies of antibacterial and antitumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Acacio I.; Vargas, Maria D.; Fragoso, Thais P.; Carneiro, J. Walkimar de M.; Silva, Fernando de C. da; Ferreira, Vitor F., E-mail: mdvargas@vm.uff.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica; Casellato, Annelise [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Barbosa, Jussara P. [Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil); Pessoa, Claudia; Costa-Lotufo, Leticia V.; Marinho Filho, Jose D.B.; Moraes, Manoel O. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisiologia e Farmacologia; Mangrich, Antonio S. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica

    2010-07-01

    DFT calculations using the B3LYP and PBE1PBE functionals with the standard 6-31G(d) and 6-311+G(2d,p) basis sets were carried out for the 3-(2-phenylhydrazone)-naphthalene-1,2,4-trione system in solution (dmso) and in the gas phase, and showed the keto-hydrazone forms (rotamers Ia and Ib) to be more stable than the enol-azo forms (rotamers IIa and IIb, by about 14 kcal mol-1) and III (by approximately 6 kcal mol-1), independently of the nature of the substituent in the phenylene ring. These results were confirmed by spectroscopic data on the derivatives HL1-HL13, obtained from 2-hydroxy-1,4-naphthoquinone and arylamines (R = 4-OMe, 4-N{sub 2}-C{sub 6}H{sub 5}, 4-Cl, 4-I, 3-I, 2-I, 4-COOH, 3-COOH, 4-CN, 3-CN, 4-NO{sub 2}, 3-NO{sub 2}, 2-NO{sub 2}). The in vitro antitumor (against SF-295, HCT-8, MDAMB-435 and HL-60 cancer cell lines) and antibacterial activities (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) of compounds HL1-HL13 and of their respective copper(II) complexes, [Cu(L1-13){sub 2}], were tested. In general, these compounds exhibited low antibacterial activity, except for HL5 (R 3-I), more active than the control; however, the corresponding complex was inactive. In contrast, increased cytotoxicity was observed upon complexation. Complex [Cu(L13){sub 2}] (R = 3-NO{sub 2}) presented moderate cytotoxicity against human leukemia (HL-60). (author)

  12. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  13. Silver(I) and copper(I) complexes with the closo-decaborate anion B10H102- as a ligand

    International Nuclear Information System (INIS)

    Malinina, E.A.; Zhizhin, K.Yu.; Polyakova, I.N.; Lisovskij, M.V.; Kuznetsov, N.T.

    2002-01-01

    Studying the process of silver(I) and copper(I) complexing with closo-borate anion B 10 H 10 2- it is determined that the last can to play a role of intraspherical ligand forming stable coordination compounds of two types: Cat[MB 10 H 10 ] and [M 2 B 10 H 10 ] (M=Ag(I), Cu(I)). In these compounds the bond metal-boron skeleton is realized by means of formation of three-center bonds M-H-B. Structure of the complexes Cs[AgB 10 H 10 ] and [(C 2 H 5 ) 3 NH][AgB 10 H 10 ] and possible mechanism of their formation are discussed [ru

  14. Electronic structure of PrBa2Cu3O7

    International Nuclear Information System (INIS)

    Singh, D.J.

    1994-01-01

    Electronic-structure calculations, within the local spin density approximation (LSDA), are reported for PrBa 2 Cu 3 O 7 . Significant charge transfer from the Pr ions to both the CuO 2 planes and the chains is found relative to YBa 2 Cu 3 O 7 . This supports hole depletion explanations for the insulating character of PrBa 2 Cu 3 O 7 . The LSDA electronic structure shows a prominent ''ridge'' Fermi surface analogous to that in YBa 2 Cu 3 O 7 , but broader. It is proposed that high-resolution positron measurements of this width may provide a useful test of hole depletion models

  15. Insertion and C-H Bond Activation of Unsaturated Substrates by Bis(benzamidinato)yttrium Alkyl, [PhC(NSiMe3)2]2YR (R = CH2Ph·THF, CH(SiMe3)2), and Hydrido, {[PhC(NSiMe3)2]2Y(μ-H)}2, Compounds

    NARCIS (Netherlands)

    Duchateau, Robbert; Wee, Cornelis T. van; Teuben, Jan H.

    1996-01-01

    The reactivity of benzamidinate-stabilized yttrium complexes [PhC(NSiMe3)2]2YR (R = CH2Ph·THF, CH(SiMe3)2) and {[PhC(NSiMe3)2]2Y(μ-H)}2 has been investigated. The complexes are thermally stable showing no sign of decomposition, ligand or solvent metalation, or H/D exchange after hours at 100 °C in

  16. Hexaaquanickel(II tetraaquabis(μ-pyridine-2,6-dicarboxylatobis(pyridine-2,6-dicarboxylatotrinickelate(II octahydrate

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi

    2010-08-01

    Full Text Available The title compound, [Ni(H2O6][Ni3(C7H3NO44(H2O4]·8H2O, was obtained by the reaction of nickel(II nitrate hexahydrate with pyridine-2,6-dicarboxylic acid (pydcH2 and 1,10-phenanothroline (phen in an aqueous solution. The latter ligand is not involved in formation of the title complex. There are three different NiII atoms in the asymmetric unit, two of which are located on inversion centers, and thus the [Ni(H2O6]2+ cation and the trinuclear {[Ni(pydc2]2-μ-Ni(H2O4}2− anion are centrosymmetric. All NiII atoms exhibit an octahedral coordination geometry. Various interactions, including numerous O—H...O and C—H...O hydrogen bonds and C—O...π stacking of the pyridine and carboxylate groups [3.570 (1, 3.758 (1 and 3.609 (1 Å], are observed in the crystal structure.

  17. 5-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-03-01

    Full Text Available The title compound, 5-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione, has been synthesized by condensation of 1,3-diethyl-2-thiobarbituric acid and 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR and EI-MS spectral analysis.

  18. Synthesis of fluorinated ReCl(4,4'-R2-2,2'-bipyridine)(CO)3 complexes and their photophysical characterization in CH3CN and supercritical CO2.

    Science.gov (United States)

    Doherty, Mark D; Grills, David C; Fujita, Etsuko

    2009-03-02

    Two new CO(2)-soluble rhenium(I) bipyridine complexes bearing the fluorinated alkyl ligands 4,4'-(C(6)F(13)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1a), and 4,4'-(C(8)F(17)CH(2)CH(2)CH(2))(2)-2,2'-bipyridine (1b) have been prepared and their photophysical properties investigated in CH(3)CN and supercritical CO(2). Electrochemical and spectroscopic characterization of these complexes in CH(3)CN suggests that the three methylene units effectively insulate the bipyridyl rings and the rhenium center from the electron-withdrawing effect of the fluorinated alkyl chains. Reductive quenching of the metal-to-ligand charge-transfer excited states with triethylamine reveals quenching rate constants in supercritical CO(2) that are only 6 times slower than those in CH(3)CN.

  19. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg{sup 2+} in Aqueous Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Cl]{sub 2} with 4,4'-bis(bromomethyl)-2,2'-bipyridine, which was prepared starting from 4,4'-dimethyl-2,2'-bipyridine according to the reported procedure, iridium (III) complex 1 was prepared. Finally iridium (III) complex 1 was treated with 3,9-dithia-6-azaundecane in the presence of NaH in tetrahydrofuran (THF) to afford iridium (III) complex 2 containing two 3,9-dithia-6-azaundecane units.

  20. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    -bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0–4.1 kJ mol−1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable....... The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes....... estimate of 7.1 ± 0.3 kJ mol−1 for the dissociation energy D0 of the C2H4—H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4—HOH—C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm−1...