WorldWideScience

Sample records for complex-1 activation survivin

  1. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  2. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.

    Science.gov (United States)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco; Nagel, Petra; Brodde, Martin; Schmidt, Harmut; Christoffersen, Christina; Ceglarek, Uta; Burkhardt, Ralph; Nofer, Jerzy-Roch

    2017-02-01

    Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  4. Delivery of a survivin promoter-driven antisense survivin-expressing plasmid DNA as a cancer therapeutic: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Lin KY

    2016-05-01

    Full Text Available Kun-Yuan Lin,1 Siao Muk Cheng,2 Shing-Ling Tsai,2 Ju-Ya Tsai,1 Chun-Hui Lin,1 Chun Hei Antonio Cheung1,2 1Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC; 2Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC Abstract: Survivin is a member of the inhibitor-of-apoptosis proteins family. It is overexpressed in many different cancer types but not in the differentiated normal tissue. In addition, overexpression of survivin promotes cancer cell survival and induces chemotherapeutic drug resistance, making it an attractive target for new anticancer interventions. Despite survivin being a promising molecular target for anticancer treatment, it is widely accepted that survivin is only a “semi-druggable” target. Therefore, it is important to develop a new strategy to target survivin for anticancer treatment. In this study, we constructed a novel survivin promoter-driven full-length antisense survivin (pSur/AS-Sur expression plasmid DNA. Promoter activity assay revealed that the activity of the survivin promoter of pSur/AS-Sur correlated with the endogenous expression of survivin at the transcriptional level in the transfected A549, MDA-MB-231, and PANC-1 cancer cells. Western blot analysis showed that liposomal delivery of pSur/AS-Sur successfully downregulated the expression of survivin in A549, MBA-MB-231, and PANC-1 cells in vitro. In addition, delivery of pSur/AS-Sur induced autophagy, caspase-dependent apoptosis, and caspase-independent apoptosis as indicated by the increased LC3B-II conversion, autophagosome formation, caspase-9/-3 and poly(ADP-ribose polymerase-1 cleavage, and apoptosis-inducing factor nuclear translocation in A549, MBA-MB-231, and PANC-1 cells. Importantly, liposomal delivery of pSur/AS-Sur was also capable of decreasing the proliferation of the survivin/MDR1 coexpressing multidrug-resistant KB-TAX50 cancer cells and

  5. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  6. Survivin as a radioresistance factor in pancreatic cancer

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Moriai, Ryosuke; Yajima, Tomomi; Yagihashi, Atsuhito; Yamada, Mikako; Kobayashi, Daisuke; Watanabe, Naoki

    2000-01-01

    We examined whether survivin acts as a constitutive and inducible radioresistance factor in pancreatic cancer cells. Using a quantitative TaqMan reverse transcription-polymerase chain reaction for survivin mRNA in five pancreatic cancer cell lines, we found an inverse relationship between survivin mRNA expression and radiosensitivity. PANC-1 cells, which had the highest survivin mRNA levels, were most resistant to X-irradiation; MIAPaCa-2 cells, which showed the least survivin mRNA expression, were the most sensitive to X-irradiation. Our results suggested that survivin could act as a constitutive radioresistance factor in pancreatic cancer cells. To determine whether radioresistance is enhanced by induction of survivin expression by irradiation, PANC-1 and MIAPaCa-2 cells were subjected to sublethal doses of X-irradiation followed by a lethal dose. Survivin mRNA expression was increased significantly in both PANC-1 and MIAPaCa-2 cell lines by pretreatment with a sublethal dose of X-irradiation, as was cell survival after exposure to the lethal dose. In this system, enzymatic caspase-3 activity was significantly suppressed in cells with acquired resistance. These results suggest that survivin also acts as an inducible radioresistance factor in pancreatic cancer cells. Survivin, then, appears to enhance radioresistance in pancreatic cancer cells; inhibition of survivin mRNA expression may improve the effectiveness of radiotherapy. (author)

  7. Evaluation of tissue metalloproteinase inhibitor TIMP-1 and Survivin levels during third trimester pregnancy - a preliminary report.

    Science.gov (United States)

    Karowicz-Bilińska, Agata; Kowalska-Koprek, Urszula; Estemberg, Dorota; Sikora-Szubert, Anita

    2017-01-01

    A proper implantation of trophoblastic cells and an appropriate metalloproteinases activity is required to cause disintegration of basal membranes of cells. The activity of tissue matrix metaloproteinases can be inhibited by their matrix inhibitors - TIMP-s. Survivin is a member of inhibitor of apoptosis proteins family (IAP), that suppresses caspase activation, influences VEGF expression and promotes proliferative action of endothelial cells. The aim of the study was to assess concentrations of two independent anti-apoptotic factors. TIMP-1 and survivin in serum of women in their third trimester of pregnancy and in umbilical cord blood of neonates - drawn separately from veins and arteries. The study group consisted of 29 pregnant women in physiological pregnancy and with correct fetal development, in gestational age between 37 to 40 weeks of gestation. Blood used in the study was collected from maternal cubital fossa veins and from neonatal umbilical cords (from veins and from arteries separately). The research was conducted using TIMP-1 and Survivin ELISA kits from R & D Systems according to manufacturers' recommendations and protocols. The concentrations of TIMP-1 were similar and independent of the source of blood samples. Arterial values of TIMP-1 in umbilical cord compared to maternal and fetal veins were slightly lower, but no statistical difference was found. The mean concentrations of Survivin were comparable but we found that in some cases the results in cord blood serum in both vessels-vein and arteries were almost negative. Arterial values of Survivin in umbilical cord compared to maternal blood were higher, but no statistical difference was found. In III-rd trimester of pregnancy parameters of Timp-1 and Survivin - anti-apoptotic substances concentration were similar in maternal and cord blood in both artery and vein. We found no increased activity of selected antiapoptotic factors.

  8. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  9. A role for survivin in radioresistance of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Kobayashi, Daisuke; Furuya, Daisuke; Tsuji, Naoki; Yagihashi, Atsuhito; Watanabe, Naoki

    2002-01-01

    Using gene-transduced pancreatic cancer cells, we examined whether survivin expression is directly involved in regulation of radiosensitivity. Ordinarily radiosensitive MIAPaCa-2 cells transduced with wild-type survivin gene (MS cells) proliferated more rapidly than cells transduced with control vector. MS cells were significantly less radiosensitive than control vector-transduced cells. Radiation-induced activity of caspase-3, but not caspase-7, was significantly inhibited in MS cells. On the other hand, transduction of a dominant-negative mutant survivin gene into radioresistant PANC-1 cells augmented radiosensitivity. Further, the radiation-induced increase in caspase-3 activity was enhanced, indicating that survivin function was truly inhibited. These results indicate that survivin expression directly down-regulates radiosensitivity. (author)

  10. TSA-induced JMJD2B downregulation is associated with cyclin B1-dependent survivin degradation and apoptosis in LNCap cells.

    Science.gov (United States)

    Zhu, Shan; Li, Yueyang; Zhao, Li; Hou, Pingfu; Shangguan, Chenyan; Yao, Ruosi; Zhang, Weina; Zhang, Yu; Tan, Jiang; Huang, Baiqu; Lu, Jun

    2012-07-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to induce apoptosis of cancer cells, and a significant number of genes have been identified as potential effectors responsible for HDAC inhibitor-induced apoptosis. However, the mechanistic actions of these HDAC inhibitors in this process remain largely undefined. We here report that the treatment of LNCap prostate cancer cells with HDAC inhibitor trichostatin A (TSA) resulted in downregulation of the Jumonji domain-containing protein 2B (JMJD2B). We also found that the TSA-mediated decrease in survivin expression in LNCap cells was partly attributable to downregulation of JMJD2B expression. This effect was attributable to the promoted degradation of survivin protein through inhibition of Cyclin B1/Cdc2 complex-mediated survivin Thr34 phosphorylation. Consequently, knockdown of JMJD2B enhanced TSA-induced apoptosis by regulating the Cyclin B1-dependent survivin degradation to potentiate the apoptosis pathways. Copyright © 2012 Wiley Periodicals, Inc.

  11. A novel small molecule FL118 that selectively inhibits survivin, Mcl-1, XIAP and cIAP2 in a p53-independent manner, shows superior antitumor activity.

    Directory of Open Access Journals (Sweden)

    Xiang Ling

    Full Text Available Drug/radiation resistance to treatment and tumor relapse are major obstacles in identifying a cure for cancer. Development of novel agents that address these challenges would therefore be of the upmost importance in the fight against cancer. In this regard, studies show that the antiapoptotic protein survivin is a central molecule involved in both hurdles. Using cancer cell-based survivin-reporter systems (US 7,569,221 B2 via high throughput screening (HTS of compound libraries, followed by in vitro and in vivo analyses of HTS-derived hit-lead compounds, we identified a novel anticancer compound (designated FL118. FL118 shows structural similarity to irinotecan. However, while the inhibition of DNA topoisomerase 1 activity by FL118 was no better than the active form of irinotecan, SN-38 at 1 µM, FL118 effectively inhibited cancer cell growth at less than nM levels in a p53 status-independent manner. Moreover, FL118 selectively inhibited survivin promoter activity and gene expression also in a p53 status-independent manner. Although the survivin promoter-reporter system was used for the identification of FL118, our studies revealed that FL118 not only inhibits survivin expression but also selectively and independently inhibits three additional cancer-associated survival genes (Mcl-1, XIAP and cIAP2 in a p53 status-independent manner, while showing no inhibitory effects on control genes. Genetic silencing or overexpression of FL118 targets demonstrated a role for these targets in FL118's effects. Follow-up in vivo studies revealed that FL118 exhibits superior antitumor efficacy in human tumor xenograft models in comparison with irinotecan, topotecan, doxorubicin, 5-FU, gemcitabine, docetaxel, oxaliplatin, cytoxan and cisplatin, and a majority of mice treated with FL118 showed tumor regression with a weekly × 4 schedule. FL118 induced favorable body-weight-loss profiles (temporary and reversible and was able to eliminate large tumors. Together

  12. Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection

    Science.gov (United States)

    Yang, Jiang-Yan; Widmann, Christian

    2013-01-01

    Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response. PMID:23826368

  13. [X-linked inhibitor of apoptosis protein (XIAP) and Survivin suppression on human pancreatic cancer cells Panc-1 proliferation and chemosensitivety].

    Science.gov (United States)

    Zai, Hong-yan; Yi, Xiao-ping; Li, Yi-xiong; You, Xue-ying; Cao, Li-ping; Liu, Hui

    2013-04-18

    To investigate the effect on cell proliferation and chemosensitivity of human pancreatic cancer cells Panc-1 after X-linked inhibitor of apoptosis protein (XIAP) and Survivin are inhibited simultaneously, and to compare it with the separate gene suppression strategy by which expression of XIAP or Survivin is inhibited respectively. Panc-1 (Panc-1-X, Panc-1-S and Panc-1-XS) in which expression of XIAP and/or Survivin was inhibited, was established by using XIAP-shRNA lentiviral and Survivin-shRNA lentiviral we had built. The expressions of XIAP and Survivin mRNA and protein were evaluated by Real-time PCR and Semi-quantitatively Western blot analysis; cell proliferation was investigated by cell counting and colony formation assay; cell apoptosis was investigated by Caspase-3/7 activity assay kit and flow cytometry; gemcitabine (Gem) chemosensitivity was investigated by MTT assay. The pancreatic cell line Panc-1 in which the expression of XIAP and/or Survivin was stablely inhibited was successfully established. The cell proliferation of Panc-1-XS cells decreased significantly. The colony formation rate of Panc-1-XS cells (10.12%± 1.33%), was significantly lower than that of Panc-1-XncSnc cells (96.61% ± 7.89%) and Panc-1 cells (100.28% ± 8.97%) respectively (PPanc-1-XS cells (15.02 ± 0.57) was significantly higher than that of Panc-1 cells and Panc-1-XncSnc cells (8.87 ± 0.19 and 9.05 ± 0.23, respectively; PPanc-1-XS cells (24.09% ± 2.75%) was significantly higher than that of Panc-1-XncSnc cells and Panc-1 cells (12.09% ± 1.97% and 12.06% ± 1.22%, respectively; PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-XncSnc cells [(2.18 ± 0.13) mg/L] and Panc-1 cells [(2.13 ± 0.18) mg/L, PPanc-1-XS cells [(0.47 ± 0.04) mg/L] was significantly lower than that of Panc-1-X cells [(0.76 ± 0.07) mg/L] and Panc-1-S cells [(0.87 ± 0.09) mg/L, PPanc-1 cells was significantly suppressed and the Gem chemosensitivity was significantly

  14. Oxidative stress specifically downregulates survivin to promote breast tumour formation.

    Science.gov (United States)

    Pervin, S; Tran, L; Urman, R; Braga, M; Parveen, M; Li, S A; Chaudhuri, G; Singh, R

    2013-03-05

    Breast cancer, a heterogeneous disease has been broadly classified into oestrogen receptor positive (ER+) or oestrogen receptor negative (ER-) tumour types. Each of these tumours is dependent on specific signalling pathways for their progression. While high levels of survivin, an anti-apoptotic protein, increases aggressive behaviour in ER- breast tumours, oxidative stress (OS) promotes the progression of ER+ breast tumours. Mechanisms and molecular targets by which OS promotes tumourigenesis remain poorly understood. DETA-NONOate, a nitric oxide (NO)-donor induces OS in breast cancer cell lines by early re-localisation and downregulation of cellular survivin. Using in vivo models of HMLE(HRAS) xenografts and E2-induced breast tumours in ACI rats, we demonstrate that high OS downregulates survivin during initiation of tumourigenesis. Overexpression of survivin in HMLE(HRAS) cells led to a significant delay in tumour initiation and tumour volume in nude mice. This inverse relationship between survivin and OS was also observed in ER+ human breast tumours. We also demonstrate an upregulation of NADPH oxidase-1 (NOX1) and its activating protein p67, which are novel markers of OS in E2-induced tumours in ACI rats and as well as in ER+ human breast tumours. Our data, therefore, suggest that downregulation of survivin could be an important early event by which OS initiates breast tumour formation.

  15. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sara Carpi

    Full Text Available Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes. MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  16. Survivin Expression in Colorectal Adenocarcinoma Using Tissue Micro array

    International Nuclear Information System (INIS)

    Abd El-Hamed, A.

    2005-01-01

    The additional prognostic information closely related to tumor cell biology is essential for the identification of patients with poor prognosis. Survivin, an identified inhibitor of apoptosis, is unique for its expression in human malignancies but not in normal adult cells. This study examined the expression, and potential prognostic value of survivin in colorectal adenocarcinoma (CRC) on tissue micro array (TMA) sections. Analysis of large numbers of tissue samples, improved tissue salvage, cost reduction, ease of interpretation, and significant time saving were realized by using the arrays. Material and Methods: Two-hundred and eighty cases of colorectal adenocarcinoma were arrayed. Immunohistochemical stains of TMA sections were performed for survivin, bcl-2, and p53. Cases were followed up for 5 years. Survivin was detected in 147 of 230 cases (63.9%). No expression of survivin was observed in normal tissues. There was no correlation between survivin immunoreactivity and age, sex, tumor site, tumor size, histopathologic subtype, tumor grade and clinical stage(ρ> 0.05). Prevalence of survivin expression was significantly higher in bcl-2 positive than in bcl-2 negative cases (88.1 % versus 42.1 %, (ρ<0.0001), but was not associated with p53 ((ρ=0.09). The 5-year disease free survival (DFS) for patients with survivin positive colorectal adenocarcinoma was significantly lower than that for patients with survivin negative tumors (46% versus 68.7%, (ρ<0.001). Survivin expression in colorectal adenocarcinoma provides an important prognostic parameter and targeted antagonists of survivin may be beneficial as apoptosis-based therapy for colon cancer

  17. Double targeting of Survivin and XIAP radiosensitizes 3D grown human colorectal tumor cells and decreases migration

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Petraki, Chrysi; Reichert, Sebastian; Cordes, Nils; Rödel, Claus; Rödel, Franz

    2013-01-01

    Background and purpose: In the present study, we aimed to investigate the effect of single and double knockdown of the inhibitor of apoptosis proteins (IAP) Survivin and X-linked IAP (XIAP) on three-dimensional (3D) clonogenic survival, migration capacity and underlying signaling pathways. Materials and methods: Colorectal cancer cell lines (HCT-15, SW48, SW480, SW620) were subjected to siRNA-mediated single or Survivin/XIAP double knockdown followed by 3D colony forming assays, cell cycle analysis, Caspase activity assays, migration assays, matrigel transmigration assays and Western blotting (Survivin, XIAP, Focal adhesion kinase (FAK), p-FAK Y397, Akt1, p-Akt1 S473, Extracellular signal-regulated kinase (ERK1/2), p-ERK1/2 T202/Y204, Glycogen synthase kinase (GSK)3β, p-GSK3β S9, nuclear factor (NF)-κB p65). Results: While basal cell survival was altered cell line-dependently, Survivin or XIAP single and Survivin/XIAP double knockdown enhanced cellular radiosensitivity of all tested cancer cell lines grown in 3D. Particularly double knockdown conditions revealed accumulation of cells in G2/M, increased subG1 fraction, elevated Caspase 3/7 activity, and reduced migration. Intracellular signaling showed dephosphorylation of FAK and Akt1 upon Survivin and/or Survivin/XIAP silencing. Conclusions: Our results strengthen the notion of Survivin and XIAP to act as radiation resistance factors and further indicate that these apoptosis-regulating proteins are also functioning in cell cycling and cell migration

  18. Craniopharyngioma: Survivin expression and ultrastructure

    Science.gov (United States)

    ZHU, JIANG; YOU, CHAO

    2015-01-01

    The aim of the present study was to investigate the significance of survivin protein expression levels in craniopharyngioma. Tumor samples and clinical data were obtained from 50 patients with craniopharyngioma who were admitted to the West China Hospital of Sichuan University (Chengdu, China). The morphology of the craniopharyngioma samples was observed using optical and electron microscopes, and survivin expression was investigated in the samples by immunohistochemical analysis. The immunohistochemical results revealed survivin expression in all of the craniopharyngioma samples, but not in the healthy brain tissue samples. It was identified that survivin was expressed at a higher level in cases of the adamantinomatous type compared with those of the squamous-papillary type, in male patients compared with female patients, in children compared with adults and in recurrent cases compared with non-recurrent cases. Furthermore, no significant difference was detected in survivin expression levels among the tumors of different subtypes and different disease stages. The results of the present study indicate that survivin is significant in the development of craniopharyngioma, and that survivin protein expression levels are a meaningful indicator for assessing craniopharyngioma recurrence. PMID:25435936

  19. The Survivin −31 Snp in Human Colorectal Cancer Correlates with Survivin Splice Variant Expression and Improved Overall Survival

    Directory of Open Access Journals (Sweden)

    Anna G. Antonacopoulou

    2010-01-01

    Full Text Available Background: Survivin is involved in the regulation of cell division and survival, two key processes in cancer. The majority of studies on survivin in colorectal cancer (CRC have focused on protein expression and less is known about the expression of survivin splicing variants or survivin gene polymorphisms in CRC. In the present study, the mRNA levels of the five known isoforms of survivin as well as survivin protein were assessed in matched normal and neoplastic colorectal tissue. Moreover, the 9386C/T and −31G/C polymorphisms were investigated.

  20. Survivin - an inhibitor of apoptosis and a new therapeutic target in cancer

    International Nuclear Information System (INIS)

    Pizem, J.; Coer, A.

    2003-01-01

    Survivin is a unique member of the inhibitor of apoptosis (IAP) protein family. It inhibits apoptosis by interfering with post-mitochondrial events during apoptosis, thus blocking activation of caspases. The expression of survivin is among the most tumour specific of all human genes. It is overexpressed in most human cancers but is not detected in most normal tissues. Some molecular mechanisms of survivin upregulation in cancer have been elucidated, including loss of the wild-type p53. Tumours that overexpress survivin generally bear a worse prognosis and are associated with resistance to therapy. Its differential expression in cancer versus normal tissues makes survivin detection a useful tool in cancer diagnostics and a promising therapeutic target. Survivin targeting has resulted in increased spontaneous and induced apoptosis and inhibition of tumour growth. Some anticancer drugs currently introduced into clinical practice might well act by inactivating survivin. (author)

  1. Rebamipide inhibits gastric cancer growth by targeting survivin and Aurora-B

    International Nuclear Information System (INIS)

    Tarnawski, A.; Pai, R.; Chiou, S.-K.; Chai, J.; Chu, E.C.

    2005-01-01

    Rebamipide accelerates healing of gastric ulcers and gastritis but its actions on gastric cancer are not known. Survivin, an anti-apoptosis protein, is overexpressed in stem, progenitor, and cancer cells. In gastric cancer, increased and sustained survivin expression provides survival advantage and facilitates tumor progression and resistance to anti-cancer drugs. Aurora-B kinase is essential for chromosome alignment and mitosis progression but surprisingly its role in gastric cancer has not been explored. We examined in human gastric cancer AGS cells: (1) survivin expression, (2) localization of survivin and Aurora-B (3) cell proliferation, and (4) effects of specific survivin siRNA and/or rebamipide (free radical scavenging drug) on survivin and Aurora-B expression and cell proliferation. Survivin and Aurora-B are strongly expressed in human AGS gastric cancer cells and co-localize during mitosis. Survivin siRNA significantly reduces AGS cell viability. Rebamipide significantly downregulates in AGS cell survivin expression, its association with Aurora-B and cell proliferation. Rebamipide-induced downregulation of survivin is at the transcription level and does not involve ubiquitin-proteasome pathway

  2. Analysis on the relation of pterygium with VEGF,SDF-1,Ki-67,PCNA and Survivin

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-12-01

    Full Text Available AIM:To analyze and study the relation of pterygium with vascular endothelial growth factor(VEGF,stroma cell-derived factor 1(SDF-1,tumor proliferating antigen(Ki-67,proliferating cell nuclear antigen(PCNAand survivin. METHODS:Seventy-nine patients(106 eyeswith pterygium from January 2013 to May 2015 in our hospital were selected as observation group. Seventy-nine persons with normal conjunctiva during the same period were selected as control group. Then the number of positive cells and staining intensity classification of the two groups for VEGF,SDF-1,Ki-67,PCNA and survivin were compared,and the detection results of patients with different gender,stages and types were compared too. Then the relation between pterygium and those indexes were analyzed by the Logistic analysis. RESULTS:The number of positive cells and staining intensity classification of observation group for VEGF,SDF-1,Ki-67,PCNA and survivin were all higher than those of control group,and the detection results of patients with different stages and types had certain differences too(all PP>0.05. All those indexes had close relation to pterygium by the Logistic analysis. CONCLUSION:The expression of VEGF,SDF-1,Ki-67,PCNA and survivin in tissue of patients with pterygium all show abnormal state,and those indexes all have close relation to pterygium.

  3. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin.

    Science.gov (United States)

    Stache, Christina; Bils, Christiane; Fahlbusch, Rudolf; Flitsch, Jörg; Buchfelder, Michael; Stefanits, Harald; Czech, Thomas; Gaipl, Udo; Frey, Benjamin; Buslei, Rolf; Hölsken, Annett

    2016-12-01

    OBJECTIVE In this study, the authors investigated the underlying mechanisms responsible for high tumor recurrence rates of adamantinomatous craniopharyngioma (ACP) after radiotherapy and developed new targeted treatment protocols to minimize recurrence. ACPs are characterized by the activation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), known to mediate radioresistance in various tumor entities. The impact of tyrosine kinase inhibitors (TKIs) gefitinib or CUDC-101 on radiation-induced cell death and associated regulation of survivin gene expression was evaluated. METHODS The hypothesis that activated EGFR promotes radioresistance in ACP was investigated in vitro using human primary cell cultures of ACP (n = 10). The effects of radiation (12 Gy) and combined radiochemotherapy on radiosensitivity were assessed via cell death analysis using flow cytometry. Changes in target gene expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Survivin, identified in qRT-PCR to be involved in radioresistance of ACP, was manipulated by small interfering RNA (siRNA), followed by proliferation and vitality assays to further clarify its role in ACP biology. Immunohistochemically, survivin expression was assessed in patient tumors used for primary cell cultures. RESULTS In primary human ACP cultures, activation of EGFR resulted in significantly reduced cell death levels after radiotherapy. Treatment with TKIs alone and in combination with radiotherapy increased cell death response remarkably, assessed by flow cytometry. CUDC-101 was significantly more effective than gefitinib. The authors identified regulation of survivin expression after therapeutic intervention as the underlying molecular mechanism of radioresistance in ACP. EGFR activation promoting ACP cell survival and proliferation in vitro is consistent with enhanced survivin gene expression shown by qRT-PCR. TKI treatment, as well as the combination with

  4. Serum Survivin Levels and Outcome of Chemotherapy in Patients with Malignant Mesothelioma

    Directory of Open Access Journals (Sweden)

    Katja Goričar

    2015-01-01

    Full Text Available Background. Survivin is an inhibitor of apoptosis protein involved in the regulation of cell proliferation that could be used as a marker for cancer diagnosis or prognosis. Our aim was to evaluate whether serum survivin levels influence the outcome of cisplatin-based chemotherapy in patients with malignant mesothelioma (MM. Methods. Serum survivin levels were determined using human survivin enzyme-linked immunosorbent assay in 78 MM patients before chemotherapy, after chemotherapy, and at disease progression. The influence on tumor response and survival was evaluated using nonparametric tests and Cox regression. Results. A median serum survivin level at diagnosis was 4.1 (0–217.5 pg/mL. Patients with a progressive disease had significantly higher survivin levels before chemotherapy (p = 0.041. A median serum survivin level after chemotherapy was 73.1 (0–346.2 pg/mL. If survivin levels increased after chemotherapy, patients had, conversely, better response (p = 0.001, OR = 5.40, 95% CI = 1.98–14.72. Unexpectedly, patients with increased survivin levels after chemotherapy also had longer progression-free (p < 0.001, HR = 0.33, 95% CI = 0.20–0.57 and overall survival (p = 0.001, HR = 0.29, 95% CI = 0.14–0.58. Conclusions. These results suggest that serum survivin levels before and during chemotherapy could serve as a biomarker predicting MM treatment response.

  5. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  6. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression

    Science.gov (United States)

    Harashima, Nanae; Takenaga, Keizo; Akimoto, Miho; Harada, Mamoru

    2017-01-01

    Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy. PMID:28476028

  7. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    Full Text Available Abstract Background Survivin is a dual function protein. It inhibits the apoptosis of cells by inhibiting caspases, and also promotes cell growth by stabilizing microtubules during mitosis. Over-expression of survivin has been demonstrated to induce drug-resistance to various chemo-therapeutic agents such as cisplatin (DNA damaging agent and paclitaxel (microtubule stabilizer in cancers. However, survivin-induced resistance to microtubule de-stabilizers such as Vinca alkaloids and Combretastatin A-4 (CA-4-related compounds were seldom demonstrated in the past. Furthermore, the question remains as to whether survivin plays a dominant role in processing cytokinesis or inhibiting caspases activity in cells treated with anti-mitotic compounds. The purpose of this study is to evaluate the effect of survivin on the resistance and susceptibility of human cancer cells to microtubule de-stabilizer-induced cell death. Results BPR0L075 is a CA-4 analog that induces microtubule de-polymerization and subsequent caspase-dependent apoptosis. To study the relationship between the expression of survivin and the resistance to microtubule de-stabilizers, a KB-derived BPR0L075-resistant cancer cell line, KB-L30, was generated for this study. Here, we found that survivin was over-expressed in the KB-L30 cells. Down-regulation of survivin by siRNA induced hyper-sensitivity to BPR0L075 in KB cells and partially re-stored sensitivity to BPR0L075 in KB-L30 cells. Western blot analysis revealed that down-regulation of survivin induced microtubule de-stabilization in both KB and KB-L30 cells. However, the same treatment did not enhance the down-stream caspase-3/-7 activities in BPR0L075-treated KB cells. Translocation of a caspase-independent apoptosis-related molecule, apoptosis-inducing factor (AIF, from cytoplasm to the nucleus was observed in survivin-targeted KB cells under BPR0L075 treatment. Conclusion In this study, survivin plays an important role in the

  8. High survivin expression as a risk factor in patients with anal carcinoma treated with concurrent chemoradiotherapy

    International Nuclear Information System (INIS)

    Fraunholz, Ingeborg; Rödel, Claus; Distel, Luitpold; Rave-Fränk, Marget; Kohler, Daniela; Falk, Stefan; Rödel, Franz

    2012-01-01

    To investigate the prognostic value of survivin expression in pretreatment specimens from patients with anal cancer treated with concurrent 5-FU and mitomycin C-based chemoradiation (CRT). Immunohistochemical staining for survivin was performed in pretreatment biopsies of 62 patients with anal carcinoma. Survivin expression was correlated with clinical and histopathological characteristics as well as local failure free- (LFFS), distant metastases free- (DMFS), cancer specific- (CSS), and overall survival (OS). Survivin staining intensity was weak in 10%, intermediate in 48% and intense in 42% of the patients. No association between survivin expression and clinicopathologic factors (tumor stage, age and HIV status) could be shown. In univariate analysis, the level of survivin staining was significantly correlated with DMFS (low survivin vs. high survivin: 94% vs. 74%, p = 0.04). T-stage, N-stage and the tumor grading were significantly associated with OS and CSS and with DMFS and LFFS, respectively. In multivariate analysis, survivin was confirmed as independent prognostic parameter for DMFS (RR, 0.04; p = 0.02) and for OS (RR, 0.27; p = 0.04). Our results demonstrated that the level of pretreatment survivin is correlated with the clinical outcome in patients with anal carcinoma treated with concurrent CRT. Further studies are warranted to elucidate the complex role of survivin for the oncologic treatment and to exploit the protein as a therapeutic target in combined modality treatment of anal cancer

  9. Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues.

    Science.gov (United States)

    Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J

    2016-05-01

    The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p0.05). BRCA1 expression was lower in EOC than BET (pepithelial ovarian cancer.

  10. Radiosensitization by inhibiting survivin in human hepatoma HepG2 cells to high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Wu Qingfeng; Li Ping; Gong Li; Hao Jifang; Dai Zhongying; Matsumoto, Yoshitaka; Furusawa, Yoshiya

    2011-01-01

    In this study, whether survivin plays a direct role in mediating high-linear energy transfer (LET) radiation resistance in human hepatoma cells was investigated. Small interfering RNA (siRNA) targeting survivin mRNA was designed and transfected into human hepatoma HepG2 cells. Real-time polymerase chain reaction (PCR) and western blotting analyses revealed that survivin expression in HepG2 cells decreased at both transcriptional and post-transcriptional levels after treatment with survivin-specific siRNA. Caspase-3 activity was determined with a microplate reader assay as well. Following exposure to high-LET carbon ions, a reduced clonogenic survival effect, increased apoptotic rates and caspase-3 activity were observed in the cells treated with the siRNA compared to those untreated with the siRNA. The cells with transfection of the survivin-specific siRNA also increased the level of G 2 /M arrest. These results suggest that survivin definitely plays a role in mediating the resistance of HepG2 cells to high-LET radiation and depressing survivin expression might be useful to improve the therapeutic efficacy of heavy ions for radioresistant solid tumors. (author)

  11. Radiation induced expression of survivin in Ewing sarcoma cell-lines

    International Nuclear Information System (INIS)

    Sheikh-Mounessi, F.; Willich, N.; Greve, B.

    2009-01-01

    Full text: Introduction: Survivin belongs to the Inhibitor of Apoptosis Protein Family (IAP), is a protein of 16.5 kD and active as a homodimer. It is overexpressed in nearly all human tumors and has a vital function in cell division and apoptotic processes. Beside its role as a relevant prognostic and predictive factor it was described to be a molecular target to improve effectiveness of radiotherapy. We investigated the radiation induced survivin expression in Ewing sarcoma cell-lines. Methods: Ewing sarcoma cells were either irradiated with 10 Gy X-ray and harvested at different time points (0, 2, 4, 6, 10 and 24 h) or irradiated with different doses (0, 2, 5 and 10 Gy) and harvested 24 h later. Protein and mRNA expression was analysed by Westernblot or Real-Time PCR. Results: Directly after irradiation with 10 Gy X-ray survivin mRNA expression was increased in relation to the reference GAPDH. Protein expression was increased in a time dependent manner and reached a maximum after 24h. Three of four investigated cell-lines showed a significant dose dependent increase of survivin protein concentration 24h after irradiation. The same three cell-lines showed a LD50 of >30 Gy. The line with the lowest dose dependent survivin induction was investigated to be most radiosensitive (LD50 = 24 Gy). Discussion: Ewing sarcoma is a childhood tumor with relatively poor prognosis. This tumor often shows significant therapeutic resistance to chemo- and/or radiotherapy. It would be of high interest to find new therapeutic approaches for its treatment. We found a remarkable overexpression of survivin in untreated Ewing sarcoma and a time and dose dependent increase of survivin protein concentration after irradiation with X-ray. The cell-line with the lowest survivin induction showed the highest radiosensitivity. In conclusion, our results show that survivin is an inducible radioresistance factor in Ewing sarcoma. This may open new therapeutic options to treat this aggressive

  12. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  13. Sticky siRNAs targeting survivin and cyclin B1 exert an antitumoral effect on melanoma subcutaneous xenografts and lung metastases

    International Nuclear Information System (INIS)

    Kedinger, Valerie; Erbacher, Patrick; Bolcato-Bellemin, Anne-Laure; Meulle, Aline; Zounib, Omar; Bonnet, Marie-Elise; Gossart, Jean-Baptiste; Benoit, Elodie; Messmer, Melanie; Shankaranarayanan, Pattabhiraman; Behr, Jean-Paul

    2013-01-01

    Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for survival and/or progression of melanomas by means of RNA interference. Survivin and cyclin B1, both involved in cell survival and proliferation and frequently deregulated in human cancers, are good candidate target genes for siRNA mediated therapeutics. We used our newly developed sticky siRNA-based technology delivered with linear polyethyleneimine (PEI) to inhibit the expression of survivin and cyclin B1 both in vitro and in vivo, and addressed the effect of this inhibition on B16-F10 murine melanoma tumor development. We confirm that survivin and cyclin B1 downregulation through a RNA interference mechanism induces a blockage of the cell cycle as well as impaired proliferation of B16-F10 cells in vitro. Most importantly, PEI-mediated systemic delivery of sticky siRNAs against survivin and cyclin B1 efficiently blocks growth of established subcutaneaous B16-F10 tumors as well as formation and dissemination of melanoma lung metastases. In addition, we highlight that inhibition of survivin expression increases the effect of doxorubicin on lung B16-F10 metastasis growth inhibition. PEI-mediated delivery of sticky siRNAs targeting genes involved in tumor progression such as survivin and cyclin B1, either alone or in combination with chemotherapeutic drugs, represents a promising strategy for melanoma treatment

  14. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  15. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  16. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma

    International Nuclear Information System (INIS)

    Greve, B.; Sheikh-Mounessi, F.; Ernst, I.; Eich, H.T.; Kemper, B.; Goette, M.

    2012-01-01

    Background and purpose: Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. Material and methods: An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Results: Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Conclusion: Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma. (orig.)

  17. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma.

    Science.gov (United States)

    Greve, B; Sheikh-Mounessi, F; Kemper, B; Ernst, I; Götte, M; Eich, H T

    2012-11-01

    Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma.

  18. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Yenkejeh, R A; Sam, M R; Esmaeillou, M

    2017-04-01

    Abnormal activation of the Wnt/β-catenin signaling pathway increases survivin expression that is involved in hepatocarcinogenesis. Therefore, downregulation of survivin may provide an attractive strategy for treatment of hepatocellular carcinoma. In this regard, little is known about the anticancer effects of prodigiosin isolated from cell wall of Serratia marcescens on the survivin expression and induction of apoptosis in hepatocellular carcinoma cells. Human hepatocellular carcinoma (HepG2) cells were treated with 100-, 200-, 400-, and 600-nM prodigiosin after which morphology of cells, cell number, growth inhibition, survivin expression, caspase-3 activation, and apoptotic rate were evaluated by inverted microscope, hemocytometer, MTT assay, RT-PCR, fluorometric immunosorbent enzyme assay, and flow cytometric analysis, respectively. Prodigiosin changed morphology of cells to apoptotic forms and disrupted cell connections. This compound significantly increased growth inhibition rate and decreased metabolic activity of HepG2 cells in a dose- and time-dependent manner. After 24-, 48-, and 72-h treatments with prodigiosin at concentrations ranging from 100 nM to 600 nM, growth inhibition rates were measured to be 1.5-10%, 24-47.5%, and 55.5-72.5%, respectively, compared to untreated cells. At the same conditions, metabolic activities were measured to be 91-83%, 74-53%, and 47-31% for indicated concentrations of prodigiosin, respectively, compared to untreated cells. We also found that treatment of HepG2 cells for 48 h decreased significantly cell number and survivin expression and increased caspase-3 activation in a dose-dependent manner. Specifically, treatment with 600-nM prodigiosin resulted in 77% decrease in cell number, 88.5% decrease in survivin messenger RNA level, and 330% increase in caspase-3 activation level compared to untreated cells. An increase in the number of apoptotic cells (late apoptosis) ranging from 36.9% to 97.4% was observed with increasing

  19. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    International Nuclear Information System (INIS)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufi, Silvia; Torres-Garcia, Violeta Zenobia; Sauri-Nadal, Tamara; Barco, Sonia Del; Lopez-Bonet, Eugeni; Brunet, Joan; Martin-Castillo, Begona; Menendez, Javier A.

    2011-01-01

    Highlights: → Intrinsic trastuzumab resistance occurs in ∼70% of metastatic HER2 + breast carcinomas (BC). → Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. → HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. → Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. → Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC 50 values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed ∼4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated ∼10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely suppressed in JIMT-1 cells. Our current findings may

  20. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    Energy Technology Data Exchange (ETDEWEB)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufi, Silvia; Torres-Garcia, Violeta Zenobia [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Sauri-Nadal, Tamara; Barco, Sonia Del [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Lopez-Bonet, Eugeni [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Department of Anatomical Pathology, Dr. Josep Trueta University Hospital, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Brunet, Joan [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Martin-Castillo, Begona [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Unit of Clinical Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Menendez, Javier A., E-mail: jmenendez@idibgi.org [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain)

    2011-04-08

    Highlights: {yields} Intrinsic trastuzumab resistance occurs in {approx}70% of metastatic HER2 + breast carcinomas (BC). {yields} Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. {yields} HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. {yields} Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. {yields} Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC{sub 50} values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed {approx}4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated {approx}10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely

  1. Down-regulation of survivin by oxaliplatin diminishes radioresistance of head and neck squamous carcinoma cells

    International Nuclear Information System (INIS)

    Khan, Zakir; Khan, Noor; Tiwari, Ram P.; Patro, Ishan K.; Prasad, G.B.K.S.; Bisen, Prakash S.

    2010-01-01

    Background: Oxaliplatin is integrated in treatment strategies against a variety of cancers including radiation protocols. Herein, as a new strategy we tested feasibility and rationale of oxaliplatin in combination with radiation to control proliferation of head and neck squamous cell carcinoma (HNSCC) cells and discussed survivin-related signaling and apoptosis induction. Methods: Cytotoxicity and apoptosis induced by radiation and/or oxaliplatin were examined in relation to survivin status using two HNSCC cell lines viz., Cal27 and NT8e, and one normal 293-cell line. Survivin gene knockdown by siRNA was also tested in relevance to oxaliplatin-mediated radiosensitization effects. Results: Survivin plays a critical role in mediating radiation-resistance in part through suppression of apoptosis via a caspase-dependent mechanism. Oxaliplatin treatment significantly decreased expression of survivin in cancer cells within 24-72 h. Apoptotic cells and caspase-3 activity were increased parallely with decrease in cell viability, if irradiated during this sensitive period. The cytotoxicity of oxaliplatin and radiation combination was greater than additive. Survivin gene knockdown experiments have demonstrated the role of survivin in radiosensitization of cancer cells mediated by oxaliplatin. Conclusions: Higher expression of survivin is a critical factor for radioresistance in HNSCC cell lines. Pre-treatment of cancer cells with oxaliplatin significantly increased the radiosensitivity through induction of apoptosis by potently inhibiting survivin.

  2. Localization and upregulation of survivin in cancer health disparities: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Khan S

    2015-07-01

    Full Text Available Salma Khan,1,2 Heather Ferguson Bennit,1,2 Malyn May Asuncion Valenzuela,1,2 David Turay,1,3 Carlos J Diaz Osterman,1,2 Ron B Moyron,1,2 Grace E Esebanmen,1,2 Arjun Ashok,1,2 Nathan R Wall1,2 1Department of Biochemistry, 2Center for Health Disparities and Molecular Medicine, 3Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA Abstract: Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations. Keywords: survivin, cancer, exosomes, health disparity

  3. Immunohistochemical assessment of Survivin and Bcl3 expression as potential biomarkers for NF-κB activation in the Barrett metaplasia-dysplasia-adenocarcinoma sequence.

    Science.gov (United States)

    Puccio, Ignazio; Khan, Saif; Butt, Adil; Graham, David; Sehgal, Vinay; Patel, Dominic; Novelli, Marco; Lovat, Laurence B; Rodriguez-Justo, Manuel; Hamoudi, Rifat A

    2018-02-01

    Non-dysplastic Barrett's oesophagus (NDBE) occurs as a consequence of an inflammatory response triggered through prolonged gastro-oesophageal reflux and it may precede the development of oesophageal adenocarcinoma. NF-κB activation as a result of the inflammatory response has been shown in NDBE, but the possible mechanism involved in the process is unknown. The aim of this study was to assess, using immunohistochemistry, Survivin and Bcl3 expression as potential biomarkers for NF-κB activation along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Survivin is an NF-κB-inducible anti-apoptotic protein, and Bcl3 is a negative regulator of NF-κB. There was progressive upregulation of Survivin expression along the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. Bcl3 expression was upregulated in non-dysplastic Barrett's oesophagus, low-grade, high-grade dysplasia and oesophageal adenocarcinoma when compared to squamous group. The study shows the differential expression of Bcl3 between the squamous and Barrett's stage, suggesting that Bcl3 could be a surrogate marker for early event involving constitutive NF-κB activation. In addition, the study suggests that NF-κB activation may infer resistance to apoptosis through the expression of anti-apoptotic genes such as Survivin, which showed progressive increase in expression throughout the oesophageal metaplasia-dysplasia-adenocarcinoma sequence. This ability to avoid apoptosis may underlie the persistence and malignant predisposition of Barrett's metaplasia. © 2018 The Authors. International Journal of Experimental Pathology © 2018 International Journal of Experimental Pathology.

  4. Expression and function of survivin in canine osteosarcoma.

    Science.gov (United States)

    Shoeneman, Jenette K; Ehrhart, E J; Eickhoff, Jens C; Charles, J B; Powers, Barbara E; Thamm, Douglas H

    2012-01-01

    Osteosarcoma has a high mortality rate and remains in need of more effective therapeutic approaches. Survivin is an inhibitor of apoptosis family member protein that blocks apoptosis and drives proliferation in human cancer cells where it is commonly elevated. In this study, we illustrate the superiority of a canine osteosarcoma model as a translational tool for evaluating survivin-directed therapies, owing to the striking similarities in gross and microscopic appearance, biologic behavior, gene expression, and signaling pathway alterations. Elevated survivin expression in primary canine osteosarcoma tissue correlated with increased histologic grade and mitotic index and a decreased disease-free interval (DFI). Survivin attenuation in canine osteosarcoma cells inhibited cell-cycle progression, increased apoptosis, mitotic arrest, and chemosensitivity, and cooperated with chemotherapy to significantly improve in vivo tumor control. Our findings illustrate the utility of a canine system to more accurately model human osteosarcoma and strongly suggest that survivin-directed therapies might be highly effective in its treatment. ©2011 AACR.

  5. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy

    Directory of Open Access Journals (Sweden)

    Kanwar Jagat R

    2010-10-01

    Full Text Available Abstract Background Survivin is a member of the inhibitor-of-apoptosis (IAP family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture. Results A dominant-negative survivin (C84A protein fused to the cell penetrating peptide poly-arginine (R9 was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-α via by a mechanism involving activation of caspase-8. Conclusions The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-α, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-α therapy warrants consideration as an approach to cancer therapy.

  6. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Science.gov (United States)

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  7. Prognostic value and targeted inhibition of survivin expression in esophageal adenocarcinoma and cancer-adjacent squamous epithelium.

    Directory of Open Access Journals (Sweden)

    Usha Malhotra

    Full Text Available Survivin is an inhibitor of apoptosis and its over expression is associated with poor prognosis in several malignancies. While several studies have analyzed survivin expression in esophageal squamous cell carcinoma, few have focused on esophageal adenocarcinoma (EAC and/or cancer-adjacent squamous epithelium (CASE. The purpose of this study was 1 to determine the degree of survivin up regulation in samples of EAC and CASE, 2 to evaluate if survivin expression in EAC and CASE correlates with recurrence and/or death, and 3 to examine the effect of survivin inhibition on apoptosis in EAC cells.Fresh frozen samples of EAC and CASE from the same patient were used for qRT-PCR and Western blot analysis, and formalin-fixed, paraffin-embedded tissue was used for immunohistochemistry. EAC cell lines, OE19 and OE33, were transfected with small interfering RNAs (siRNAs to knockdown survivin expression. This was confirmed by qRT-PCR for survivin expression and Western blot analysis of cleaved PARP, cleaved caspase 3 and survivin. Survivin expression data was correlated with clinical outcome.Survivin expression was significantly higher in EAC tumor samples compared to the CASE from the same patient. Patients with high expression of survivin in EAC tumor had an increased risk of death. Survivin expression was also noted in CASE and correlated with increased risk of distant recurrence. Cell line evaluation demonstrated that inhibition of survivin resulted in an increase in apoptosis.Higher expression of survivin in tumor tissue was associated with increased risk of death; while survivin expression in CASE was a superior predictor of recurrence. Inhibition of survivin in EAC cell lines further showed increased apoptosis, supporting the potential benefits of therapeutic strategies targeted to this marker.

  8. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Targeting survivin as a potential new treatment for chondrosarcoma of bone

    Science.gov (United States)

    de Jong, Y; van Oosterwijk, J G; Kruisselbrink, A B; Briaire-de Bruijn, I H; Agrogiannis, G; Baranski, Z; Cleven, A H G; Cleton-Jansen, A-M; van de Water, B; Danen, E H J; Bovée, J V M G

    2016-01-01

    Chondrosarcomas are malignant cartilage-forming bone tumors, which are intrinsically resistant to chemo- and radiotherapy, leaving surgical removal as the only curative treatment option. Therefore, our aim was to identify genes involved in chondrosarcoma cell survival that could serve as a target for therapy. siRNA screening for 51 apoptosis-related genes in JJ012 chondrosarcoma cells identified BIRC5, encoding survivin, as essential for chondrosarcoma survival. Using immunohistochemistry, nuclear as well as cytoplasmic survivin expression was analyzed in 207 chondrosarcomas of different subtypes. Nuclear survivin has been implicated in cell-cycle regulation while cytoplasmic localization is important for its anti-apoptotic function. RT–PCR was performed to determine expression of the most common survivin isoforms. Sensitivity to YM155, a survivin inhibitor currently in phase I/II clinical trial for other tumors, was examined in 10 chondrosarcoma cell lines using viability assay, apoptosis assay and cell-cycle analysis. Survivin expression was found in all chondrosarcoma patient samples. Higher expression of nuclear and cytoplasmic survivin was observed with increasing histological grade in central chondrosarcomas. Inhibition of survivin using YM155 showed that especially TP53 mutant cell lines were sensitive, but no caspase 3/7 or PARP cleavage was observed. Rather, YM155 treatment resulted in a block in S phase in two out of three chondrosarcoma cell lines, indicating that survivin is more involved in cell-cycle regulation than in apoptosis. Thus, survivin is important for chondrosarcoma survival and chondrosarcoma patients might benefit from survivin inhibition using YM155, for which TP53 mutational status can serve as a predictive biomarker. PMID:27159675

  10. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    Science.gov (United States)

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  11. Survivin Expression as a Predictive Marker for Local Control in Patients With High-Risk T1 Bladder Cancer Treated With Transurethral Resection and Radiochemotherapy

    International Nuclear Information System (INIS)

    Weiss, Christian; Roemer, Felix von; Capalbo, Gianni; Ott, Oliver J.; Wittlinger, Michael; Krause, Steffen F.; Sauer, Rolf; Roedel, Claus; Roedel, Franz

    2009-01-01

    Purpose: The objectives of this study were to investigate the expression of survivin in tumor samples from patients with high-risk T1 bladder cancer and to correlate its expression with clinicopathologic features as well as clinical outcomes after initial transurethral resection (TURBT) followed by radiotherapy (RT) or radiochemotherapy (RCT). Methods and Materials: Survivin protein expression was evaluated by immunohistochemistry on tumor specimen (n = 48) from the initial TURBT, and was correlated with clinical and histopathologic characteristics as well as with 5-year rates of local failure, tumor progression, and death from urothelial cancer after primary bladder sparring treatment with RT/RCT. Results: Survivin was not expressed in normal bladder urothelium but was overexpressed in 67% of T1 tumors. No association between survivin expression and clinicopathologic factors (age, gender, grading, multifocality, associated carcinoma in situ) could be shown. With a median follow-up of 27 months (range, 3-140 months), elevated survivin expression was significantly associated with an increased probability of local failure after TURBT and RCT/RT (p = 0.003). There was also a clear trend toward a higher risk of tumor progression (p = 0.07) and lower disease-specific survival (p = 0.10). Conclusions: High survivin expression is a marker of tumor aggressiveness and may help to identify a subgroup of patients with T1 bladder cancer at a high risk for recurrence when treated with primary organ-sparing approaches such as TURBT and RCT.

  12. Survivin inhibition via EZN-3042 in canine lymphoma and osteosarcoma.

    Science.gov (United States)

    Shoeneman, J K; Ehrhart, E J; Charles, J B; Thamm, D H

    2016-06-01

    Canine lymphoma (LSA) and osteosarcoma (OS) have high mortality rates and remain in need of more effective therapeutic approaches. Survivin, an inhibitor of apoptosis (IAP) family member protein that inhibits apoptosis and drives cell proliferation, is commonly elevated in human and canine cancer. Survivin expression is a negative prognostic factor in dogs with LSA and OS, and canine LSA and OS cell lines express high levels of survivin. In this study, we demonstrate that survivin downregulation in canine LSA and OS cells using a clinically applicable locked nucleic acid antisense oligonucleotide (EZN-3042, Enzon Pharmaceuticals, Piscataway Township, NJ, USA) inhibits growth, induces apoptosis and enhances chemosensitivity in vitro, and inhibits survivin transcription and protein production in orthotopic canine OS xenografts. Our findings strongly suggest that survivin-directed therapies might be effective in treatment of canine LSA and OS and support evaluation of EZN-3042 in dogs with cancer. © 2014 John Wiley & Sons Ltd.

  13. Survivin -31 G/C polymorphism might contribute to colorectal cancer (CRC) risk: a meta-analysis.

    Science.gov (United States)

    Yao, Linhua; Hu, Yi; Deng, Zhongmin; Li, Jingjing

    2015-01-01

    Published data has shown inconsistent findings about the association of survivin -31 G/C polymorphism with the risk of colorectal cancer (CRC). This meta-analysis quantitatively assesses the results from published studies to provide a more precise estimate of the association between survivin -31 G/C polymorphism as a possible predictor of the risk of CRC. We conducted a literature search in the PubMed, Web of Science, and Cochrane Library databases. Stata 12 software was used to calculate the pooled odds ratios (ORs) with 95% confidence intervals (CIs) based on the available data from each article. Six studies including 1840 cases with CRC and 1804 controls were included in this study. Survivin -31 G/C polymorphism was associated with a significantly increased risk of CRC (OR = 1.78; 95% CI, 1.53-2.07; I(2) = 0%). In the race subgroup analysis, both Asians (OR = 1.72; 95% CI, 1.44-2.05; I(2) = 0%) and Caucasians (OR = 1.93; 95% CI, 1.46-2.55; I(2) = 0%) with survivin -31 G/C polymorphism had increased CRC risk. In the subgroup analysis according to site of CRC, survivin -31 G/C polymorphism was not associated with colon cancer risk (OR = 2.02; 95% CI, 0.79-5.22; I(2) = 82%). However, this polymorphism was significantly associated with rectum cancer risk (OR = 1.98; 95% CI, 1.42-2.74; I(2) = 0%). In the subgroup analysis by clinical stage, both early stage (I+II) and advanced stage (III+IV) were associated with survivin -31 G/C polymorphism (OR = 1.61; 95% CI, 1.20-2.16; I(2) = 0% and OR = 2.30; 95% CI, 1.70-3.13; I(2) = 0%, respectively). In the subgroup analysis by smoke status, both smokers and non-smokers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.47; 95% CI, 1.01-2.13; I(2) = 60% and OR = 1.71; 95% CI, 1.28-2.30; I(2) = 0%, respectively). In the subgroup analysis by drink status, both drinkers and non-drinkers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.58; 95% CI, 1.06-2.37; I(2) = 8% and OR = 1.61; 95% CI, 1

  14. Immunohistochemical Expression of Survivin in Breast Carcinoma: Relationship with Clinico pathological Parameters, Proliferation and Molecular Classification

    International Nuclear Information System (INIS)

    YOUSSEF, N.S.; HEWEDI, I.H.; ABD RABOH, N.M.

    2008-01-01

    Background and Objective: Survivin is a novel member of the inhibitor of apoptosis (IAP) gene family. It is associated with more aggressive behavior and parameters of poor prognosis in most human cancers including gastric, colorectal and bladder carcinomas. However, conflicting data exist on its prognostic effect in breast cancer. This current study is designed to assess survivin expression in breast carcinoma relating results with clinico pathological parameters, proliferation (MIB-1) and molecular classification. Material and Methods: Our retrospective study com- prised of 65 archived cases of breast carcinoma. Samples from the tumor and the adjacent normal breast tissue were immuno stained for survivin and MIB-1. Nuclear and cytoplasmic survivin expression was evaluated in normal breast tissue and carcinoma regarding both the intensity and the percentage of positive cells. ER, PR, HER2 were used as surrogate markers to classify the cases into four molecular subtypes. Results: Survivin expression was detected in 78.5% of breast carcinomas. The adjacent normal breast tissue was immuno negative. Survivin expression showed significant association with increased tumor size ( p <0.0001), high histologic grade ( p =0.04), lymph node metastases ( p <0.001), advanced tumor stage ( p <0.0001), MIB-1 expression ( p =0.02), negative estrogen receptor status ( p =0.01) and negative progesterone receptor status ( p <0.0001). The subcellular localization of survivin significantly related to histologic grade, stage and lymph node involvement. The percentage of TNP (triple negative phenotype) and HER2+/ER-PR- tumors expressing survivin were significantly higher compared to the Luminal subtypes ( p =0.01). Conclusion: Survivin expression was associated with parameters of poor prognosis in breast cancer. Moreover, the cancer-specific expression of survivin, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a potential target for novel

  15. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    Directory of Open Access Journals (Sweden)

    Maritess Gay Asumen

    2010-07-01

    Full Text Available Maritess Gay Asumen1, Tochukwu V Ifeacho2, Luke Cockerham3, Christina Pfandl4, Nathan R Wall31Touro University’s College of Osteopathic Medicine, Vallejo, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3Center for Health Disparities Research and Molecular Medicine, Loma Linda University, CA, USA; 4Green Mountain Antibodies, Burlington, VT, USAAbstract: Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light- initiated DNA damage and that its distribution may be responsible for its multifunctionality.Keywords: survivin, PIK kinases, ATM, ATR, DNA-PK

  16. A Novel Hydroxamate-Based Compound WMJ-J-09 Causes Head and Neck Squamous Cell Carcinoma Cell Death via LKB1-AMPK-p38MAPK-p63-Survivin Cascade.

    Science.gov (United States)

    Yen, Chia-Sheng; Choy, Cheuk-Sing; Huang, Wei-Jan; Huang, Shiu-Wen; Lai, Pin-Ye; Yu, Meng-Chieh; Shiue, Ching; Hsu, Ya-Fen; Hsu, Ming-Jen

    2018-01-01

    Growing evidence shows that hydroxamate-based compounds exhibit broad-spectrum pharmacological properties including anti-tumor activity. However, the precise mechanisms underlying hydroxamate derivative-induced cancer cell death remain incomplete understood. In this study, we explored the anti-tumor mechanisms of a novel aliphatic hydroxamate-based compound, WMJ-J-09, in FaDu head and neck squamous cell carcinoma (HNSCC) cells. WMJ-J-09 induced G2/M cell cycle arrest and apoptosis in FaDu cells. These actions were associated with liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38MAPK) activation, transcription factor p63 phosphorylation, as well as modulation of p21 and survivin. LKB1-AMPK-p38MAPK signaling blockade reduced WMJ-J-09's enhancing effects in p63 phosphorylation, p21 elevation and survivin reduction. Moreover, WMJ-J-09 caused an increase in α-tubulin acetylation and interfered with microtubule assembly. Furthermore, WMJ-J-09 suppressed the growth of subcutaneous FaDu xenografts in vivo . Taken together, WMJ-J-09-induced FaDu cell death may involve LKB1-AMPK-p38MAPK-p63-survivin signaling cascade. HDACs inhibition and disruption of microtubule assembly may also contribute to WMJ-J-09's actions in FaDu cells. This study suggests that WMJ-J-09 may be a potential lead compound and warrant the clinical development in the treatment of HNSCC.

  17. Expression of antiapoptosis gene survivin in luteinized ovarian granulosa cells of women undergoing IVF or ICSI and embryo transfer: clinical correlations

    Directory of Open Access Journals (Sweden)

    Varras Michail

    2012-09-01

    Full Text Available Abstract Background The purpose of the study was to determine the incidence of survivin gene expression in human granulosa cells during ovarian stimulation in Greek women with normal FSH levels, undergoing IVF or ICSI and to discover any correlation between levels of gene expression and clinical parameters, efficacy of ovulation or outcomes of assisted reproduction. Methods Twenty nine women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded and the granulosa cells were analyzed for each patient separately using quantitative reverse transcription polymerase chain reaction analysis for survivin gene expression with internal standard the ABL gene. Results The ABL and survivin mRNA were detected in granulosa cells in 93.1%. The expression levels of survivin were significantly lower in normal women (male infertility factor compared to women with tubal infertility factor (p = 0.007. There was no additional statistically significant correlation between levels of survivin expression and estradiol levels or dosage of FSH for ovulation induction or number of dominant follicles aspirated or number of retrieved oocytes or embryo grade or clinical pregnancy rates respectively. Conclusions High levels of survivin mRNA expression in luteinized granulosa cells in cases with tubal infertility seem to protect ovaries from follicular apoptosis. A subpopulation of patients with low levels of survivin mRNA in granulosa cells might benefit with ICSI treatment to bypass possible natural barriers of sperm-oocyte interactions.

  18. Survivin expression and prognostic significance in pediatric malignant peripheral nerve sheath tumors (MPNST.

    Directory of Open Access Journals (Sweden)

    Rita Alaggio

    Full Text Available Malignant peripheral nerve sheath tumors (MPNST are very aggressive malignancies comprising approximately 5-10% of all soft tissue sarcomas. In this study, we focused on pediatric MPNST arising in the first 2 decades of life, as they represent one the most frequent non-rhabdomyosarcomatous soft tissue sarcomas in children. In MPNST, several genetic alterations affect the chromosomal region 17q encompassing the BIRC5/SURVIVIN gene. As cancer-specific expression of survivin has been found to be an effective marker for cancer detection and outcome prediction, we analyzed survivin expression in 35 tumor samples derived from young patients affected by sporadic and neurofibromatosis type 1-associated MPNST. Survivin mRNA and protein expression were assessed by Real-Time PCR and immunohistochemical staining, respectively, while gene amplification was analyzed by FISH. Data were correlated with the clinicopathological characteristics of patients. Survivin mRNA was overexpressed in pediatric MPNST and associated to a copy number gain of BIRC5; furthermore, increased levels of transcripts correlated with a higher FNCLCC tumor grade (grade 1 and 2 vs. 3, p = 0.0067, and with a lower survival probability (Log-rank test, p = 0.0038. Overall, these data support the concept that survivin can be regarded as a useful prognostic marker for pediatric MPNST and a promising target for therapeutic interventions.

  19. Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.

    Science.gov (United States)

    Zhang, Wei; Liu, Yuan; Li, Yu Feng; Yue, Yun; Yang, Xinghua; Peng, Lin

    2016-01-01

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed

  20. Early diagnostic value of survivin and its alternative splice variants in breast cancer

    International Nuclear Information System (INIS)

    Khan, Salma; Bennit, Heather Ferguson; Turay, David; Perez, Mia; Mirshahidi, Saied; Yuan, Yuan; Wall, Nathan R

    2014-01-01

    The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients’ sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a “liquid biopsy” if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this

  1. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  2. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    International Nuclear Information System (INIS)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (−)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  3. Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer

    DEFF Research Database (Denmark)

    Als, Anne B; Dyrskjøt, Lars; von der Maase, Hans

    2007-01-01

    in an independent material of 124 patients receiving cisplatin-containing therapy. RESULTS: Fifty-five differentially expressed genes correlated significantly to survival time. Two of the protein products (emmprin and survivin) were validated using immunohistochemistry. Multivariate analysis identified emmprin...... metastases, both markers showed significant discriminating power as supplemental risk factors (P emmprin and survivin) had estimated 5-year survival rates of 44.......0%, 21.1%, and 0%, respectively. Response to chemotherapy could also be predicted with an odds ratio of 4.41 (95% confidence interval, 1.91-10.1) and 2.48 (95% confidence interval, 1.1-5.5) for emmprin and survivin, respectively. CONCLUSIONS: Emmprin and survivin proteins were identified as strong...

  4. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.

    Science.gov (United States)

    Brun, S N; Markant, S L; Esparza, L A; Garcia, G; Terry, D; Huang, J-M; Pavlyukov, M S; Li, X-N; Grant, G A; Crawford, J R; Levy, M L; Conway, E M; Smith, L H; Nakano, I; Berezov, A; Greene, M I; Wang, Q; Wechsler-Reya, R J

    2015-07-01

    Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease.

  5. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  6. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines.

    Science.gov (United States)

    Bing, Lelin; Wu, Junfeng; Zhang, Jianfeng; Chen, Yinghui; Hong, Zhen; Zu, Hengbing

    2015-01-01

    Previous evidences indicate that androgen is neuroprotective in the brain. However, the underling mechanisms remain to be fully elucidated. Moreover, it is controversial whether dihydrotestosterone (DHT) modulates the expression of apoptosis-related effectors, such as survivin, XIAP, bax, and bcl-xl proteins mediated by the PI3-K/Akt pathway, which contributes to androgen neuroprotection. In this study using a C6 glial cell model, apoptotic cells were detected by flow cytometry. Akt, seladin-1, survivin, XIAP, bcl-xl, and bax protein expression is investigated by Western blot. After amyloid β-protein fragment (Aβ25-35) treatment, apoptotic cells at early (annexin V+, PI-) and late (annexin V+, PI+) stages were significantly increased. Apoptosis at early and late was obviously inhibited in the presence of DHT. The effect of DHT was markedly blocked by PI3-K inhibitor LY294002.To elicit the mechanism of DHT protection, the expression of seladin-1, survivin, XIAP, bax, and bcl-xl protein was determined in C6 cells treated with Aβ25-35, DHT, or LY294002. Aβ25-35 significantly downregulated the expression of seladin-1, survivin, XIAP, bcl-xl protein and upregulated the expression of bax protein. DHT significantly inhibited the expression of bax, seladin-1, survivin, XIAP, and bcl-xl protein induced by Aβ25-35. Further, we found the effect of DHT was significantly inhibited by LY294002. Collectively, in a C6 glial cell model, we firstly found that DHT inhibits Aβ25-35-induced apoptosis by a rapid nongenic PI-3K/Akt activation as well as regulation of seladin-1, survivin, XIAP, bcl-xl, and bax proteins.

  7. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N- BE2 and SH-SY5Y cells

    Science.gov (United States)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (−)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in expression of NFP, NSE, and e-cadherin and also decreases in expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro network

  8. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer

    Directory of Open Access Journals (Sweden)

    Minamida Hidetoshi

    2004-06-01

    Full Text Available Abstract Survivin is a member of the inhibitor of apoptosis protein (IAP family containing a single baculovirus IAP repeat domain. It is expressed during fetal development but becomes undetectable in terminally differentiated normal adult tissues. We previously reported that survivin and its splicing variant survivin-2B was expressed abundantly in various types of tumor tissues as well as tumor cell lines and was suitable as a target antigen for active-specific anti-cancer immunization. Subsequently, we identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL recognized by CD8+ cytotoxic T lymphocytes (CTLs. We, therefore, started a phase I clinical study assessing the efficacy of survivin-2B peptide vaccination in patients with advanced or recurrent colorectal cancer expressing survivin. Vaccinations with survivin-2B peptide were given subcutaneously six times at 14-day intervals. Of 15 patients who finished receiving the vaccination schedule, three suffered slight toxicities, including anemia (grade 2, general malaise (grade 1, and fever (grade 1. No severe adverse events were observed in any patient. In 6 patients, tumor marker levels (CEA and CA19-9 decreased transiently during the period of vaccination. Slight reduction of the tumor volume was observed in one patient, which was considered a minor responder. No changes were noted in three patients while the remaining eleven patients experienced tumor progression. Analysis of peripheral blood lymphocytes of one patient using HLA-A24/peptide tetramers revealed an increase in peptide-specific CTL frequency from 0.09% to 0.35% of CD8+ T cells after 4 vaccinations. This phase I clinical study indicates that survivin-2B peptide-based vaccination is safe and should be further considered for potential immune and clinical efficacy in HLA-A24-expression patients with colorectal cancer.

  9. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM.The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC.The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001.Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  10. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  11. Survivin and chromosome instability induced by X-irradiation

    International Nuclear Information System (INIS)

    Shen Bo; Ju Guizhi; Liu Yang

    2006-01-01

    Objective: To explore the biological effect of survivin on chromosome instability induced by X-ray irradiation. Methods: Immunocytochemistry was used to detect the expression of sutvivin in HeLa cells. Carrier pSUPER-SVV was transfected into HeLa cells to interfere the expression of survivin. Flow cytometry assay was applied to detect the occurrence of polyploid at 0 h, 4 h, 12 h, and 48 h after the HeLa cells transfected with pSUPER-SVV and irradiated with 4 Gy X-rays irradiation, and compared with the group irradiated with 4 Gy X-rays but no transfection. Results: The expression of survivin was down-regulated by transfecting with small hair RNA, its depression rate was estimated to be about 32.16% at 48 h after transfection. The occurrence of polyploid giant cells was higher in the 4 Gy X-ray irradiated group at 48 h after the irradiation than the control groups (P<0.001). Being expression of survivin interfered, the occurrence at 12 h or 48 h after irradiation, however, was about two times higher than that in the control group. Conclusion: X-ray irradiation can induce chromosome instability in HeLa cells and the effect could be enhanced by interfering the expression of surviving. It was suggested that survivin plays an important role in maintaining the stability of chromosome. (authors)

  12. The influence of survivin shRNA on the cell cycle and the invasion of SW480 cells of colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Jin

    2008-07-01

    Full Text Available Abstract Background The objective was to understand the influence of Survivin plasmid with short hairpin RNA (shRNA on the cell cycle, invasion, and the silencing effect of Survivin gene in the SW480 cell of colorectal carcinoma. Methods A eukaryotic expression vector, PGCH1/Survivin shRNA, a segment sequence of Survivin as target, was created and transfected into colorectal carcinoma cell line SW480 by the non-lipid method. The influence on the Survivin protein was analyzed by Western blotting, while the cell cycle, cell apoptosis were analyzed by flow cytometry, and invasion of the cell was analyzed by Transwell's chamber method. Results After the transfection of PGCH1/Survivin shRNA, the expression of Survivin protein in SW480 cells was dramatically decreased by 60.68%, in which the cells were stopped at G2/M phase, even though no apoptosis was detected. The number of transmembranous cells of the experimental group, negative control group, and blank control group were 14.46 ± 2.11, 25.12 ± 8.37, and 25.86 ± 7.45, respectively (P 0.05. Conclusion Survivin shRNA could significantly reduce the expression of Survivin protein and invasion of SW480 cells. Changes in cell cycle were observed, but no apoptosis was induced.

  13. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  14. [Study of the relationship among expression of Survivin and MRP and the drug resistance in human nasopharyngeal carcinoma].

    Science.gov (United States)

    Yang, Ning; Zhu, Lepan; Tan, Tan; Hou, Chunyan

    2015-02-01

    This study aimed to explore the relationship among expression of Survivin and MRP and drug resistance in NPC. Expression of Survivin were detected by immunohistochemistry method in 45 cases of NPC and 24 cases of normal mucous membrane of nasopharynx (NMMN). The relationship between expression of Survivin and pathological factors in NPC were analysized. Expression of Survivin and MRP were detected in 31 patients of NPC with paclitaxel resistance and 20 patients of NPC without paclitaxel resistance. The relation- ship among the expression of Survivin or MRP and paclitaxel resistance in NPC were analysized. The paclitaxel resistance cell line, 5-8F-PTX(+); was established by a step-increased method. The expression of Survivin and MRP were detected by western blot in 5-8F-PTX(+) and 5-8F. The positive were 71. 1% (32/45) in NPC and 8.33% (2/24) in NMMN. And there were significantly differences between them (P MRP were 87.1% (27/31) in NPC patients with paclitaxel resistance and 40.0% (8/20) in NPC patients without paclitaxel resistance, respectively. There were significantly differences between them (P MRP in NPC patients with Paclitaxel resistance. The expression of Survivin and MRP were higher in 5-8F-PTX(+) than in 5-8F. The IC50 of paclitaxel, cDDP, 5-FU and Vincristine were significantly higher in 5-8F-PTX(+) than in 5-8F. There were relationship among the expression of Survivin and difference, metastasis and TNM stages of NPC. Survivin may serves as a molecular marker for development and progress in NPC. There were relationship among the high expression of Survivin and MRP and increasing of drug resistance in NPC.

  15. EFFECT OF STRESS ON THE PERCENT BODY WEIGHT CHANGE AND MRNA EXPRESSION OF IGF-1, SURVIVINE AND HSP-70 GENE IN THE HIERARCHIAL FOLLICLES OF JAPANESE QUAIL

    Directory of Open Access Journals (Sweden)

    N Shit

    2014-12-01

    Full Text Available The present study was carried out to explore the effect of stress on body weight and the mRNA expression of IGF-1, Survivine and HSP-70 gene in the hierarchial follicles of Japanese quail. A total 24 birds (10 weeks were taken and stress was induced by immobilization daily for 2hrs (between 9.00 - 11.00 AM throughout the study (10 days. Four birds were sacrificed on 1, 2, 4, 6, 8 and 10 days of the treatment. Hierarchial follicles (F1, F2 & F3 were aseptically collected to quantify the expression of IGF-1, Survivine and HSP-70 gene using real-time PCR technique. The percent body weight reduction increased and reached highest (21.30% on 10th day. The fold expression of IGF-1 gene was significantly ((P=0.05 down regulated in advance to the time of experiment. However, the fold expression of survivine gene was significantly (P=0.05 up regulated and the intensity was highest (17 fold in F-3 follicle on 4th day of experiment. No significant change in the mRNA expression of HSP-70 gene was evident in this study. From this study it may be concluded that stress brings physio-molecular change through HPA activation, which not only causes tissue regression also modifies the cellular mechanism.

  16. Endothelium derived nitric oxide synthase negatively regulates the PDGF-survivin pathway during flow-dependent vascular remodeling.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/- is associated with activation of the platelet derived growth factor (PDGF signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/- mice. Moreover, nitric oxide (NO negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.

  17. the significance of epidermal growth factor receptor and survivin

    African Journals Online (AJOL)

    2013-01-01

    Jan 1, 2013 ... SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE. CYTOLOGY OF ... Advances in molecular biology in the past three decades have .... (normal stomach) and EGFR (placenta) was run. Pressure cooking ...

  18. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  19. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant

    Directory of Open Access Journals (Sweden)

    Jonathan R. Aspe

    2014-02-01

    Full Text Available Background: Current therapeutic options for advanced pancreatic cancer have been largely disappointing with modest results at best, and though adjuvant therapy remains controversial, most remain in agreement that Gemcitabine should stand as part of any combination study. The inhibitor of apoptosis (IAP protein Survivin is a key factor in maintaining apoptosis resistance, and its dominant-negative mutant (Survivin-T34A has been shown to block Survivin, inducing caspase activation and apoptosis. Methods: In this study, exosomes, collected from a melanoma cell line built to harbor a tetracycline-regulated Survivin-T34A, were plated on the pancreatic adenocarcinoma (MIA PaCa-2 cell line. Evaluation of the presence of Survivin-T34A in these exosomes followed by their ability to induce Gemcitabine-potentiative cell killing was the objective of this work. Results: Here we show that exosomes collected in the absence of tetracycline (tet-off from the engineered melanoma cell do contain Survivin-T34A and when used alone or in combination with Gemcitabine, induced a significant increase in apoptotic cell death when compared to Gemcitabine alone on a variety of pancreatic cancer cell lines. Conclusion: This exosomes/Survivin-T34A study shows that a new delivery method for anticancer proteins within the cancer microenvironment may prove useful in targeting cancers of the pancreas.

  20. Detection of survivin mRNA in healthy oral mucosa, oral leucoplakia and oral cancer.

    Science.gov (United States)

    Lodi, G; Franchini, R; Bez, C; Sardella, A; Moneghini, L; Pellegrini, C; Bosari, S; Manfredi, M; Vescovi, P; Carrassi, A

    2010-01-01

    Survivin is involved in modulation of cell death and cell division processes. Survivin expression in normal adult tissues has not been fully understood, although it is markedly lower than in cancer, where it is over-expressed. To investigate survivin expression in normal, potentially malignant and cancerous oral mucosa. We measured survivin mRNA levels by real-time RT-PCR in specimens of oral mucosa (15 from normal mucosa, 17 from potentially malignant lesions, 17 from neoplasms). Scores were compared using Kruskal-Wallis test and post hoc according to Conover. Chi-squared test was used for dichotomous data. The median relative levels of survivin mRNA resulted six for normal mucosa, eight for potentially malignant lesions, 13 for cancers: differences among these three groups were statistically significant, as between cancer and potentially malignant lesions. Expression in normal mucosa and potentially lesions group showed no significant difference. Low, but not marginal expression of survivin in normal mucosa is a new finding, and it could be explained with the higher sensibility of our methods. Survivin expression in oral potentially malignant lesions might indicate a progressive deregulation of expression paralleling oncogenesis, particularly during the first stages of process, suggesting a putative predictive role for survivin.

  1. Molecular beacon-decorated polymethylmethacrylate core-shell fluorescent nanoparticles for the detection of survivin mRNA in human cancer cells.

    Science.gov (United States)

    Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco

    2017-02-15

    One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm 2 ), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm 2 ). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Importance of serum levels of angiopoietin-2 and survivin biomarkers in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Fawzy, A.; Gaafar, R.; Kasem, F.; Ali, Sh.S.; Elshafei, M.; Eldeib, M.

    2012-01-01

    Angio genesis is an essential process in cancer growth maintenance, and Lung cancer; metastasis. Appointing-2 promotes tumor angio genesis by priming the vasculature and potentiating the effects of cytokines at the front of active neovascularization. Enhanced expression of Angiopoietin-2 has been reported in lung cancer tissue. Survivin is one of the inhibitors of apoptosis Survivin; protein that has been shown to play a key role in cancer progression, and in tumor angio genesis. Also plays a key role in tumor cell resistance to anticancer agents and ionizing radiation. Aim: To measure the serum levels of angiopoietin-2 and survivin as possible angiogenic factors in lung cancer patients with the assessment of their interrelationships and clinical significance. Patients and methods: Patients with lung cancer as NSCLC (n = 70) and healthy volunteers (n = 10) were enrolled. Serum angiopoietin-2 and survivin concentrations were measured using enzyme-linked immunosorbent assay (ELIZA). Results: Median serum angiopoietin-2 levels with lung cancer (2730 pg/mL) ranged from 1171 to 6541 pg/mL was higher than the median of the control group (1795 pg/mL) ranged from 1076 to 2730/mL, p < 0.001. Median serum survivin levels were also higher in patients with lung cancer (53.0 pg/mL) ranged from 39.3 to 96.3 pg/mL than the median of the control group (48.8 pg/mL) ranged from 38.0 to 74.6pg/mL, but did not reach statistical significance p = 0.206. In all patients with lung cancer, serum angiopoietin-2 was not significantly correlated with survivin (r = 0.073, p = 0.657). Neither serum angiopoietin-2 nor survivin showed significant relation with the serum angiopoietin-2 or survivin levels depending on the cell types, stage progression, and metastasis among the patients with NSCLC. Conclusions: Our study suggests that serum angiopoietin-2 is a useful marker for the diagnosis of NSCLC by ELIZA technique

  3. SKIP and BIR-1/Survivin have potential to integrate proteome status with gene expression

    Czech Academy of Sciences Publication Activity Database

    Kostrouchová, V.; Kostrouch, Z.; Kostrouch, D.; Kostrouchová, M.; Yilma, P.; Chughtai, Ahmed A.; Novotný, Jan P.; Novák, Petr

    2014-01-01

    Roč. 110, č. 4 (2014), s. 93-106 ISSN 1874-3919 R&D Projects: GA MŠk(CZ) cz.1.07/2.3.00/20.0055; GA MŠk ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003; GA MŠk ED0012/01/01 Grant - others:Masaryk University, Brno(CZ) MUNI/A/1012/2009; Universita Karlova(CZ) UNCE 204022; Universita Karlova(GB) UNCE204011; Univesita Karlova(CZ) PRVOUK-P24/LF/1/3 Institutional support: RVO:61388971 Keywords : Survivin * proteomics * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 3.888, year: 2014

  4. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  5. Impaired neurogenesis, learning and memory and low seizure threshold associated with loss of neural precursor cell survivin

    Directory of Open Access Journals (Sweden)

    Eisch Amelia

    2010-01-01

    Full Text Available Abstract Background Survivin is a unique member of the inhibitor of apoptosis protein (IAP family in that it exhibits antiapoptotic properties and also promotes the cell cycle and mediates mitosis as a chromosome passenger protein. Survivin is highly expressed in neural precursor cells in the brain, yet its function there has not been elucidated. Results To examine the role of neural precursor cell survivin, we first showed that survivin is normally expressed in periventricular neurogenic regions in the embryo, becoming restricted postnatally to proliferating and migrating NPCs in the key neurogenic sites, the subventricular zone (SVZ and the subgranular zone (SGZ. We then used a conditional gene inactivation strategy to delete the survivin gene prenatally in those neurogenic regions. Lack of embryonic NPC survivin results in viable, fertile mice (SurvivinCamcre with reduced numbers of SVZ NPCs, absent rostral migratory stream, and olfactory bulb hypoplasia. The phenotype can be partially rescued, as intracerebroventricular gene delivery of survivin during embryonic development increases olfactory bulb neurogenesis, detected postnatally. SurvivinCamcre brains have fewer cortical inhibitory interneurons, contributing to enhanced sensitivity to seizures, and profound deficits in memory and learning. Conclusions The findings highlight the critical role that survivin plays during neural development, deficiencies of which dramatically impact on postnatal neural function.

  6. Expression of NgBR Is Highly Associated with Estrogen Receptor Alpha and Survivin in Breast Cancer

    Science.gov (United States)

    North, Paula; Kong, Amanda; Huang, Jian; Miao, Qing Robert

    2013-01-01

    NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction

  7. Increased NQO1 but Not c-MET and Survivin Expression in Non-Small Cell Lung Carcinoma with KRAS Mutations

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    2014-09-01

    Full Text Available Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor-targeted therapy has been used in the treatment of LC (lung cancer, mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(PH:quinone oxidoreductase, also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin in 108 patients with non-small cell lung carcinoma (NSCLC. NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1 oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2 selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3 since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.

  8. Survivin-T34A: molecular mechanism and therapeutic potential

    Directory of Open Access Journals (Sweden)

    Jonathan R Aspe

    2010-12-01

    Full Text Available Jonathan R Aspe, Nathan R WallCenter for Health Disparities Research and Molecular Medicine, Division of Biochemistry and Microbiology, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USAAbstract: The inhibitor of apoptosis protein survivin's threonine 34 to alanine (T34A mutation abolishes a phosphorylation site for p34(cdc2–cyclin B1, resulting in initiation of the mitochondrial apoptotic pathway in cancer cells; however, it has little known direct effects on normal cells. The possibility that targeting survivin in this way may provide a novel approach for selective cancer gene therapy has yet to be fully evaluated. Although a flurry of work was undertaken in the late 1990s and early 2000s, only minor advances on this mutant have recently taken place. We recently described that cells generated to express a stable form of the mutant protein released this survivin-T34A to the conditioned medium. When this conditioned medium was collected and deposited on naive tumor cells, conditioned medium T34A was as effective as some chemotherapeutics in the induction of tumor cell apoptosis, and when combined with other forms of genotoxic stressors potentiated their killing effects. We hope with this review to revitalize the T34A field, as there is still much that needs to be investigated. In addition to determining the therapeutic dose and the duration of drug therapy required at the disease site, a better understanding of other key factors is also important. These include knowledge of target cell populations, cell-surface receptors, changes that occur in the target tissue at the molecular and cellular level with progression of the disease, and the mechanism and site of therapeutic action.Keywords: survivin, T34A, apoptosis, proliferation, therapy

  9. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Salma Khan

    Full Text Available Survivin is expressed in prostate cancer (PCa, and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment.Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively.Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six or high (nine Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls.These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.

  10. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  11. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Survivin gene levels in the peripheral blood of patients with gastric cancer independently predict survival

    Directory of Open Access Journals (Sweden)

    Scalerta Romano

    2009-12-01

    Full Text Available Abstract Background The detection of circulating tumor cells (CTC is considered a promising tool for improving risk stratification in patients with solid tumors. We investigated on whether the expression of CTC related genes adds any prognostic power to the TNM staging system in patients with gastric carcinoma. Methods Seventy patients with TNM stage I to IV gastric carcinoma were retrospectively enrolled. Peripheral blood samples were tested by means of quantitative real time PCR (qrtPCR for the expression of four CTC related genes: carcinoembryonic antigen (CEA, cytokeratin-19 (CK19, vascular endothelial growth factor (VEGF and Survivin (BIRC5. Results Gene expression of Survivin, CK19, CEA and VEGF was higher than in normal controls in 98.6%, 97.1%, 42.9% and 38.6% of cases, respectively, suggesting a potential diagnostic value of both Survivin and CK19. At multivariable survival analysis, TNM staging and Survivin mRNA levels were retained as independent prognostic factors, demonstrating that Survivin expression in the peripheral blood adds prognostic information to the TNM system. In contrast with previously published data, the transcript abundance of CEA, CK19 and VEGF was not associated with patients' clinical outcome. Conclusions Gene expression levels of Survivin add significant prognostic value to the current TNM staging system. The validation of these findings in larger prospective and multicentric series might lead to the implementation of this biomarker in the routine clinical setting in order to optimize risk stratification and ultimately personalize the therapeutic management of these patients.

  13. Survivin protein expression is involved in the progression of non-small cell lung cancer in Asians: a meta-analysis

    International Nuclear Information System (INIS)

    Duan, Liang; Hu, Xuefei; Jin, Yuxing; Liu, Ruijun; You, Qingjun

    2016-01-01

    Surviving expression might serve as a prognostic biomarker predicting the clinical outcome of non-small cell lung cancer (NSCLC). The study was conducted to explore the potential correlation of survivin protein expression with NSCLC and its clinicopathologic characteristics. PubMed, Medline, Cochrane Library, CNKI and Wanfang database were searched through January 2016 with a set of inclusion and exclusion criteria. Data was extracted from these articles and all statistical analysis was conducted by using Stata 12.0. A total of 28 literatures (14 studies in Chinese and 14 studies in English) were enrolled in this meta-analysis, including 3206 NSCLC patients and 816 normal controls. The result of meta-analysis demonstrated a significant difference of survivin positive expression between NSCLC patients and normal controls (RR = 7.16, 95 % CI = 4.63-11.07, P < 0.001). To investigate the relationship of survivin expression and clinicopathologic characteristics, we performed a meta-analysis in NSCLC patients. Our results indicates survivin expression was associated with histological differentiation, tumor-node-metastasis (TNM) stage and lymph node metastasis (LNM) (RR = 0.80, 95 % CI = 0.73-0.87, P < 0.001; RR = 0.75, 95 % CI = 0.67-0.84, P < 0.001; RR = 1.14, 95 % CI = 1.01-1.29, P = 0.035, respectively), but not pathological type and tumor size. (RR = 1.00, 95 % CI = 0.93-1.07, P = 0.983; RR = 0.95, 95 % CI = 0.86-1.05, P = 0.336, respectively). Higher expression of survivin in NSCLC patients was found when compared to normal controls. Survivin expression was associated with the clinicopathologic characteristics of NSCLC and may serves as an important biomarker for NSCLC progression

  14. Prognostic value of survivin expression in parotid gland cancer in consideration of different histological subtypes.

    Science.gov (United States)

    Stenner, Markus; Demgensky, Ariane; Molls, Christoph; Hardt, Aline; Luers, Jan C; Grosheva, Maria; Huebbers, Christian U; Klussmann, Jens P

    2011-05-01

    Cancer of the major salivary glands comprises a morphological diverse group of rare tumours of largely unknown cause. Survivin, an inhibitor of apoptosis has shown to be a significant prognostic indicator in various human cancers. The aim of this study was to assess the long-term prognostic value of survivin in a large group of histological different salivary gland cancers. We analysed the survivin expression in 143 patients with parotid gland cancer by means of immunohistochemistry and tissue micro array. Survivin expression was categorised into a low and a high expressing group. The experimental findings were correlated with clinicopathological and survival parameters. The mean follow-up time was 54.8 months. A positive cytoplasmic expression of survivin was found in 61.5%, a high expression in 25.9% of all specimens. In the whole group, high cytoplasmic survivin expression significantly indicated a poor 5-year disease-free and overall survival rate (p < 0.0001, p = 0.003). This applied for all adeno-, adenoid cystic and undifferentiated carcinomas whereas in mucoepidermoid carcinomas an analogical non-significant trend could be observed. A high cytoplasmic survivin expression significantly indicated a poor survival in high grade but not in low grade tumours. A multivariate analysis revealed that high cytoplasmic survivin expression was the only significant negative prognostic indicator for a poor 5-year disease-free survival rate in all patients (p = 0.042). The correlation between cytoplasmic survivin expression and survival probabilities of salivary gland cancer might make this an effective tool in patient follow-up, prognosis and targeted therapy in future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    Science.gov (United States)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Thimerosal-induced apoptosis in mouse C2C12 myoblast cells occurs through suppression of the PI3K/Akt/survivin pathway.

    Directory of Open Access Journals (Sweden)

    Wen-Xue Li

    Full Text Available BACKGROUND: Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. METHODOLOGY/PRINCIPAL FINDINGS: The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125-500 nM for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Akt(ser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic

  17. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Smith, D; Debeb, B; Woodward, W

    2014-01-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  18. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    Science.gov (United States)

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and

  19. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah [Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of); Cho, Mee-Yon, E-mail: meeyon@yonsei.ac.kr [Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of); Institute of Genomic Cohort, Yonsei University, Wonju College of Medicine, Wonju (Korea, Republic of)

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  20. Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer

    International Nuclear Information System (INIS)

    Rexhepaj, Elton; Jirstrom, Karin; O'Connor, Darran P; O'Brien, Sallyann L; Landberg, Goran; Duffy, Michael J; Brennan, Donal J; Gallagher, William M

    2010-01-01

    Conflicting data exist regarding the prognostic and predictive impact of survivin (BIRC5) in breast cancer. We previously reported survivin cytoplasmic-to-nuclear ratio (CNR) as an independent prognostic indicator in breast cancer. Here, we validate survivin CNR in a separate and extended cohort. Furthermore, we present new data suggesting that a low CNR may predict outcome in tamoxifen-treated patients. Survin expression was assessed using immunhistochemistry on a breast cancer tissue microarray (TMA) containing 512 tumours. Whole slide digital images were captured using an Aperio XT scanner. Automated image analysis was used to identify tumour from stroma and then to quantify tumour-specific nuclear and cytoplasmic survivin. A decision tree model selected using a 10-fold cross-validation approach was used to identify prognostic subgroups based on nuclear and cytoplasmic survivin expression. Following optimisation of the staining procedure, it was possible to evaluate survivin protein expression in 70.1% (n = 359) of the 512 tumours represented on the TMA. Decision tree analysis predicted that nuclear, as opposed to cytoplasmic, survivin was the most important determinant of overall survival (OS) and breast cancer-specific survival (BCSS). The decision tree model confirmed CNR of 5 as the optimum threshold for survival analysis. Univariate analysis demonstrated an association between a high CNR (>5) and a prolonged BCSS (HR 0.49, 95% CI 0.29-0.81, p = 0.006). Multivariate analysis revealed a high CNR (>5) was an independent predictor of BCSS (HR 0.47, 95% CI 0.27-0.82, p = 0.008). An increased CNR was associated with ER positive (p = 0.045), low grade (p = 0.007), Ki-67 (p = 0.001) and Her2 (p = 0.026) negative tumours. Finally, a high CNR was an independent predictor of OS in tamoxifen-treated ER-positive patients (HR 0.44, 95% CI 0.23-0.87, p = 0.018). Using the same threshold as our previous study, we have validated survivin CNR as a marker of good prognosis in

  1. Validation of cytoplasmic-to-nuclear ratio of survivin as an indicator of improved prognosis in breast cancer

    LENUS (Irish Health Repository)

    Rexhepaj, Elton

    2010-11-23

    Abstract Background Conflicting data exist regarding the prognostic and predictive impact of survivin (BIRC5) in breast cancer. We previously reported survivin cytoplasmic-to-nuclear ratio (CNR) as an independent prognostic indicator in breast cancer. Here, we validate survivin CNR in a separate and extended cohort. Furthermore, we present new data suggesting that a low CNR may predict outcome in tamoxifen-treated patients. Methods Survin expression was assessed using immunhistochemistry on a breast cancer tissue microarray (TMA) containing 512 tumours. Whole slide digital images were captured using an Aperio XT scanner. Automated image analysis was used to identify tumour from stroma and then to quantify tumour-specific nuclear and cytoplasmic survivin. A decision tree model selected using a 10-fold cross-validation approach was used to identify prognostic subgroups based on nuclear and cytoplasmic survivin expression. Results Following optimisation of the staining procedure, it was possible to evaluate survivin protein expression in 70.1% (n = 359) of the 512 tumours represented on the TMA. Decision tree analysis predicted that nuclear, as opposed to cytoplasmic, survivin was the most important determinant of overall survival (OS) and breast cancer-specific survival (BCSS). The decision tree model confirmed CNR of 5 as the optimum threshold for survival analysis. Univariate analysis demonstrated an association between a high CNR (>5) and a prolonged BCSS (HR 0.49, 95% CI 0.29-0.81, p = 0.006). Multivariate analysis revealed a high CNR (>5) was an independent predictor of BCSS (HR 0.47, 95% CI 0.27-0.82, p = 0.008). An increased CNR was associated with ER positive (p = 0.045), low grade (p = 0.007), Ki-67 (p = 0.001) and Her2 (p = 0.026) negative tumours. Finally, a high CNR was an independent predictor of OS in tamoxifen-treated ER-positive patients (HR 0.44, 95% CI 0.23-0.87, p = 0.018). Conclusion Using the same threshold as our previous study, we have

  2. Efficient inhibition of murine breast cancer growth and metastasis by gene transferred mouse survivin Thr34→Ala mutant

    Directory of Open Access Journals (Sweden)

    Chen li-Juan

    2008-09-01

    Full Text Available Abstract Background Metastasis in breast cancer is a vital concern in treatment because most women with primary breast cancer have micrometastases to distant sites at diagnosis. As a member of the inhibitor of apoptosis protein (IAP family, survivin has been proposed as an attractive target for new anticancer interventions. In this study, we investigated the role of the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid in suppressing both murine primary breast carcinomas and pulmonary metastases. Methods In vitro study, induction of apoptosis by Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was examined by PI staining fluorescence microscopy and flow cytometric analysis. The anti-tumor and anti-metastases activity of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was evaluated in female BALB/c mice bearing 4T1 s.c. tumors. Mice were treated twice weekly with i.v. administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol, PORF-9 null plasmid complexed with cationic liposome (DOTAP/Chol, 0.9% NaCl solution for 4 weeks. Tumor volume was observed. After sacrificed, tumor net weight was measured and Lung metastatic nodules of each group were counted. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cells test was conducted to evaluate the effect on angiogenesis. By experiment of cytotoxicity T lymphocytes, we test whether Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol can induce specific cell immune response. Results Administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol resulted in significant inhibition in the growth and metastases of 4T1 tumor model. These anti-tumor and anti-metastases responses were associated with

  3. Identification of bile survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from benign obstructive jaundice.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Zhang, Qiangbo; Jin, Bin; Zhu, Min; Zhang, Zongli

    2017-01-01

    To investigate whether bile survivin and carbohydrate antigen 199 (CA199) can be helpful in distinguishing cholangiocarcinoma (malignant obstructive jaundice) from benign obstructive jaundice. Receiver operating characteristic curve was used to evaluate the feasibility of bile survivin and CA199 in differentiating cholangiocarcinoma from benign obstructive jaundice. The area under the curve for survivin and CA199 in bile and serum were 0.780 (p jaundice.

  4. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    Science.gov (United States)

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  5. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    DEFF Research Database (Denmark)

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  6. Immunohistochemical study of p16 INK4A and survivin expressions in cervical squamous neoplasm

    Directory of Open Access Journals (Sweden)

    Tan Geok

    2010-01-01

    Full Text Available Introduction:Cervical cancer is the second most common cancer affecting Malaysian women. Despite the implementation of pap smear screening, many women are still diagnosed only in the advanced stage of cervical cancer. This could partly be due to failure of detection of its precursor lesions; hence the need to search for novel biomarkers to assist in the screening and diagnosis of cervical neoplasia. This study aims to determine the expression of p16INK4A and survivin as possible predictive biomarkers in cervical squamous neoplasm. Material and Methods: This is a retrospective study on 201 cases of cervical neoplasm comprising of 129 cervical intraepithelial neoplasia (CIN and 72 squamous cell carcinoma (SCC. All samples were evaluated by two independent observers using p16INK4A and survivin monoclonal antibodies. The p16 INK4A expression was graded as negative, focal and diffuse positivity. The intensity for survivin expression was graded as weak, moderate and intense. Results: It is seen that p16 INK4A expression in CIN 1, CIN 2 and CIN 3 were 25.4%, 42.9% and 95.9% respectively. Majority of SCC (98.6% showed p16 INK4A expression. Survivin expressions in CIN 1, CIN 2, CIN 3 and SCC were 56.7%, 33.4%, 87.5% and 98.6%. There was a linear relationship between increasing grade of CIN and p16 INK4A expressions. Conclusion: Our study showed that p16 INK4A expressions correlate well with the increasing grade of CIN. Although survivin does not correlate well to the increasing grade of CIN, it could be useful in differentiating CIN 3 from SCC.

  7. Centralspindlin and Chromosomal Passenger Complex Behavior During Normal and Rappaport Furrow Specification in Echinoderm Embryos

    Science.gov (United States)

    Argiros, Haroula; Henson, Lauren; Holguin, Christiana; Foe, Victoria; Shuster, Charles Bradley

    2014-01-01

    The chromosomal passenger (CPC) and Centralspindlin complexes are essential for organizing the anaphase central spindle and providing cues that position the cytokinetic furrow between daughter nuclei. However, echinoderm zygotes are also capable of forming “Rappaport furrows” between asters positioned back-to-back without intervening chromosomes. To understand how these complexes contribute to normal and Rappaport furrow formation, we studied the localization patterns of Survivin and mitotic-kinesin-like-protein1 (MKLP1), members respectively of the CPC and the Centralspindlin complex, and the effect of CPC inhibition on cleavage in mono- and binucleate echinoderm zygotes. In zygotes, Survivin initially localized to metaphase chromosomes, upon anaphase onset relocalized to the central spindle and then, together with MKLP1 spread towards the equatorial cortex in an Aurora-dependent manner. Inhibition of Aurora kinase activity resulted in disruption of central spindle organization and furrow regression, although astral microtubule elongation and furrow initiation were normal. In binucleate cells containing two parallel spindles MKLP1 and Survivin localized to the plane of the former metaphase plate, but were not observed in the secondary cleavage plane formed between unrelated spindle poles, except when chromosomes were abnormally present there. However, the secondary furrow was sensitive to Aurora inhibition, indicating that Aurora kinase may still contribute to furrow ingression without chromosomes nearby. Our results provide insights that reconcile classic micromanipulation studies with current molecular understanding of furrow specification in animal cells. PMID:22887753

  8. Study of the Expression of Survivin & Its Splice Variants; ΔEx3, 2b and 3b as Diagnostic Molecular Markers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    E Babaei

    2009-07-01

    Full Text Available Introduction: Survivin is a new member of the Inhibitor Apotosis Protein family (IAP which plays an important role in the regulation of both cell cycle and apoptosis. Its distinct expression in tumor cells as compared to normal adult cells introduces Survivin as the fourth transcriptom demonstrated in tumors. Breast cancer is the most common malignancy among women and scientist`s efforts to classify it has lead to various molecular subtypes and controversial results. Because of the high prevalence of these tumors and lack of suitable molecular markers for diagnosis and prognosis, there are ongoing efforts to find molecular markers which can distinguish nontumoral from tumor tissues. In this study we evaluate the potential usefulness of Survivin and its splice variants ΔEx3, 2b and 3b as molecular markers in breast cancer. Methods: We studied 18 tumor and 17 non tumor adjacent tissues. Transcription levels were measured by Semiquantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and normalized by ß2m as an internal control. Results: 1Survivin and its splice variants; Δex3, 2b and 3b showed differentially higher expression levels in tumors than adjacent normal tissues. 2 The expression levels of Survivin, Survivin-ΔEx3 and Survivin-3b were significantly correlated with the type of tumors. 3 Survivin-2b was expressed in a few samples. 4 Survivin-3b was detected only in tumor samples. Also, our results showed that ΔEx3 variant can be introduced as a dominant expressed variant in breast cancer. Conclusion: Our data indicated that the expression of Survivin, Survivin ∆Ex3 and especially, Survivin-3b were correlated with cancerous nature of tumors and Survivin-∆Ex3 was the most common expressed variant in breast carcinomas. These results besides confirming the potential usefulness of Survivin and its splice variants as molecular markers in breast cancer, demonstrated the role of the gene and its splice variants, especially 3b

  9. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Lechler, Philipp; Renkawitz, Tobias; Campean, Valentina; Balakrishnan, Sanjeevi; Tingart, Markus; Grifka, Joachim; Schaumburger, Jens

    2011-01-01

    Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G 2 /M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma

  10. Survivin as a potential mediator to support autoreactive cell survival in myasthenia gravis: a human and animal model study.

    Directory of Open Access Journals (Sweden)

    Linda L Kusner

    Full Text Available The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders.

  11. Cytoplasmic expression of survivin is an independent predictor of poor prognosis in patients with salivary gland cancer.

    Science.gov (United States)

    Stenner, Markus; Weinell, Antje; Ponert, Tobias; Hardt, Aline; Hahn, Moritz; Preuss, Simon F; Guntinas-Lichius, Orlando; Klussmann, Jens Peter

    2010-11-01

    The expression of the inhibitor of apoptosis protein survivin has been shown to be a significant prognostic indicator in various human cancers. The aim was to assess its expression and prognostic value in salivary gland adenocarcinoma and muco-epidermoid carcinoma. Survivin expression was analysed in 48 patients with parotid gland cancer (21 muco-epidermoid, 27 adenocarcinomas) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. A high cytoplasmic expression of survivin was found in 30% of the examined tumours without any significant correlation with the patients' clinicopathological characteristics (P > 0.05). Within all patients, the estimated overall survival rate of muco-epidermoid carcinomas was significantly better than that of adenocarcinomas (P = 0.013). A high cytoplasmic survivin expression significantly indicated a poor 5-year disease-free survival rate compared to patients with a low cytoplasmic survivin expression in the whole group (P = 0.001) and in adenocarcinomas (P = 0.004). In a multivariate analysis, a high cytoplasmic survivin expression was the only independent prognostic indicator for a significantly poorer 5-year disease-free survival rate (P = 0.001). The correlation between cytoplasmic survivin expression and survival in salivary gland malignancies might make this an effective tool in patient follow-up, prognosis and targeted therapy in future. © 2010 Blackwell Publishing Limited.

  12. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy.

    Directory of Open Access Journals (Sweden)

    Elina Hakonen

    Full Text Available Placental lactogen (PL induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN, stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5 when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5. PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5 mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.

  13. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Science.gov (United States)

    2011-01-01

    Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma. PMID:21457573

  14. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Grifka Joachim

    2011-04-01

    Full Text Available Abstract Background Chondrosarcoma is virtually resistant to chemotherapy and radiation therapy. Survivin, the smallest member of the inhibitor of apoptosis protein family, is a critical factor for tumor progression and resistance to conventional therapeutic approaches in a wide range of malignancies. However, the role of survivin in chondrosarcoma has not been well studied. We examined the importance of survivin gene expression in chondrosarcoma and analysed its influences on proliferation, apoptosis and resistance to chemotherapy in vitro. Methods Resected chondrosarcoma specimens from which paraffin-embedded tissues could be extracted were available from 12 patients. In vitro experiments were performed in human chondrosarcoma cell lines SW1353 and Hs819.T. Immunohistochemistry, immunoblot, quantitative PCR, RNA interference, gene-overexpression and analyses of cell proliferation and apoptosis were performed. Results Expression of survivin protein was detected in all chondrosarcoma specimens analyzed, while undetectable in adult human cartilage. RNA interference targeting survivin resulted in a G2/M-arrest of the cell cycle and led to increased rates of apoptosis in chondrosarcoma cells in vitro. Overexpression of survivin resulted in pronounced resistance to doxorubicin treatment. Conclusions These findings indicate that survivin plays a role in the pathogenesis and pronounced chemoresistance of high grade chondrosarcoma. Survivin antagonizing therapeutic strategies may lead to new treatment options in unresectable and metastasized chondrosarcoma.

  15. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Wu, Dong; Wang, Na; Feng, Xing; Li, Yan-Hong; Ni, Jian; Wang, Jian; Pan, Jian; Lu, Jun; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Xuan; Peng, Liang; Cao, Lan; Xiao, Pei-Fang; Pang, Li

    2012-01-01

    Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm 3 ; YM155 10 mg/kg: 0.95 ± 0.55 cm 3 ) compared to DMSO group (DMSO: 3.70 ± 2.4 cm 3 ) or PBS group cells (PBS: 3.78 ± 2.20 cm 3 , ANOVA P < 0.01). YM155 treatment decreased weight of tumors (YM155 5 mg/kg: 1.05 ± 0.24 g; YM155 10 mg/kg: 0.72 ± 0.17 g) compared to DMSO group (DMSO: 2.06 ± 0.38 g) or PBS group cells (PBS: 2.36 ± 0.43 g, ANOVA P < 0.01). Real-time PCR array analysis showed between Test group and control group there are 32 genes significantly up-regulated and 54 genes were significantly down-regulated after YM155 treatment. Ingenuity pathway analysis (IPA) showed cell death was the highest rated network with 65 focus molecules and the significance score of 44. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to cell

  16. Transarterial chemoembolization of hepatocellular carcinoma in a rat model: the effect of additional injection of survivin siRNA to the treatment protocol

    International Nuclear Information System (INIS)

    Vogl, Thomas J.; Oppermann, Elsie; Qian, Jun; Imlau, Ulli; Tran, Andreas; Hamidavi, Yousef; Korkusuz, Huedayi; Bechstein, Wolf Otto; Nour-Eldin, Nour-Eldin Abdel-Rehim; Gruber-Rouh, Tatjana; Hammerstingl, Renate; Naguib, Nagy Naguib Naeem

    2016-01-01

    Transarterial chemoembolization is one of the most widely accepted interventional treatment options for treatment of hepatocellular carcinoma. Still there is a lack of a standard protocol regarding the injected chemotherapeutics. Survivin is an inhibitor of Apoptosis protein that functions to inhibit apoptosis, promote proliferation, and enhance invasion. Survivin is selectively up-regulated in many human tumors. Small interfering RNA (siRNA) can trigger an RNA interference response in mammalian cells and induce strong inhibition of specific gene expression including Survivin. The aim of the study is to assess the effectiveness of the additional injection of Survivin siRNA to the routine protocol of Transarterial Chemoembolization (TACE) for the treatment of hepatocellular carcinoma in a rat model. The study was performed on 20 male ACI rats. On day 0 a solid Morris Hepatoma 3924A was subcapsullary implanted in the liver. On day 12 MRI measurement of the initial tumor volume (V1) was performed. TACE was performed on day 13. The rats were divided into 2 groups; Group (A, n = 10) in which 0.1 mg mitomycin, 0.1 ml lipiodol and 5.0 mg degradable starch microspheres were injected in addition 2.5 nmol survivin siRNA were injected. The same agents were injected in Group (B,=10) without Survivin siRNA. MRI was repeated on day 25 to assess the tumor volume (V2). The tumor growth ratio (V2/V1) was calculated. Western blot and immunohistochemical analysis were performed. For group A the mean tumor growth ratio (V2/V1) was 1.1313 +/− 0.1381, and was 3.1911 +/− 0.1393 in group B. A statistically significant difference between both groups was observed regarding the inhibition of tumor growth (P < 0.0001) where Group A showed more inhibition compared to Group B. Similarly immunohistochemical analysis showed significantly lower (p < 0.002) VEGF staining in group A compared to group B. Western Blot analysis showed a similar difference in VEGF expression (P < 0.0001). The

  17. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  18. The relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma.

    Science.gov (United States)

    Chen, G

    2017-02-01

    To explore the relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma. The mice model of osteosarcoma S180 were injected with 6 mg/kg/day of cisplatin (observation group) or the same amount of normal saline (control group) for 4 weeks. Mice were sacrificed at days 1, 4, 9, 14, 18, 22 and 28, respectively, 24 h before administration of the drug or saline, and tumor tissues were collected. The size of the tumor samples was measured and the correlation of TAM, survivin expression in osteosarcoma and necrosis degree of tumor tissue after cisplatin treatment was studied using various methods including fluorescence quantitative PCR, enzyme linked immunosorbent assay (ELISA), Western blotting and immunohistochemistry. Fluorescence quantitative PCR showed that the expression of TAM, survivin mRNA in the control group was significantly higher than that in the observation group. Also, the ELISA monitoring showed that the expression of mice TAM, survivin protein in vivo was significantly lower than TAM, survivin protein expression of mice in vivo in the observation group (2.3 µg/l, 1.6 µg/l) relatively to the control group (9.7 mg/l, 10.3 µg/l). Consistent with the Western blot data, ELISA results showed that the expression of survivin and TAM protein decreased gradually with the prolongation of drug treatment along the time in the observation group. The volume and weight of the tumor in the observation group were significantly less than that of the control group. Additionally, the tumor necrosis of mice in the observation group was more significant, suggesting that the meant of the size of tumor tissue decreased significantly with the extension of the time of drug treatment. Immunohistochemical results showed that the rate of the positive cell of TAM and survivin in the observation group (82.3%) was significantly higher (pTAM gradually declined at the level of the trend with the extension of

  19. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.

    Science.gov (United States)

    Feng, Wan; Cai, Dawei; Zhang, Bin; Lou, Guochun; Zou, Xiaoping

    2015-08-01

    Histone deacetylases (HDAC) are involved in diverse biological processes and therefore emerge as potential targets for pancreatic cancer. Silibinin, an active component of silymarin, is known to inhibit growth of pancreatic cancer in vivo and in vitro. Herein, we examined the cytotoxic effects of TSA in combination with silibinin and investigated the possible mechanism in two pancreatic cancer cell lines (Panc1 and Capan2). Our study found that combination treatment of HDAC inhibitor and silibinin exerted additive growth inhibitory effect on pancreatic cancer cell. Annexin V-FITC/PI staining and flow cytometry analysis demonstrated that combination therapy induced G2/M cell cycle arrest and apoptosis in Panc1and Capan2 cells. The induction of apoptosis was further confirmed by evaluating the activation of caspases. Moreover, treatment with TSA and silibinin resulted in a profound reduction in the expression of cyclinA2, cyclinB1/Cdk1 and survivin. Taken together, our study might indicate that the novel combination of HDAC inhibitor and silibinin could offer therapeutic potential against pancreatic cancer. Copyright © 2015. Published by Elsevier Masson SAS.

  20. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wan Lu, E-mail: lvvlchina@msn.cn [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Lee, Mi-Ra, E-mail: mira1125@yonsei.ac.kr [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Cho, Mee-Yon, E-mail: meeyon@yonsei.ac.kr [Department of Pathology, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of); Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    2016-03-04

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133{sup +} cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133{sup +} colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed the anticancer effects of survivin inhibitor on CD133{sup +} cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133{sup −} cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133{sup +} cells were higher than those in siRNA-induced CD133{sup −} cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133{sup −} cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.

  1. The small molecule survivin inhibitor YM155 may be an effective treatment modality for colon cancer through increasing apoptosis

    International Nuclear Information System (INIS)

    Li, Wan Lu; Lee, Mi-Ra; Cho, Mee-Yon

    2016-01-01

    Survivin has a known beneficial role in the survival of both cancer cells and normal cells. Therapies targeting survivin have been proposed as an alternative treatment modality for various tumors; however, finding the proper indication for this toxic therapy is critical for reducing unavoidable side effects. We recently observed that high survivin expression in CD133"+ cells is related to chemoresistance in Caco-2 colon cancer cells. However, the effect of survivin-targeted therapy on CD133"+ colon cancer is unknown. In this study, we investigated the roles of CD133 and survivin expression in colon cancer biology in vitro and comparatively analyzed the anticancer effects of survivin inhibitor on CD133"+ cells (ctrl-siRNA group) and small interfering RNA (siRNA)-induced CD133"− cells (CD133-siRNA group) obtained from a single colon cancer cell line. CD133 knockdown via siRNA transfection did not change the tumorigenicity of cells, although in vitro survivin expression levels in CD133"+ cells were higher than those in siRNA-induced CD133"− cells. The transfection procedure seemed to induce survivin expression. Notably, a significant number of CD133"− cells (33.8%) was found in the cell colonies of the CD133-siRNA group. In the cell proliferation assay after treatment, YM155 and a combination of YM155 and 5-fluorouracil (5-FU) proved to be far more effective than 5-FU alone. A significantly increased level of apoptosis was observed with increasing doses of YM155 in all groups. However, significant differences in therapeutic effect and apoptosis among the mock, ctrl-siRNA, and CD133-siRNA groups were not detected. Survivin inhibitor is an effective treatment modality for colon cancer; however, the role of CD133 and the use of survivin expression as a biomarker for this targeted therapy must be verified.

  2. NY-ESO-1- and survivin-specific T-cell responses in the peripheral blood from patients with glioma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Poiret, Thomas; Persson, Oscar

    2018-01-01

    The prognosis for patients with glioblastoma is grim. Ex vivo expanded tumor-associated antigen (TAA)-reactive T-cells from patients with glioma may represent a viable source for anticancer-directed cellular therapies. Immunohistochemistry was used to test the survivin (n = 40 samples) and NY-ESO...

  3. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer

    Directory of Open Access Journals (Sweden)

    Asanuma Hiroko

    2008-05-01

    Full Text Available Abstract Background We previously reported that survivin-2B, a splicing variant of survivin, was expressed in various types of tumors and that survivin-2B peptide might serve as a potent immunogenic cancer vaccine. The objective of this study was to examine the toxicity of and to clinically and immunologically evaluate survivin-2B peptide in a phase I clinical study for patients with advanced or recurrent breast cancer. Methods We set up two protocols. In the first protocol, 10 patients were vaccinated with escalating doses (0.11.0 mg of survivin-2B peptide alone 4 times every 2 weeks. In the second protocol, 4 patients were vaccinated with the peptide at a dose of 1.0 mg mixed with IFA 4 times every 2 weeks. Results In the first protocol, no adverse events were observed during or after vaccination. In the second protocol, two patients had induration at the injection site. One patient had general malaise (grade 1, and another had general malaise (grade 1 and fever (grade 1. Peptide vaccination was well tolerated in all patients. In the first protocol, tumor marker levels increased in 8 patients, slightly decreased in 1 patient and were within the normal range during this clinical trial in 1 patient. With regard to tumor size, two patients were considered to have stable disease (SD. Immunologically, in 3 of the 10 patients (30%, an increase of the peptide-specific CTL frequency was detected. In the second protocol, an increase of the peptide-specific CTL frequency was detected in all 4 patients (100%, although there were no significant beneficial clinical responses. ELISPOT assay showed peptide-specific IFN-γ responses in 2 patients in whom the peptide-specific CTL frequency in tetramer staining also was increased in both protocols. Conclusion This phase I clinical study revealed that survivin-2B peptide vaccination was well tolerated. The vaccination with survivin-2B peptide mixed with IFA increased the frequency of peptide-specific CTL more

  4. Fascaplysin Exerts Anti-Cancer Effects through the Downregulation of Survivin and HIF-1α and Inhibition of VEGFR2 and TRKA

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-09-01

    Full Text Available Fascaplysin has been reported to exert anti-cancer effects by inhibiting cyclin-dependent kinase 4 (CDK4; however, the precise mode of action by which fascaplysin suppresses tumor growth is not clear. Here, we found that fascaplysin has stronger anti-cancer effects than other CDK4 inhibitors, including PD0332991 and LY2835219, on lung cancer cells that are wild-type or null for retinoblastoma (RB, indicating that unknown target molecules might be involved in the inhibition of tumor growth by fascaplysin. Fascaplysin treatment significantly decreased tumor angiogenesis and increased cleaved-caspase-3 in xenografted tumor tissues. In addition, survivin and HIF-1α were downregulated in vitro and in vivo by suppressing 4EBP1-p70S6K1 axis-mediated de novo protein synthesis. Kinase screening assays and drug-protein docking simulation studies demonstrated that fascaplysin strongly inhibited vascular endothelial growth factor receptor 2 (VEGFR2 and tropomyosin-related kinase A (TRKA via DFG-out non-competitive inhibition. Overall, these results suggest that fascaplysin inhibits TRKA and VEGFR2 and downregulates survivin and HIF-1α, resulting in suppression of tumor growth. Fascaplysin, therefore, represents a potential therapeutic approach for the treatment of multiple types of solid cancer.

  5. [Effect of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes].

    Science.gov (United States)

    Chen, Wei-qiang; Feng, Feng-lan; Gu, Hong-biao; Pan, De-shun

    2010-07-01

    To examine the effects of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes. The inhibition effects of sodium phenylbutyrate on Tca8113 and human tongue squamous cell carcinoma (TCSSA) cell lines were detected by methyl thiazoly terazolium (MTT) and the apoptosis of the cancer cells after being induced by sodium phenylbutyrate examined by flow cytometry (FCM). The expression of p21 and survivin genes were observed with Western blotting and RT-PCR. Compared with control group, the level of p21 mRNA and protein of Tca8113 cellline increased to 0.09 ± 0.08 and increased 0.72 ± 0.10, that of TCSSA cellline increased 1.34 ± 0.12 and 1.56 ± 0.09 (P Sodium phenylbutyrate inhibited the cell proliferation, promoted cell apoptosis and arrested the cells in G₁/G₀ phase. The amount of p21 mRNA and protein were increased, and the expression of survivin gene was decreased. Sodium phenylbutyrate exhibited remarkable inhibitory effects on human tongue squamous cancer cell proliferation and induced cancer cell apoptosis. The mechanism may be due to up-regulation of p21 gene and down-regulation of survivin gene. The mRNA level of p21 gene and survivin gene showed a strong correlation.

  6. THE SIGNIFICANCE OF EPIDERMAL GROWTH FACTOR RECEPTOR AND SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE CYTOLOGY OF PATIENTS WITH TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER.

    Science.gov (United States)

    Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A

    2013-01-01

    To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.

  7. Increased spontaneous apoptosis, but not survivin expression, is associated with histomorphologic response to neoadjuvant chemoradiation in rectal cancer.

    LENUS (Irish Health Repository)

    McDowell, Dermot T

    2009-11-01

    Survivin has been shown to be an important mediator of cellular radioresistance in vitro. This study aims to compare survivin expression and apoptosis to histomorphologic responses to neoadjuvant radiochemotherapy (RCT) in rectal cancer.

  8. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  9. Survivin is a therapeutic target in Merkel cell carcinoma

    NARCIS (Netherlands)

    Arora, Reety; Shuda, Masahiro; Guastafierro, Anna; Feng, Huichen; Toptan, Tuna; Tolstov, Yanis; Normolle, Daniel; Vollmer, Laura L; Vogt, Andreas; Dömling, Alexander; Brodsky, Jeffrey L; Chang, Yuan; Moore, Patrick S

    2012-01-01

    Merkel cell polyomavirus (MCV) causes ~80% of primary and metastatic Merkel cell carcinomas (MCCs). By comparing digital transcriptome subtraction deep-sequencing profiles, we found that transcripts of the cellular survivin oncoprotein [BIRC5a (baculoviral inhibitor of apoptosis repeat-containing

  10. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    Science.gov (United States)

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  11. Quantitative Analysis of Survivin Protein Expression and Its Therapeutic Depletion by an Antisense Oligonucleotide in Human Lung Tumors

    Directory of Open Access Journals (Sweden)

    Anna L Olsen

    2012-01-01

    Full Text Available RNA-directed antisense and interference therapeutics are a promising treatment option for cancer. The demonstration of depletion of target proteins within human tumors in vivo using validated methodology will be a key to the application of this technology. Here, we present a flow cytometric-based approach to quantitatively determine protein levels in solid tumor material derived by fiber optic brushing (FOB of non-small cell lung cancer (NSCLC patients. Focusing upon the survivin protein, and its depletion by an antisense oligonucleotide (ASO (LY2181308, we show that we can robustly identify a subpopulation of survivin positive tumor cells in FOB samples, and, moreover, detect survivin depletion in tumor samples from a patient treated with LY2181308. Survivin depletion appears to be a result of treatment with this ASO, because a tumor treated with conventional cytotoxic chemotherapy did not exhibit a decreased percentage of survivin positive cells. Our approach is likely to be broadly applicable to, and useful for, the quantification of protein levels in tumor samples obtained as part of clinical trials and studies, facilitating the proof-of-principle testing of novel targeted therapies.

  12. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients.

    Science.gov (United States)

    Widenmeyer, Melanie; Griesemann, Heinrich; Stevanović, Stefan; Feyerabend, Susan; Klein, Reinhild; Attig, Sebastian; Hennenlotter, Jörg; Wernet, Dorothee; Kuprash, Dmitri V; Sazykin, Alexei Y; Pascolo, Steve; Stenzl, Arnulf; Gouttefangeas, Cécile; Rammensee, Hans-Georg

    2012-07-01

    CD4(+) T cells have been shown to be crucial for the induction and maintenance of cytotoxic T cell responses and to be also capable of mediating direct tumor rejection. Therefore, the anticancer therapeutic efficacy of peptide-based vaccines may be improved by addition of HLA class II epitopes to stimulate T helper cells. Survivin is an apoptosis inhibiting protein frequently overexpressed in tumors. Here we describe the first immunological evaluation of a survivin-derived CD4(+) T cell epitope in a multipeptide immunotherapy trial for prostate carcinoma patients. The survivin peptide is promiscuously presented by several human HLA-DRB1 molecules and, most importantly, is naturally processed by dendritic cells. In vaccinated patients, it was able to induce frequent, robust and multifunctional CD4(+) T cell responses, as monitored by IFN-γ ELISPOT and intracellular cytokine staining. Thus, this HLA-DR restricted epitope is broadly immunogenic and should be valuable for stimulating T helper cells in patients suffering from a wide range of tumors. Copyright © 2011 UICC.

  13. High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erpolat, O.P.; Akmansu, M. [Medical School of Gazi Univ., Besevler-Ankara (Turkey). Dept. of Radiation Oncology; Gocun, P.U.; Karakus, E.; Akyol, G. [Medical School of Gazi Univ., Besevler-Ankara (Turkey). Dept. of Pathology

    2012-03-15

    Survivin is one of the apoptosis inhibitor proteins. Together with Aurora B, it also plays a role in regulating several aspects of mitosis. High expression of these markers is correlated with malignant behavior of various cancers and resistance to therapy. Our aim was to evaluate the prognostic role of these markers in head and neck cancers. We evaluated the expression of Aurora B and survivin in tissue specimens of 58 patients with head and neck squamous cell carcinoma using immunohistochemistry. Patients who showed high expression of cytoplasmic and nuclear survivin and Aurora B had significantly shorter overall survival (p = 0.036, p < 0.000, p = 0.032, respectively). In multivariate analysis, high expression of nuclear survivin was the only independent negative prognostic factor (p = 0.024). Moreover, it was found that high co-expression of nuclear survivin and Aurora B had a negative effect on survival in univariate (p < 0.000) and multivariate (p < 0.000) analyses. The negative prognostic values of high expression of Aurora B and high co-expression of nuclear survivin and Aurora B on survival were shown. These findings suggest that co-expression of nuclear survivin and Aurora B can be useful diagnostic markers and therapeutic targets for head and neck squamous cell carcinoma. However, further studies with a larger number of patients in a more homogeneous disease group are needed to confirm the conclusion.

  14. Targeting Survivin by 3, 3'-Diindolylmethane (DIM) for Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Rahman, K. M

    2008-01-01

    ...) family, is associated with both progression of prostate carcinoma and drug resistance. Therefore, we hypothesized that survivin plays a role in the development of hormone-refractory prostate cancer (HRPC...

  15. Detection of survivin, carcinoembryonic antigen and ErbB2 level in oral squamous cell carcinoma patients.

    Science.gov (United States)

    Li, Shu-Xia; Yang, Yan-Qi; Jin, Li-Jian; Cai, Zhi-Gang; Sun, Zheng

    2016-01-01

    The aim of this study was to detect the survivin, carcinoembryonic antigen (CEA) and ErbB2 in the saliva, serum and local tumor-exfoliated cells of oral squamous cell carcinoma (OSCC) patients, for providing reliable tumor markers for the early detection of oral malignant cancer. The saliva, serum, and local tumor-exfoliated cell samples of 26 OSCC patients without chemotherapy and 10 non-cancer patients were collected in Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University. The contents of survivin, CEA and ErbB2 using were detected usingenzyme-linked immunosorbent assay. The survivin and CEA levels in saliva and local tumor-exfoliated cells of OSCC patients were significantly higher than those in the non-cancer patients (P oral malignant cancer.

  16. Nuclear interaction of Smac/DIABLO with Survivin at G2/M arrest prompts docetaxel-induced apoptosis in DU145 prostate cancer cells

    International Nuclear Information System (INIS)

    Kim, Ji Young; Chung, Jin-Yong; Lee, Seung Gee; Kim, Yoon-Jae; Park, Ji-Eun; Yoo, Ki Soo; Yoo, Young Hyun; Park, Young Chul; Kim, Byeong Gee; Kim, Jong-Min

    2006-01-01

    Smac/DIABLO is released by mitochondria in response to apoptotic stimuli and is thought to antagonize the function of inhibitors of apoptosis proteins. Recently, it has been shown that, like XIAP, Survivin can potentially interact with Smac/DIABLO. However, the precise mechanisms and cellular location of their action have not been determined. We report for the first time that Smac/DIABLO translocates to the nucleus and is colocalized with Survivin at mitotic spindles during apoptosis resulting from G2/M arrest due to docetaxel treatment of DU145 prostate cancer cells. Our data demonstrate that the nuclear interaction of Smac/DIABLO with Survivin is an important step for suppressing the anti-apoptotic function of Survivin in Doc-induced apoptosis. This suggests that the balance between cellular Smac/DIABLO and Survivin levels could be critical for cellular destiny in taxane-treated cancer cells

  17. All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein

    Directory of Open Access Journals (Sweden)

    Taguchi Takahiro

    2010-12-01

    Full Text Available Abstract Background Imatinib, a selective tyrosine kinase inhibitor, has been used as a standard first-line therapy for irresectable and metastasized gastrointestinal stromal tumor (GIST patients. Unfortunately, most patients responding to imatinib will eventually exhibit imatinib-resistance, the cause of which is not fully understood. The serious clinical problem of imatinib-resistance demands alternative therapeutic strategy. This study was conducted to investigate the effect of all-trans retinoic acid (ATRA on GIST cell lines. Methods Cell proliferation was determined by trypan blue dye exclusion test. Western blot analysis was performed to test the expression of activated KIT, its downstream proteins, and apoptosis associated proteins. The cytotoxic interactions of imatinib with ATRA were evaluated using the isobologram of Steel and Peckham. Results and conclusion In this work, for the first time we have demonstrated that ATRA affected on cell proliferation of GIST-T1 and GIST-882 cell line through inhibition of cell growth in a dose dependent manner and induced apoptosis. High dose of ATRA induced morphologic change in GIST-T1 cells, rounded-up cells, and activated the caspase-3 protein. In further examination, we found that the ATRA-induced apoptosis in GIST-T1 cells was accompanied by the down-regulated expression of survivin and up-regulated expression of Bax protein. Moreover, ATRA suppressed the activity of KIT protein in GIST-T1 cells and its downstream signal, AKT activity, but not MAPK activity. We also have demonstrated that combination of ATRA with imatinib showed additive effect by isobologram, suggesting that the combination of ATRA and imatinib may be a novel potential therapeutic option for GIST treatment. Furthermore, the scracht assay result suggested that ATRA was a potential reagent to prevent the invasion or metastasis of GIST cells.

  18. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  19. Targeting Survivin by 3, 3'-Diindolylmethane (DIM) for Prostate Cancer Therapy

    National Research Council Canada - National Science Library

    Rahman, K. M

    2008-01-01

    ...) and resists killing by chemotherapeutic agents; thus the down-regulation of survivin by DIM, a non-toxic dietary compound formed in the stomach after consumption of Brassica vegetables like broccoli or cabbage, has been known to have cancer...

  20. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  1. Elucidating respective functions of two domains BIR and C-helix of human IAP survivin for precise targeted regulating mitotic cycle, apoptosis and autophagy of cancer cells.

    Science.gov (United States)

    Hu, Fabiao; Pan, Daxia; Zheng, Wenyun; Yan, Ting; He, Xiujuan; Ren, Fuzheng; Lu, Yiming; Ma, Xingyuan

    2017-12-26

    Survivin was the smallest member of the IAP family, which was over expressed in many different cancers, and considered to be a promising hot target for cancer therapy, and our previous study demonstrated that multiple dominant negative mutants from full-length survivin could have many complex effects on cancer cells, such as cell cycle, apoptosis, and autophagy. But it was not yet known what role the two main domains played in those functions, which would be very important for the design of targeted anticancer drugs and for the interpretation of their molecular mechanisms. In this study, based on preparation the two parts (BIR domain and CC domain) of survivin by genetic engineering and cell characterization assay, we discovered that BIR (T34A)-domain peptide could inhibit Bcap-37 cells growth in a dose- and time-dependent manner, increase the proportion of G2/M phase, and induce caspase-dependent apoptosis via the mitochondrial pathway. While CC (T117A)-domain peptide increased the proportion of S-phase cells and increased the level of the autophagy marker protein LC3B significantly. These further experiments confirmed that TAT-BIR (T34A) peptide could be used to inhibit cell proliferation, promote apoptosis, and block mitosis, and TAT-CC (T117A) peptide showed mainly to promote autophagy, process of DNA replication, and mitosis to breast cancer cells. This research will lay the foundation for interpreting the multifunction mechanism of survivin in cell fates, further make senses in developing the anticancer drugs targeting it precisely and efficiently.

  2. The relationship among human papilloma virus infection, survivin, and p53 gene in lung squamous carcinoma tissue

    International Nuclear Information System (INIS)

    Yue-Hua Wang; De-jie Chen; Tie-Nan Yi

    2010-01-01

    To study the relationship between the infection of human papillomavirus (HPV) type 16, type 18, the expression of survivin, and the mutation of p53 gene in lung squamous carcinoma tissue for the research of pathogenesis of lung carcinoma.This study was carried out at the Laboratory of Molecular Biology, Xiangfan Central Hospital of Hubei Province, China from September 2008 to May 2010. Forty-five specimens of lung squamous carcinoma tissue confirmed by histopathology were the excisional specimens taken by the Thoracic Surgery of Xiangfan Central Hospital. Normal tissue, closely adjacent to the fresh carcinoma specimens, was used as the control group for p53 gene mutation analysis. Sixteen surgical excisional specimens of benign lung disease were used as a control group of non-carcinomatous diseases. Human papillomavirus DNA were detected by polymerase chain reaction (PCR), and we used the PCR-single-strand conformation polymorphism-ethidium bromide (PCR-SSCP-EB) method to detect the mutations of the p53 gene. The expression of the survivin gene was detected by immunohistochemistry methods. Approximately 68.9% of 45 lung squamous carcinoma tissue had p53 gene mutations. The mutation rate of exon 5-8 p53 were 15.6%, 17.8%, 15.6% and 20%. Approximately 42.2% of lung squamous cell carcinoma samples were shown to be positive for HPV DNA expression and 62.2% were positive for survivin expression. There was an inverse correlation between the presence of HPV infections and mutations of p53 gene; and the mutations of p53 gene and expression of survivin had a positive relationship. Mutation of p53 gene and HPV infection may facilitate each other in the generation of lung squamous cell carcinoma. Abnormal expression of the survivin gene may take part in the onset and progression of lung squamous cell carcinoma (Author).

  3. Ultrasound-guided delivery of siRNA and a chemotherapeutic drug by using microbubble complexes: In vitro and in vivo evaluations in a prostate cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung; Yoon, Young Il; Lee, Hak Jong [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Yoon, Tae Jong [Dept. of Applied Bioscience, College of Life Science, CHA University, Pocheon (Korea, Republic of)

    2016-07-15

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  4. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yun Jung [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Yoon, Young Il [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 16229 (Korea, Republic of); Yoon, Tae-Jong [Department of Applied Bioscience, College of Life Science, CHA University, Pocheon 11160 (Korea, Republic of); College of Pharmacy, Ajou University, Suwon 16499 (Korea, Republic of); Lee, Hak Jong [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 13620 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, Seoul 03080 (Korea, Republic of); Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 16229 (Korea, Republic of)

    2016-11-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  5. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model

    International Nuclear Information System (INIS)

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong; Lee, Hak Jong

    2016-01-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo

  6. Smad4 sensitizes colorectal cancer to 5-fluorouracil through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade.

    Science.gov (United States)

    Zhang, Binhao; Leng, Chao; Wu, Chao; Zhang, Zhanguo; Dou, Lei; Luo, Xin; Zhang, Bixiang; Chen, Xiaoping

    2016-03-01

    5-Fluorouracil (5-FU), a cell cycle-specific antimetabolite, is one of the most commonly used chemotherapeutic agents for colorectal cancer (CRC). Yet, resistance to 5-FU-based chemotherapy is still an obstacle to the treatment of this malignancy. Mutation or loss of Smad4 in CRC is pivotal for chemoresistance. However, the mechanism by which Smad4 regulates the chemosensitivity of CRC remains unclear. In the present study, we investigated the role of Smad4 in the chemosensitivity of CRC to 5-FU, and whether Smad4-regulated cell cycle arrest is involved in 5-FU chemoresistance. We used Smad4-expressing CT26 and Smad4-null SW620 cell lines as experimental models, by knockdown or transgenic overexpression. Cells or tumors were treated with 5-FU to determine chemosensitivity by cell growth, tumorigenicity assay and a mouse model. Cell cycle distribution was examined with flow cytometric analysis, and cell cycle-related proteins were examined by western blotting. Smad4 deficiency in CT26 and SW620 cells induced chemoresistance to 5-FU both in vitro and in vivo. Smad4 deficiency attenuated G1 or G2 cell cycle arrest by activating the PI3K/Akt/CDC2/survivin pathway. The PI3K inhibitor, LY294002, reversed the activation of the Akt/CDC2/survivin cascade in the Smad4-deficient cells, while it had little effect on cells with high Smad4 expression. In conclusion, we discovered a novel mechanism mediated by Smad4 to trigger 5-FU chemosensitivity through cell cycle arrest by inhibiting the PI3K/Akt/CDC2/survivin cascade. The present study also implies that LY294002 has potential therapeutic value to reverse the chemosensitivity of CRC with low Smad4 expression.

  7. Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model

    Directory of Open Access Journals (Sweden)

    Roy K

    2015-02-01

    Full Text Available Kislay Roy,1 Rupinder K Kanwar,1 Subramanian Krishnakumar,2,3 Chun Hei Antonio Cheung,4 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Molecular and Medical Research (MMR Strategic Research Centre, School of Medicine (SoM, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia; 2Department of Nanobiotechnology, 3Larsen & Toubro (L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India; 4Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China Abstract: Endogenous survivin expression has been related with cancer survival, drug resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin (SurR9-C84A, referred to as SR9 competitively inhibited endogenous survivin and blocked the cell cycle at the G1/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles (CHNP substantially increased the bioavailability and serum stability of SR9. The mechanism of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results confirmed that CHNP–SR9 protected primary cells from autophagy and successfully induced tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP–SR9 significantly reduced the tumor spheroid size (three-dimensional model by nearly 7-fold. Effects of SR9 and CHNP–SR9 were studied on 35 key molecules involved in the apoptotic pathway. Highly significant (4.26-fold, P≤0.005 reduction in tumor volume was observed using an in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, P≤0.005 and necrotic indexes (3.5-fold, P≤0.05 were comparatively higher in CHNP–SR9 when compared to void CHNP and CHNP–SR9

  8. Immunohistochemical investigation of cell cycle and apoptosis regulators (Survivin, β-Catenin, P53, Caspase 3 in canine appendicular osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bongiovanni Laura

    2012-06-01

    Full Text Available Abstract Background Osteosarcoma (OSA represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53 involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI and overall survival (OS. Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells was significantly associated with the development of metastasis (P = 0.014; moderate/high nuclear p53 expression (≥10% positive cells was significantly associated with moderate/high histological grade (P = 0.017 and shorter OS (P = 0.049. Moderate/high nuclear survivin expression (≥15% positive cells showed a tendency toward a longer OS (P = 0,088. Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies

  9. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes

    Directory of Open Access Journals (Sweden)

    Jin M

    2018-04-01

    Full Text Available Mingji Jin,1 Guangming Jin,2 Lin Kang,1 Liqing Chen,1 Zhonggao Gao,1 Wei Huang11State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 2Department of Diagnostic Radiology 2, Yanbian University Hospital, Yanji, Jilin, China Background: The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. Materials and methods: We prepared smart polymeric nanoparticles (NPs with pH-responsive and poly(ethylene glycol (PEG-detachable properties to systemically co-deliver paclitaxel (PTX and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol-block-poly(l-aspartic acid sodium salt (PEG-PAsp was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. Results: The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS. At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of

  10. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Bi YZ

    2016-11-01

    Full Text Available Yanzhao Bi, Yifan Zhang, Chunying Cui, Lulu Ren, Xueyun Jiang School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China Abstract: Nanodiamond (ND is a renowned material in nonviral small interfering RNA (siRNA carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH22NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR assay, enzyme-linked immunosorbent assay (ELISA, flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH22NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V–fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH22NH-VDGR/survivin-siRNA nanoparticle with 60–110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH22NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH22NH-VDGR was suggested

  11. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  12. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7.

    Science.gov (United States)

    Bi, Yanzhao; Zhang, Yifan; Cui, Chunying; Ren, Lulu; Jiang, Xueyun

    Nanodiamond (ND) is a renowned material in nonviral small interfering RNA (siRNA) carrier field due to its unique physical, chemical, and biological properties. In our previous work, it was proven that ND could deliver siRNA into cells efficiently and downregulate the expression of desired protein. However, synthesizing a high-efficient tumor-targeting carrier using ND is still a challenge. In this study, a novel carrier, NDCONH(CH 2 ) 2 NH-VDGR, was synthesized for siRNA delivery, and its properties were characterized with methods including Fourier transform infrared spectrometry, transmission electron microscopy, scanning electron microscopy, gel retardation assay, differential scanning calorimetry, confocal microscopy, releasing test, real-time polymerase chain reaction (PCR) assay, enzyme-linked immunosorbent assay (ELISA), flow cytometry, cytotoxicity assay, and gene-silencing efficacy assay in vitro and in vivo. The mechanism of NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA-induced tumor apoptosis was evaluated via flow cytometer assay using Annexin V-fluorescein isothiocyanate/propidium iodide staining method. The NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA nanoparticle with 60-110 nm diameter and 35.65±3.90 mV zeta potential was prepared. For real-time PCR assay, the results showed that the expression of survivin mRNA was reduced to 46.77%±6.3%. The expression of survivin protein was downregulated to 48.49%±2.25%, as evaluated by ELISA assay. MTT assay showed that NDCONH(CH 2 ) 2 NH-VDGR/survivin-siRNA had an inhibitory effect on MCF-7 cell proliferation. According to these results, the survivin-siRNA could be delivered, transported, and released stably, which benefits in increasing the gene-silencing effect. Therefore, as an siRNA carrier, NDCONH(CH 2 ) 2 NH-VDGR was suggested to be used in siRNA delivery system and in cancer treatments.

  13. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    Science.gov (United States)

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors citoplasma e 3,1% no núcleo; APC em 94,6% no citoplasma; TCF-4 em19,4% no núcleo; e survivina em 93,9% no núcleo. Houve relação entre expressão da proteína E-caderina com a idade mais avançada (p=0,007); betacatenina com tumores <5 cm de diâmetro (p=0,041);APC com tumores proximais (p=0,047); e TCF-4 com tipo difuso da classificação de Lauren (p=0,017) e com o grau de penetração tumoral (p=0,002). A via Wnt/betacatenina não está envolvida na carcinogênese gástrica. Porém, a frequência elevada de survivina permite sugerir que outras vias sinalizadoras devam estar envolvidas na transformação do tecido gástrico.

  14. HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Tsung Huang

    2017-12-01

    Full Text Available Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+ breast cancer patients. Even though dysregulations of histone deacetylases (HDACs are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan–Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p.

  15. Differential PKA activation and AKAP association determines cell fate in cancer cells

    Science.gov (United States)

    2013-01-01

    Background The dependence of malignant properties of colorectal cancer (CRC) cells on IGF1R signaling has been demonstrated and several IGF1R antagonists are currently in clinical trials. Recently, we identified a novel pathway in which cAMP independent PKA activation by TGFβ signaling resulted in the destabilization of survivin/XIAP complex leading to increased cell death. In this study, we evaluated the effect of IGF1R inhibition or activation on PKA activation and its downstream cell survival signaling mechanisms. Methods Small molecule IGF1R kinase inhibitor OSI-906 was used to test the effect of IGF1R inhibition on PKA activation, AKAP association and its downstream cell survival signaling. In a complementary approach, ligand mediated activation of IGF1R was performed and AKAP/PKA signaling was analyzed for their downstream survival effects. Results We demonstrate that the inhibition of IGF1R in the IGF1R-dependent CRC subset generates cell death through a novel mechanism involving TGFβ stimulated cAMP independent PKA activity that leads to disruption of cell survival by survivin/XIAP mediated inhibition of caspase activity. Importantly, ligand mediated activation of the IGF1R in CRC cells results in the generation of cAMP dependent PKA activity that functions in cell survival by inhibiting caspase activity. Therefore, this subset of CRC demonstrates 2 opposing pathways organized by 2 different AKAPs in the cytoplasm that both utilize activation of PKA in a manner that leads to different outcomes with respect to life and death. The cAMP independent PKA activation pathway is dependent upon mitochondrial AKAP149 for its apoptotic functions. In contrast, Praja2 (Pja2), an AKAP-like E3 ligase protein was identified as a key element in controlling cAMP dependent PKA activity and pro-survival signaling. Genetic manipulation of AKAP149 and Praja2 using siRNA KD had opposing effects on PKA activity and survivin/XIAP regulation. Conclusions We had identified 2

  16. Expression of survivin and p53 in oral lichen planus, lichenoid reaction and lichenoid dysplasia: An immunohistochemical study

    Science.gov (United States)

    Basheer, Shaini; Shameena, PM; Sudha, S; Varma, Sujatha; Vidyanath, S; Varekar, Aniruddha

    2017-01-01

    Context: The malignant transformation potential of oral lichen planus (OLP) and related lesions is a subject of great controversy. Aim: The aim of this study was to compare the expression of proteins related to apoptosis and tumour suppressor gene processes in OLP, oral lichenoid reaction (OLR) and oral lichenoid dysplasia (OLD). Materials and Methods The immunohistochemical study was carried out to investigate the expressions of survivin and p53 in a total of 30 lesional biopsy specimens - 10 cases each of OLP, OLR and OLD. The expression rates were further compared with 10 control specimens of normal oral mucosa (NORM). Results: Immunoreactivity for p53 was seen in 7 cases (70%) of OLD, 4 cases (40%) of OLP and 2 cases (20%) of OLR and none of NORM. We obtained a significant difference (P = 0.01) in mean p53 expression between the different entities. The positive staining rate of survivin was found to be significantly different between OLD (50%), OLP (10%), OLR (0%), and normal mucosa (0%) (P = 0.004). There was a positive correlation between p53 and survivin expression in OLP and OLD using Pearson's correlation coefficient. Conclusion: Lichenoid dysplasia has shown p53 and survivin expression in the range of not OLP, but leukoplakia. On the other hand, OLR seems to be an innocuous lesion. The study results with OLP are inconclusive but points toward a small but important malignant potential in OLP. This kind of comparative study highlights the importance of biopsying OLP and related lesions for proper diagnosis and appropriate management. PMID:29391729

  17. Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium

    Directory of Open Access Journals (Sweden)

    Rojas-Catagena Carmencita

    2010-11-01

    Full Text Available Abstract Background The proper balance of cell division and cell death is of crucial importance for all kinds of developmental processes and for maintaining tissue homeostasis in mature tissues. Dysregulation of this balance often results in severe pathologies, such as cancer. There is a growing interest in understanding the factors that govern the interplay between cell death and proliferation under various conditions. Survivin and mortalin are genes that are known to be implicated in both mitosis and apoptosis and are often expressed in tumors. Results The present study takes advantage of the ability of the sea cucumber Holothuria glaberrima Selenka, 1867 (Holothuroidea, Aspidochirota to discard its viscera and completely regrow them. This visceral regeneration involves an extensive expression of survivin and mortalin transcripts in the gut mesothelium (the outer tissue layer of the digestive tube, which coincides in time with drastic de-differentiation and a burst in cell division and apoptosis. Double labeling experiments (in situ hybridization combined with TUNEL assay or with BrdU immunohistochemistry suggest that both genes support cell proliferation, while survivin might also be involved in suppression of the programmed cell death. Conclusions Visceral regeneration in the sea cucumber H. glaberrima is accompanied by elevated levels of cell division and cell death, and, moreover, involves expression of pro-cancer genes, such as survivin and mortalin, which are known to support proliferation and inhibit apoptosis. Nevertheless, once regeneration is completed and the expression pattern of both genes returns to normal, the regrown digestive tube shows no anomalies. This strongly suggests that sea cucumbers must possess some robust cancer-suppression mechanisms that allow rapid re-growth of the adult tissues without leading to runaway tumor development.

  18. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.

    Science.gov (United States)

    Gaude, H; Aznar, N; Delay, A; Bres, A; Buchet-Poyau, K; Caillat, C; Vigouroux, A; Rogon, C; Woods, A; Vanacker, J-M; Höhfeld, J; Perret, C; Meyer, P; Billaud, M; Forcet, C

    2012-03-22

    LKB1 is a tumor suppressor that is constitutionally mutated in a cancer-prone condition, called Peutz-Jeghers syndrome, as well as somatically inactivated in a sizeable fraction of lung and cervical neoplasms. The LKB1 gene encodes a serine/threonine kinase that associates with the pseudokinase STRAD (STE-20-related pseudokinase) and the scaffolding protein MO25, the formation of this heterotrimeric complex promotes allosteric activation of LKB1. We have previously reported that the molecular chaperone heat shock protein 90 (Hsp90) binds to and stabilizes LKB1. Combining pharmacological studies and RNA interference approaches, we now provide evidence that the co-chaperone Cdc37 participates to the regulation of LKB1 stability. It is known that the Hsp90-Cdc37 complex recognizes a surface within the N-terminal catalytic lobe of client protein kinases. In agreement with this finding, we found that the chaperones Hsp90 and Cdc37 interact with an LKB1 isoform that differs in the C-terminal region, but not with a novel LKB1 variant that lacks a portion of the kinase N-terminal lobe domain. Reconstitution of the two complexes LKB1-STRAD and LKB1-Hsp90-Cdc37 with recombinant proteins revealed that the former is catalytically active whereas the latter is inactive. Furthermore, consistent with a documented repressor function of Hsp90, LKB1 kinase activity was transiently stimulated upon dissociation of Hsp90. Finally, disruption of the LKB1-Hsp90 complex favors the recruitment of both Hsp/Hsc70 and the U-box dependent E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein) that triggers LKB1 degradation. Taken together, our results establish that the Hsp90-Cdc37 complex controls both the stability and activity of the LKB1 kinase. This study further shows that two chaperone complexes with antagonizing activities, Hsp90-Cdc37 and Hsp/Hsc70-CHIP, finely control the cellular level of LKB1 protein.

  19. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.

    Science.gov (United States)

    Nakada, Daisuke; Hirano, Yukinori; Sugimoto, Katsunori

    2004-11-01

    The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.

  20. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  1. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.

    Science.gov (United States)

    Jin, Mingji; Jin, Guangming; Kang, Lin; Chen, Liqing; Gao, Zhonggao; Huang, Wei

    2018-01-01

    The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA) within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. We prepared smart polymeric nanoparticles (NPs) with pH-responsive and poly(ethylene glycol) (PEG)-detachable properties to systemically co-deliver paclitaxel (PTX) and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA) was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX) through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol)-block-poly(L-aspartic acid sodium salt) (PEG-PAsp) was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS). At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of survivin mRNA and protein owing to enhanced cell uptake of NPs. Cell counting kit-8 (CCK-8) assay showed that the NPs presented low systemic toxicity and improved antiproliferation effect of PTX on A549 cells. Moreover, in vivo studies demonstrated that accumulated NPs in the tumor site were capable of inhibiting the tumor growth and extending the survival rate of the mice by silencing the survivin gene and

  2. BAP1 has a survival role in cutaneous melanoma.

    Science.gov (United States)

    Kumar, Raj; Taylor, Michael; Miao, Benchun; Ji, Zhenyu; Njauw, Jenny C-N; Jönsson, Göran; Frederick, Dennie T; Tsao, Hensin

    2015-04-01

    Although the pattern of BAP1 inactivation in ocular melanoma specimens and in the BAP1 cutaneous melanoma (CM)/ocular melanoma predisposition syndrome suggests a tumor suppressor function, the specific role of this gene in the pathogenesis of CM is not fully understood. We thus set out to characterize BAP1 in CM and discovered an unexpected pro-survival effect of this protein. Tissue and cell lines analysis showed that BAP1 expression was maintained, rather than lost, in primary melanomas compared with nevi and normal skin. Genetic depletion of BAP1 in melanoma cells reduced proliferation and colony-forming capability, induced apoptosis, and inhibited melanoma tumor growth in vivo. On the molecular level, suppression of BAP1 led to a concomitant drop in the protein levels of survivin, a member of anti-apoptotic proteins and a known mediator of melanoma survival. Restoration of survivin in melanoma cells partially rescued the growth-retarding effects of BAP1 loss. In contrast to melanoma cells, stable overexpression of BAP1 into immortalized but non-transformed melanocytes did suppress proliferation and reduce survivin. Taken together, these studies demonstrate that BAP1 may have a growth-sustaining role in melanoma cells, but that its impact on ubiquitination underpins a complex physiology, which is context and cell dependent.

  3. Iodoacetyl-functionalized pullulan: A supplemental enhancer for single-domain antibody-polyclonal antibody sandwich enzyme-linked immunosorbent assay for detection of survivin.

    Science.gov (United States)

    Matsushita, Takahiko; Arai, Hidenao; Koyama, Tetsuo; Hatano, Ken; Nemoto, Naoto; Matsuoka, Koji

    2017-11-01

    Survivin, an inhibitor of the apoptosis protein family, is a potent tumor marker for diagnosis and prognosis. The enzyme-linked immunosorbent assay (ELISA) is one of the methods that has been used for detection of survivin. However, ELISA has several disadvantages caused by the use of conventional antibodies, and we have therefore been trying to develop a novel ELISA system using camelid single-domain antibodies (VHHs) as advantageous replacements. Here we report a supplemental approach to improve the VHH-polyclonal antibody sandwich ELISA for survivin detection. Iodoacetyl-functionalized pullulan was synthesized, and its thiol reactivity was characterized by a model reaction with l-cysteine. The thiophilic pullulan was applied to an immunoassay asan additive upon coating of standard assay plates with an anti-survivin VHH fusion protein with C-terminal cysteine. The results showed that the mole ratio of the additive to VHH had a significant effect on the consequent response. Mole ratios of 0.07, 0.7, and 7 led to 90% lower, 15% higher, and 69% lower responses, respectively, than the response of a positive control in which no additive was used. The background levels observed in any additive conditions were as low as that of a negative control lacking both VHH and the additive. These results indicate the applicability of the thiol-reactive pullulan as a response enhancer to VHH-based ELISA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Diagnostic Usefulness of HMGA2, Survivin, CEACAM6, and SFN/14-3-3 δ in Follicular Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Min Hye Jang

    2015-03-01

    Full Text Available Background: Follicular thyroid carcinoma (FTC is the second most common thyroid malignancy and its differential diagnosis includes follicular adenoma (FA and adenomatous goiter (AG. Several ancillary markers have been suggested to aid in the diagnosis of FTC, but the successful use of these methods still needs to be validated. Methods: In the present study, we verified the immunoexpression of HMGA2, CEACAM6, survivin, and SFN/14-3-3 δ in lesions including 41 AGs, 72 FAs, and 79 FTCs. We evaluated their diagnostic usefulness, combined with galectin 3, Hector Battifora mesothelial 1 (HBME1, cytokeratin 19, and cyclin D1, in diagnosing FTC. Results: The expressions of HBME1 (65.8% and HMGA2 (55.7% were significantly higher in FTCs than in FAs and AGs (p<.001 and p=.005, respectively. HBME1 was the only marker that was more frequently expressed in FTCs than in FAs (p=.021 and it was more frequently expressed in follicular neoplasms than in AGs (p<.001. Among the novel markers, the combination of HMGA2 and HBME1 showed the highest sensitivity (72.2% and specificity (76.1% for diagnosing FTC. CEACAM6, survivin, and SFN/14-3-3 δ were barely expressed in most cases. Conclusions: Our present results show that only HMGA2 can be beneficial in differentiating FTC using the novel markers.

  5. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Ross, Fiona A; Kleinert, Maximilian

    2015-01-01

    strategy to combat diseases such as cancer and type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 on Ser555...

  6. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    Science.gov (United States)

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  7. Distribution of 99Tcm-rh-Annexin V and its relationship with expression of survivin and Caspase-3 in tumors after a single dose of chemotherapy

    International Nuclear Information System (INIS)

    Zhang Xin; Zhang Yanjun; Tao Li; Zhu Yi; Yang Chun; Li Yaming; Zhang Jianying; Zhao Zhenzhen; Ji Xiaopeng; Zhao Ming; Tian Aijuan

    2008-01-01

    Objective: Recently, molecular imaging for detecting cellular apoptosis is developing rapidly. The aim of the study was to determine the effectiveness of imaging with 99 Tc m labelled recombinant human Annexin V ( 99 Tc m -rh-Annexin V) as a reflection of apoptosis in tumor, and related its distribution with expression of Survivin and Caspase-3 after a single dose of chemotherapy. Methods: Eight days after being inoculated with allogenic hepatoma cells (Hca-F25) into right axillary fossa, the mice (purebred 615) were randomly divided into two groups (control group A, n=9; and treated group B, n=10). Group B was received a single dose of chemotherapy intraperitoneally (cyclophosphamide, 150 mg/kg). Groups A and B were given 99 Tc m -rh-AnnexinV (3.7 MBq·0.5 μg -1 per mouse) intravenously 20 h later. Four hours after 99 Tc m -rh-Annexin V injection, the animals were imaged and sacrificed, and the tumor samples were weighed and the radioactivity was determined in a well-counter. The accumulation of 99 Tc m -rh-Annexin V in tumor was expressed as the percentage activity of injection dose per gram of tissue (% ID/g). Tumor cell apoptosis was examined by terminal deoxynueleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method, and the expression of Survivin and Caspase-3 in tumor were determined with immunohistochemical method. SPSS 10.0 was used for data analysis. Results: Single dose chemotherapy tsignificantly increased the tumor uptake of 99 Tc m -rh-Annexin V [(0.478 ± 0.123)% ID/g vs (0.332 ± 0.061)% ID/g] and the positive number of TUNEL [(18.030 ± 5.600) cells/field vs (6.744 ± 2.325) cells/field], as well as the expression of Caspase-3 [(3.266 ± 0.482)% vs (2.387 ± 0.387)%, F was 10.502, 31.507, 18.971, respectively, all P 99 Tc m -rh-Annexin V correlated positively well with the expression of Caspase-3 and negatively with the expression of Survivin (P 99 Tc m -rh-Annexin V can not only reflect the extent of apoptosis

  8. Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Directory of Open Access Journals (Sweden)

    Zhang L

    2011-10-01

    Full Text Available Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therapy

  9. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication.

    Science.gov (United States)

    Joshi, Kiranmai; Shah, Varun Jayeshkumar; Maddika, Subbareddy

    2016-12-01

    In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dentatin Induces Apoptosis in Prostate Cancer Cells via Bcl-2, Bcl-xL, Survivin Downregulation, Caspase-9, -3/7 Activation, and NF-κB Inhibition

    Directory of Open Access Journals (Sweden)

    Ismail Adam Arbab

    2012-01-01

    Full Text Available This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1. The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin, leading to disruption of mitochondrial membrane potential (MMP, cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.

  11. BAP1 PLAYS A SURVIVAL ROLE IN CUTANEOUS MELANOMA

    Science.gov (United States)

    Kumar, Raj; Taylor, Michael; Miao, Benchun; Ji, Zhenyu; Njauw, Jenny Ching-Ni; Jönsson, Göran; Frederick, Dennie Tompers; Tsao, Hensin

    2014-01-01

    Although the pattern of BAP1 inactivation in ocular melanoma specimens and in the BAP1 cutaneous/ocular melanoma (CM/OM) predisposition syndrome suggests a tumor suppressor function, the specific role of this gene in the pathogenesis of cutaneous melanoma is not fully understood. We thus set out to characterize BAP1 in cutaneous melanoma and discovered an unexpected pro-survival effect of this protein. Tissue and cell lines analysis showed that BAP1 expression was maintained, rather than lost, in primary melanomas compared to nevi and normal skin. Genetic depletion of BAP1 in melanoma cells reduced proliferation and colony forming capability, induced apoptosis and inhibited melanoma tumor growth in vivo. On the molecular level, suppression of BAP1 led to a concomitant drop in the protein levels of survivin a member of anti-apoptotic proteins and a known mediator of melanoma survival. Restoration of survivin in melanoma cells partially rescued the growth-retarding effects of BAP1 loss. In contrast to melanoma cells, stable overexpression of BAP1 into immortalized but non-transformed melanocytes did suppress proliferation and reduce survivin. Taken together, these studies demonstrate that BAP1 may play a growth-sustaining role in melanoma cells, but that its impact on ubiquitination underpins a complex physiology which is context and cell dependent. PMID:25521456

  12. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    Science.gov (United States)

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  13. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.

    Science.gov (United States)

    Nardiello, Tricia; Jungbluth, Achim A; Mei, Anna; Diliberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C C; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S; Bhardwaj, Nina; Old, Lloyd J; Chen-Kiang, Selina; Cho, Hearn Jay

    2011-07-01

    The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67(+) malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups: newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by short hairpin RNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared with newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A showed that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of proapoptotic Bax expression and by reduction of survivin expression through both p53-dependent and -independent mechanisms. These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms.

  14. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P arctigenin (P arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.

  15. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1

    DEFF Research Database (Denmark)

    Koronakis, Vassilis; Hume, Peter J; Humphreys, Daniel

    2011-01-01

    The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may...... be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant...... be central components in WAVE signalling, acting directly, alongside Rac1....

  16. Complexes of palladium(II with 1-phenyl-1-hydroxymethylene bisphosphoniс acid and their antitumor activity

    Directory of Open Access Journals (Sweden)

    O. M. Kozachkova

    2017-02-01

    Full Text Available Complex formation of K2[PdCl4] with 1-phenyl-1-hydroxymethylene bisphosphonic acid (PhHMBP, H4L has been studied by pH potentiometry, electron and NMR spectroscopy. It was found that in aqueous solution with physiological concentration of chlorine anions (0.15 mol/l KCl, anionic complexes of the equimolar compositions [PdHLCl2]3- (lgβ = 24.51 (0.3 and [PdLCl2]4- (lgβ = 20.74 (0.02 are formed. In the first coordination sphere palladium was surrounded by two oxygen atoms of two phosphonic groups of the bidentately coordinated ligand with closure of six-membered [O, O] ring, and two chlorine anions. The formation of palladium(II equimolar complexes with PhHMBP and bidentate coordination of the ligand to the central metal cation was confirmed by 31P NMR spectroscopy. Cytotoxic activity (IC50 based on metal content of the synthesized Pd(II complexes with PhHMBP against human MG-63 osteosarcoma and MCF-7 mammary tumor cells was compared with cisplatin on in vitro models. It was established that cytotoxic activity of the Pd complexes was lower than that of cisplatin. The acute toxicity (LD50 based on metal content of solutions of Pd(II complexes with PhHMBP was found to be lower compared to cisplatin. It was shown that the use of solutions of palladium(II complexes with PhHMBP inhibited tumor growth in mice with sarcoma 180.

  17. Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells

    Directory of Open Access Journals (Sweden)

    Didonna Alessandro

    2010-08-01

    Full Text Available Abstract Background Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its α-helical and coil structures are refolded into β-sheet structures. Results In this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently. Conclusions Taken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors

  18. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    Science.gov (United States)

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  19. [Effects of Buzhong Yiqi decoction on expression of Bad, NF-κB, caspase-9, Survivin, and mTOR in nude mice with A549/DDP transplantation tumors].

    Science.gov (United States)

    Liu, Ya-Li; Yi, Jia-Li; Liu, Chun-Ying

    2017-02-01

    This study was aimed to explore the effects of Buzhong Yiqi decoction on the expression levels of Bad, NF-κB, caspase-9, Survivin, and mTOR in nude mice with A549/DDP transplantation tumors.Sixty BALB/C mice were randomly divided into blank control group, tumor-bearing control group, cisplatin group and Buzhong Yiqi decoction of high, medium and low doses+cisplatin groups (hereinafter referred to as the high,medium and low combined groups). A549/DDP cells (concentration of 5×106 cells/mL)were cultured and inoculated in various groups, then the tumor-forming situations were observed. Corresponding treatment was given in all groups. Fourteen days later, immunohistochemistry and Real-time PCR methods were used to detect the expression levels of Bad, NF-κB, caspase-9, Survivin, mTOR protein and mRNA in tumors.Results showed that Buzhong Yiqi decoction combined with cisplatin could reduce the volume of transplanted tumors, and there was significant difference between medium combined group and high combined group(PBad, NF-κB, Survivin and mTOR were significantly reduced in medium and high combined groups(PBad, NF-κB and caspase-9 between medium combined group, high combined group and cisplatin group, low-combined group, tumor-bearing control group(PBad, NF-κB, caspase-9, Survivin, and mTOR levels as well as promoting apoptosis. Copyright© by the Chinese Pharmaceutical Association.

  20. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  1. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells.

    Science.gov (United States)

    Ratajczak, Katarzyna; Krazinski, Bartlomiej E; Kowalczyk, Anna E; Dworakowska, Beata; Jakiela, Slawomir; Stobiecka, Magdalena

    2018-05-07

    Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed

  3. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  4. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  5. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yong; Fang, Shi-ji [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China); Zhu, Li-juan [Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021 (China); Zhu, Lun-qing, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children’s Bone Diseases, The Children’s Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000 (China); Zhou, Xiao-zhong, E-mail: zhouxz@suda.edu.cn [The Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000 (China)

    2014-10-24

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.

  6. Synthesis, Characterization and Antibacterial Activity of Novel 1,3-Diethyl-1,3-bis(4-nitrophenylurea and Its Metal(II Complexes

    Directory of Open Access Journals (Sweden)

    Hoda Pasdar

    2017-12-01

    Full Text Available A bioactive ligand and its dinuclear metal(II complexes were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR, ultraviolet-visible (UV-Visible, nuclear magnetic resonance (1H-NMR, mass spectroscopy and molar conductance measurements. The ligand has been crystalized in the monoclinic system with a P21/c space group. The biological activities of metal complexes were evaluated using disc diffusion and broth dilution methods. In vitro antibacterial activities of the ligand and their metal complexes were examined against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus and two Gram-negative bacteria (Escherichia coli and Serratia marcescens and compared to the standard drugs. It was found that metal complexes displayed much higher antibacterial activities and better inhibitory effects than that of the ligand and standard drugs. Among these complexes, the compound having Zn-metal showed greater antibacterial activity against all four tested bacteria and was more effective against Serratia marcescens with the zone inhibition diameter of 26 mm and MIC value of 31.25 µg/mL.

  7. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    Science.gov (United States)

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).

    Science.gov (United States)

    Shibutani, Shusaku; Okazaki, Hana; Iwata, Hiroyuki

    2017-11-03

    The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis.

    Directory of Open Access Journals (Sweden)

    Jae Ho Seo

    2016-07-01

    Full Text Available Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B (SDHB in mitochondria of tumor cells. Knockdown of ClpXP subunits ClpP or ClpX induces the accumulation of misfolded SDHB, impairing oxidative phosphorylation and ATP production while activating "stress" signals of 5' adenosine monophosphate-activated protein kinase (AMPK phosphorylation and autophagy. Deregulated mitochondrial respiration induced by ClpXP targeting causes oxidative stress, which in turn reduces tumor cell proliferation, suppresses cell motility, and abolishes metastatic dissemination in vivo. ClpP is universally overexpressed in primary and metastatic human cancer, correlating with shortened patient survival. Therefore, tumors exploit ClpXP-directed proteostasis to maintain mitochondrial bioenergetics, buffer oxidative stress, and enable metastatic competence. This pathway may provide a "drugable" therapeutic target in cancer.

  10. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  11. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Directory of Open Access Journals (Sweden)

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  12. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade.

    Science.gov (United States)

    Linares, Juan F; Duran, Angeles; Reina-Campos, Miguel; Aza-Blanc, Pedro; Campos, Alex; Moscat, Jorge; Diaz-Meco, Maria T

    2015-08-25

    The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade

    Directory of Open Access Journals (Sweden)

    Juan F. Linares

    2015-08-01

    Full Text Available The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.

  14. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    Science.gov (United States)

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease

  16. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    Science.gov (United States)

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may

  17. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.

    Science.gov (United States)

    Beutner, Gisela; Eliseev, Roman A; Porter, George A

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.

  18. Regulation of actomyosin ATPase activity by troponin-tropomyosin: effect of the binding of the myosin subfragment 1 (S-1) ATP complex

    International Nuclear Information System (INIS)

    Greene, L.E.; Williams, D.L. Jr.; Eisenberg, E.

    1987-01-01

    In the authors' model of regulation, the observed lack of cooperativity in the binding of myosin subfragment 1 (S-1) with bound ATP to the troponin-tropomyosin-actin complex (regulated actin) is explained by S-1 ATP having about the same affinity for the conformation of the regulated actin that activates the myosin ATPase activity (turned-on form) and the conformation that does not activate the myosin ATPase activity (turned-off form). This predicts that, in the absence of Ca 2+ , S-1 ATP should not turn on the regulated actin filament. In the present study, they tested this prediction by using either unmodified S-1 or S-1 chemically modified with N,N'-p-phenylenedimaleimide (pPDM S-1) so that functionally it acts like S-1 ATP, although it does not hydrolyze ATP. [ 14 C]pPDM and [ 32 P]ATP were used as tracers. They found that, in the absence of Ca 2+ , neither S-1 ATP nor pPDM S-1 ATP significantly turns on the ATPase activity of the regulated complex of actin and S-1 (acto S-1). In contrast, in the presence of Ca 2+ , pPDM S-1 ATP binding almost completely turns on the regulated acto S-1 ATPase activity. These results can be explained by their original cooperativity model, with pPDM S-1 ATP binding only ≅ 2 fold more strongly to the turned-on form that to the turned-off form of regulated actin. However, the results are not consistent with our alternative model, which predicts that if pPDM S-1 ATP binds to actin in the absence of Ca 2+ but does not turn on the ATPase activity, then it should also turn on the ATPase activity in the presence of Ca 2+

  19. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin

    Directory of Open Access Journals (Sweden)

    David A. Brown

    2017-09-01

    Full Text Available Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3. CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome.

  20. High stability and biological activity of the copper(II) complexes of alloferon 1 analogues containing tryptophan.

    Science.gov (United States)

    Kadej, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2016-10-01

    Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH -1 L and/or CuH -2 L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH -1 L, CuH -2 L and CuH -3 L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Li C

    2015-04-01

    Full Text Available Chong Li,1,2,* Lingling Wang,3,* Liang Zheng,4 Xianghong Zhan,4 Bin Xu,1,2 Jingting Jiang,1,2 Changping Wu1,2 1Department of Tumor Biological Treatment, the Third Affiliated Hospital, Soochow University, Changzhou, 2Cancer Immunotherapy Engineering Research Center of Jiangsu Province, Changzhou, 3Department of Medical Education, Jinling Hospital, Medical School of Nanjing University, Nanjing, 4Department of Thoracic Surgery, the Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Several studies have reported that the overexpression of Sirtuin 1 (SIRT1 was associated with poor prognosis in various human cancers. However, little is known regarding the prognostic value of SIRT1 in lung adenocarcinoma. Therefore, the aim of this study is to evaluate the role of SIRT1 in the prognosis of lung adenocarcinoma patients. Using a tissue microarray, we detected SIRT1 expression by immunohistochemistry in lung adenocarcinoma tissue, as well as in corresponding noncancerous tissues (NCTs. A high expression level of SIRT1 was observed in 74.7% (56/75 of patients with lung adenocarcinoma and 6.7% (5/75 of NCTs (P<0.001. SIRT1 expression was significantly associated with high pathological stage. Importantly, we found that SIRT1 expression was associated with worse overall survival in these lung adenocarcinoma patients (67.0 months vs 104.5 months; P=0.005. In addition, anaplastic lymphoma kinase, epidermal growth factor receptor, vascular endothelial growth factor (VEGF, and Survivin expression were evaluated by fluorescent in situ hybridization or immunohistochemistry, respectively. We found that VEGF and Survivin were both highly expressed in the lung adenocarcinoma tissues, as compared to NCTs. Moreover, the SIRT1 and VEGF expression statuses were significantly positively correlated (r=0.238, P=0.039, while SIRT1 and Survivin expression status were not

  2. Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-03-01

    Full Text Available Abstract Background To elucidate whether rapamycin, the inhibitor of mTOR (mammalian target of rapamycin, can potentiate the cytotoxic effect of docetaxel in lung cancer cells and to probe the mechanism underlying such enhancement. Methods Lung cancer cells were treated with docetaxel and rapamycin. The effect on the proliferation of lung cancer cells was evaluated using the MTT method, and cell apoptosis was measured by flow cytometry. Protein expression and level of phosphorylation were assayed using Western Blot method. Results Co-treatment of rapamycin and docetaxel was found to favorably enhance the cytotoxic effect of docetaxel in four lung cancer cell lines. This tumoricidal boost is associated with a reduction in the expression and phosphorylation levels of Survivin and ERK1/2, respectively. Conclusion The combined application of mTOR inhibitor and docetaxel led to a greater degree of cancer cell killing than that by either compound used alone. Therefore, this combination warrants further investigation in its suitability of serving as a novel therapeutic scheme for treating advanced and recurrent lung cancer patients.

  3. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    Science.gov (United States)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  4. Antibacterial activity of cobalt(II complexes with some benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    2008-12-01

    Full Text Available The antibacterial activities of cobalt(II complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea and one Gram-negative isolate (Pseudomonas aeruginosa. The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted-2-aminobenzimidazole derivatives were more active than complexes of 1-substituted-2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.

  5. Complexity of the HVR-1 quasispecies and disease activity in patients with hepatitis C.

    Science.gov (United States)

    Kumagai, N; Kaneko, F; Tsunematsu, S; Tsuchimoto, K; Tada, S; Saito, H; Hibi, T

    2007-07-01

    Hepatitis C virus (HCV) easily undergoes genomic changes, especially in the hypervariable region (HVR) in the N-terminus of the E2/NS1 region. The quasispecies nature of HCV may have important biological implications in relation to viral persistence; however, the relationship between disease activity of chronic HCV infection and development of the genomic complexity have yielded conflicting results. We explored the changes in the complexity of the HVR-1 in the natural course of chronic HCV infection with and without elevation of serum alanine transaminase (ALT) levels. Ten patients with chronic hepatitis C proven by liver biopsy, who showed persistent elevation of the serum ALT levels, and 15 patients with chronic HCV infection and persistently normal serum ALT levels (PNAL) were enrolled in this study. The number of the HCV quasispecies was determined twice for each patient at an interval of mean 2.5 years by fluorescence single-strand conformation polymorphism and sequence analysis. There was no significant difference in the changes in the number of quasispecies during the follow-up period between chronic hepatitis C and PNAL. There was also no significant difference in the change in the number of variable nucleotides sites between the two groups. In these patients, the number of quasispecies and the diversity of HVR-1 were correlated with platelet counts and serum hyaluronic acid levels previously shown to be associated with disease progression. Our results suggested that the disease activity is not always related to the generation of the HVR-1 quasispecies complexity.

  6. Formation of a Trimeric Xpo1-Ran[GTP]-Ded1 Exportin Complex Modulates ATPase and Helicase Activities of Ded1.

    Directory of Open Access Journals (Sweden)

    Glenn Hauk

    Full Text Available The DEAD-box RNA helicase Ded1, which is essential in yeast and known as DDX3 in humans, shuttles between the nucleus and cytoplasm and takes part in several basic processes including RNA processing and translation. A key interacting partner of Ded1 is the exportin Xpo1, which together with the GTP-bound state of the small GTPase Ran, facilitates unidirectional transport of Ded1 out of the nucleus. Here we demonstrate that Xpo1 and Ran[GTP] together reduce the RNA-stimulated ATPase and helicase activities of Ded1. Binding and inhibition of Ded1 by Xpo1 depend on the affinity of the Ded1 nuclear export sequence (NES for Xpo1 and the presence of Ran[GTP]. Association with Xpo1/Ran[GTP] reduces RNA-stimulated ATPase activity of Ded1 by increasing the apparent KM for the RNA substrate. Despite the increased KM, the Ded1:Xpo1:Ran[GTP] ternary complex retains the ability to bind single stranded RNA, suggesting that Xpo1/Ran[GTP] may modulate the substrate specificity of Ded1. These results demonstrate that, in addition to transport, exportins such as Xpo1 also have the capability to alter enzymatic activities of their cargo.

  7. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    Science.gov (United States)

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Dubots

    Full Text Available The evolutionarily conserved target of rapamycin complex 1 (TORC1 controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.

  9. m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    Science.gov (United States)

    Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio

    2018-04-09

    The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  10. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    Science.gov (United States)

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Dynamics of Fos-Jun-NFAT1 complexes.

    Science.gov (United States)

    Ramirez-Carrozzi, V R; Kerppola, T K

    2001-04-24

    Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.

  12. Interaction between NBS1 and the mTOR/Rictor/SIN1 complex through specific domains.

    Directory of Open Access Journals (Sweden)

    Jian-Qiu Wang

    Full Text Available Nijmegen breakage syndrome (NBS is a chromosomal-instability syndrome. The NBS gene product, NBS1 (p95 or nibrin, is a part of the Mre11-Rad50-NBS1 complex. SIN1 is a component of the mTOR/Rictor/SIN1 complex mediating the activation of Akt. Here we show that NBS1 interacted with mTOR, Rictor, and SIN1. The specific domains of mTOR, Rictor, or SIN1 interacted with the internal domain (a.a. 221-402 of NBS1. Sucrose density gradient showed that NBS1 was located in the same fractions as the mTOR/Rictor/SIN1 complex. Knockdown of NBS1 decreased the levels of phosphorylated Akt and its downstream targets. Ionizing radiation (IR increased the NBS1 levels and activated Akt activity. These results demonstrate that NBS1 interacts with the mTOR/Rictor/SIN1 complex through the a.a. 221-402 domain and contributes to the activation of Akt activity.

  13. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    International Nuclear Information System (INIS)

    Small, Evan; Eggler, Aimee; Mesecar, Andrew D.

    2010-01-01

    Research highlights: → A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. → The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. → Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  14. Development of an efficient E. coli expression and purification system for a catalytically active, human Cullin3-RINGBox1 protein complex and elucidation of its quaternary structure with Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Small, Evan [Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60607 (United States); Eggler, Aimee [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States); Mesecar, Andrew D., E-mail: amesecar@purdue.edu [Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907-1971 (United States)

    2010-10-01

    Research highlights: {yields} A novel expression strategy was used to purify Cul3-Rbx1 from E. coli. {yields} The Cul3-Rbx1 complex is fully active and catalyzes ubiquitination of Nrf2 in vitro. {yields} Cul3, Rbx1, and Keap1 form a complex with unique stoichiometry of 1:1:2. -- Abstract: The Cullin3-based E3 ubiquitin ligase complex is thought to play an important role in the cellular response to oxidative stress and xenobiotic assault. While limited biochemical studies of the ligase's role in these complex signaling pathways are beginning to emerge, structural studies are lagging far behind due to the inability to acquire sufficient quantities of full-length, highly pure and active Cullin3. Here we describe the design and construction of an optimized expression and purification system for the full-length, human Cullin3-RINGBox 1 (Rbx1) protein complex from Escherichia coli. The dual-expression system is comprised of codon-optimized Cullin3 and Rbx1 genes co-expressed from a single pET-Duet-1 plasmid. Rapid purification of the Cullin3-Rbx1 complex is achieved in two steps via an affinity column followed by size-exclusion chromatography. Approximately 15 mg of highly pure and active Cullin3-Rbx1 protein from 1 L of E. coli culture can be achieved. Analysis of the quaternary structure of the Cullin3-Rbx1 and Cullin3-Rbx1-Keap1 complexes by size-exclusion chromatography and analytical ultracentrifugation indicates a 1:1 stoichiometry for the Cullin3-Rbx1 complex (MW = 111 kDa), and a 1:1:2 stoichiometry for the Cullin3-Rbx1-Keap1 complex (MW = 280 kDa). This latter complex has a novel quaternary structural organization for cullin E3 ligases, and it is fully active based on an in vitro Cullin3-Rbx1-Keap1-Nrf2 ubiquitination activity assay that was developed and optimized in this study.

  15. Complex formation of p65/RelA with nuclear Akt1 for enhanced transcriptional activation of NF-κB

    International Nuclear Information System (INIS)

    Kwon, Osong; Kim, Kyung A; He, Long; Jung, Mira; Jeong, Sook Jung; Ahn, Jong Seog; Kim, Bo Yeon

    2008-01-01

    Akt1 was revealed to interact with Ki-Ras in the cytoplasm of Ki-Ras-transformed human prostate epithelial cells, 267B1/K-ras. Moreover, p65/RelA in the nucleus was found to interact with both Ki-Ras and Akt1, suggesting the nuclear translocation of Akt1:Ki-Ras complex for NF- κB activation. In support of this, compared with wild type Akt1, the dominant negative Akt1 mutant was decreased in its nuclear expression, reducing the Ki-Ras-induced NF-κB transcriptional activation. Moreover, inhibitors of Ras (sulindac sulfide and farnesyltransferase inhibitor I) or PI3K/Akt (wortmannin), reduced the amounts of Akt1 and Ki-Ras in the nucleus as well as partial NF-κB activity. The complete inhibition of Ki-Ras-induced NF-κB activation, however, could only be obtained by combined treatment with wortmannin and proteasome inhibitor-1. Accordingly, clonogenic assay showed Akt1 contribution to IκBα-mediated NF-κB activation for oncogenic cell growth by Ki-Ras. Our data suggest a crucial role of Ki-Ras:Akt1 complex in NF-κB transcriptional activation and enhancement of cell survival

  16. The energetic state of mitochondria modulates complex III biogenesis through the ATP-dependent activity of Bcs1.

    Science.gov (United States)

    Ostojić, Jelena; Panozzo, Cristina; Lasserre, Jean-Paul; Nouet, Cécile; Courtin, Florence; Blancard, Corinne; di Rago, Jean-Paul; Dujardin, Geneviève

    2013-10-01

    Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. bond activation and catalysis by Ru -pac complexes

    Indian Academy of Sciences (India)

    and their reactivity towards oxidation of a few organic compounds. Keywords. Kinetics; catalysis; -O–O- bond activation; Ru-pac complex; oxidation. 1. Introduction. Ru-pac complexes exhibit catalytic properties,1 in homogeneous conditions in the presence of oxygen atom donors, that mimic the biological enzymatic oxi-.

  18. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Emmanuelle eBerret

    2014-12-01

    Full Text Available MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out. The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in. Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity.We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.

  19. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO

    KAUST Repository

    Gong, Dirong; Jia, Xiaoyu; Wang, Baolin; Zhang, Xuequan; Huang, Kuo-Wei

    2014-01-01

    Tridentate chromium complexes (Cr1-Cr7) incorporated with symmetrical pincer ligand bis(arylimino)pyridine and bis(pyrzaolyl)pyridine have been synthesized and characterized by elemental analyis, FT-IR as well as ESI-MS. X-ray diffraction reveals solids-state structures of Cr2, Cr4 and Cr6 all adopt pseudo-octahedral coordination environment with respect to metal center. All complexes have been tested in stereoregulated polymerization of butadiene under various polymerization conditions. The trans-1,4 and cis-1,4 enchainment of resultant polymer are found to be dependent on the structure of ligand and amount of activator used. Under the optimized condition, free ortho-substitutes Cr catalysts Cr1, Cr3, Cr4 and Cr6 are capable of initiating high trans-1,4 selectivity (trans-1,4: 89.2%-92.0%) with good polymer yields (71.5%-78.0%), while counterparts with ortho-positioned alkyl groups Cr2, Cr5 and Cr7 display mixed selectivities with moderate polymer yields. The sterical effect of ligand and amount of MMAO on the catalytic performance, in particular, the stereoselectivity and polymer yield, has been also elucidated by conjugated diene polymerization mechanism. © 2014 Elsevier B.V. All rights reserved.

  20. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO

    KAUST Repository

    Gong, Dirong

    2014-09-01

    Tridentate chromium complexes (Cr1-Cr7) incorporated with symmetrical pincer ligand bis(arylimino)pyridine and bis(pyrzaolyl)pyridine have been synthesized and characterized by elemental analyis, FT-IR as well as ESI-MS. X-ray diffraction reveals solids-state structures of Cr2, Cr4 and Cr6 all adopt pseudo-octahedral coordination environment with respect to metal center. All complexes have been tested in stereoregulated polymerization of butadiene under various polymerization conditions. The trans-1,4 and cis-1,4 enchainment of resultant polymer are found to be dependent on the structure of ligand and amount of activator used. Under the optimized condition, free ortho-substitutes Cr catalysts Cr1, Cr3, Cr4 and Cr6 are capable of initiating high trans-1,4 selectivity (trans-1,4: 89.2%-92.0%) with good polymer yields (71.5%-78.0%), while counterparts with ortho-positioned alkyl groups Cr2, Cr5 and Cr7 display mixed selectivities with moderate polymer yields. The sterical effect of ligand and amount of MMAO on the catalytic performance, in particular, the stereoselectivity and polymer yield, has been also elucidated by conjugated diene polymerization mechanism. © 2014 Elsevier B.V. All rights reserved.

  1. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    Science.gov (United States)

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  2. Bone Marrow Cell Therapy on 1,2-Dimethylhydrazine (DMH)-Induced Colon Cancer in Rats.

    Science.gov (United States)

    El-Khadragy, Manal F; Nabil, Heba M; Hassan, Basmaa N; Tohamy, Amany A; Waaer, Hanaa F; Yehia, Hany M; Alharbi, Afra M; Moneim, Ahmed Esmat Abdel

    2018-01-01

    Stem cell based therapies are being under focus due to their possible role in treatment of various tumors. Bone marrow stem cells believed to have anticancer potential and are preferred for their activities by stimulating the immune system, migration to the site of tumor and ability for inducting apoptosis in cancer cells. The current study was aimed to investigate the tumor suppressive effects of bone marrow cells (BMCs) in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. The rats were randomly allocated into four groups: control, BMCs alone, DMH alone and BMCs with DMH. BMCs were injected intrarectally while DMH was injected subcutaneously at 20 mg/kg body weight once a week for 15 weeks. Histopathological examination and gene expression of survivin, β-catenin and multidrug resistance-1 (MDR-1) by real-time reverse transcription-polymerase chain reaction (RT-PCR) in rat colon tissues. This is in addition to oxidative stress markers in colon were performed across all groups. The presence of aberrant crypt foci was reordered once histopathological examination of colon tissue from rats which received DMH alone. Administration of BMCs into rats starting from zero-day of DMH injection improved the histopathological picture which showed a clear improvement in mucosal layer, few inflammatory cells infiltration periglandular and in the lamina propria. Gene expression in rat colon tissue demonstrated that BMCs down-regulated survivin, β-catenin, MDR-1 and cytokeratin 20 genes expression in colon tissues after colon cancer induction. Amelioration of the colon status after administration of MSCs has been evidenced by a major reduction of lipid peroxidation, nitric oxide, and increasing of glutathione content and superoxide dismutase along with catalase activities. Our findings demonstrated that BMCs have tumor suppressive effects in DMH-induced colon cancer as evidenced by down-regulation of survivin, β-catenin, and MDR-1 genes and enhancing the antioxidant

  3. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  4. Dynamic Recruitment of Functionally Distinct Swi/Snf Chromatin Remodeling Complexes Modulates Pdx1 Activity in Islet β Cells

    Directory of Open Access Journals (Sweden)

    Brian McKenna

    2015-03-01

    Full Text Available Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.

  5. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  6. Synthesis and Biological Activities on Metal Complexes of 2,5-Diamino-1,3,4-thiadiazole Derived from Semicarbazide Hydrochloride

    Directory of Open Access Journals (Sweden)

    Matthew A. Adebayo

    2011-07-01

    Full Text Available A bioactive ligand, 2,5-diamino-1,3,4-thiadiazole (L, derived from semicarbazide hydrochloride, and its metal complexes were prepared and characterized. The complexes were characterized using elemental, infra-red, ultraviolet/visible, magnetic moment, atomic absorption, thin layer chromatography and molar conductance measurements. The IR data revealed that the ligand (L behaved as a tridentate neutral ligand. It coordinated to the metal ion via sulphur and nitrogen of the amines. The molar conductance data reveal that the chelates are non-electrolytes. From the Ultraviolet/Visible spectra and magnetic moment data, the complexes were found to have octahedral geometrical structure. In vivo evaluation of the antimicrobial activities of the metal complexes and the ligands showed greater activity against some micro-organisms when compared to the parent compounds. The chelates do not show toxicity against the activities of enzymes from homogenates of liver, kidney and serum in experimental rats.

  7. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.

    Science.gov (United States)

    Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-06-01

    Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Yu [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Cun-Ying [No.1 High School of Shijiazhuang, Shijiazhuang 050011 (China)

    2013-10-20

    Graphical abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} [Ln = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline] were synthesized and characterized by elemental analysis, IR, UV and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans were tested using disc diffusion method. - Highlights: • Four new complexes [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} were synthesized and characterized. • The non-isothermal kinetics of the first stage for the complexes was studied. • The heat capacities of the complexes were measured by differential scanning calorimeter. • The antimicrobial activities for these complexes were tested. • The fluorescence properties of the complexes 2 and 3 were studied. - Abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} (Ln(III) = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline) were synthesized by solution-precipitation method, and investigated using elemental analysis, infrared spectra, ultraviolet spectra and TG/DSC-FTIR technology. The non-isothermal kinetics of the first stage for the complexes was studied by using non-linear integral isoconversional method and double equal-double steps method. The heat capacities of the complexes were measured between 263.15 and 485.55 K by means of differential scanning calorimeter, and the values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. And the thermodynamic functions [H{sub T} − H{sub 298.15}], [S{sub T} − S{sub 298.15}] and [G{sub T} − G{sub 298.15}] were also derived based on the fitted polynomials and thermodynamic relationships with temperature interval of 10 K. Moreover, the

  9. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.

    Science.gov (United States)

    Lazarou, Michael; Jin, Seok Min; Kane, Lesley A; Youle, Richard J

    2012-02-14

    Mutations in the mitochondrial kinase PINK1 and the cytosolic E3 ligase Parkin can cause Parkinson's disease. Damaged mitochondria accumulate PINK1 on the outer membrane where, dependent on kinase activity, it recruits and activates Parkin to induce mitophagy, potentially maintaining organelle fidelity. How PINK1 recruits Parkin is unknown. We show that endogenous PINK1 forms a 700 kDa complex with the translocase of the outer membrane (TOM) selectively on depolarized mitochondria whereas PINK1 ectopically targeted to the outer membrane retains association with TOM on polarized mitochondria. Inducibly targeting PINK1 to peroxisomes or lysosomes, which lack a TOM complex, recruits Parkin and activates ubiquitin ligase activity on the respective organelles. Once there, Parkin induces organelle selective autophagy of peroxisomes but not lysosomes. We propose that the association of PINK1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.

    Science.gov (United States)

    Suresh, V; Sruthi, V; Padmaja, B; Asha, V V

    2011-04-12

    To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    International Nuclear Information System (INIS)

    Montazerozohori, Morteza; Zahedi, Saeedeh; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-01-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, 1 H and 13 C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX 2 (X = Cl − , Br − , I − , SCN − and N 3 − ) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E ⁎ ), enthalpy (∆H ⁎ ), entropy (∆S ⁎ ) and Gibbs free energy change (∆G ⁎ ) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The ligand and its zinc complexes are antibacterial and

  12. Selinexor (KPT-330) Induces Tumor Suppression through Nuclear Sequestration of IκB and Downregulation of Survivin.

    Science.gov (United States)

    Nair, Jayasree S; Musi, Elgilda; Schwartz, Gary K

    2017-08-01

    Purpose: Selinexor, a small molecule that inhibits nuclear export protein XPO1, has demonstrated efficacy in solid tumors and hematologic malignancies with the evidence of clinical activity in sarcoma as a single agent. Treatment options available are very few, and hence the need to identify novel targets and strategic therapies is of utmost importance. Experimental Design: The mechanistic effects of selinexor in sarcomas as a monotherapy and in combination with proteasome inhibitor, carfilzomib, across a panel of cell lines in vitro and few in xenograft mouse models were investigated. Results: Selinexor induced IκB nuclear localization as a single agent, and the effect was enhanced by stabilization of IκB when pretreated with the proteasome inhibitor carfilzomib. This stabilization and retention of IκB in the nucleus resulted in inhibition of NFκB and transcriptional suppression of the critical antiapoptotic protein, survivin. Treatment of carfilzomib followed by selinexor caused selinexor-sensitive and selinexor-resistant cell lines to be more sensitive to selinexor as determined by an increase in apoptosis. This was successfully demonstrated in the MPNST xenograft model with enhanced tumor suppression. Conclusions: The subcellular distributions of IκB and NFκB are indicative of carcinogenesis. Inhibition of XPO1 results in intranuclear retention of IκB, which inhibits NFκB and thereby provides a novel mechanism for drug therapy in sarcoma. This effect can be further enhanced in relatively selinexor-resistant sarcoma cell lines by pretreatment with the proteasome inhibitor carfilzomib. Because of these results, a human clinical trial with selinexor in combination with a proteasome inhibitor is planned for the treatment of sarcoma. Clin Cancer Res; 23(15); 4301-11. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Caspase cleaved presenilin-1 is part of active gamma-secretase complexes

    DEFF Research Database (Denmark)

    Hansson, Camilla A; Popescu, Bogdan O; Laudon, Hanna

    2006-01-01

    , and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed...

  14. Synthesis, characterization, antimicrobial and anthelmentic activities of some metal complexes with a new Schiff base 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one

    International Nuclear Information System (INIS)

    Reddy, K. R. K; Mahendra, K.N.

    2008-01-01

    The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th(IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) were synthesized and characterized by microanalysis, conductivity, UV-visible, FT-IR, 1 H NMR, TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO 2 (VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmintic activity of the ligand and its complexes against earthworms was also investigated [ru

  15. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.

    Directory of Open Access Journals (Sweden)

    Sven Vilain

    2012-01-01

    Full Text Available Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC; however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I-associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling.

  16. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    Science.gov (United States)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  17. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  18. In Vitro Activation of the IκB Kinase Complex by Human T-cell Leukemia Virus Type-1 Tax*

    Science.gov (United States)

    Mukherjee, Sohini; Negi, Veera S.; Keitany, Gladys; Tanaka, Yuetsu; Orth, Kim

    2008-01-01

    Human T-cell leukemia virus type-I expresses Tax, a 40-kDa oncoprotein that activates IκB kinase (IKK), resulting in constitutive activation of NFκB. Herein, we have developed an in vitro signaling assay to analyze IKK complex activation by recombinant Tax. Using this assay in combination with reporter assays, we demonstrate that Tax-mediated activation of IKK is independent of phosphatases. We show that sustained activation of the Tax-mediated activation of the NFκB pathway is dependent on an intact Hsp90-IKK complex. By acetylating and thereby preventing activation of the IKK complex by the Yersinia effector YopJ, we demonstrate that Tax-mediated activation of the IKK complex requires a phosphorylation step. Our characterization of an in vitro signaling assay system for the mechanism of Tax-mediated activation of the IKK complex with a variety of mutants and inhibitors results in a working model for the biochemical mechanism of Tax-induced activation. PMID:18223255

  19. Synthesis, structural characterization, and pro-apoptotic activity of 1-indanone thiosemicarbazone platinum(II) and palladium(II) complexes: potential as antileukemic agents.

    Science.gov (United States)

    Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos

    2011-08-01

    In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis, characterization and biocidal activity of new organotin complexes of 2-(3-oxocyclohex-1-enyl)benzoic acid.

    Science.gov (United States)

    Vieira, Flaviana T; de Lima, Geraldo M; Maia, José R da S; Speziali, Nivaldo L; Ardisson, José D; Rodrigues, Leonardo; Correa, Ary; Romero, Oscar B

    2010-03-01

    The reaction of 1,3-cyclohexadione with 2-aminobenzoic acid has produced the 2-(3-oxocyclohex-1-enyl)benzoic acid (HOBz). Subsequent reactions of the ligand with organotin chlorides led to [Me(2)Sn(OBz)O](2) (1), [Bu(2)Sn(OBz)O](2) (2), [Ph(2)Sn(OBz)O](2) (3), [Me(3)Sn(OBz)] (4), [Bu(3)Sn(OBz)] (5) and [Ph(3)Sn(OBz)] (6). All complexes have been fully characterized. In addition the structure of complexes (2) and (4) have been authenticated by X-ray crystallography. The biological activity of all derivatives has been screened against Cryptococcus neoformans and Candida albicans. In addition we have performed toxicological testes employing human kidney cell. The complexes (3), (5) and (6) displayed the best values of inhibition of the fungus growing, superior to ketoconazole. Compound (5) presented promising results in view of the antifungal and cytotoxicity assays. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  1. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    Science.gov (United States)

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-02

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.

  2. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    Energy Technology Data Exchange (ETDEWEB)

    Montazerozohori, Morteza, E-mail: mmzohori@mail.yu.ac.ir [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Zahedi, Saeedeh [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Naghiha, Asghar [Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj (Iran, Islamic Republic of); Zohour, Mostafa Montazer [Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan (Iran, Islamic Republic of)

    2014-02-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, {sup 1}H and {sup 13}C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX{sub 2} (X = Cl{sup −}, Br{sup −}, I{sup −}, SCN{sup −} and N{sub 3}{sup −}) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E{sup ⁎}), enthalpy (∆H{sup ⁎}), entropy (∆S{sup ⁎}) and Gibbs free energy change (∆G{sup ⁎}) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The

  3. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  4. Synthesis, characterization and antibacterial activity of a new calcium complex using sodium 2-mercaptobenzothiazole and 1, 10-phenanthroline as ligands

    Science.gov (United States)

    Gulab, Hussain; Shah, Zarbad; Mahmood, Mazhar; Shah, Syed Raza; Ali, Sajid; Iqbal, Muhammad; Khan, Muhammad Naeem; Flörke, Ulrich; Khan, Shahid Ali

    2018-02-01

    A new Ca-complex (Ca (H2 O)4 (C12 H8 N2)2)(C7 H4 N S2)2 has been synthesized by the reaction of calcium chloride, sodium 2-mercaptobenzothiazole and 1,10-phenanthroline. The complex was characterized by using X-ray crystallography and FT-IR spectroscopy. The complex was tested against different bacterial strains i.e. Staphylococcus aureus, Escherichia coli, Acinetobacter baumanni, Providencia stuartii and Pseudomonas aeruginosa. The complex was found to exhibit remarkable anti-bacterial activity against Pseudomonas aeruginosa with an inhibition zone of 25 mm and good anti-bacterial activity against Acinetobacter baumanni with a zone of inhibition of 16 mm comparable to the Levofloxacin standard (zone of inhibition of 25 mm).

  5. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  6. EXPRESSION OF SURVIVIN AND E-CADHERIN IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-feng; LIU Ji-hong; WANG Li-fen; FENG XIAO-Mei; YAO Ji-hong

    2005-01-01

    Objective: Survivin is a member of the inhibitor of apoptosis (IAP) family, and is involved in the regulation of cell division. E-cadherin functionally belongs to transmembrane glycoproteins family, it is responsible for intercellular junction mechanism that is crucial for the mutual association of vertebrate cells. These genes are thought to be associated with cancer aggression. This study was to investigate the relationship between surviving gene, E-cadherin expression and invasion clinicopathological features of breast cancer. Methods: The expression of surviving gene and E-cadherin were detected by SP immunohistochemical technique in tissues of 66 breast cancer, 20 breast fibroadenoma and 20 adjacent breast tissue. Results: The positive rate of surviving gene expression in breast cancer was 42.2%, significantly higher (P=0.025) than those in breast fibroadenoma (35.0%), and adjacent breast tissue (10.0%). The positive rate of E-cadherin in the groups of adjacent breast tissue, breast fibroadenoma and breast cancer were 100%, 100% and 42.4%, there was significant difference between the group of benign and malignant tumor (P=0.005). The positive rate of surviving in breast cancer with local lymph node metastasis was significant higher than that in breast cancer without lymph node metastasis (P=0.01), and E-cadherin in breast cancer with local lymph node metastasis was significant lower than that without lymph node metastasis (P=o.o1). There was no significant difference among the groups of pathological types and TNM stages in the expression of surviving (P=0.966 & P=0.856), but there was significant difference in the expression of E-cadherin among these groups (P=0.01 & P=0.023). Conclusion: The loss or decrease of E-cadherin expression may promote the exfoliation of cancerous cells from original tissues, and surviving gene may promote the viability of the exfoliated cancer cells and the formation of new metastasis focus. These 2 factors cooperate with each other

  7. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL.

    Directory of Open Access Journals (Sweden)

    Bin Li

    Full Text Available The Fip1-like1 (FIP1L1-platelet-derived growth factor receptor alpha fusion gene (F/P arising in the pluripotent hematopoietic stem cell (HSC,causes 14% to 60% of patients with hypereosinophilia syndrome (HES. These patients, classified as having F/P (+ chronic eosinophilic leukemia (CEL, present with clonal eosinophilia and display a more aggressive disease phenotype than patients with F/P (- HES patients. The mechanisms underlying predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. Given that the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (Stat signaling pathway is key to cytokine receptor-mediated eosinophil development and activated Stat3 and Stat5 regulate the expression of genes involved in F/P malignant transformation, we investigated whether and how JAK proteins were involved in the pathogenesis of F/P-induced CEL. F/P activation of JAK2, Stat3 and Stat5, were confirmed in all the 11 F/P (+ CEL patients examined. In vitro inhibition of JAK2 in EOL-1, primary F/P(+ CEL cells (PC and T674I F/P Imatinib resistant cells(IR by either JAK2-specific short interfering RNA (siRNA or the tryphostin derivative AG490(AG490, significantly reduced cellular proliferation and induced cellular apoptosis. The F/P can enhance the IL-5-induced JAK2 activation, and further results indicated that JAK2 inhibition blocked IL-5-induced cellular migration and activation of the EOL-1 and PC cells in vitro. F/P-stimulation of the JAK2 suppressed cells led to a significantly reduction in Stat3 activation, but relatively normal induction of Stat5 activation. Interestingly, JAK2 inhibition also reduced PI3K, Akt and NF-κB activity in a dose-dependent manner, and suppressed expression levels of c-Myc and Survivin. These results strongly suggest that JAK2 is activated by F/P and is required for F/P stimulation of cellular proliferation and infiltration, possibly through

  8. Microwave-Assisted Synthesis of 3,5-Dibenzyl-4-amino-1,2,4-triazole and its Diazo Ligand, Metal Complexes Along with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Anjali Jha

    2010-01-01

    Full Text Available Synthesis of 3,5-dibenzyl-4-amino-1,2,4-triazole was accomplished via a conventional method as well as microwave irradiation method, followed by diazotization and coupling with 2,4-pentanedione. The dinucleating ligand was isolated and complexed with Ni(II, Cu(II and Ru(III chlorides. These complexes were screened on Jurkat, Raji & PBMC cell lines for anticancer activity. Ruthenium complexes showed potential anticancer activities.

  9. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  10. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate

    Directory of Open Access Journals (Sweden)

    Uduma E. Osonwa

    2017-12-01

    Full Text Available Ciprofloxacin is a broad spectrum bactericidal anti-infective agent of the fluoroquinolones class used in treatment of many bacterial infections. In recent times, there has been increasing resistance to the antibiotic. In this work, we investigated the effect of making an ion- pair complex of Ciprofloxacin – hydrochloride with Sodium cholate on bacterial activity. The optimal ratio of the reactants and pH were determined using UV spectrometry. The complex was characterized by octanol-water partitioning, melting point, and IR spectrometry. The antibacterial activity of the complex was determined against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus pneumoniae by the agar-well diffusion method. The complex was whitish to off-white in color and crystalline, with a melting point of 238 °C. The stoichiometry of the complex shows a molar ratio of 1:1 of sodium cholate to ciprofloxacin. The best pH for complexation was pH 9. The complex partitioned 3.38 times into octanol than in water. The FTIR revealed interaction between the 4-nitrogen atom in the 7-piperazinyl group of ciprofloxacin and the carbonyl of the cholate. The drug in complex form gave double the antibacterial activity of the uncomplexed drug. This study showed that development of hydrophobic ion pair complex enhances antibacterial activity of ciprofloxacin hydrochloride. Keywords: Ciprofloxacin, Sodium cholate, Ion-pair complex, Antibacterial activity, Enhanced activity

  11. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  12. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Nardou Katya

    2008-06-01

    Full Text Available Abstract Background Histone deacetylase inhibitors (HDACi are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. Results We show here that the HDACi Sodium Butyrate (NaB, suberoylanilide hydroxamic acid (SAHA and Trichostatin A (TSA strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. Conclusion HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.

  13. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.

    Science.gov (United States)

    Gray, K A; Dutton, P L; Daldal, F

    1994-01-25

    Folding models suggest that the highly conserved histidine 217 of the cytochrome b subunit from the cytochrome bc1 complex is close to the quinone reductase (Qi) site. This histidine (bH217) in the cytochrome b polypeptide of the photosynthetic bacterium Rhodobacter capsulatus has been replaced with three other residues, aspartate (D), arginine (R), and leucine (L). bH217D and bH217R are able to grow photoheterotrophically and contain active cytochrome bc1 complexes (60% of wild-type activity), whereas the bH217L mutant is photosynthetically incompetent and contains a cytochrome bc1 complex that has only 10% of the wild-type activity. Single-turnover flash-activated electron transfer experiments show that cytochrome bH is reduced via the Qo site with near native rates in the mutant strains but that electron transfer between cytochrome bH and quinone bound at the Qi site is greatly slowed. These results are consistent with redox midpoint potential (Em) measurements of the cytochrome b subunit hemes and the Qi site quinone. The Em values of cyt bL and bH are approximately the same in the mutants and wild type, although the mutant strains have a larger relative concentration of what may be the high-potential form of cytochrome bH, called cytochrome b150. However, the redox properties of the semiquinone at the Qi site are altered significantly. The Qi site semiquinone stability constant of bH217R is 10 times higher than in the wild type, while in the other two strains (bH217D and bH217L) the stability constant is much lower than in the wild type. Thus H217 appears to have major effects on the redox properties of the quinone bound at the Qi site. These data are incorporated into a suggestion that H217 forms part of the binding pocket of the Qi site in a manner reminiscent of the interaction between quinone bound at the Qb site and H190 of the L subunit of the bacterial photosynthetic reaction center.

  14. In vitro and in vivo anti-inflammatory active copper(II-lawsone complexes.

    Directory of Open Access Journals (Sweden)

    Ján Vančo

    Full Text Available We report in vitro and in vivo anti-inflammatory activities of a series of copper(II-lawsone complexes of the general composition [Cu(Law2(LNx(H2O(2-x]·yH2O; where HLaw = 2-hydroxy-1,4-naphthoquinone, x = 1 when LN = pyridine (1 and 2-aminopyridine (3 and x = 2 when LN = imidazole (2, 3-aminopyridine (4, 4-aminopyridine (5, 3-hydroxypyridine (6, and 3,5-dimethylpyrazole (7. The compounds were thoroughly characterized by physical techniques, including single crystal X-ray analysis of complex 2. Some of the complexes showed the ability to suppress significantly the activation of nuclear factor κB (NF-κB both by lipopolysaccharide (LPS and TNF-alpha (complexes 3-7 at 100 nM level in the similar manner as the reference drug prednisone (at 1 μM level. On the other hand, all the complexes 1-7 decreased significantly the levels of the secreted TNF-alpha after the LPS activation of THP-1 cells, thus showing the anti-inflammatory potential via both NF-κB moderation and by other mechanisms, such as influence on TNF-alpha transcription and/or translation and/or secretion. In addition, a strong intracellular pro-oxidative effect of all the complexes has been found at 100 nM dose in vitro. The ability to suppress the inflammatory response, caused by the subcutaneous application of λ-carrageenan, has been determined by in vivo testing in hind-paw edema model on rats. The most active complexes 1-3 (applied in a dose corresponding to 40 μmol Cu/kg, diminished the formation of edema simalarly as the reference drug indomethacine (applied in 10 mg/kg dose. The overall effect of the complexes, dominantly 1-3, shows similarity to anti-inflammatory drug benoxaprofen, known to induce intracellular pro-oxidative effects.

  15. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giuliano Siligardi

    2018-01-01

    Full Text Available While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule and an asymmetric complex (Sgt11-Hsp902-Rar11. The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.

  16. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases.

    Science.gov (United States)

    Jing, Changling; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Qu, Dan; Niu, Fang; Zhu, Hailiang; You, Zhonglu

    2016-01-15

    A series of new cobalt(III) complexes were prepared. They are [CoL(1)(py)3]·NO3 (1), [CoL(2)(bipy)(N3)]·CH3OH (2), [CoL(3)(HL(3))(N3)]·NO3 (3), and [CoL(4)(MeOH)(N3)] (4), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N'-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N'-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L(-1), respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L(-1). While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Nakagawa, Koji; Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie; Asaka, Masahiro; Takeda, Hiroshi; Kobayashi, Masanobu

    2012-01-01

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  18. Regulation of hepatic lipogenesis by the transcription complex Prep1-Pbx1

    OpenAIRE

    Cabaro, Serena

    2011-01-01

    Prep1 is an homeodomain transcription factor belonging to the TALE proteins, including also Pbx1, which plays an essential role in hematopoiesis, organogenesis and development. Prep1 forms transcriptionally active complexes with Pbx1 and regulates the activity of several genes. The Prep1 null mutation leads to embryonic death at a very early stage. Therefore, Prep1 hypomorphic (Prep1i/i) mice have been generated. Prep1 heterozygous (Prep1i/+) mice, which express only 55-57% of protein, have a...

  19. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  20. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  1. Antimicrobial activity of 1,4-naphthoquinones by metal complexation Atividade antimicrobiana de 1,4-naftoquinonas por complexação com metais

    Directory of Open Access Journals (Sweden)

    Adriano Brandelli

    2004-06-01

    Full Text Available The effect of metal complexation on the antimicrobial activity of 1,4-naphthoquinones was investigated. Nickel-, chromium-, iron-, copper-, and cobalt-containing metal chelates of 5-amino-8-hydroxy-1,4-naphtoquinone (2 and its acyl-derivatives (3-8 were synthesized and characterized, and their antimicrobial activity was evaluated. Data from infrared spectroscopy indicate that naphthoquinones coordinate through oxygen and nitrogen atoms for 2, and through oxygen atoms when ligands were acyl derivatives 3-8. Susceptibility tests for antimicrobial activity showed that 2 and its acyl derivatives were effective on inhibiting the growth of pathogenic bacteria such as Staphylococcus aureus, Streptococcus uberis and Bacillus cereus, but not Gram-negative bacteria. The metal complexation often caused decrease of biological activity. Nickel complex of 2 was the most effective against Gram-positive bacteria, showing MIC values ranging from 375 to 1400 mg/ml. Metal chelates may be useful tools for the understanding of the antimicrobial mechanism of 1,4-naphthoquinones on these bacteria.O efeito da complexação com metais sobre a atividade antimicrobiana de 1,4-naftoquinonas foi investigado. Complexos contendo níquel, cromo, ferro, cobre e cobalto da 5-amino-8-hidroxi-1,4-naftoquinona (2 e seus acil-derivados (3-8 foram sintetizados e caracterizados e sua atividade antimicrobiana foi avaliada. Dados de espectroscopia de infravermelho indicaram que as naftoquinonas coordenam os metais através dos átomos de oxigênio e nitrogênio para 2 e através de átomos de oxigênio, quando os ligantes são os acil-derivados 3-8. Testes de sensibilidade antimicrobiana demonstraram que 2 e seus derivados foram efetivos na inibição do crescimento de bactérias patogênicas como Staphylococcus aureus, Streptococcus uberis e Bacillus cereus, mas não apresentaram efeito contra bactérias Gram-negativas. A complexação de metais geralmente causou diminuição da

  2. Periplocin from Cortex periplocae inhibits cell growth and down-regulates survivin and c-myc expression in colon cancer in vitro and in vivo via beta-catenin/TCF signaling.

    Science.gov (United States)

    Zhao, Lianmei; Shan, Baoen; Du, Yanyan; Wang, Mingxia; Liu, Lihua; Ren, Feng-Zhi

    2010-08-01

    Cancer of the colon and rectum is the third most commonly diagnosed cancer and accounts for approximately 10% of all cancer-related deaths. Although surgical resection or radiotherapy are potentially curative for localized disease, advanced colon cancer is currently associated with poor prognosis. Therefore, the development of a new and effective chemotherapeutic agent is required to target critical pathways to induce responsiveness of colon cancer cells to death signals. Dysregulation of the beta-catenin/TCF pathway plays a central role in early activities of colorectal carcinogenesis. In this study, human colon cancer SW480 cells were used to investigate the effect of CPP (periplocin from Cortex periplocae) on the modulation of the beta-catenin/TCF signaling pathway. Our research results showed that CPP caused a dose- and time-dependent inhibition of cell growth as assessed by MTT assay and an induction in apoptosis as measured by flow cytometry and transmission electron microscopy. Furthermore, the CPP- treated cells were characterized by a decreased expression of beta-catenin protein in the total cell lysates and cytosolic and nuclear extracts. This expression alleviates the binding activity of T-cell factor (Tcf) complexes to its specific DNA-binding sites. Thus, the protein expression of the downstream elements survivin and c-myc was down-regulated. To determine the precise inhibitory mechanisms involved, further in-depth in vivo studies of CPP are warranted. In conclusion, our data suggest that CPP wields a multi-prong strategy to target the beta-catenin/Tcf signaling pathway, leading to the induction of apoptosis and inhibition of growth of colon cancer cells in vitro and in vivo. Therefore, CPP may become a potential agent against colon cancer.

  3. Copper(II Complexes with Ligands Derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Raluca Cernat

    2006-11-01

    Full Text Available The synthesis of Cu(II complexes derived from Schiff base ligands obtainedby the condensation of 2-hydroxybenzaldehyde or terephtalic aldehyde with 4-amino-antipyrine (4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one is presented. The newlyprepared compounds were characterized by 1H-NMR, UV-VIS, IR and ESRspectroscopy. The determination of the antimicrobial activity of the ligands and of thecomplexes was carried out on samples of Escherichia coli, Klebsiella pneumoniae,Acinetobacter boumanii, Pseudomonas aeruginosa, Staphylococcus aureus and Candidasp. The qualitative and quantitative antimicrobial activity test results proved that all theprepared complexes are very active, especially against samples of Ps. aeruginosa, A.Boumanii, E. coli and S. aureus.

  4. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...... MEK activity in a kinase independent manner, probably by serving as a scaffold to facilitate interaction of c-Raf....

  5. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET).

    Science.gov (United States)

    Price, M A; Rogers, A E; Treisman, R

    1995-06-01

    A transcription factor ternary complex composed of Serum Response Factor (SRF) and Ternary Complex Factor (TCF) mediates the response of the c-fos Serum Response Element (SRE) to growth factors and mitogens. Three Ets domain proteins, Elk-1, SAP-1 and ERP/NET, have been reported to have the properties of TCF. Here we compare Elk-1 and SAP-1a with the human ERP/NET homologue SAP-2. All three TCF RNAs are ubiquitously expressed at similar relative levels. All three proteins contain conserved regions that interact with SRF and the c-fos SRE with comparable efficiency, but in vitro complex formation by SAP-2 is strongly inhibited by its C-terminal sequences. Similarly, only Elk-1 and SAP-1a efficiently bind the c-fos SRE in vivo; ternary complex formation by SAP-2 is weak and is substantially unaffected by serum stimulation or v-ras co-expression. All three TCFs contain C-terminal transcriptional activation domains that are phosphorylated following growth factor stimulation. Activation requires conserved S/T-P motifs found in all the TCF family members. Each TCF activation domain can be phosphorylated in vitro by partially purified ERK2, and ERK activation in vivo is sufficient to potentiate transcriptional activation.

  6. Synthesis, characterisation and antimicrobial activities of cobalt(II, copper(II and zinc(II mixed-ligand complexes containing 1,10-phenanthroline and 2,2’-bipyridine

    Directory of Open Access Journals (Sweden)

    A. Mohamadou

    2010-06-01

    Full Text Available Three new 1,10-phenanthroline and 2,2’-bipyridine mixed-ligand complexes of [Co(bpy(phen2](NO32.2H2O, [Cu(bpy(phen H2O 2]Cl2.2H2O, and [Zn(bpy2(phen]Cl2.6H2O were synthesized. The complexes were characterized by elemental, IR and visible spectroscopic analyses and the results indicate that both ligands are coordinated to the respective metal ions giving octahedral complexes. Antimicrobial studies showed that there is increased antimicrobial activity of the metal ions on coordination to the ligands. The water soluble complexes showed antimicrobial activities that are higher than those of the metal salts and 2,2’-bipyridine but lower than those of 1,10-phenanthroline. The copper complex [Cu(bpy(phen(H2O 2]Cl2.2H2O shows the highest activity.

  7. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  8. Effects of the isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: role of the Survivin and proliferation versus apoptosis pathways.

    Science.gov (United States)

    Sarasquete, Carmen; Úbeda-Manzanaro, María; Ortiz-Delgado, Juan B

    2018-01-17

    Phytochemical flavonoids are widely distributed in the environment and are derived from many anthropogenic activities. The isoflavone genistein is a naturally occurring compound found in soya products that are habitual constituents of the aquafeeds. This isoflavone possesses oestrogenic biological activity and also apoptotic properties. The present study has been performed to determine the effects of the genistein in the early life stages of the flatfish Senegalese sole during the first month of larval life, and it is focused especially at the metamorphosis, analysing the expression transcript levels and the immunohistochemical protein patterns implicated in the cell proliferation and apoptosis pathways (proliferation cellular/PCNA, anti-apoptosis Survivin/BIRC-5, death receptors/Fas, and Caspases). The isoflavone genistein induced some temporal disrupting effects in several pro-apoptotic signalling pathways (Fas, CASP-6) at both genistein doses (3 mg/L and 10 mg/L), with increased Fas transcripts and also decreasing CASP-6 mRNA expression levels during metamorphic and post-metamorphic stages of the Senegalese sole. On the other hand, the anti-apoptotic BIRC-5 expression levels were weakly down-regulated with both the highest and lowest doses, but all of these imbalances were stabilised to the baseline levels. In early life stages of the controls, the constitutive basal transcript levels were temporarily and differentially expressed, reaching the highest levels at the pre-metamorphosis phase, as especially in endotrophic larvae (i.e. BIRC-5 mRNA), as well as in the metamorphic (i.e. CASP-6 mRNA) and post-metamorphic stages (i.e. Fas mRNA). In general, through development, continuous and progressive increases in the protein patterns of cell proliferation-PCNA (e.g. mitotic nuclei), anti-apoptotic Survivin (e.g. haematopoietic system, brain, digestive system, gills) and CASP-2 and -6 (e.g. brain, gills, kidney, digestive system, vascular systems, among others

  9. KDM2B recruitment of the Polycomb group complex, PRC1.1, requires cooperation between PCGF1 and BCORL1

    OpenAIRE

    Wong, Sarah J.; Gearhart, Micah D.; Taylor, Alexander B.; Nanyes, David R.; Ha, Daniel J.; Robinson, Angela K.; Artigas, Jason A.; Lee, Oliver J.; Demeler, Borries; Hart, P. John; Bardwell, Vivian J.; Kim, Chongwoo A.

    2016-01-01

    KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and the ...

  10. Isolation and structure–function characterization of a signaling-active rhodopsin–G protein complex

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W.; Cerione, Richard A.; Skiniotis, Georgios; Ramachandran, Sekar

    2017-01-01

    The visual photo-transduction cascade is a prototypical G protein–coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (GT). This results in the dissociation of GT into its component αT–GTP and β1γ1 subunit complex. Structural information for the Rho*–GT complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (GT*) comprising a GαT/Gαi1 chimera (αT*) and β1γ1. The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to GαT* is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one GT*. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β2-adrenergic receptor–GS complex, including a flexible αT* helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. PMID:28655769

  11. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  12. LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-10-13

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.

  13. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    Science.gov (United States)

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  14. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    Science.gov (United States)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  15. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Rehman, S.; Ali, N.; Nisar, M.

    2009-01-01

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  16. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.

    Science.gov (United States)

    Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2015-02-01

    The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

    Science.gov (United States)

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W; Cerione, Richard A; Skiniotis, Georgios; Ramachandran, Sekar

    2017-08-25

    The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G T ). This results in the dissociation of G T into its component α T -GTP and β 1 γ 1 subunit complex. Structural information for the Rho*-G T complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G T *) comprising a Gα T /Gα i1 chimera (α T *) and β 1 γ 1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα T * is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G T *. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β 2 -adrenergic receptor-G S complex, including a flexible α T * helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Kufe, Donald

    2018-04-01

    The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.

  19. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. V. Semenihin

    2015-06-01

    Full Text Available Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1 within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1. Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase.

  20. Cis-[RuCl(BzCN)(N-N)(P-P)]PF6 complexes: Synthesis and in vitro antitumor activity: (BzCN=benzonitrile; N-N=2,2'-bipyridine; 1,10-phenanthroline; P-P=1,4-bis(diphenylphosphino) butane, 1,2-bis(diphenylphosphino)ethane, or 1,1'-(diphenylphosphino)ferrocene).

    Science.gov (United States)

    Pereira, Flávia de C; Lima, Benedicto A V; de Lima, Aliny P; Pires, Wanessa C; Monteiro, Thallita; Magalhães, Lorena F; Costa, Wanderson; Graminha, Angélica E; Batista, Alzir A; Ellena, Javier; Siveira-Lacerda, Elisângela de P

    2015-08-01

    The motivation to use ruthenium complexes in cancer treatment has led our research group to synthesize complexes with this metal and test them against several types of tumor cells, yielding promising results. In this paper the results of biological tests, assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were carried out on the complexes cis-[RuCl(BzCN)(bipy)(dppe)]PF6 (1), cis-[RuCl(BzCN)(bipy)(dppb)]PF6 (2), cis-[RuCl(BzCN)(bipy)(dppf)]PF6 (3) and cis-[RuCl(BzCN)(phen)(dppb)]PF6 (4) which are described [BzCN = b enzonitrile; bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppe = 1,2-bis(diphenylphosphino) ethane; dppb = 1,4-bis-(diphenylphosphino)butane; dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The present study is focused on the cytotoxic activity of complexes (1)-(4) against four tumor cell lines and on the apoptosis and changes in the cell cycle and gene expression observed in the sarcoma 180 (S180) tumor cell line treated with complex (1). The results demonstrated that this complex inhibits S180 cell growth, with an IC50 of 17.02 ± 8.21 μM, while exhibiting lower cytotoxicity (IC50 = 53.73 ± 5.71 μM) towards lymphocytes (normal cells). Flow cytometry revealed that the complex inhibits the growth of tumor cells by inducing apoptosis as evidenced by an increase in the proportion of cells positive for annexin V staining and G0/G1 phase cell-cycle arrest. Further investigation showed that complex (1) induces a drop in the mitochondrial membrane potential and provokes a decrease in Bcl-2 protein expression and increase in caspase 3 activation, while the increased activation of caspase 8 caused a decrease in the gene expression in caspases 3 and 9. Increases in Tp53 and Bax expressions were also observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Genistein in 1:1 Inclusion Complexes with Ramified Cyclodextrins: Theoretical, Physicochemical and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Corina Danciu

    2014-01-01

    Full Text Available Genistein is one of the most studied phytocompound in the class of isoflavones, presenting a notable estrogenic activity and in vitro and/or in vivo benefits in different types of cancer such as those of the bladder, kidney, lung, pancreatic, skin and endometrial cancer. A big inconvenience for drug development is low water solubility, which can be solved by using hydrophilic cyclodextrins. The aim of this study is to theoretically analyze, based on the interaction energy, the possibility of a complex formation between genistein (Gen and three different ramified cyclodextrins (CD, using a 1:1 molar ratio Gen:CD. Theoretical data were correlated with a screening of both in vitro and in vivo activity. Proliferation of different human cancer cell lines, antimicrobial activity and angiogenesis behavior was analyzed in order to see if complexation has a beneficial effect for any of the above mentioned activities and if so, which of the three CDs is the most suitable for the incorporation of genistein, and which may lead to future improved pharmaceutical formulations. Results showed antiproliferative activity with different IC50 values for all tested cell lines, remarkable antimicrobial activity on Bacillus subtilis and antiangiogenic activity as revealed by CAM assay. Differences regarding the intensity of the activity for pure and the three Gen complexes were noticed as explained in the text. The data represent a proof that the three CDs can be used for furtherer research towards practical use in the pharmaceutical and medical field.

  2. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  3. KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1.

    Science.gov (United States)

    Wong, Sarah J; Gearhart, Micah D; Taylor, Alexander B; Nanyes, David R; Ha, Daniel J; Robinson, Angela K; Artigas, Jason A; Lee, Oliver J; Demeler, Borries; Hart, P John; Bardwell, Vivian J; Kim, Chongwoo A

    2016-10-04

    KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes, and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA-binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and PCGF1, a core component of PRC1.1. The crystal structure of the KDM2B/SKP1/BCORL1/PCGF1 complex illustrates the crucial role played by the PCGF1/BCORL1 heterodimer. The BCORL1 PUFD domain positions residues preceding the RAWUL domain of PCGF1 to create an extended interface for interaction with KDM2B, which is unique to the PCGF1-containing PRC1.1 complex. The structure also suggests how KDM2B might simultaneously function in PRC1.1 and an SCF ubiquitin ligase complex and the possible molecular consequences of BCOR PUFD internal tandem duplications found in pediatric kidney and brain tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Heteroleptic complexes of Zn(II) based on 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide: Synthesis, structural characterization, theoretical studies and antibacterial activity

    Science.gov (United States)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2017-04-01

    Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.

  5. Platelets retain high levels of active plasminogen activator inhibitor 1.

    Directory of Open Access Journals (Sweden)

    Helén Brogren

    Full Text Available The vascular fibrinolytic system is crucial for spontaneous lysis of blood clots. Plasminogen activator inhibitor 1 (PAI-1, the principal inhibitor of the key fibrinolytic enzyme tissue-type plasminogen activator (tPA, is present in platelets at high concentrations. However, the majority of PAI-1 stored in platelets has been considered to be inactive. Our recent finding (Brogren H, et al. Blood 2004 that PAI-1 de novo synthesized in platelets remained active for over 24 h, suggested that PAI-1 stored in the α-granules might be active to a larger extent than previously reported. To re-evaluate this issue, we performed experiments where the fraction of active PAI-1 was estimated by analyzing the tPA-PAI-1 complex formation. In these experiments platelets were lysed with Triton X-100 in the presence of serial dilutions of tPA and subsequently the tPA-PAI-1 complex was evaluated by Western blot. Also, using a non-immunologic assay, tPA was labeled with (125I, and (125I-tPA and (125I-tPA-PAI-1 was quantified by scintigraphy. Interestingly, both methods demonstrated that the majority (>50% of platelet PAI-1 is active. Further analyses suggested that pre-analytical procedures used in previous studies (sonication or freezing/thawing may have substantially reduced the activity of platelet PAI-1, which has lead to an underestimation of the proportion of active PAI-1. Our in vitro results are more compatible with the role of PAI-1 in clot stabilization as demonstrated in physiological and pathophysiological studies.

  6. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.

    Science.gov (United States)

    Tornow, J; Zeng, X; Gao, W; Santangelo, G M

    1993-01-01

    In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768

  7. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines

    Energy Technology Data Exchange (ETDEWEB)

    Haleel, A.; Mahendiran, D. [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India); Veena, V.; Sakthivel, N. [Department of Biotechnology, Pondicherry University, Pondicherry 605 014 (India); Rahiman, A. Kalilur, E-mail: akrahmanjkr@gmail.com [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India)

    2016-11-01

    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L{sup 1–3})(diimine)]ClO{sub 4} (1–6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 1}), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 2}) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 3}), and two diimine coligands, 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO–LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT–DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π–π, σ–π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate

  8. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Mixed-ligand copper(II) complexes of dipicolylamine and 1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    DNA repair mechanism.13,14 Copper(II) complexes containing heterocyclic bases have received consid- erable current interest in nucleic acid chemistry due to their diverse applications following the discovery of the “chemical nuclease” activity of the [Cu. (phen)2]+ (phen = 1,10-phenanthroline) complex in the presence of ...

  10. Antibacterial activity of nicotine and its copper complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cu(II)-nicotine was isolated from leaves of Nicotiana tabacum using metal ions following the method of Munir et al., 1994. Their antibacterial activity against ten different species of gram positive and gram negative bacteria were studied. For comparative study, pure sample of nicotine and metal salts used for complexation; Copper(II) chloride were also subjected to antibacterial tests with the same species of bacteria under similar conditions. Results indicated that nicotine had no effect on all the bacteria tested except Escherichia coli, Pseudomonas aeroginosa and Enterococcus faecalis, which showed 14 mm zone of inhibition at 200 mu g l00 mul/sup -1/ Copper(II) chloride was found to be effective against seven species and ineffective against three species of selected bacteria. On the other hand, Cu(II)-nicotine complex was ineffective against five species of bacteria at lower level while at higher level, only one species of bacteria showed resistance against this complex. The complex was compared with three standard antibiotics. Thus, this complex can be used against a variety of microorganisms at higher level. (author)

  11. Cyclometalated Ruthenium(II) Anthraquinone Complexes Exhibit Strong Anticancer Activity in Hypoxic Tumor Cells.

    Science.gov (United States)

    Zeng, Leli; Chen, Yu; Huang, Huaiyi; Wang, Jinquan; Zhao, Donglei; Ji, Liangnian; Chao, Hui

    2015-10-19

    Hypoxia is the critical feature of the tumor microenvironment that is known to lead to resistance to many chemotherapeutic drugs. Six novel ruthenium(II) anthraquinone complexes were designed and synthesized; they exhibit similar or superior cytotoxicity compared to cisplatin in hypoxic HeLa, A549, and multidrug-resistant (A549R) tumor cell lines. Their anticancer activities are related to their lipophilicity and cellular uptake; therefore, these physicochemical properties of the complexes can be changed by modifying the ligands to obtain better anticancer candidates. Complex 1, the most potent member of the series, is highly active against hypoxic HeLa cancer cells (IC50 =0.53 μM). This complex likely has 46-fold better activity than cisplatin (IC50 =24.62 μM) in HeLa cells. This complex tends to accumulate in the mitochondria and the nucleus of hypoxic HeLa cells. Further mechanistic studies show that complex 1 induced cell apoptosis during hypoxia through multiple pathways, including those of DNA damage, mitochondrial dysfunction, and the inhibition of DNA replication and HIF-1α expression, making it an outstanding candidate for further in vivo studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MED1 independent activation of endogenous target genes by PPARα

    DEFF Research Database (Denmark)

    Grøntved, Lars; Bugge, Anne K.; Roeder, Robert G.

    The mediator complex serves as a transcriptional co-activator complex by acting as a bridge between promoter-bound transcription factors and the preinitiation complex. Genetic and biochemical studies indicate that nuclear receptors recruit the mediator complex through direct interaction with the ......The mediator complex serves as a transcriptional co-activator complex by acting as a bridge between promoter-bound transcription factors and the preinitiation complex. Genetic and biochemical studies indicate that nuclear receptors recruit the mediator complex through direct interaction...... derived from TRAP220 KO mice. Interestingly, rescue experiments in confluent TRAP220 KO MEFs with different versions of MED1 indicate that the LXXLL motif is not necessary for PPARgamma mediated gene activation (Ge et al, MCB published online ahead of print 2007). By analogy, we show here that MED1...... is dispensable for PPARalpha transcriptional activity in proliferating but is necessary in confluent AML-12 cells and TRAP220 KO MEFs. Collectively this indicates that the PPARs might have adopted an alternative mediator recruitment mechanism that is dispensable of direct interaction with MED1 on endogenous...

  13. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

    Directory of Open Access Journals (Sweden)

    Alessi Dario R

    2003-09-01

    Full Text Available Abstract Background The AMP-activated protein kinase (AMPK cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1, but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.

  14. Cu(II AND Zn(II COMPLEX COMPOUNDS WITH BIGUANIDES AROMATIC DERIVATIVES. SYNTHESIS, CHARACTERIZATION, BIOLOGICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ticuţa Negreanu-Pîrjol

    2011-05-01

    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  15. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    Science.gov (United States)

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium

  16. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    Science.gov (United States)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  17. Arp2/3 complex activity in filopodia of spreading cells

    Directory of Open Access Journals (Sweden)

    Mendes Paula M

    2008-12-01

    Full Text Available Abstract Background Cells use filopodia to explore their environment and to form new adhesion contacts for motility and spreading. The Arp2/3 complex has been implicated in lamellipodial actin assembly as a major nucleator of new actin filaments in branched networks. The interplay between filopodial and lamellipodial protrusions is an area of much interest as it is thought to be a key determinant of how cells make motility choices. Results We find that Arp2/3 complex localises to dynamic puncta in filopodia as well as lamellipodia of spreading cells. Arp2/3 complex spots do not appear to depend on local adhesion or on microtubules for their localisation but their inclusion in filopodia or lamellipodia depends on the activity of the small GTPase Rac1. Arp2/3 complex spots in filopodia are capable of incorporating monomeric actin, suggesting the presence of available filament barbed ends for polymerisation. Arp2/3 complex in filopodia co-localises with lamellipodial proteins such as capping protein and cortactin. The dynamics of Arp2/3 complex puncta suggests that they are moving bi-directionally along the length of filopodia and that they may be regions of lamellipodial activity within the filopodia. Conclusion We suggest that filopodia of spreading cells have regions of lamellipodial activity and that this activity affects the morphology and movement of filopodia. Our work has implications for how we understand the interplay between lamellipodia and filopodia and for how actin networks are generated spatially in cells.

  18. Remedial Strategies in Structural Proteomics: Expression, Purification, And Crystallization of the Vav1/Rac1 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Brooun, A.; Foster, S.A.; Chrencik, H.E.; Chien, E.Y.T.; Kolatkar, A.R.; Streiff, M.; Ramage, P.; Widmer, H.; Weckbecker, G.; Kuhn, P.

    2007-07-03

    The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here, we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.

  19. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response.

    Science.gov (United States)

    Zhang, Conggang; Liu, Zeyu; Bunker, Eric; Ramirez, Adrian; Lee, Schuyler; Peng, Yinghua; Tan, Aik-Choon; Eckhardt, S Gail; Chapnick, Douglas A; Liu, Xuedong

    2017-09-08

    Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m -chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    Science.gov (United States)

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  1. Synthesis, crystal structures, molecular docking, in vitro monoamine oxidase-B inhibitory activity of transition metal complexes with 2-{4-[bis (4-fluorophenyl)methyl]piperazin-1-yl} acetic acid

    Science.gov (United States)

    Yang, Dan-dan; Wang, Riu; Zhu, Jin-long; Cao, Qi-yue; Qin, Jie; Zhu, Hai-liang; Qian, Shao-song

    2017-01-01

    Three novel complexes, [Cu(L)2(H2O)](1), [Zn(L)2(H2O)2]·CH3OH·1.5H2O(2), and [Ni(L)2(H2O)1.8]·CH3OH·1.2H2O (3) (HL = 2-{4-[bis(4-fluorophenyl)methyl]pipera-zin-1-yl} acetic acid), were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential Monoamine oxidase B inhibitory activity. All acquired compounds were tested against rat brain MAO-B in vitro. In accordance with the result of calculation, it showed complex 1 (IC50 = 1.85 ± 0.31 μM) have good inhibitory activity against MAO-B at the same micromolar concentrations with positive control Iproniazid Phosphate (IP, IC50 = 7.59 ± 1.17 μM). These results indicated that complex 1 was a potent MAO-B inhibitor.

  2. Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency.

    Science.gov (United States)

    Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas; Delecluse, Henri-Jacques; Chiang, Alan K S; Altieri, Dario C; Messick, Troy E; Lieberman, Paul M

    2017-01-31

    Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.

  3. Synthesis, structural characterization and cytotoxic activity of two new organoruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    SANJA GRGURIC-SIPKA

    2008-06-01

    Full Text Available Two new p-cymene ruthenium(II complexes containing as additional ligands N-methylpiperazine ([(η6-p-cymeneRuCl2(CH3NH(CH24NH]PF6, complex 1 or vitamin K3-thiosemicarbazone ([(η6-p-cymeneRuCl2(K3tsc], complex 2 were synthesized starting from [(η6-p-cymene2RuCl2]2 and the corresponding ligand. The complexes were characterized by elemental analysis, IR, electronic absorption and NMR spectroscopy. The X-ray crystal structure determination of complex 1 revealed “piano-stool” geometry. The differences in the cytotoxic activity of the two complexes are discussed in terms of the ligand present.

  4. Trithiocyanurate Complexes of Iron, Manganese and Nickel and Their Anticholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2014-04-01

    Full Text Available The complexes of Fe(II, Mn(II and Ni(II with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3 were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1](ttcH2(ClO4·EtOH·H2O (1, where L1 is Schiff base derived from tris(2-aminoethylamine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1- anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  5. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters.

    Science.gov (United States)

    Salinero, Alicia C; Knoll, Elisabeth R; Zhu, Z Iris; Landsman, David; Curcio, M Joan; Morse, Randall H

    2018-02-01

    The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.

  6. Superoxide scavenging activity of pirfenidone-iron complex

    International Nuclear Information System (INIS)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O 2 ·- ) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O 2 ·- produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O 2 ·- released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O 2 ·- scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis

  7. Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes.

    Science.gov (United States)

    Geeraerts, Zachary; Celis, Arianna I; Mayfield, Jeffery A; Lorenz, Megan; Rodgers, Kenton R; DuBois, Jennifer L; Lukat-Rodgers, Gudrun S

    2018-03-06

    O 2 -evolving chlorite dismutases (Clds) efficiently convert chlorite (ClO 2 - ) to O 2 and Cl - . Dechloromonas aromatica Cld ( DaCld) is a highly active chlorite-decomposing homopentameric enzyme, typical of Clds found in perchlorate- and chlorate-respiring bacteria. The Gram-negative, human pathogen Klebsiella pneumoniae contains a homodimeric Cld ( KpCld) that also decomposes ClO 2 - , albeit with an activity 10-fold lower and a turnover number lower than those of DaCld. The interactions between the distal pocket and heme ligand of the DaCld and KpCld active sites have been probed via kinetic, thermodynamic, and spectroscopic behaviors of their cyanide complexes for insight into active site characteristics that are deterministic for chlorite decomposition. At 4.7 × 10 -9 M, the K D for the KpCld-CN - complex is 2 orders of magnitude smaller than that of DaCld-CN - and indicates an affinity for CN - that is greater than that of most heme proteins. The difference in CN - affinity between Kp- and DaClds is predominantly due to differences in k off . The kinetics of binding of cyanide to DaCld, DaCld(R183Q), and KpCld between pH 4 and 8.5 corroborate the importance of distal Arg183 and a p K a of ∼7 in stabilizing complexes of anionic ligands, including the substrate. The Fe-C stretching and FeCN bending modes of the DaCld-CN - (ν Fe-C , 441 cm -1 ; δ FeCN , 396 cm -1 ) and KpCld-CN - (ν Fe-C , 441 cm -1 ; δ FeCN , 356 cm -1 ) complexes reveal differences in their FeCN angle, which suggest different distal pocket interactions with their bound cyanide. Conformational differences in their catalytic sites are also reported by the single ferrous KpCld carbonyl complex, which is in contrast to the two conformers observed for DaCld-CO.

  8. Structure/activity of Pt{sup II}/N,N-disubstituted-N'-acylthiourea complexes: Anti-tumor and anti-mycobacterium tuberculosis activities

    Energy Technology Data Exchange (ETDEWEB)

    Plutín, Ana M.; Alvarez, Anislay; Mocelo, Raúl; Ramos, Raúl; Sánchez, Osmar C. [Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana (Cuba); Castellano, Euardo E. [Universidade de São Paulo (USP), São Carlos, SP (Brazil); Silva, Monize M. da; Villarreal, Wilmer; Colina-Vegas, Legna; Batista, Alzir A. [Universidade Federal de São Carlos (UFSCar), SP (Brazil); Pavan, Fernando R., E-mail: anap@fq.uh.cu, E-mail: daab@ufscar.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Faculdade de Ciências Farmacêuticas

    2018-05-01

    The syntheses, characterization, cytotoxicity against tumor cells and anti-Mycobacterium tuberculosis activity assays of Pt{sup II}/PPh{sub 3}/N,N-disubstituted-N'-acylthioureas complexes with general formulae [Pt(PPh{sub 3}){sub 2}(L)]PF{sub 6}, PPh{sub 3} = triphenylphosphine; L = N,N-disubstituted-N'-acylthiourea, are here reported. The complexes were characterized by elemental analysis, molar conductivity, infrared (IR), nuclear magnetic resonance (NMR) ({sup 1} H, {sup 13}C{1 H} and {sup 31}P{"1 H}) spectroscopy. The {sup 31}P{"1 H} NMR data are consistent with the presence of two PPh{sup 3} ligands cis to each other position, and one N,N-disubstituted-N'-acylthiourea coordinated to the metal through O and S, in a chelate form. The structures of the complexes were determined by X-ray crystallography, forming distorted square-planar structures. The complexes were tested in human cell lines carcinomas and also screened with respect to their anti-Mycobacterium tuberculosis activity (H37RvATCC 27294). It was found that complexes with N,N-disubstituted-N'-acylthiourea containing open and small chains as R2 groups show higher cytotoxic and higher anti-Mycobacterium tuberculosis activity than those containing rings in this position. (author)

  9. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    Science.gov (United States)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  10. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  11. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    Science.gov (United States)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  12. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Directory of Open Access Journals (Sweden)

    Carmen Mejuto

    2015-12-01

    Full Text Available The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene complex with three [IrCl(CO2] fragments, allowed the estimation of the Tolman electronic parameter (TEP for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones.

  13. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.

    Science.gov (United States)

    Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G

    2017-10-01

    Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation.

    Science.gov (United States)

    Tesco, G; Kim, T W; Diehlmann, A; Beyreuther, K; Tanzi, R E

    1998-12-18

    beta-Catenin has previously been shown to interact with presenilin 1 (PS1) in transfected cells. Here we report that beta-catenin co-immunoprecipitates with the endogenous C-terminal fragment of presenilin 1 (PS1-CTF) but not with the endogenous CTF of presenilin 2 (PS2-CTF) in H4 human neuroglioma cells. During staurosporine (STS)-induced cell death, beta-catenin and PS1-CTF undergo a caspase-mediated cleavage. After 12 h of STS treatment, the beta-catenin.PS1-CTF interaction is abrogated. While PS1-CTF immunoprecipitated with all caspase-cleaved species of beta-catenin, beta-catenin holoprotein did not co-immunoprecipitate with the "alternative" caspase-derived PS1-CTF (PS1-aCTF). Thus, the abrogation of the beta-catenin.PS1-CTF complex was due to caspase cleavage of PS1-CTF. beta-Catenin co-immunoprecipitated with PS1-NTF, but only when PS1-NTF was associated with PS1-CTF. Even though PS1-NTF.CTF complex stability was not altered by caspase cleavage, its ability to bind beta-catenin was abolished. Thus, while the PS1-NTF.CTF complex is preserved after caspase cleavage, it may no longer be fully functional.

  15. Effects of Preretirement Work Complexity and Postretirement Leisure Activity on Cognitive Aging

    Science.gov (United States)

    Finkel, Deborah; Pedersen, Nancy L.

    2016-01-01

    Objectives: We examined the influence of postretirement leisure activity on longitudinal associations between work complexity in main lifetime occupation and trajectories of cognitive change before and after retirement. Methods: Information on complexity of work with data, people, and things, leisure activity participation in older adulthood, and four cognitive factors (verbal, spatial, memory, and speed) was available from 421 individuals in the longitudinal Swedish Adoption/Twin Study of Aging. Participants were followed for an average of 14.2 years (SD = 7.1 years) and up to 23 years across eight cognitive assessments. Most of the sample (88.6%) completed at least three cognitive assessments. Results: Results of growth curve analyses indicated that higher complexity of work with people significantly attenuated cognitive aging in verbal skills, memory, and speed of processing controlling for age, sex, and education. When leisure activity was added, greater cognitive and physical leisure activity was associated with reduced cognitive aging in verbal skills, speed of processing, and memory (for cognitive activity only). Discussion: Engagement in cognitive or physical leisure activities in older adulthood may compensate for cognitive disadvantage potentially imposed by working in occupations that offer fewer cognitive challenges. These results may provide a platform to encourage leisure activity participation in those retiring from less complex occupations. PMID:25975289

  16. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    International Nuclear Information System (INIS)

    Lin, Chunlong; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-01-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  17. RELM-β promotes human pulmonary artery smooth muscle cell proliferation via FAK-stimulated surviving

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunlong, E-mail: lclmd@sina.com; Li, Xiaohui; Luo, Qiong; Yang, Hui; Li, Lun; Zhou, Qiong; Li, Yue; Tang, Hao; Wu, Lifu

    2017-02-01

    Resistin-like molecule-β (RELM-β), focal adhesion kinase (FAK), and survivin may be involved in the proliferation of cultured human pulmonary artery smooth muscle cells (HPAMSCs), which is involved in pulmonary hypertension. HPAMSCs were treated with human recombinant RELM-β (rhRELM-β). siRNAs against FAK and survivin were transfected into cultured HPASMCs. Expression of FAK and survivin were examined by RT-PCR and western blot. Immunofluorescence was used to localize FAK. Flow cytometry was used to examine cell cycle distribution and cell death. Compared to the control group, all rhRELM-β-treated groups demonstrated significant increases in the expression of FAK and survivin (P<0.05). rhRELM-β significantly increased the proportion of HPASMCs in the S phase and decreased the proportion in G0/G1. FAK siRNA down-regulated survivin expression while survivin siRNA did not affect FAK expression. FAK siRNA effectively inhibited FAK and survivin expression in RELM-β-treated HPASMCs and partially suppressed cell proliferation. RELM-β promoted HPASMC proliferation and upregulated FAK and survivin expression. In conclusion, results suggested that FAK is upstream of survivin in the signaling pathway mediating cell proliferation. FAK seems to be important in RELM-β-induced HPASMC proliferation, partially by upregulating survivin expression. - Highlights: • rhRELM-β increased the expression of FAK and survivin. • rhRELM-β increased the proportion of HPASMCs in the S phase. • FAK is upstream of survivin in the signaling pathway mediating cell proliferation. • FAK is important in RELM-β-induced HPASMC proliferation, partly via survivin.

  18. Impact of aromaticity on anticancer activity of polypyridyl ruthenium(II) complexes: synthesis, structure, DNA/protein binding, lipophilicity and anticancer activity.

    Science.gov (United States)

    Čanović, Petar; Simović, Ana Rilak; Radisavljević, Snežana; Bratsos, Ioannis; Demitri, Nicola; Mitrović, Marina; Zelen, Ivanka; Bugarčić, Živadin D

    2017-10-01

    With the aim of assessing how the aromaticity of the inert chelating ligand can influence the activity of ruthenium(II) polypyridyl complexes, two new monofunctional ruthenium(II) complexes, [Ru(Cl-Ph-tpy)(phen)Cl]Cl (1) and [Ru(Cl-Ph-tpy)(o-bqdi)Cl]Cl (2) (where Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2″-terpyridine, phen = 1,10-phenanthroline, o-bqdi = o-benzoquinonediimine), were synthesized. All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR, XRD). Their chemical behavior in aqueous solution was studied by UV-Vis and NMR spectroscopy showing that both compounds are relatively labile leading to the formation of the corresponding aqua species 1a and 2a. 1 H NMR spectroscopy studies performed on complexes 1 and 2 demonstrated that after the hydrolysis of the Cl ligand, they are capable to interact with guanine derivatives (i.e., 9-methylguanine (9MeG) and 5'-GMP) through the N7, forming monofunctional adduct. The kinetics and the mechanism of the reaction of complexes 1 and 2 with the biologically more relevant 5'-GMP ligand were studied by UV-Vis spectroscopy. DNA/protein interactions of the complexes have been examined by photophysical studies, which demonstrated a bifunctional binding mode of the complexes with DNA and the complexes strongly quench the fluorescence intensity of bovine serum albumin (BSA) through the mechanism of both static and dynamic quenching. Complexes 1 and 2 strongly induced apoptosis of treated cancer cells with high percentages of apoptotic cells and negligible percentage of necrotic cells. In addition, both ruthenium complexes decreased Bcl-2/Bax ratio causing cytochrome c mitochondrial release, the activation of caspase-3 and induction of apoptosis.

  19. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  20. Structure and Dynamics of the Liver Receptor Homolog 1–PGC1 α Complex

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Suzanne G.; Okafor, C. Denise; Tuntland, Micheal L.; Whitby, Richard J.; Dharmarajan, Venkatasubramanian; Stec, Józef; Griffin, Patrick R.; Ortlund, Eric A.

    2017-03-31

    Peroxisome proliferator-activated gamma coactivator 1-α (PGC1α) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1α is known to bind and activate LRH-1, mechanisms through which PGC1α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1–PGC1α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1–PGC1α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1α but promoted allosteric signaling from the helix 6/β-sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1–PGC1α interaction and may illuminate strategies for selective therapeutic targeting of PGC1α-dependent LRH-1 signaling pathways.

  1. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.

    Science.gov (United States)

    Shinsky, Stephen A; Monteith, Kelsey E; Viggiano, Susan; Cosgrove, Michael S

    2015-03-06

    Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway.

    Science.gov (United States)

    Pantovic, Aleksandar; Bosnjak, Mihajlo; Arsikin, Katarina; Kosic, Milica; Mandic, Milos; Ristic, Biljana; Tosic, Jelena; Grujicic, Danica; Isakovic, Aleksandra; Micic, Nikola; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2017-02-01

    We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G 2 M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Synthesis, Characterization, and Thermal and Antimicrobial Activities of Some Novel Organotin(IV: Purine Base Complexes

    Directory of Open Access Journals (Sweden)

    Reena Jain

    2013-01-01

    Full Text Available A new series of organotin(IV complexes with purine bases theophylline (HL1 and theobromine (L2 of the types R3Sn(L1, R2Sn(L1Cl, R3Sn(L2Cl, and R2Sn(L2Cl2 (R = C6H5CH2–; p-ClC6H4CH2– have been synthesized in anhydrous THF. The complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations, UV-vis, IR, 1H, 13C NMR, and mass spectral studies. Various kinetic and thermodynamic parameters of these complexes have also been determined using TG/DTA technique. The thermal decomposition techniques indicate the formation of SnO2 as a residue. The results show that the ligands act as bidentate, forming a five-member chelate ring. All the complexes are 1 : 1 metal-ligand complexes. In order to assess their antimicrobial activity, the ligands and their corresponding complexes have also been tested in vitro against bacteria (E. coli, S. aureus, and P. pyocyanea and fungi (Rhizopus oryzae and Aspergillus flavus. All the complexes exhibit remarkable activity, and the results provide evidence that the studied complexes might indeed be a potential source of antimicrobial agents.

  4. Use of polyamfolit complexes of ethyl-amino-crotonate/acrylic acid with surface-active materials for radionuclide extraction

    International Nuclear Information System (INIS)

    Kabdyrakova, A.M.; Artem'ev, O.I.; Protskij, A.V.; Bimendina, L.A.; Yashkarova, M.G.; Orazzhanova, L.K.

    2005-01-01

    Pentifylline of betaine structure was synthesised on the basis of 3-aminocrotonate and acrylic acid. Polyamfolit composition and its complexes with anionic surface-active material (lauryl sulfate of sodium) were determined. It is revealed that complex formation occurs with [polyamfolit]:[surface active material]=1:1 ratio and is accompanied by significant reduce of system characteristics viscosity. The paper presents results of [polyamfolit]:[surface active material] complex apply experimental investigation for radionuclide directed migration in soil. (author)

  5. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    Science.gov (United States)

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  6. Mixed-waste minimization activities in the nuclear weapons complex

    International Nuclear Information System (INIS)

    Marchetti, J.A.; Suffern, J.S.

    1991-01-01

    Over the past 40 years, the US Department of Energy (DOE) and the nuclear weapons complex have successfully executed their mission of providing the country with a strong nuclear deterrent. Now, however, they must attain another mission at the same time: to eliminate or greatly reduce the environmental, safety, and health problems in the complex. Mixed-waste minimization activities have taken place in 11 of the complex production plants and laboratories: the Pinellas plant, the Mount plant, the Kansas City plant, the Y-12 plant, the Rocky Flats plant, the Savannah River Site (SRS), the Savannah River Site (SRS), the Pantex plant, the Nevada Test Site, Sandia National Laboratories, Los Alamos National Laboratory, and the Lawrence Livermore National Laboratory. The mixed-waste minimization opportunities that have been implemented to date by the production facilities are different from those that have been implemented by the laboratories. Areas of opportunity at the plants involve the following activities: (1) process design or improvement; (2) substitution of materials; (3) waste segregation; (4) recycling; and (5) administrative controls

  7. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  8. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  9. Synthesis, characterization, and biological activity of a new palladium(II) complex with deoxyalliin

    Energy Technology Data Exchange (ETDEWEB)

    Corbi, P.P.; Massabni, A.C. [Inst. de Quimica - UNESP, Dept., Dept. de Quimica Geral e Inoganica, Araraquara (Brazil)]. E-mail: pedrocorbi@yahoo.com; Moreira, A.G. [Inst. de Quimica - UNESP, Dept. de Quimica Geral e Inoganica, Araraquara (Brazil); Faculdade de Medicina de Ribeirao Preto - USP, Dept. de Bioquimica e Imunologia, Ribeirao Preto (Brazil); Medrano, F.J. [Laboratorio Nacional de Luz Sincrotron - LNLS, Campinas (Brazil); Jasiulionis, M.G. [Escola Paulista de Medicina - UNIFESP, Dept. de Micro-Imuno-Parasitologia, Sao Paulo (Brazil); Costa-Neto, C.M. [Faculdade de Medicina de Ribeirao Preto - USP, Dept. de Bioquimica e Imunologia, Ribeirao Preto (Brazil)

    2005-02-15

    Synthesis, characterization, and biological activity of a new water-soluble Pd(II)-deoxyalliin (S-allyl-L-cysteine) complex are described in this article. Elemental and thermal analysis for the complex are consistent with the formula [Pd(C{sub 6}H{sub 10}NO{sub 2}S){sub 2}]. {sup 13}C NMR, {sup 1}H NMR, and IR spectroscopy show coordination of the ligand to Pd(II) through S and N atoms in a square planar geometry. Final residue of the thermal treatment was identified as a mixture of PdO and metallic Pd. Antiproliferative assays using aqueous solutions of the complex against HeLa and TM5 tumor cells showed a pronounced activity of the complex even at low concentrations. After incubation for 24 h, the complex induced cytotoxic effect over HeLa cells when used at concentrations higher than 0.40 mmol/L. At lower concentrations, the complex was nontoxic, indicating its action is probably due to cell cycle arrest, rather than cell death. In agreement with these results, the flow cytometric analysis indicated that after incubation for 24 h at low concentrations of the complex cells are arrested in G0/G1. (author)

  10. Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice.

    Science.gov (United States)

    Wilson, Rickesha L; Selvaraju, Vaithinathan; Lakshmanan, Rajesh; Thirunavukkarasu, Mahesh; Campbell, Jacob; McFadden, David W; Maulik, Nilanjana

    2017-12-01

    Sepsis is a leading cause of mortality among patients in intensive care units across the USA. Thioredoxin-1 (Trx-1) is an essential 12 kDa cytosolic protein that, apart from maintaining the cellular redox state, possesses multifunctional properties. In this study, we explored the possibility of controlling adverse myocardial depression by overexpression of Trx-1 in a mouse model of severe sepsis. Adult C57BL/6J and Trx-1 Tg/+ mice were divided into wild-type sham (WTS), wild-type cecal ligation and puncture (WTCLP), Trx-1 Tg/+ sham (Trx-1 Tg/+ S), and Trx-1 Tg/+ CLP groups. Cardiac function was evaluated before surgery, 6 and 24 hours after CLP surgery. Immunohistochemical and Western blot analysis were performed after 24 hours in heart tissue sections. Echocardiography analysis showed preserved cardiac function in the Trx-1 Tg/+ CLP group compared with the WTCLP group. Similarly, Western blot analysis revealed increased expression of Trx-1, heme oxygenase-1 (HO-1), survivin (an inhibitor of apoptosis [IAP] protein family), and decreased expression of thioredoxin-interacting protein (TXNIP), caspase-3, and 3- nitrotyrosine in the Trx-1 Tg/+ CLP group compared with the WTCLP group. Immunohistochemical analysis showed reduced 4-hydroxynonenal, apoptosis, and vascular leakage in the cardiac tissue of Trx-1 Tg/+ CLP mice compared with mice in the WTCLP group. Our results indicate that overexpression of Trx-1 attenuates cardiac dysfunction during CLP. The mechanism of action may involve reduction of oxidative stress, apoptosis, and vascular permeability through activation of Trx-1/HO-1 and anti-apoptotic protein survivin. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  12. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities.

    Science.gov (United States)

    Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir

    2010-09-15

    A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.

  13. Antiviral activity of platinum (II) and palladium (II) complexes of dimethyl sulfoxide (DMSO) in vitro

    International Nuclear Information System (INIS)

    Al-Allaf, T.; Rashan, L

    1996-01-01

    The antiviral activity of complexes cis-[Pt(DMSO) 2 CI 2 ] and trans-[Pd(DMSO) 2 CI 2 ] against the reverse transcriptase enzyme, herpes and influenza viruses have been studied in vitro. Both complexes demonstrated some activity against the reverse transcriptase enzyme in which the inhibition concentration (IC 5 0) of the cis-Pt and the trans-Pd complexes were shown to be 37.6 and 35.5 μ g/ml respectively. This activity was compared with that of the standard reference; the phosphonoformate (PFA). On the other hand, both complexes have no antiviral activity against herpes and influenza viruses No cytotoxic effects on the three cell lines, Raji, K562 and Mrc-5 were demonstrated by these complexes at the concentrations studied in vitro. (authors). 16 refs., 1 tab., 2 figs

  14. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    Science.gov (United States)

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  15. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  16. Synthesis, Spectral Characterization and Antioxidant Activity of Tin(II-Morin Complex

    Directory of Open Access Journals (Sweden)

    Shahabuddin Memon

    2012-12-01

    Full Text Available The study focuses on the interaction between morin and Tin(II and the resulting complex was characterized through various analytical techniques by comparing it with morin. The complexation was confirmed at first by UV-Vis study, which shows that addition of Tin(II to morin may produce bathochromic shifts indicative of complex formation. IR spectral studies indicated that carbonyl has involved in coordination with Tin(II. Moreover, 1H-NMR studies validated that in conjunction with carbonyl, 3-OH of morin is more appropriate to be involved in complexation by replacement of its proton. Scavenging activities of morin and its Tin(II complex on DPPH• radical showed the inhibitory rates of 65% and 49%, respectively. In addition, the reducing capacity of morin was outstanding at 0.5 and 2.0 mg/ml concentrations relative to Tin(II complex. Overall, the study potentially shows the strong impact in order to design the anticancer drugs jointly from its cytotoxic potential and antioxidant activities, thereby selectively targeting the cancerous cells in result increasing their therapeutic index as well as extra advantages over other anticancer drugs.

  17. Structure of the active form of human origin recognition complex and its ATPase motor module

    Energy Technology Data Exchange (ETDEWEB)

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-23

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.

  18. Heteromeric Complexes of Native Collectin Kidney 1 and Collectin Liver 1 Are Found in the Circulation with MASPs and Activate the Complement System

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Brandt, Jette; Andrieu, Jean-Piere

    2013-01-01

    of carbohydrates or acetylated molecules. During purification and characterization of native CL-K1 from plasma, we observed that collectin liver 1 (CL-L1) was copurified. Based on deglycosylation and nonreduced/reduced two-dimensional SDS-PAGE, we detected CL-K1 and CL-L1 in disulfide bridge-stabilized complexes....... Heteromeric complex formation in plasma was further shown by ELISA and transient coexpression. Judging from the migration pattern on two-dimensional SDS-PAGE, the majority of plasma CL-K1 was found in complex with CL-L1. The ratio of this complex was in favor of CL-K1, suggesting that a heteromeric subunit...

  19. Architecture of human mTOR complex 1.

    Science.gov (United States)

    Aylett, Christopher H S; Sauer, Evelyn; Imseng, Stefan; Boehringer, Daniel; Hall, Michael N; Ban, Nenad; Maier, Timm

    2016-01-01

    Target of rapamycin (TOR), a conserved protein kinase and central controller of cell growth, functions in two structurally and functionally distinct complexes: TORC1 and TORC2. Dysregulation of mammalian TOR (mTOR) signaling is implicated in pathologies that include diabetes, cancer, and neurodegeneration. We resolved the architecture of human mTORC1 (mTOR with subunits Raptor and mLST8) bound to FK506 binding protein (FKBP)-rapamycin, by combining cryo-electron microscopy at 5.9 angstrom resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution. The structure explains how FKBP-rapamycin and architectural elements of mTORC1 limit access to the recessed active site. Consistent with a role in substrate recognition and delivery, the conserved amino-terminal domain of Raptor is juxtaposed to the kinase active site. Copyright © 2016, American Association for the Advancement of Science.

  20. Synthesis and characterization of transition metal complexes derived from some biologically active furoic acid hydrazones

    Directory of Open Access Journals (Sweden)

    P. Venkateswar Rao

    2007-04-01

    Full Text Available Two new physiologically active ligands, N’-2-[(E-1-hydroxy-4-methyl-2-oxo-2H-8-chromenyl ethylidene-2-furan carbohydrazide (HMCFCH and N’-2-[(Z-1-(4-hydroxy-6-methyl-2-oxo-2H-pyranyl ethylidene]-furan carbohydrazide (HMPFCH and their VO(II, Mn(II, Fe(II, Co(II, Ni(II and Cu(II complexes have been prepared. The ligands and the metal complexes have been characterized by elemental analyses, electrical conductance, magnetic susceptibility measurements, UV-Vis, IR, and ESR spectroscopic data. Basing on the above data, Fe(II and Co(II complexes of HMCFCH and HMPFCH have been assigned a dimeric octahedral geometry. VO(II complexes of HMCFCH and HMPFCH have been assigned sulfate bridged dimeric square pyramidal geometry. Mn(II complex of HMCFCH has been assigned a dimeric octahedral geometry, where as Mn(II complex of HMPFCH has been ascribed to monomeric octahedral geometry. Cu(II and Ni(II complexes of HMCFCH have been ascribed to a polymeric structure. Ni(II complex of HMPFCH has been assigned a dimeric square planar geometry. Cu(II complex of HMPFCH has been proposed an octahedral geometry. The ligands and their metal chelates were screened against S. aureus and P. aeruginosa. The ligands and the metal complexes have been found to be active against these microorganisms. The ligands show more activity than the metal complexes.

  1. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carmen Ruger-Herreros

    Full Text Available The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC, a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.

  2. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation

    Directory of Open Access Journals (Sweden)

    Antonela Bonafina

    2018-03-01

    Full Text Available Summary: The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2, promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. : In this article, Ledda and colleagues show that GDNF acting through its receptor GFRα1 plays a critical role in the maturation of cortical progenitors by counteracting FGF2 self-renewal activity on neural stem cells and promoting neuronal differentiation. Keywords: GDNF, GFRα1, cortical precursors, proliferation, postmitotic neurons, neuronal differentiation

  3. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    Science.gov (United States)

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  4. The effect of menadione on glutathione S-transferase A1 (GSTA1): c-Jun N-terminal kinase (JNK) complex dissociation in human colonic adenocarcinoma Caco-2 cells.

    Science.gov (United States)

    Adnan, Humaira; Antenos, Monica; Kirby, Gordon M

    2012-10-02

    Glutathione S-transferases (GSTs) act as modulators of mitogen-activated protein kinase signal transduction pathways via a mechanism involving protein-protein interactions. We have demonstrated that GSTA1 forms complexes with JNK and modifies JNK activation during cellular stress, but the factors that influence complex association and dissociation are unknown. We hypothesized that menadione causes dissociation of GSTA1-JNK complexes, activates JNK, and the consequences of menadione exposure depend on GSTA1 expression. We demonstrate that menadione causes GSTA1-JNK dissociation and JNK activation in preconfluent Caco-2 cells, whereas postconfluent cells are resistant to this effect. Moreover, preconfluent cells are more sensitive than postconfluent cells to menadione-induced cytotoxicity. Activation of JNK is transient since removal of menadione causes GSTA1 to re-associate with JNK reducing cytotoxicity. Over-expression and knockdown of GSTA1 did not alter JNK activation by menadione or sensitivity to menadione-induced cytotoxicity. These results indicate that GSTA1-JNK complex integrity does not affect the ability of menadione to activate JNK. N-acetyl cysteine prevents GSH depletion and blocks menadione-induced complex dissociation, JNK activation and inhibits menadione-induced cytotoxicity. JNK activation and inhibits menadione-induced cytotoxicity. The data suggest that the mechanism of menadione-induced JNK activation involves the production of reactive oxygen species, likely superoxide anion, and intracellular GSH levels play an important role in preventing GSTA1-JNK complex dissociation, subsequent JNK activation and induction of cytotoxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. p53-Induced Apoptosis Occurs in the Absence of p14ARF in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Sally Hopkins-Donaldson

    2006-07-01

    Full Text Available Malignant pleural mesotheliomas (MPMs are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14ARF, an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14ARF expression and the presence of SV40 large T antigen (L-Tag result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, treatment of p14ARF-deficient cells with cisplatin (CDDP increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21WAF, PIG3, MDM2, Bax, PUMA increased in p14ARF-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14ARF-deficient cells, treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1 inhibition of MDM2 (using nutlin-3; 2 transient overexpression of p14ARF; and 3 targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14ARF in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.

  6. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein.

    Science.gov (United States)

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S; Tosi, Giovanna

    2016-01-20

    Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral

  7. Theoretical studies of the tautomerism in 3-(2-R-Phenylhydrazono)-naphthalene- 1,2,4-triones: synthesis of copper(II) complexes and studies of antibacterial and antitumor activities

    International Nuclear Information System (INIS)

    Francisco, Acacio I.; Vargas, Maria D.; Fragoso, Thais P.; Carneiro, J. Walkimar de M.; Silva, Fernando de C. da; Ferreira, Vitor F.; Pessoa, Claudia; Costa-Lotufo, Leticia V.; Marinho Filho, Jose D.B.; Moraes, Manoel O. de; Mangrich, Antonio S.

    2010-01-01

    DFT calculations using the B3LYP and PBE1PBE functionals with the standard 6-31G(d) and 6-311+G(2d,p) basis sets were carried out for the 3-(2-phenylhydrazone)-naphthalene-1,2,4-trione system in solution (dmso) and in the gas phase, and showed the keto-hydrazone forms (rotamers Ia and Ib) to be more stable than the enol-azo forms (rotamers IIa and IIb, by about 14 kcal mol-1) and III (by approximately 6 kcal mol-1), independently of the nature of the substituent in the phenylene ring. These results were confirmed by spectroscopic data on the derivatives HL1-HL13, obtained from 2-hydroxy-1,4-naphthoquinone and arylamines (R = 4-OMe, 4-N 2 -C 6 H 5 , 4-Cl, 4-I, 3-I, 2-I, 4-COOH, 3-COOH, 4-CN, 3-CN, 4-NO 2 , 3-NO 2 , 2-NO 2 ). The in vitro antitumor (against SF-295, HCT-8, MDAMB-435 and HL-60 cancer cell lines) and antibacterial activities (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) of compounds HL1-HL13 and of their respective copper(II) complexes, [Cu(L1-13) 2 ], were tested. In general, these compounds exhibited low antibacterial activity, except for HL5 (R 3-I), more active than the control; however, the corresponding complex was inactive. In contrast, increased cytotoxicity was observed upon complexation. Complex [Cu(L13) 2 ] (R = 3-NO 2 ) presented moderate cytotoxicity against human leukemia (HL-60). (author)

  8. Influence of the nucleobase on the physicochemical characteristics and biological activities of Sb{sup V}-ribonucleoside complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Claudio S.; Demicheli, Cynthia, E-mail: demichel@netuno.lcc.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Rocha, Iara C.M. da; Melo, Maria N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia; Monte Neto, Rubens L.; Frezard, Frederic [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica

    2010-07-01

    The influence of the nucleobase (uracyl, U; cytosine, C; adenine, A; guanine, G) on the physicochemical characteristics and in vitro biological activities of Sb{sup V}-ribonucleoside complexes has been investigated. The 1:1 Sb-U and Sb-C complexes were characterized by NMR and ESI-MS spectroscopies and elemental analysis. The stability constant and the apparent association and dissociation rate constants of 1:1 Sb{sup V}-U, Sb{sup V}-C and Sb{sup V}-A complexes were determined. Although Sb{sup V} most probably binds via oxygen atoms to the same 2' and 3' positions in the different nucleosides, the ribose conformational changes and the physicochemical characteristics of the complex depend on the nucleobase. The nucleobase had a strong influence on the cytotoxicity against macrophages and the antileishmanial activity of the Sb{sup V}-ribonucleoside complexes. The Sb{sup V}-purine complexes were more cytotoxic and more effective against Leishmania chagasi than the Sb{sup V}-pyrimidine complexes, supporting the model that the interaction of Sb{sup V} with purine nucleosides may mediate the antileishmanial activity of pentavalent antimonial drugs. (author)

  9. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication.

    Directory of Open Access Journals (Sweden)

    Masha Sorin

    2009-06-01

    Full Text Available HIV-1 integrase (IN is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD, a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1 virions in an HIV-1 IN-dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1(H141A was utilized. Incorporation of HDAC1(H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1(H141A decreased the infectivity of HIV-1 (but not SIV virions. The block in infectivity due to virion-associated HDAC1(H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post

  10. Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities

    Science.gov (United States)

    Shabbir, Muhammad; Akhter, Zareen; Ashraf, Ahmad Raza; Ismail, Hammad; Habib, Anum; Mirza, Bushra

    2017-12-01

    Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff bases have been prepared and characterized by elemental analysis as well as by spectroscopic techniques (FTIR & NMR). The synthesized compounds were assessed to check their potential biocidal activity by using different biological assays (brine shrimp cytotoxicity, antimicrobial, antioxidant, antitumor and drug-DNA interaction). Results of brine shrimp cytotoxicity assay showed that ligand molecules are more bioactive than metal complexes with LD50 as low as 12.4 μg/mL. The prominent antitumor activity was shown by nickel complexes while the palladium complexes exhibited moderate activity. The synthesized compounds have shown high propensity for DNA binding either through intercalation or groove binding which represents the mechanism of antitumor effect of these compounds. Additionally, ligand molecules and nickel metal complexes showed significant antioxidant activity with IC50 values as low as 3.1 μg/mL and 18.9 μg/mL respectively while palladium complexes exhibited moderate activity. Moreover, in antimicrobial assays H2L1, Ni(L1)PPh3 and H2L3 showed dual inhibition against bacterial and fungal strains while for the rest of the compounds varying degree of activity was recorded against different strains. Overall comparison of results suggests that the synthesized compounds can be promising candidate for drug formulation and development.

  11. Distinct roles of Rheb and Raptor in activating mTOR complex 1 for the self-renewal of hematopoietic stem cells.

    Science.gov (United States)

    Peng, Hui; Kasada, Atsuo; Ueno, Masaya; Hoshii, Takayuki; Tadokoro, Yuko; Nomura, Naho; Ito, Chiaki; Takase, Yusuke; Vu, Ha Thi; Kobayashi, Masahiko; Xiao, Bo; Worley, Paul F; Hirao, Atsushi

    2018-01-01

    The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) senses a cell's energy status and environmental levels of nutrients and growth factors. In response, mTORC1 mediates signaling that controls protein translation and cellular metabolism. Although mTORC1 plays a critical role in hematopoiesis, it remains unclear which upstream stimuli regulate mTORC1 activity in the context of hematopoietic stem cells (HSC) maintenance in vivo. In this study, we investigated the function of Rheb, a critical regulator of mTORC1 activity controlled by the PI3K-AKT-TSC axis, both in HSC maintenance in mice at steady-state and in HSC-derived hematopoiesis post-transplantation. In contrast to the severe hematopoietic dysfunction caused by Raptor deletion, which completely inactivates mTORC1, Rheb deficiency in adult mice did not show remarkable hematopoietic failure. Lack of Rheb caused abnormalities in myeloid cells but did not have impact on hematopoietic regeneration in mice subjected to injury by irradiation. As previously reported, Rheb deficiency resulted in defective HSC-derived hematopoiesis post-transplantation. However, while Raptor is essential for HSC competitiveness in vivo, Rheb is dispensable for HSC maintenance under physiological conditions, indicating that the PI3K-AKT-TSC pathway does not contribute to mTORC1 activity for sustaining HSC self-renewal activity at steady-state. Thus, the various regulatory elements that impinge upstream of mTORC1 activation pathways are differentially required for HSC homeostasis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Unsymmetrical dizinc complexes as models for the active sites of phosphohydrolases.

    Science.gov (United States)

    Jarenmark, Martin; Csapó, Edit; Singh, Jyoti; Wöckel, Simone; Farkas, Etelka; Meyer, Franc; Haukka, Matti; Nordlander, Ebbe

    2010-09-21

    The unsymmetrical dinucleating ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)aminomethyl)-4-methylphenol (IPCPMP or L) has been synthesized to model the active site environment of dinuclear metallohydrolases. It has been isolated as the hexafluorophosphate salt H(4)IPCPMP(PF(6))(2) x 2 H(2)O (H(4)L), which has been structurally characterized, and has been used to form two different Zn(II) complexes, [{Zn(2)(IPCPMP)(OAc)}(2)][PF(6)](2) (2) and [{Zn(2)(IPCPMP)(Piv)}(2)][PF(6)](2) (3) (OAc = acetate; Piv = pivalate). The crystal structures of and show that they consist of tetranuclear complexes with very similar structures. Infrared spectroscopy and mass spectrometry indicate that the tetranuclear complexes dissociate into dinuclear complexes in solution. Potentiometric studies of the Zn(II):IPCPMP system in aqueous solution reveal that a mononuclear complex is surprisingly stable at low pH, even at a 2:1 Zn(II):L ratio, but a dinuclear complex dominates at high pH and transforms into a dihydroxido complex by a cooperative deprotonation of two, probably terminally coordinated, water molecules. A kinetic investigation indicates that one of these hydroxides is the active nucleophile in the hydrolysis of bis(2,4-dinitrophenyl)phosphate (BDNPP) enhanced by complex 2, and mechanistic proposals are presented for this reaction as well as the previously reported transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) promoted by Zn(II) complexes of IPCPMP.

  13. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Maoxi; Fu, Zhongxue; Wu, Xingye; Du, Kunli; Zhang, Shouru; Zeng, Li

    2016-05-01

    Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

  14. Tanzania Dental Journal - Vol 16, No 1 (2010)

    African Journals Online (AJOL)

    Expression of c-myc, bcl-2 and survivin in cutaneous and oral squamous cell carcinoma, basal cell carcinoma and actinic keratosis · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. S Rungsiyanont, S Swasdison, P.L Chang, 3-8. http://dx.doi.org/10.4314/tdj.v16i1.

  15. Using activity theory to study cultural complexity in medical education.

    Science.gov (United States)

    Frambach, Janneke M; Driessen, Erik W; van der Vleuten, Cees P M

    2014-06-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on culture as a dynamic process situated in a social context, and has been valued in diverse fields for yielding rich understandings of complex issues and key factors involved. This paper explains how activity theory can be used in (cross-)cultural medical education research. We discuss activity theory's theoretical background and principles, and we show how these can be applied to the cultural research practice by discussing the steps involved in a cross-cultural study that we conducted, from formulating research questions to drawing conclusions. We describe how the activity system, the unit of analysis in activity theory, can serve as an organizing principle to grasp cultural complexity. We end with reflections on the theoretical and practical use of activity theory for cultural research and note that it is not a shortcut to capture cultural complexity: it is a challenge for researchers to determine the boundaries of their study and to analyze and interpret the dynamics of the activity system.

  16. Theoretical studies of the tautomerism in 3-(2-R-Phenylhydrazono)-naphthalene- 1,2,4-triones: synthesis of copper(II) complexes and studies of antibacterial and antitumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Acacio I.; Vargas, Maria D.; Fragoso, Thais P.; Carneiro, J. Walkimar de M.; Silva, Fernando de C. da; Ferreira, Vitor F., E-mail: mdvargas@vm.uff.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica; Casellato, Annelise [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Barbosa, Jussara P. [Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil); Pessoa, Claudia; Costa-Lotufo, Leticia V.; Marinho Filho, Jose D.B.; Moraes, Manoel O. de [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisiologia e Farmacologia; Mangrich, Antonio S. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica

    2010-07-01

    DFT calculations using the B3LYP and PBE1PBE functionals with the standard 6-31G(d) and 6-311+G(2d,p) basis sets were carried out for the 3-(2-phenylhydrazone)-naphthalene-1,2,4-trione system in solution (dmso) and in the gas phase, and showed the keto-hydrazone forms (rotamers Ia and Ib) to be more stable than the enol-azo forms (rotamers IIa and IIb, by about 14 kcal mol-1) and III (by approximately 6 kcal mol-1), independently of the nature of the substituent in the phenylene ring. These results were confirmed by spectroscopic data on the derivatives HL1-HL13, obtained from 2-hydroxy-1,4-naphthoquinone and arylamines (R = 4-OMe, 4-N{sub 2}-C{sub 6}H{sub 5}, 4-Cl, 4-I, 3-I, 2-I, 4-COOH, 3-COOH, 4-CN, 3-CN, 4-NO{sub 2}, 3-NO{sub 2}, 2-NO{sub 2}). The in vitro antitumor (against SF-295, HCT-8, MDAMB-435 and HL-60 cancer cell lines) and antibacterial activities (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) of compounds HL1-HL13 and of their respective copper(II) complexes, [Cu(L1-13){sub 2}], were tested. In general, these compounds exhibited low antibacterial activity, except for HL5 (R 3-I), more active than the control; however, the corresponding complex was inactive. In contrast, increased cytotoxicity was observed upon complexation. Complex [Cu(L13){sub 2}] (R = 3-NO{sub 2}) presented moderate cytotoxicity against human leukemia (HL-60). (author)

  17. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.

    OpenAIRE

    Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H

    1984-01-01

    An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (neces...

  18. Radioprotection of 1,2-dimethylhydrazine-initiated colon cancer in rats using low-dose γ rays by modulating multidrug resistance-1, cytokeratin 20, and β-catenin expression.

    Science.gov (United States)

    Nabil, H M; Hassan, B N; Tohamy, A A; Waaer, H F; Abdel Moneim, A E

    2016-03-01

    Ionizing radiation is a widely used therapy for solid tumors. However, high-dose ionizing radiation causes apoptosis, transforms normal cells into tumor cells, and impairs immune functions, leading to the defects in the removal of damaged or tumor cells. In contrast, low-dose radiation has been reported to exert various beneficial effects in cells. This experimental study investigated the effect of γ rays at low dose on the development of colorectal tumor in a 1,2-dimethylhydrazine (DMH)-induced colon cancer. Colorectal tumor model was induced in Wistar rats by subcutaneous injection of DMH (20 mg/kg) once a week for 15 weeks. Starting from zero day of DMH injection, a single low dose of whole-body γ irradiation of 0.5 Gy/week was applied to the rats. A significant reduction in lipid peroxidation, nitric oxide, and elevation in the glutathione content and antioxidant enzyme activity (superoxide dismutase and catalase) were observed after γ irradiation comparing with DMH group. Moreover, γ ray reduced the expressions of multidrug resistance 1 (MDR1), β-catenin, and cytokeratin 20 (CK20) those increased in DMH-treated rats. However, survivin did not change with γ ray treatment. A histopathological examination of the DMH-injected rats revealed ulcerative colitis, dysplasia, anaplasia, and hyperchromasia. An improvement in the histopathological picture was seen in the colon of rats exposed to γ rays. In conclusion, the present results showed that low-dose γ ray significantly inhibited DMH-induced colon carcinogenesis in rats by modulating CK20, MDR1, and β-catenin expression but not survivin expression. © The Author(s) 2015.

  19. Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia

    NARCIS (Netherlands)

    Gieteling, Esther W.; van Rijn, Monique A.; de Jong, Bauke M.; Hoogduin, Johannes M.; Renken, Remco; van Hilten, Jacobus J.; Leenders, Klaus L.

    The pathogenesis of dystonia in Complex Regional Pain Syndrome type 1 (CRPS-1) is unclear. In primary dystonia, functional magnetic resonance imaging (fMRI) has revealed changes in cerebral networks during execution of movement. The aim of this study was to determine cerebral network function in

  20. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  1. Inhibitory effects of ascorbic acid, vitamin E, and vitamin B-complex on the biological activities induced by Bothrops venom.

    Science.gov (United States)

    Oliveira, Carlos Henrique de Moura; Assaid Simão, Anderson; Marcussi, Silvana

    2016-01-01

    Natural compounds have been widely studied with the aim of complementing antiophidic serum therapy. The present study evaluated the inhibitory potential of ascorbic acid and a vitamin complex, composed of ascorbic acid, vitamin E, and all the B-complex vitamins, on the biological activities induced by snake venoms. The effect of vitamins was evaluated on the phospholipase, proteolytic, coagulant, and fibrinogenolytic activities induced by Bothrops moojeni (Viperidae), B. jararacussu, and B. alternatus snake venoms, and the hemagglutinating activity induced by B. jararacussu venom. The vitamin complex (1:5 and 1:10 ratios) totally inhibited the fibrinogenolytic activity and partially the phospholipase activity and proteolytic activity on azocasein induced by the evaluated venoms. Significant inhibition was observed in the coagulation of human plasma induced by venoms from B. alternatus (1:2.5 and 1:5, to vitamin complex and ascorbic acid) and B. moojeni (1:2.5 and 1:5, to vitamin complex and ascorbic acid). Ascorbic acid inhibited 100% of the proteolytic activities of B. moojeni and B. alternatus on azocasein, at 1:10 ratio, the effects of all the venoms on fibrinogen, the hemagglutinating activity of B. jararacussu venom, and also extended the plasma coagulation time induced by all venoms analyzed. The vitamins analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms, suggesting their interaction with toxins belonging to the phospholipase A2, protease, and lectin classes. The results can aid further research in clarifying the possible mechanisms of interaction between vitamins and snake enzymes.

  2. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands.

    Science.gov (United States)

    Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu

    2016-06-01

    A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mitochondria-targeting cyclometalated iridium(III)-PEG complexes with tunable photodynamic activity.

    Science.gov (United States)

    Li, Steve Po-Yam; Lau, Chris Tsan-Shing; Louie, Man-Wai; Lam, Yun-Wah; Cheng, Shuk Han; Lo, Kenneth Kam-Wing

    2013-10-01

    We present a new class of phosphorescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N(^)C)2(bpy-CONH-PEG)](PF6) (bpy-CONH-PEG = 4-(N-(2-(ω-methoxypoly-(1-oxapropyl))ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, number average molecular weight (Mn) = 5272.23, weight average molecular weight (Mw) = 5317.38, polydispersity index (PDI) = 1.009; HN(^)C = 2-phenylpyridine, Hppy (1a), 2-((1,1'-biphenyl)-4-yl)pyridine, Hpppy (2a), 2-phenylquinoline, Hpq (3a), 2-phenylbenzothiazole, Hbt (4a), 2-(1-naphthyl)benzothiazole, Hbsn (5a)). The photophysical, photochemical, and biological properties of these complexes have been compared with those of their PEG-free counterparts [Ir(N(^)C)2(bpy-CONH-Et)](PF6) (bpy-CONH-Et = 4-(N-ethylaminocarbonyl)-4'-methyl-2,2'-bipyridine; HN(^)C = Hppy (1b), Hpppy (2b), Hpq (3b), Hbt (4b), Hbsn (5b)). Upon irradiation, all the complexes exhibited intense and long-lived green to orange-red emission under ambient conditions. The emission was phosphorescence in nature and can be quenched by O2 with the generation of singlet oxygen ((1)O2). The quantum yields for (1)O2 production of the complexes in aerated DMSO (0.24-0.83) were found to be dependent on the excited-state lifetimes of the complexes, which can be altered using different cyclometalating ligands (N(^)C). Cell-based assays indicated that the PEG complexes were noncytotoxic in the dark (IC50 > 300 μM); however, most of them became significantly cytotoxic upon irradiation (IC50 = 3.4 - 23.2 μM). Laser-scanning confocal microscopy images revealed localization of complex 3a in the mitochondrial region of HeLa cells and the induction of rapid necrotic cell death upon light activation. Additionally, the lack of dark toxicity and potential application of the PEG complexes as a visualizing reagent have been demonstrated using zebrafish (Danio rerio) as an animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation.

    Directory of Open Access Journals (Sweden)

    Hannah Greenfeld

    2015-05-01

    Full Text Available The Epstein-Barr virus (EBV encoded oncoprotein Latent Membrane Protein 1 (LMP1 signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC, and stimulated linear (M1-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63

  5. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  6. Alpha- and Beta-Cyclodextrin Inclusion Complexes with 5-Fluorouracil: Characterization and Cytotoxic Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Cristina Di Donato

    2016-12-01

    Full Text Available Cyclodextrins are natural macrocyclic oligosaccharides able to form inclusion complexes with a wide variety of guests, affecting their physicochemical and pharmaceutical properties. In order to obtain an improvement of the bioavailability and solubility of 5-fluorouracil, a pyrimidine analogue used as chemotherapeutic agent in the treatment of the colon, liver, and stomac cancers, the drug was complexed with alpha- and beta-cyclodextrin. The inclusion complexes were prepared in the solid state by kneading method and characterized by Fourier transform-infrared (FT-IR spectroscopy and X-ray powder diffractometry. In solution, the 1:1 stoichiometry for all the inclusion complexes was established by the Job plot method and the binding constants were determined at different pHs by UV-VIS titration. Furthermore, the cytotoxic activity of 5-fluorouracil and its complexation products were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay on MCF-7 (breast cancer cell line, Hep G2 (hepatocyte carcinoma cell line, Caco-2 (colon adenocarcinoma cell line, and A-549 (alveolar basal epithelial carcinoma cell line. The results showed that both inclusion complexes increased the 5-fluorouracil capability of inhibiting cell growth. In particular, 5-fluorouracil complexed with beta-cyclodextrin had the highest cytotoxic activity on MCF-7; with alpha-cyclodextrin the highest cytotoxic activity was observed on A-549. The IC50 values were equal to 31 and 73 µM at 72 h, respectively. Our results underline the possibility of using these inclusion complexes in pharmaceutical formulations for improving 5-fluorouracil therapeutic efficacy.

  7. Biological Activity and Molecular Structures of Bis(benzimidazole and Trithiocyanurate Complexes

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2015-06-01

    Full Text Available 1-(1H-Benzimidazol-2-yl-N-(1H-benzimidazol-2-ylmethylmethanamine (abb and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl-1H-benzimidazole (tbb have been prepared and characterized by elemental analysis. These bis(benzimidazoles have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb3(H2O3(μ-ttc](ClO43·3H2O·EtOH (1, where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2(ttcH22(ttcH3(H2O] (2 is composed of a protonated bis(benzimidazole, two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi. The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.

  8. EEG-confirmed epileptic activity in a cat with VGKC-complex/LGI1 antibody-associated limbic encephalitis.

    Science.gov (United States)

    Pakozdy, Akos; Glantschnigg, Ursula; Leschnik, Michael; Hechinger, Harald; Moloney, Teresa; Lang, Bethan; Halasz, Peter; Vincent, Angela

    2014-03-01

    A 5-year-old, female client-owned cat presented with acute onset of focal epileptic seizures with orofacial twitching and behavioural changes. Magnetic resonance imaging showed bilateral temporal lobe hyperintensities and the EEG was consistent with ictal epileptic seizure activity. After antiepileptic and additional corticosteroid treatment, the cat recovered and by 10 months of follow-up was seizure-free without any problem. Retrospectively, antibodies to LGI1, a component of the voltage-gated potassium channel-complex, were identified. Feline focal seizures with orofacial involvement have been increasingly recognised in client-owned cats, and autoimmune limbic encephalitis was recently suggested as a possible aetiology. This is the first report of EEG, MRI and long-term follow-up of this condition in cats which is similar to human limbic encephalitis.

  9. The Interaction between Checkpoint Kinase 1 (Chk1) and the Minichromosome Maintenance (MCM) Complex Is Required for DNA Damage-induced Chk1 Phosphorylation*

    Science.gov (United States)

    Han, Xiangzi; Aslanian, Aaron; Fu, Kang; Tsuji, Toshiya; Zhang, Youwei

    2014-01-01

    Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. PMID:25049228

  10. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    Science.gov (United States)

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  11. Kinetic analysis of thermogravimetric data of thorium-all-cis-1,2,3,4-cyclopentanetetracarboxylic acid complex

    International Nuclear Information System (INIS)

    Ramarao, G.A.; Nair, P.K.R.; Srinivasulu, K.

    1979-01-01

    Thorium (IV) forms 1:1 complex with all-cis-1,2,3,4-cyclopentanetetracarboxylic acid (CPTA). Thermogravimetric analysis indicated that it undergoes primarily a two step decomposition of one corresponding to loss of water and another to the decomposition of the complex. Apparent activation energy, frequency factor and activation entropy were determined. Using the experimental data, the reaction order and activation energy were calculated by Freeman-Carroll method and also by Doyle method as modified by J. Zsako, by calculation of standard deviation instead of curve fitting method. (author)

  12. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    Science.gov (United States)

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  13. Assembly and activation of neurotrophic factor receptor complexes.

    Science.gov (United States)

    Simi, Anastasia; Ibáñez, Carlos F

    2010-04-01

    Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.

  14. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    Energy Technology Data Exchange (ETDEWEB)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank [Pitt; (Goettingen); (VA); (Rutgers)

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  15. Synthesis, spectral characterization and in vitro antifungal activity of Lanthanum(III) and Praseodymium(III) complexes with Schiff bases derived from 5-substituted-4-amino-5-hydrazino-1,2,4-triazoles and isatin

    International Nuclear Information System (INIS)

    Singh, Shweta; Tripathi, Priti; Pandey, Om P.; Sengupta, Soumitra K.

    2013-01-01

    The new lanthanum(III) and praseodymium(III) complexes of the general formula (LnCl(L)(H 2 O) 2 ) (Ln = La III or Pr III ; H 2 L = Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1,2,4-triazoles and isatin) have been prepared. The complexes have been characterized by elemental analyses, molecular weight by FAB-mass, thermogravimetry, electrical conductance, magnetic moment and spectral (electronic, infrared, far-infrared, 1 H NMR and 13 C NMR) data. The ligands and all prepared complexes were assayed for antifungal (Aspergillus niger and Helminthosporium oryzae) activities. The activities have been correlated with the structures of the complexes. (author)

  16. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 Pathways.

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Wei

    Full Text Available Norisoboldine (NOR is the main alkaloid constituent in the dry root of Lindera aggregata (Sims Kosterm. (L. strychnifolia Vill.. As reported previously, orally administered NOR displayed a robust inhibition of joint bone destruction present in both mouse collagen-induced arthritis and rat adjuvant-induced arthritis with lower efficacious doses than that required for ameliorating systemic inflammation. This attracted us to assess the effects of NOR on differentiation and function of osteoclasts, primary effector cells for inflammatory bone destruction, to get insight into its anti-rheumatoid arthritis mechanisms. Both RAW264.7 cells and mouse bone marrow-derived macrophages (BMMs were stimulated with RANKL (100 ng/mL to establish osteoclast differentiation models. ELISA, RT-PCR, gelatin zymography, western blotting, immunoprecipitation and EMSA were used to reveal related signalling pathways. NOR (10 and 30 µM, without significant cytotoxicity, showed significant reduction of the number of osteoclasts and the resorption pit areas, and it targeted osteoclast differentiation at the early stage. In conjunction with the anti-resorption effect of NOR, mRNA levels of cathepsin K and MMP-9 were decreased, and the activity of MMP-9 was attenuated. Furthermore, our mechanistic studies indicated that NOR obviously suppressed the ubiquitination of TRAF6, the accumulation of TRAF6-TAK1 complexes and the activation of ERK and p38 MAPK, and reduced the nuclear translocation of NF-κB-p65 and DNA-binding activity of NF-κB. However, NOR had little effect on expressions of TRAF6 or the phosphorylation and degradation of IκBα. Moreover, NOR markedly inhibited expressions of transcription factor NFATc1, but not c-Fos. Intriguingly, the subsequent nuclear translocations of c-Fos and NFATc1 were substantially down-regulated. Hence, we demonstrated for the first time that preventing the differentiation and function of osteoclasts at the early stage was an

  17. Synthesis, characterization, photoluminescent properties and antimicrobial activities of two novel polymeric silver(I) complexes with diclofenac

    Science.gov (United States)

    Hamamci Alisir, Sevim; Sariboga, Bahtiyar; Caglar, Sema; Buyukgungor, Orhan

    2017-02-01

    Two novel silver(I) complexes with diclofenac, ({2-(2,6-dicholoroanilino)phenylacetic acid} = dicl) namely [Ag(dicl)]n (1) and [Ag(dicl)(bipy)]n (2) (bipy: 4,4'-bipyridine), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis and single-crystal X-ray diffraction. X-ray crystallographic data of 1 revealed that dicl anion adopts a μ3-η1,η2 coordinated mode link three Ag atoms generate 1D infinite chain structure. In 2, dicl ligand plays crucial role to form double-ladder chain structure, clamping two neighboring [Ag(μ-bipy)]∞ chains by using carboxylate oxygen atoms (O1, O2). The most interesting structural feature of 2 is the presence of strong π···π interactions between aromatic phenyl rings of dicl placed in the adjacent 1D chains, leads to forming 2D slab structure. The coordination modes of dicl in the title complexes are supported by using IR spectroscopy. Thermal stabilities of 1 and 2 have been determined by TG/DTA/DTG techniques. The luminescent properties of complex 1 and 2 have been investigated in the solid state at room temperature. Furthermore, the title complexes have been tested for their in vitro antibacterial activities and are determined to be highly effective for antibacterial activity against Gram(+) and Gram(-) pathogenic bacteria cells. 1 and 2 showed activity on Fungi, as well.

  18. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    Directory of Open Access Journals (Sweden)

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  19. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  20. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  1. Synthesis, thermodynamic properties and antibacterial activities of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jun-Ru [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Shu-Xia [Material Science and Engineering School, Shijiazhuang Tiedao University, Shijiazhaung 050043 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Da-Hai [Department of Chemistry, Handan College, Handan 056005 (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2013-11-20

    Graphical abstract: Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline))were synthesized and characterized by elemental analysis, IR and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and Candida albicans were studied by filter paper approach. - Highlights: • Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} were synthesized and characterized. • The thermal decomposition processes of the title complexes were studied using the TG/DSC–FTIR coupling techniques. • The heat capacities of the complexes were measured by (DSC). • The antibacterial action of the four complexes on Escherichia coli, Staphylococcus aureus and Candida albicans were studied. - Abstract: Four lanthanide complexes with a general formula [Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, infrared spectra (IR), and thermogravimetric, differential scanning calorimetry techniques, combined with Fourier transform infrared (TG/DSC–FTIR) technology. The thermal decomposition processes of the four complexes were investigated by TG/DSC–FTIR techniques. Heat capacities were measured by DSC. The values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions (H{sub T} − H{sub 298.15} {sub K}), (S{sub T} − S{sub 298.15} {sub K}), and (G{sub T} − G{sub 298.15} {sub K}) were calculated. The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and

  2. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  3. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Grepper Susan

    2009-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is an aggressive cancer, and is the third leading cause of cancer death worldwide. Standard therapy is ineffective partly because HCC is intrinsically resistant to conventional chemotherapy. Its poor prognosis and limited treatment options make it critical to develop novel and selective chemotherapeutic agents. Since the Wnt/β-catenin pathway is essential in HCC carcinogenesis, we studied the inhibition of Wnt-1-mediated signaling as a potential molecular target in HCC. Results We demonstrated that Wnt-1 is highly expressed in human hepatoma cell lines and a subgroup of human HCC tissues compared to paired adjacent non-tumor tissues. An anti-Wnt-1 antibody dose-dependently decreased viability and proliferation of Huh7 and Hep40 cells over-expressing Wnt-1 and harboring wild type β-catenin, but did not affect normal hepatocytes with undetectable Wnt-1 expression. Apoptosis was also observed in Huh7 and Hep40 cells after treatment with anti-Wnt-1 antibody. In these two cell lines, the anti-Wnt-1 antibody decreased β-catenin/Tcf4 transcriptional activities, which were associated with down-regulation of the endogenous β-catenin/Tcf4 target genes c-Myc, cyclin D1, and survivin. Intratumoral injection of anti-Wnt-1 antibody suppressed in vivo tumor growth in a Huh7 xenograft model, which was also associated with apoptosis and reduced c-Myc, cyclin D1, and survivin expressions. Conclusion Our results suggest that Wnt-1 is a survival factor for HCC cells, and that the blockade of Wnt-1-mediated signaling may offer a potential pathway-specific therapeutic strategy for the treatment of a subgroup of HCC that over-expresses Wnt-1.

  4. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  5. Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions

    International Nuclear Information System (INIS)

    Kato, Akari; Endo, Toshiya; Abiko, Shun; Ariga, Hiroyoshi; Matsumoto, Ken-ichi

    2008-01-01

    ABSTRACT: XB-S is an amino-terminal truncated protein of tenascin-X (TNX) in humans. The levels of the XB-S transcript, but not those of TNX transcripts, were increased upon hypoxia. We identified a critical hypoxia-responsive element (HRE) localized to a GT-rich element positioned from - 1410 to - 1368 in the XB-S promoter. Using an electrophoretic mobility shift assay (EMSA), we found that the HRE forms a DNA-protein complex with Sp1 and that GG positioned in - 1379 and - 1378 is essential for the binding of the nuclear complex. Transfection experiments in SL2 cells, an Sp1-deficient model system, with an Sp1 expression vector demonstrated that the region from - 1380 to - 1371, an HRE, is sufficient for efficient activation of the XB-S promoter upon hypoxia. The EMSA and a chromatin immunoprecipitation (ChIP) assay showed that Sp1 together with the transcriptional repressor histone deacetylase 1 (HDAC1) binds to the HRE of the XB-S promoter under normoxia and that hypoxia causes dissociation of HDAC1 from the Sp1/HDAC1 complex. The HRE promoter activity was induced in the presence of a histone deacetylase inhibitor, trichostatin A, even under normoxia. Our results indicate that the hypoxia-induced activation of the XB-S promoter is regulated through dissociation of HDAC1 from an Sp1-binding HRE site

  6. Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their in vitro and in vivo antitumor activity.

    Science.gov (United States)

    Lu, Xing; Wu, Yi-Ming; Yang, Jing-Mei; Ma, Feng-E; Li, Liang-Ping; Chen, Sheng; Zhang, Ye; Ni, Qing-Ling; Pan, Ying-Ming; Hong, Xue; Peng, Yan

    2018-05-10

    A series of 2(1H)-quinolinone derivatives and their rhodium (III) complexes were designed and synthesized. All the rhodium (III) complexes exhibited higher in vitro cytotoxicity for Hep G2, HeLa 229, MGC80-3, and NCI-H460 human tumor cell lines than their ligands and cisplatin, and among them complex 9 was found to be selectively cytotoxic to tumor cells. Further investigation revealed that complex 9 caused cell cycle arrest at the G2/M phase and induced apoptosis, and inhibited the proliferation of Hep G2 cells by impeding the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream enzymes. Complex 9 also up-regulated the proapoptotic proteins Bak, Bax, and Bim, which altogether activated caspase-3/9 to initiate cell apoptosis. Notably, complex 9 effectively inhibited tumor growth in the NCI-H460 xenograft mouse model with less adverse effect than cisplatin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Template synthesis, characterization and antimicrobial activity of some new complexes with isonicotinoyl hydrazone ligands

    Directory of Open Access Journals (Sweden)

    LIVIU MITU

    2009-09-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II with the 9-anthraldehyde iso-nicotinoyl hydrazone ligand (HL1 and the 3,5-di-tert-butyl-4-hydroxy-benzaldehyde isonicotinoyl hydrazone ligand (H2L2 were synthesized by the template method. The complexes were characterized by analytical analysis, IR, UV-Vis and ESR spectroscopy, magnetic measurements, conductometry and thermal analysis and the two ligands by 1H-NMR spectroscopy. From the elemental analysis, 1:2 (metal:ligand stoichiometry for the complexes of Cu(II, Ni(II with the ligands HL1 and H2L2 and 1:1 (metal:ligand stoichiometry for the complex of Co(II with the ligand HL1 are proposed. The molar conductance data showed that the complexes are non-electrolytes. The magnetic susceptibility results coupled with the electronic and ESR spectra suggested a distorted octahedral geometry for the complexes Ni(II/HL1, Ni(II/H2L2 and Cu(II/H2L2, a tetrahedral stereochemistry for the complex Cu/HL1 and a square-planar geometry for the complex Co/HL1. The IR spectra demonstrated the bidentate coordination of the ligands HL1 and H2L2 by the O=C amide oxygen and the azomethine nitrogen, as well as monodentate coordination of the ligand HL1 by the azomethine nitrogen in the Cu(IIcomplex. The antibacterial activity of the ligands and their metallic complexes were tested against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae.

  8. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands.

    Science.gov (United States)

    Karataş, Mert Olgun; Olgundeniz, Begüm; Günal, Selami; Özdemir, İlknur; Alıcı, Bülent; Çetinkaya, Engin

    2016-02-15

    Eight new coumarin substituted silver(I) N-heterocyclic carbene (NHC) complexes were synthesized by the interaction of the corresponding imidazolium or benzimidazolium chlorides and Ag2O in dichloromethane at room temperature. Structures of these complexes were established on the basis of elemental analysis, (1)H NMR, (13)C NMR, IR and mass spectroscopic techniques. The antimicrobial activities of carbene precursors and silver NHC complexes were tested against standard strains: Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and the fungi Candida albicans and Candida tropicalis. Results showed that all the compounds inhibited the growth of the all bacteria and fungi strains and some complexes performed good activities against different microorganisms. Among all the compounds, the most lipophilic complex bis[1-(4-methylene-6,8-dimethyl-2H-chromen-2-one)-3-(naphthalene-2-ylmethyl)benzimidazol-2-ylidene]silver(I) dichloro argentate (5e) was found out as the most active one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stability studies on 99mTechnetium(III) complexes with tridentate/monodentate thiol ligands and phosphine ('3+1+1' complexes)

    International Nuclear Information System (INIS)

    Seifert, Sepp; Drews, Antje; Gupta, Antje; Pietzsch, Hans-Juergen; Spies, Hartmut; Johannsen, Bernd

    2000-01-01

    The preparation and characterisation of 3+1+1 technetium complexes of the general formula [Tc(SES)(RS)(PMe 2 Ph)] (SES=tridentate dithiol ligand, E=S, O, NMe; RSH=monothiol ligand) at the n.c.a. level is described. The Tc(III) complexes are prepared in a one-step procedure starting from pertechnetate in yields of 85-95% of radiochemical purity. A comparison of their chromatographic data with the fully characterised 99 Tc complexes indicate the identity of the investigated compounds. Stability studies show that the 99m Tc complexes undergo some alteration in solution. They are oxidised to the 3+1 oxotechnetium (V) complexes and/or decompose in aqueous solution. In challenge experiments performed with glutathione, exchange of the monothiolato ligand occurs in the same manner as known for the 3+1 complexes

  10. Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding.

    Science.gov (United States)

    Cho, Won-Kyung; Jang, Moon Kyoo; Huang, Keven; Pise-Masison, Cynthia A; Brady, John N

    2010-12-01

    Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.

  11. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences.

    Science.gov (United States)

    Pérez-Landero, Sergio; Sandoval-Motta, Santiago; Martínez-Anaya, Claudia; Yang, Runying; Folch-Mallol, Jorge Luis; Martínez, Luz María; Ventura, Larissa; Guillén-Navarro, Karina; Aldana-González, Maximino; Nieto-Sotelo, Jorge

    2015-07-27

    The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory, learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS) as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological processes. Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase. Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response for Hsf1/Skn7 when PKA activity was low (cdc25Δ cells). Experimental results were used to propose an interaction scheme for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational model reproduced the experimental data and predicted complex interactions between the CS and the existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssa1 and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of Hsf1/Skn7, active only in the absence of Tpk2. By averaging the network state over all its attractors, a good quantitative agreement between computational and experimental results was obtained, as the averages reflected more accurately the population measurements. The assumption of PKA being one molecular entity has hindered the study of a wide range of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc.). We show that the differential

  12. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.

    Science.gov (United States)

    Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T

    2013-08-01

    The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).

  13. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    Science.gov (United States)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  14. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Mohammadipanah, Fatemeh; Hamedi, Javad [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14155-6455 (Iran, Islamic Republic of); University of Tehran Biocompound Collection (UTBC), Microbial Technology and Products Research Center, University of Tehran, Tehran (Iran, Islamic Republic of); Tahermansouri, Hasan [Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Amini, Mostafa M. [Department of Chemistry, Shahid Behshti University, 1983963113, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Graphical abstract: In an antibacterial test, grafted copper(II) macrocyclic complex on the surface of MWCNT showed higher antibacterial activity against Bacillus subtilis compared to the individual MWCNT-COOH and the complex. - Highlights: • Copper(II) tetraaza macrocyclic complex covalently bonded to modified MWCNT. • Grafting of the complex carried out via an interaction between −C(=O)Cl group and NH of the ligand. • The samples were subjected in an antibacterial assessment to compare their activity. • Immobilized complex showed higher antibacterial activity against Bacillus subtilis ATCC 6633 compared to separately MWCNT-C(C=O)-OH and CuTAM. - Abstract: In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the I{sub D}/I{sub G} ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  15. Synthesis of Cyclododecatriene from 1,3-Butadiene by Trimerization over Amine-Titanium Complex Catalyst

    International Nuclear Information System (INIS)

    Park, Da Min; Kim, Gye Ryung; Lee, Ju Hyun; Kim, Geon-Joong; Cho, Deuk Hee

    2013-01-01

    The new complex catalysts were synthesized by the reaction of titanium compounds (titanium chloride or titanium butoxide) and diamines in this work, and they showed very high catalytic activities for the cyclododecatriene (CDT) synthesis from 1,3-butadiene through trimerization. CDT synthetic reaction was performed in an autoclave reactor, and the effects of reaction temperature, type of catalyst, catalyst amount added into the system, the mole ratio of Al/Ti and immobilization method were investigated on the yield of product CDT. The titanium complex catalyst combined to diamine with 1:1 ratio showed high selectivity to CDT more than 90%. The ratio of TTT-CDT/TTC-CDT isomers in the product revealed as different values, depending on the type of diamine combined to titanium and Ti/diamine ratios. Those homogeneous complexes could be used as a heterogenized catalyst after anchoring on the supports, and the immobilized titanium catalyst retained the catalytic activities for several times in the recycled reactions without leaching. The carbon support containing titanium has exhibited superior activity to the silica support. Especially, when the titanium complex was anchored on the support which was fabricated by the hydrolysis of tripropylaminosilane itself, the resulting titanium catalyst showed the highest BD conversion and CDT selectivity

  16. Biogenesis of the yeast cytochrome bc1 complex.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  17. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    Science.gov (United States)

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  18. Phosphorylation of the Budding Yeast 9-1-1 Complex Is Required for Dpb11 Function in the Full Activation of the UV-Induced DNA Damage Checkpoint▿ †

    Science.gov (United States)

    Puddu, Fabio; Granata, Magda; Di Nola, Lisa; Balestrini, Alessia; Piergiovanni, Gabriele; Lazzaro, Federico; Giannattasio, Michele; Plevani, Paolo; Muzi-Falconi, Marco

    2008-01-01

    Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G1 phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Δ dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase. PMID:18541674

  19. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  20. Rac1 augments Wnt signaling by stimulating β-catenin–lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import

    Science.gov (United States)

    Jamieson, Cara; Lui, Christina; Brocardo, Mariana G.; Martino-Echarri, Estefania; Henderson, Beric R.

    2015-01-01

    ABSTRACT β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1–β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin–lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin–LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling. PMID:26403202

  1. Synthesis, crystal structure and biological activity of the Schiff base organotin(IV) complexes based on salicylaldehyde-o-aminophenol

    Science.gov (United States)

    Tan, Yu-Xing; Zhang, Zhi-Jian; Liu, Yang; Yu, Jiang-Xi; Zhu, Xiao-Ming; Kuang, Dai-Zhi; Jiang, Wu-Jiu

    2017-12-01

    Schiff base organotin(IV) complexes C1 ∼ C5b have been synthesized via the reaction of the substituted salicylaldehyde-o-aminophenol Schiff base ligands (L1 ∼ L3) with the dibenzyltin dichloride, n-butyltin trichloride or dibutyltin oxide, respectively. The complexes have been characterized by IR, UV-Vis, 1H NMR, 13C NMR spectra, elemental analysis and the crystal structures have been determined by X-ray diffraction. The anticancer activity of the Schiff base ligand and complexes C1 ∼ C5b against five species of cancer cell which are Hela, MCF7, HepG2, Colo205, NCIsbnd H460 were tested respectively, the tests showed that C1 ∼ C5b exhibited significant anticancer activity for the cancer cells in comparison with the ligand, and the activity was greater than carboplatin.

  2. Ibandronate metal complexes: solution behavior and antiparasitic activity.

    Science.gov (United States)

    Demoro, Bruno; Rostán, Santiago; Moncada, Mauricio; Li, Zhu-Hong; Docampo, Roberto; Olea Azar, Claudio; Maya, Juan Diego; Torres, Julia; Gambino, Dinorah; Otero, Lucía

    2018-03-01

    To face the high costs of developing new drugs, researchers in both industry and academy are looking for ways to repurpose old drugs for new uses. In this sense, bisphosphonates that are clinically used for bone diseases have been studied as agents against Trypanosoma cruzi, causative parasite of Chagas disease. In this work, the development of first row transition metal complexes (M = Co 2+ , Mn 2+ , Ni 2+ ) with the bisphosphonate ibandronate (iba, H 4 iba representing the neutral form) is presented. The in-solution behavior of the systems containing iba and the selected 3d metal ions was studied by potentiometry. Mononuclear complexes [M(H x iba)] (2-x)- (x = 0-3) and [M(Hiba) 2 ] 4- together with the formation of the neutral polynuclear species [M 2 iba] and [M 3 (Hiba) 2 ] were detected for all studied systems. In the solid state, complexes of the formula [M 3 (Hiba) 2 (H 2 O) 4 ]·6H 2 O were obtained and characterized. All obtained complexes, forming [M(Hiba)] - species under the conditions of the biological studies, were more active against the amastigote form of T. cruzi than the free iba, showing no toxicity in mammalian Vero cells. In addition, the same complexes were selective inhibitors of the parasitic farnesyl diphosphate synthase (FPPS) enzyme showing poor inhibition of the human one. However, the increase of the anti-T. cruzi activity upon coordination could not be explained neither through the inhibition of TcFPPS nor through the inhibition of TcSPPS (T. cruzi solanesyl-diphosphate synthase). The ability of the obtained metal complexes of catalyzing the generation of free radical species in the parasite could explain the observed anti-T. cruzi activity.

  3. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.

    Science.gov (United States)

    Faustin, Benjamin; Lartigue, Lydia; Bruey, Jean-Marie; Luciano, Frederic; Sergienko, Eduard; Bailly-Maitre, Beatrice; Volkmann, Niels; Hanein, Dorit; Rouiller, Isabelle; Reed, John C

    2007-03-09

    Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.

  4. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  5. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  6. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    Science.gov (United States)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  7. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Sig; Ro, Seung-Hyun; Kim, Myungjin; Park, Hwan-Woo; Semple, Ian A.; Park, Haeli; Cho, Uhn-Soo; Wang, Wei; Guan, Kun-Liang; Karin, Michael; Lee, Jun Hee (Michigan); (UCSD)

    2015-03-30

    Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.

  8. Structure-Function Relationship of the Bik1-Bim1 Complex.

    Science.gov (United States)

    Stangier, Marcel M; Kumar, Anil; Chen, Xiuzhen; Farcas, Ana-Maria; Barral, Yves; Steinmetz, Michel O

    2018-04-03

    In budding yeast, the microtubule plus-end tracking proteins Bik1 (CLIP-170) and Bim1 (EB1) form a complex that interacts with partners involved in spindle positioning, including Stu2 and Kar9. Here, we show that the CAP-Gly and coiled-coil domains of Bik1 interact with the C-terminal ETF peptide of Bim1 and the C-terminal tail region of Stu2, respectively. The crystal structures of the CAP-Gly domain of Bik1 (Bik1CG) alone and in complex with an ETF peptide revealed unique, functionally relevant CAP-Gly elements, establishing Bik1CG as a specific C-terminal phenylalanine recognition domain. Unlike the mammalian CLIP-170-EB1 complex, Bik1-Bim1 forms ternary complexes with the EB1-binding motifs SxIP and LxxPTPh, which are present in diverse proteins, including Kar9. Perturbation of the Bik1-Bim1 interaction in vivo affected Bik1 localization and astral microtubule length. Our results provide insight into the role of the Bik1-Bim1 interaction for cell division, and demonstrate that the CLIP-170-EB1 module is evolutionarily flexible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases.

    Directory of Open Access Journals (Sweden)

    Phing-How Lou

    Full Text Available Intralipid® administration at reperfusion elicits protection against myocardial ischemia-reperfusion injury. However, the underlying mechanisms are not fully understood.Sprague-Dawley rat hearts were exposed to 15 min of ischemia and 30 min of reperfusion in the absence or presence of Intralipid® 1% administered at the onset of reperfusion. In separate experiments, the reactive oxygen species (ROS scavenger N-(2-mercaptopropionyl-glycine was added either alone or with Intralipid®. Left ventricular work and activation of Akt, STAT3, and ERK1/2 were used to evaluate cardioprotection. ROS production was assessed by measuring the loss of aconitase activity and the release of hydrogen peroxide using Amplex Red. Electron transport chain complex activities and proton leak were measured by high-resolution respirometry in permeabilized cardiac fibers. Titration experiments using the fatty acid intermediates of Intralipid® palmitoyl-, oleoyl- and linoleoylcarnitine served to determine concentration-dependent inhibition of complex IV activity and mitochondrial ROS release.Intralipid® enhanced postischemic recovery and activated Akt and Erk1/2, effects that were abolished by the ROS scavenger N-(2-mercaptopropionylglycine. Palmitoylcarnitine and linoleoylcarnitine, but not oleoylcarnitine concentration-dependently inhibited complex IV. Only palmitoylcarnitine reached high tissue concentrations during early reperfusion and generated significant ROS by complex IV inhibition. Palmitoylcarnitine (1 µM, administered at reperfusion, also fully mimicked Intralipid®-mediated protection in an N-(2-mercaptopropionyl-glycine -dependent manner.Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.

  10. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Ru [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Liao, Wei-Siang [Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Wu, Ya-Hui [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Murugan, Kaliyappan [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chen, Chinpiao, E-mail: chinpiao@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chao, Jui-I, E-mail: jichao@faculty.nctu.edu.tw [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China)

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  11. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-01-01

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy

  12. Mixed ligand complexes of Cu(II)/Zn(II) ions containing (m-)/(p-) carboxylato phenyl azo pentane 2,4-dione and 2,2'-bipyridine/1,10 phenanthroline: Synthesis, characterization, DNA binding, nuclease and topoisomerase I inhibitory activity.

    Science.gov (United States)

    Hasan, Md Amin; Kumari, Niraj; Singh, Kanhaiya; Singh, Kiran; Mishra, Lallan

    2016-01-05

    Metal complexes of type [Cu(L1H)2(bpy)] (1), [Zn(L1H)2(bpy)] (2), [Cu(L2H)2(bpy)] (3) and [Cu(L2H)2(Phen)] (4) (L1H2=3-[N'-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, L2H2=4-[N'-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, bpy=2,2'-bipyridine, Phen=1,10 phenanthroline) are synthesized and characterized using spectroscopic techniques (FT-IR, (1)H NMR, (13)C NMR, electronic absorption and emission) and elemental analysis data. The assembly of the complexes involving intramolecular H-bonding is displayed using corresponding crystal structure. Binding of the complexes separately with Calf Thymus DNA is monitored using UV-vis spectral titrations. The displacement of ethidium bromide (EB) bound to DNA by the complexes, in phosphate buffer solution (pH∼7.2) is monitored using fluorescence spectral titrations. Nuclease activity of the complexes follow the order 4>3>1>2. The gel electrophoretic mobility assay measurement in presence of minor groove binder 4',6-diamidino-2-phenylindole (DAPI), suggests that complexes preferably bind with the minor groove of DNA. Topoisomerase I inhibitory activity of the complexes 3 and 4 inhibit topoisomerase I activity with IC50 values of 112 and 87μM respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    Science.gov (United States)

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  14. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  15. Bora and Aurora-A continue to activate Plk1 in mitosis.

    Science.gov (United States)

    Bruinsma, Wytse; Macurek, Libor; Freire, Raimundo; Lindqvist, Arne; Medema, René H

    2014-02-15

    Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.

  16. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  17. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16-EHMT1 complex expression.

    Directory of Open Access Journals (Sweden)

    Gaku Nagano

    Full Text Available Brown fat generates heat to protect against cold and obesity. Adrenergic stimulation activates the thermogenic program of brown adipocytes. Although the bioactivity of brown adipose tissue in adult humans had been assumed to very low, several studies using positron emission tomography-computed tomography (PET-CT have detected bioactive brown adipose tissue in adult humans under cold exposure. In this study, we collected adipose tissues obtained from the perirenal regions of adult patients with pheochromocytoma (PHEO or non-functioning adrenal tumors (NF. We demonstrated that perirenal brown adipocytes were activated in adult patients with PHEO. These cells had the molecular characteristics of classical brown fat rather than those of beige/brite fat. Expression of brown adipose tissue markers such as uncoupling protein 1 (UCP1 and cell death-inducing DFFA-like effector A (CIDEA was highly correlated with the amounts of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16 - euchromatic histone-lysine N-methyltransferase 1 (EHMT1 complex, the key transcriptional switch for brown fat development. These results provide novel insights into the reconstruction of human brown adipocytes and their therapeutic application against obesity and its complications such as type 2 diabetes.

  18. BLM and RMI1 Alleviate RPA Inhibition of TopoIIIa Decatenase Activity

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIa complex. We investigated the effect of RPA on the ssDNA decatenase activity...... of topoisomerase IIIa. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIa. Complex formation between BLM, TopoIIIa, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species......-specific interactions between RPA and BLM-TopoIIIa-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIa and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIa activity, promoting...

  19. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang, E-mail: wchai@wsu.edu

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. - Highlights: • CST localizes at telomeres and ALT-associated PML bodies in ALT cells throughout the cell cycle. • CST is important for promoting telomeric DNA replication in ALT cells. • CST deficiency decreases ECTR formation and increases T-SCE. • CST deficiency impairs ALT cell proliferation and results in multinucleation.

  20. Adsorption of some metal complexes derived from acetyl acetone on activated carbon and purolite S-930

    Directory of Open Access Journals (Sweden)

    Salam A.H. Al-Ameri

    2014-12-01

    Full Text Available A new Schiff base (HL derived from condensation of p-anisidine and acetyl acetone has been prepared and used as a chelating ligand to prepare Cr(III, Mn(II, Co(II, Ni(II and Cu(II complexes. The study of the nature of these complexes formed in ethanol solution following the mole ratio method (2:1, L:M gave results which were compared successfully with these obtained from isolated solid state studies. These studies revealed that the complexes having square planner geometry of the type (ML2, M = Co(II, Ni(II and Cu(II, and octahedral geometry of the type [CrIIIL2(H2O2]Cl and [MNIIL2(H2O2]. The adsorption studies of three complexes Cr(III, Mn(II, and Co(II on activated carbon, H and Na-forms of purolite S-930 resin show high adsorption percentage for Cr(III on purolite S-930 due to ion exchange interaction compared with high adsorption of neutral Mn(II, Co(II complexes on activated charcoal. Linear plot of log Qe versus log Ce showed that the adsorption isotherm of these three complexes on activated carbon, H and Na-forms of purolite S-930 surface obeys Freundlich isotherm and was similar to S-curve type according to Giles classification which investigates heterogeneous adsorption. The regression values indicate that the adsorption data for these complexes fitted well within the Freundlich isothermal plots for the concentration studied. The accuracy and precision of the concentration measurements of these complexes were determined by preparing standard laboratory samples, the results show relative error ranging from ±1.08 to 5.31, ±1.04 to 4.82 and ±0.28 to 3.09 and the relative standard deviation did not exceed ±6.23, ±2.77 and ±4.38% for A1, A2 and A3 complexes, respectively.

  1. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    Science.gov (United States)

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    Science.gov (United States)

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity.

    Science.gov (United States)

    Srivastava, Payal; Singh, Khushbu; Verma, Madhu; Sivakumar, Sri; Patra, Ashis K

    2018-01-20

    The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap) 2 ] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of Pt II -DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (K b  ∼ 10 4  M -1 , K app ∼ 10 5  M -1 ), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (K BSA ∼ 10 5  M -1 ). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen ( 1 O 2 ) and hydroxyl radical ( • OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC 50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. A complex interplay between PGC-1 co-activators and mTORC1 regulates hematopoietic recovery following 5-fluorouracil treatment

    Directory of Open Access Journals (Sweden)

    Sunanda Basu

    2014-01-01

    Full Text Available In vitro stimulation of HSCs with growth factors generally leads to their depletion. Understanding the molecular mechanisms underlying expansion of HSCs in vivo following myeloablation could lead to successful expansion of HSCs ex vivo for therapeutic purposes. Current findings show that mTORC1 is activated in HSPCs following 5-fluorouracil treatment and that mTORC1 activation is dependent on mitochondrial ETC capacity of HSPCs. Moreover, expression of PGC-1 family members, proteins that regulate mitochondrial biogenesis, in HSPCs following 5-fluorouracil treatment changes; also, these proteins play a stage specific role in hematopoietic recovery. While PRC regulates HSCs' expansion during early recovery phase, PGC-1α regulates progenitor cell proliferation and recovery of hematopoiesis during later phase. During early recovery phase, PRC expression, mitochondrial activity and mTORC1 activation are relatively higher in PGC-1α−/− HSCs compared to WT HSCs, and PGC-1α−/− HSCs show greater expansion. Administration of rapamycin, but not NAC, during early recovery phase improves WT HSC numbers but decreases PGC-1α−/− HSC numbers. The current findings demonstrate that mTOR activation can increase HSC numbers provided that the energy demand created by mTOR activation is successfully met. Thus, critical tuning between mTORC1 activation and mitochondrial ETC capacity is crucial for HSC maintenance/expansion in response to mitogenic stimulation.

  5. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mixed ligand complexes of Cu(II)/Zn(II) ions containing (m-)/(p-) carboxylato phenyl azo pentane 2,4-dione and 2,2‧-bipyridine/1,10 phenanthroline: Synthesis, characterization, DNA binding, nuclease and topoisomerase I inhibitory activity

    Science.gov (United States)

    Hasan, Md. Amin; Kumari, Niraj; Singh, Kanhaiya; Singh, Kiran; Mishra, Lallan

    2016-01-01

    Metal complexes of type [Cu(L1H)2(bpy)] (1), [Zn(L1H)2(bpy)] (2), [Cu(L2H)2(bpy)] (3) and [Cu(L2H)2(Phen)] (4) (L1H2 = 3-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, L2H2 = 4-[N‧-(1-acetyl-2-oxo-propylidene)-hydrazino]-benzoic acid, bpy = 2,2‧-bipyridine, Phen = 1,10 phenanthroline) are synthesized and characterized using spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, electronic absorption and emission) and elemental analysis data. The assembly of the complexes involving intramolecular H-bonding is displayed using corresponding crystal structure. Binding of the complexes separately with Calf Thymus DNA is monitored using UV-vis spectral titrations. The displacement of ethidium bromide (EB) bound to DNA by the complexes, in phosphate buffer solution (pH ∼ 7.2) is monitored using fluorescence spectral titrations. Nuclease activity of the complexes follow the order 4 > 3 > 1 > 2. The gel electrophoretic mobility assay measurement in presence of minor groove binder 4‧,6-diamidino-2-phenylindole (DAPI), suggests that complexes preferably bind with the minor groove of DNA. Topoisomerase I inhibitory activity of the complexes 3 and 4 inhibit topoisomerase I activity with IC50 values of 112 and 87 μM respectively.

  7. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  8. Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex.

    Science.gov (United States)

    Marri, Lucia; Zaffagnini, Mirko; Collin, Valérie; Issakidis-Bourguet, Emmanuelle; Lemaire, Stéphane D; Pupillo, Paolo; Sparla, Francesca; Miginiac-Maslow, Myroslawa; Trost, Paolo

    2009-03-01

    The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.

  9. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    Science.gov (United States)

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  10. Aryl-1H-imidazole[4,5f][1,10]phenanthroline Cu(II) complexes: Electrochemical and DNA interaction studies.

    Science.gov (United States)

    Rajebhosale, Bharati S; Dongre, Shivali N; Deshpande, Sameer S; Kate, Anup N; Kumbhar, Anupa A

    2017-10-01

    The reaction of aryl imidazo[4,5f] [1,10]phenanthrolines with Cu(NO 3 ) 2 lead to the formation of Cu(II) complexes of the type [Cu(L)(NO 3 ) 2 ] where L=PIP, 2-(phenyl) [4,5f] imidazo phenanthroline; HPIP=2-(2-hydroxyphenyl)imidazo [4,5f] phenanthroline and NIP=2-(naphthyl) [4,5f] imidazo phenanthroline. The interaction of these complexes with calf thymus DNA has been studied using viscosity measurements, UV-visible and fluorescence spectroscopy. Chemical nuclease activity of these complexes has also been investigated. All complexes cleave DNA via oxidative pathway involving singlet oxygen. Molecular docking studies revealed that these complexes bind to DNA through minor groove. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    Science.gov (United States)

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  13. Complex formation of EphB1/Nck/Caskin1 leads to tyrosine phosphorylation and structural changes of the Caskin1 SH3 domain

    Directory of Open Access Journals (Sweden)

    Pesti Szabolcs

    2012-11-01

    Full Text Available Abstract Background Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. Results Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. Conclusion Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

  14. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    Science.gov (United States)

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-04-01

    BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APC FZR1 , APC FZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APC FZR1 , leading to elevation of a cohort of oncogenic APC FZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APC FZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis. Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APC FZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR. See related commentary by Zhang and Bollag, p. 356 This article is highlighted in the In This Issue feature, p. 339 . ©2017 American Association for Cancer Research.

  15. Targeting MED1 LxxLL Motifs for Tissue-Selective Treatment of Human Breast Cancer

    Science.gov (United States)

    2013-09-01

    AU U UG AU AU CG UA GC au gc gc AA AA AU CG UA GC UA CG UA AU UA UA CG CG UA UA GC GC AU CG GC GU 5́ 3́ U U MG aptamer Survivin siRNA Folate ...DNA/RNA sequence FIGURE 19.5 Diagram of RNA nanoparticle harboring malachite green aptamer, survivin siRNA and folate -DNA/RNA sequence for targeting...modifications were extensively exam- ined to increase its stability in serum by fluori- nation, methylation , and addition of a 3’-3’-linked

  16. BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity.

    Science.gov (United States)

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D; Brown, Grant W

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.

  17. BRCA1-IRIS Overexpression Promotes Formation of Aggressive Breast Cancers

    Science.gov (United States)

    Shimizu, Yoshiko; Luk, Hugh; Horio, David; Miron, Penelope; Griswold, Michael; Iglehart, Dirk; Hernandez, Brenda; Killeen, Jeffrey; ElShamy, Wael M.

    2012-01-01

    Introduction Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors. Methodology/Principal Findings Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. Conclusion/Significance BRCA1-IRIS overexpression triggers aggressive breast tumor formation

  18. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  19. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  20. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  1. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    Science.gov (United States)

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  2. Some transition metal ions complexes of tricine (Tn and amino acids: pH-titration, synthesis and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    M.E. Zayed

    2014-12-01

    Full Text Available Equilibrium studies have been carried out on complex formation of M(II (M = Co(II, Cu(II and Zn(II with tricine (Tn and L = amino acids in aqueous solution, at 25 °C and ionic strength of I = 0.1 M (NaNO3. The ternary complexes of amino acids are formed by simultaneous reactions. The concentration distribution of the complexes is evaluated. The solid complexes of [M(II–Tn–Histidine (Hist] have been synthesized and characterized by elemental analysis, infrared, magnetic and conductance measurements. The synthesized complexes have been screened for their antibacterial activities and the complexes show a significant antibacterial activity against four bacterial species: Staphylococcus aureus (Gram +ve, Streptococcus pyogenesr (Gram +ve, Serratia marcescens (Gram −ve and Escherichia coli (Gram −ve. The activity increases by increasing the concentration of the complexes.

  3. Complex regional pain syndrome type 1 mimicking Raynaud’s phenomenon

    Directory of Open Access Journals (Sweden)

    Serpil Tuna

    2014-09-01

    Full Text Available Complex regional pain syndrome type 1 (CRPS-1 is a chronic pain syndrome characterized by severe pain, swelling, autonomic dysfunction and dystrophic changes in affected extremity. RSDS is a rare disease in children and usually occurs after trauma, however, without trauma may also occur. We were detected CRPS-1 activated by cold and stress and characterized by recurrent attacks in the bilateral upper extremities in 14 year-old girl, which is similar to Raynaud’s phenomenon. We present this case with the literature because of its rarity and atypical course.

  4. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction

    Science.gov (United States)

    Gao, Daming; Wan, Lixin; Inuzuka, Hiroyuki; Berg, Anders H.; Tseng, Alan; Zhai, Bo; Shaik, Shavali; Bennett, Eric; Tron, Adriana E.; Gasser, Jessica A.; Lau, Alan; Gygi, Steven; Harper, J. Wade; DeCaprio, James A.; Toker, Alex; Wei, Wenyi

    2010-01-01

    Summary The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s), remains largely unknown. Here we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers. PMID:20832730

  5. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.

    Science.gov (United States)

    Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva

    2014-01-01

    The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.

  6. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    Science.gov (United States)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  7. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.

    2008-01-01

    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  8. The effects of β-elemene on the expression of mTOR, HIF-1α ...

    African Journals Online (AJOL)

    The purpose of this manuscript was to study the regulation effects of â-elemene combined with radiotherapy on three different gene expressions in lung adenocarcinoma A549 cell. mTOR gene, HIF-1á gene, Survivin gene were included in the gene group. Cell culture and RT-PCR were applied to finish this research.

  9. Synthesis, characterization, DFT calculations and antibacterial activity of palladium(II) cyanide complexes with thioamides

    Science.gov (United States)

    Ahmad, Saeed; Nadeem, Shafqat; Anwar, Aneela; Hameed, Abdul; Tirmizi, Syed Ahmed; Zierkiewicz, Wiktor; Abbas, Azhar; Isab, Anvarhusein A.; Alotaibi, Mshari A.

    2017-08-01

    Palladium(II) cyanide complexes of thioamides (or thiones) having the general formula PdL2(CN)2, where L = Thiourea (Tu), Methylthiourea (Metu), N,N‧-Dimethylthiourea (Dmtu), Tetramethylthiourea (Tmtu), 2-Mercaptopyridine (Mpy) and 2-Mercaptopyrimidine (Mpm) were prepared by reacting K2[PdCl4] with potassium cyanide and thioamides in the molar ratio of 1:2:2. The complexes were characterized by elemental analysis, thermal and spectroscopic methods (IR, 1H and 13C NMR). The structures of three of the complexes were predicted by DFT calculations. The appearance of a band around 2100 cm-1 in IR and resonances around 120-130 ppm in the 13C NMR spectra indicated the coordination of cyanide to palladium(II). More than one resonances were observed for CN- carbon atoms in 13C NMR indicating the existence of equilibrium between different species in solution. DFT calculations revealed that in the case of the palladium(II) complex of Tmtu, the ionic dinuclear [Pd(Tmtu)4][Pd(CN)4] form was more stable than the dimer of mononuclear complex [Pd(Tmtu)2(CN)2] by 0.91 kcal mol-1, while for the complexes of Tu or Mpy ligands, the nonionic [Pd(L)2(CN)2] forms were more stable than the corresponding [Pd(L)4][Pd(CN)4] complexes by 1.26 and 6.49 kcal mol-1 for L = Tu and Mpy, respectively. The complexes were screened for antibacterial effects and some of them showed significant activities against both gram positive as well as gram negative bacteria.

  10. Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus

    Science.gov (United States)

    Horoszewicz, Julius S.; Rinehart, Kenneth L.; Leong, Susan S.; Carter, William A.

    1975-01-01

    Chromatographic fractionation of streptovaricin complex yields two stable components enriched (4- to 16-fold) in activity directed against the polycythemic strain of Friend virus; both components apparently contain no streptovaricins. When compared with their unfractionated parent streptovaricin complex, eight individual intact streptovaricins (A through G and J) show at least a 30-fold reduction in antiviral activity. These results further support the conclusion that the diversified biological properties of streptovaricin complex probably reside in different molecular structures. PMID:237470

  11. Cu(II complexes of an ionic liquid-based Schiff base [1-{2-(2-hydroxy benzylidene amino ethyl}-3-methyl­imidazolium]Pf6: Synthesis, characterization and biological activities

    Directory of Open Access Journals (Sweden)

    Saha Sanjoy

    2015-01-01

    Full Text Available Two Cu(II complexes of an ionic liquid based Schiff base 1-{2-(2-hydroxybenzylideneamino ethyl}-3-methylimidazolium hexaflurophosphate, were prepared and characterized by different analytical and spectroscopic methods such as elemental analysis, magnetic susceptibility, UV-Vis, IR, NMR and mass spectroscopy. The Schiff base ligand was found to act as a potential bidentate chelating ligand with N, O donor sites and formed 1:2 metal chelates with Cu(II salts. The synthesized Cu(II complexes were tested for biological activity.

  12. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.

    Directory of Open Access Journals (Sweden)

    Uta Meyer Zum Büschenfelde

    2018-05-01

    Full Text Available RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1 as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

  13. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.

    Science.gov (United States)

    Meyer Zum Büschenfelde, Uta; Brandenstein, Laura Isabel; von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg; Kutsche, Kerstin

    2018-05-01

    RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

  14. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    Science.gov (United States)

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  15. PPARgamma-PGC-1alpha activity is determinant of alcohol related breast cancer

    DEFF Research Database (Denmark)

    Koefoed Petersen, Rasmus; Benzon Larsen, Signe; Jensen, Ditte Marie

    2012-01-01

    Alcohol is a risk factor for postmenopausal breast cancer. One of several proposed mechanisms is that alcohol-related breast cancer is caused by increased sex hormone levels. PPARγ inhibits aromatase transcription in breast adipocytes. We reproduced previously found allele-specific effects...... of the wildtype Pro-allele of PPARG Pro12Ala in alcohol related breast cancer. In transiently transfected cells, transcriptional activation by PPARγ and the PPARγ-PGC-1α complex was inhibited by ethanol. PPARγ 12Ala-mediated transcription activation was not enhanced by PGC-1α, resulting in allele......-specific transcription activation by the PPARγ 12Pro-PGC-1α complex. Our results suggest that PPARγ and PGC-1α activity is an important determinant of alcohol related breast cancer....

  16. CCR 20th Anniversary commentary: stayin' alive-antiapoptotic proteins and breast cancer.

    Science.gov (United States)

    Yee, Douglas

    2015-02-15

    The control of cell death involves a complex interaction of multiple proteins. In a study published in the January 1, 2000, issue of Clinical Cancer Research, Tanaka and colleagues demonstrated that one of the proapoptotic proteins, survivin, was frequently expressed in breast cancer. In the subsequent years, effectors of apoptosis have translated into important prognostic indicators and potential therapeutic targets. ©2015 American Association for Cancer Research.

  17. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies

    Science.gov (United States)

    Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.

    2009-07-01

    Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.

  18. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502 ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.453, year: 2015

  19. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity

    Directory of Open Access Journals (Sweden)

    Monika Dabrzalska

    2017-02-01

    Full Text Available The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer—methylene blue (MB. As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  20. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  1. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes

    Directory of Open Access Journals (Sweden)

    R. Rajavel

    2008-01-01

    Full Text Available Structural modification of organic molecule has considerable biological relevance. Further, coordination of a biomolecules to the metal ions significantly alters the effectiveness of the biomolecules. In view of the antimicrobial activity ligand [bis-(2-aminobenzaldehyde] malonoyl dihydrazone], metal complexes with Cu(II, Ni(II, Zn(II and oxovanadium(IV have been synthesized and found to be potential antimicrobial agents. An attempt is also made to correlate the biological activities with geometry of the complexes. The complexes have been characterized by elemental analysis, molar conductance, spectra and cyclicvoltammetric measurements. The structural assessment of the complexes has been carried out based on electronic, infrared and molar conductivity values.

  2. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library

    NARCIS (Netherlands)

    Horn, I. R.; Moestrup, S. K.; van den Berg, B. M.; Pannekoek, H.; Nielsen, M. S.; van Zonneveld, A. J.

    1995-01-01

    The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) mediates endocytosis of a number of structurally unrelated ligands, including complexes of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) or urokinase plasminogen

  3. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  4. Complexing properties of amide oxime of picolinic acid (APA). 1

    International Nuclear Information System (INIS)

    Oginski, M.; Zommer-Urbanska, S.; Joachimiak, J.; Koniarek, B.

    1983-01-01

    As a result of APA labelling with /sup 99m/Tc reduced by SnCl 2 at pH 1.9 about 90% of the /sup 99m/Tc-APA complex was obtained. Experiments in vivo were carried out on 10 Swiss mice with implanted Ehrlich tumor. After 8 days the /sup 99m/Tc-APA complex was administered i.p. The ADF ratio tumor:blood was 2.5. Renoscintigraphy showed that the decline of renal activity in the stage when excretion prevailed (phase III) was slow and of the cumulative nature. Simple synthesis, labelling and low toxity of APA are the factors that advocate further experiments in investigating its usefulness for diagnostics. (author)

  5. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma.

    Science.gov (United States)

    Yoo, Byoung Kwon; Santhekadur, Prasanna K; Gredler, Rachel; Chen, Dong; Emdad, Luni; Bhutia, Sujit; Pannell, Lewis; Fisher, Paul B; Sarkar, Devanand

    2011-05-01

    There is virtually no effective treatment for advanced hepatocellular carcinoma (HCC) and novel targets need to be identified to develop effective treatment. We recently documented that the oncogene Astrocyte elevated gene-1 (AEG-1) plays a seminal role in hepatocarcinogenesis. Employing yeast two-hybrid assay and coimmunoprecipitation followed by mass spectrometry, we identified staphylococcal nuclease domain containing 1 (SND1), a nuclease in the RNA-induced silencing complex (RISC) facilitating RNAi-mediated gene silencing, as an AEG-1 interacting protein. Coimmunoprecipitation and colocalization studies confirmed that AEG-1 is also a component of RISC and both AEG-1 and SND1 are required for optimum RISC activity facilitating small interfering RNA (siRNA) and micro RNA (miRNA)-mediated silencing of luciferase reporter gene. In 109 human HCC samples SND1 was overexpressed in ≈74% cases compared to normal liver. Correspondingly, significantly higher RISC activity was observed in human HCC cells compared to immortal normal hepatocytes. Increased RISC activity, conferred by AEG-1 or SND1, resulted in increased degradation of tumor suppressor messenger RNAs (mRNAs) that are target of oncomiRs. Inhibition of enzymatic activity of SND1 significantly inhibited proliferation of human HCC cells. As a corollary, stable overexpression of SND1 augmented and siRNA-mediated inhibition of SND1 abrogated growth of human HCC cells in vitro and in vivo, thus revealing a potential role of SND1 in hepatocarcinogenesis. We unravel a novel mechanism that overexpression of AEG-1 and SND1 leading to increased RISC activity might contribute to hepatocarcinogenesis. Targeted inhibition of SND1 enzymatic activity might be developed as an effective therapy for HCC. Copyright © 2011 American Association for the Study of Liver Diseases.

  6. Redox-active cytotoxic diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes: reduction behaviour and theoretical interpretation.

    Science.gov (United States)

    Shang, Xianmei; Alegria, Elisabete C B A; Guedes da Silva, M Fátima C; Kuznetsov, Maxim L; Li, Qingshan; Pombeiro, Armando J L

    2012-12-01

    Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R(2)Sn(HL)(2)] (1:2) (a, R=(n)Bu and Ph) and the polymeric [R(2)SnL](n) (1:1) (b, R=(n)Bu) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(n)Bu(2)Sn{C(5)H(9)C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH⋯O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(n)Bu(2)Sn(HL)(2)] [HL=C(3)H(5)C(O)NHO (1a), C(6)H(11)C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R(2)Sn{C(5)H(9)C(O)NHO}(2)] [R=(n)Bu (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R=Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with SnO and SnC ruptures, whereas for the alkyl (R=(n)Bu) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with SnO bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn(II) species with the cis geometry, features that can be of biological significance. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    Science.gov (United States)

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  8. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  9. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    Science.gov (United States)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  10. Antimicrobial Activity of Some Thiourea Derivatives and Their Nickel and Copper Complexes

    Directory of Open Access Journals (Sweden)

    Cevdet Akbay

    2009-01-01

    Full Text Available Five thiourea derivative ligands and their Ni2+ and Cu2+ complexes have been synthesized. The compounds were screened for their in vitro anti-bacterial activity using Gram-positive bacteria (two different standard strains of Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes, Bacillus cereus and Gram-negative bacteria (Esherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Proteus vulgaris, Enterobacter aerogenes and in vitro anti-yeast activity (Candida albicans, Candida krusei, Candida glabrata, Candida tropicalis, Candida parapsilosis. The minimum inhibitory concentration was determined for all ligands and their complexes. In vitro anti-yeast activity of both ligands and their metal complexes is greater than their in vitro anti-bacterial activity. The effect of the structure of the investigated compounds on the antimicrobial activity is discussed.

  11. Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central Mexico. Exploratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Hernandez, Aida [Gerencia de Proyectos Geotermoelectricos, CFE, Alejandro Volta 655, 58290 Morelia, Michoacan (Mexico); Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico); Garcia-Estrada, Gerardo; Palma-Guzman, Hugo; Quijano-Leon, Jose L. [Gerencia de Proyectos Geotermoelectricos, CFE, Alejandro Volta 655, 58290 Morelia, Michoacan (Mexico); Aguirre-Diaz, Gerardo; Gonzalez-Partida, Eduardo [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)

    2009-09-15

    Mineral alteration and fluid inclusion studies of drill cuttings and core samples indicate that the sedimentary basement rocks and the volcanic rocks associated with Tulancingo-Acoculco Caldera Complex have been the site of two distinct and major hydrothermal events. The complex, located in the eastern portion of the Trans-Mexican Volcanic Belt, is formed by the Pliocene Tulancingo Caldera and the younger (Pleistocene) Acoculco Caldera, which developed within the older depression. The volcanic rocks are underlain by Cretaceous sedimentary rocks of the Sierra Madre Oriental. The earliest important hydrothermal event occurred during the emplacement of Mid-Tertiary granitic intrusions that metamorphosed the sedimentary rocks; these intrusives are not exposed at the surface. However, granitic rocks were encountered at the bottom of exploratory borehole EAC-1, drilled within the Caldera Complex. The second main event occurred during the formation of the Tulancingo and Acoculco Calderas. Both episodes lead to secondary mineralization that reduced the permeability of the reservoir rocks. A possible third hydrothermal event may be associated with the recent magmatic activity within the Acoculco Caldera.Thermal logs from well EAC-1 display a conductive thermal gradient with maximum temperatures exceeding 300 C at 2000 m depth. Although there are no active thermal springs in the area, there is extensive fossil surface hydrothermal alteration and cold gas discharges with high He{sup 3}/He{sup 4} ratios. (author)

  12. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jane; Hall, William W. [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland); Ratner, Lee [Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America (United States); Sheehy, Noreen [Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-07-15

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  13. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    International Nuclear Information System (INIS)

    Murphy, Jane; Hall, William W.; Ratner, Lee; Sheehy, Noreen

    2016-01-01

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  14. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    International Nuclear Information System (INIS)

    Rehman, F.U.; Khan, M.F.; Khan, G.M.; Khan, H.; Khan, I.U.

    2010-01-01

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  15. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, F U; Khan, M F; Khan, G M; Khan, H [Gomal University, D.I. Khan (Pakistan). Dept. of Faculty of Pharmacy; Khan, I U [University of Peshawar (Pakistan). Dept. of Faculty of Pharmacy

    2010-08-15

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  16. MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Dhanendra Tomar

    2016-05-01

    Full Text Available Mitochondrial Ca2+ Uniporter (MCU-dependent mitochondrial Ca2+ uptake is the primary mechanism for increasing matrix Ca2+ in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1 have severely impaired [Ca2+]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca2+-dependent mitochondrial metabolism.

  17. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  19. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Yusuf Oloruntoyin Ayipo

    2016-11-01

    Full Text Available Synthesis of coordination compounds of Zinc(II, Copper(II, Nickel(II, Cobalt(II and Iron(II with mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid has been studied. The complexes were characterized via: solubility test, melting point determination, conductivity measurement, Atomic Absorption Spectroscopy, UV-Visible Spectroscopy, FTIR Spectroscopy and magnetic susceptibility. The complexes were proposed to have a stoichiometry ratio of 1:1:1 between each metal salt and the ligands with tetrahedral and octahedral geometry following the reaction pattern of MX.yH2O + L1L2/3 to give ML1L2/3X.yH2O. Biological activities of the synthesized complexes have been evaluated against Escherichia coli and Staphylococcus aureus.

  1. Concomitant carboxylate and oxalate formation from the activation of CO{sub 2} by a thorium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Formanuik, Alasdair; Ortu, Fabrizio; Mills, David P. [School of Chemistry, The University of Manchester (United Kingdom); Inman, Christopher J. [Department of Chemistry and Biochemistry, School of Life Sciences, University of Sussex, Brighton (United Kingdom); Kerridge, Andrew [Department of Chemistry, Lancaster University (United Kingdom); Castro, Ludovic; Maron, Laurent [LPCNO, CNRA et INSA, Universite Paul Sabatier, Toulouse (France)

    2016-12-12

    Improving our comprehension of diverse CO{sub 2} activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO{sub 2} activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO{sub 2} is readily reduced to CO, but isolated thorium(III) CO{sub 2} activation is unprecedented. We show that the thorium(III) complex, [Th(Cp''){sub 3}] (1, Cp''={C_5H_3(SiMe_3)_2-1,3}), reacts with CO{sub 2} to give the mixed oxalate-carboxylate thorium(IV) complex [{Th(Cp'')_2[κ"2-O_2C{C_5H_3-3,3'-(SiMe_3)_2}]}{sub 2}(μ-κ{sup 2}:κ{sup 2}-C{sub 2}O{sub 4})] (3). The concomitant formation of oxalate and carboxylate is unique for CO{sub 2} activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO{sub 2} activation can differ from better understood uranium(III) chemistry. (copyright 2016 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  2. Synthesis, Characterization, and Biological Activity of Nickel (II and Palladium (II Complex with Pyrrolidine Dithiocarbamate (PDTC

    Directory of Open Access Journals (Sweden)

    Sk Imadul Islam

    2016-01-01

    Full Text Available The synthesis of square planar Ni(II and Pd(II complexes with pyrrolidine dithiocarbamate (PDTC was characterized by elemental, physiochemical, and spectroscopic methods. Two complexes were prepared by the reaction of nickel acetate and palladium acetate with pyrrolidine dithiocarbamate (PDTC in 1 : 2 molar ratio. The bovine serum albumin (BSA interaction with complexes was examined by absorption and fluorescence spectroscopic techniques at pH 7.4. All the spectral data suggest that coordination of the pyrrolidine dithiocarbamate (PDTC takes place through the two sulphur atoms in a symmetrical bidentate fashion. All the synthesized compounds were screened for their antimicrobial activity against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia, and Bacillus cereus. It has been observed that complexes have higher activity than the free ligand.

  3. Inhibitors of apoptosis proteins in human cervical cancer

    International Nuclear Information System (INIS)

    Espinosa, Magali; Cantú, David; Herrera, Norma; Lopez, Carlos M; De la Garza, Jaime G; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2006-01-01

    It has been shown that IAPs, in particular XIAP, survivin and c-IAP1, are overexpressed in several malignancies. In the present study we investigate the expression of c-IAP1, c-IAP2, XIAP and survivin and its isoforms in cervical cancer. We used semiquantitative RT-PCR assays to analyze 41 cancer and 6 normal tissues. The study included 8 stage I cases; 16 stage II; 17 stageIII; and a control group of 6 samples of normal cervical squamous epithelial tissue. c-IAP2 and XIAP mRNA levels were similar among the samples, cervical tumors had lower c-IAP1 mRNA levels. Unexpectedly, a clear positive association was found between low levels of XIAP and disease relapse. A log-rank test showed a significant inverse association (p = 0.02) between XIAP expression and tumor aggressiveness, as indicated by disease relapse rates. There were no statistically significant differences in the presence or expression levels of c-IAP1 and c-IAP2 among any of the clinical variables studied. Survivin and its isoforms were undetectable in normal cervical tissues, in contrast with the clear upregulation observed in cancer samples. We found no association between survivin expression and age, clinical stage, histology or menopausal state. Nevertheless, we found that adenocarcinoma tumors expressed higher levels of survivin 2B and DeltaEx3 (p = 0.001 and p = 0.04 respectively, by Kruskal-Wallis). A multivariate Cox's partial likelihood-based analysis showed that only FIGO stage was an independent predictor of outcome. There are no differences in the expression of c-IAP2 and XIAP between normal vs. cancer samples, but XIAP expression correlate in cervical cancer with relapse of this disease in the patients. Otherwise, c-IAP1 was downregulated in the cervical cancer samples. The expression of survivin was upregulated in the patients with cervical cancer. We have found that adenocarcinoma presented higher levels of survivin isoforms 2B and DeltaEx3

  4. Synthesis and characterization of a cationic phthalimido-functionalized N-heterocyclic carbene complex of palladium(II) and its catalytic activity

    KAUST Repository

    Goh, Li Min Serena; Hogerl, Manuel Peter; Jokic̈, Nadežda B.; Tanase, Alexandrina D.; Bechlars, Bettina; Baratta, Walter; Mí nk, Já nos; Kü hn, Fritz

    2014-01-01

    A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been synthesized from [3-methyl-1-(2′- phthalimidoethyl)imidazolium] hexafluorophosphate ([NHCMe,PhtH] PF6) by transmetalation and isolated in 67 % yield. The title complex has been applied as catalyst in the Suzuki-Miyaura cross-coupling reaction under benign aqueous conditions. The catalyst is active without any observable initiation period. High average turnover frequencies (TOFs) of up to 55000 h-1 have been reached with catalyst concentrations as low as 0.01 mol-%. A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been prepared in high yield. The complex was activated instantly, without an initiation period, in the Suzuki-Miyaura cross-coupling reaction under benign aqueous aerobic conditions. Turnover frequencies (TOFs) up to 55000 h-1, were achieved with 0.01 mol-% of the complex. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and characterization of a cationic phthalimido-functionalized N-heterocyclic carbene complex of palladium(II) and its catalytic activity

    KAUST Repository

    Goh, Li Min Serena

    2014-01-29

    A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been synthesized from [3-methyl-1-(2′- phthalimidoethyl)imidazolium] hexafluorophosphate ([NHCMe,PhtH] PF6) by transmetalation and isolated in 67 % yield. The title complex has been applied as catalyst in the Suzuki-Miyaura cross-coupling reaction under benign aqueous conditions. The catalyst is active without any observable initiation period. High average turnover frequencies (TOFs) of up to 55000 h-1 have been reached with catalyst concentrations as low as 0.01 mol-%. A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been prepared in high yield. The complex was activated instantly, without an initiation period, in the Suzuki-Miyaura cross-coupling reaction under benign aqueous aerobic conditions. Turnover frequencies (TOFs) up to 55000 h-1, were achieved with 0.01 mol-% of the complex. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechanochemical Synthesis and Crystal Structure of the Lidocaine-Phloroglucinol Hydrate 1:1:1 Complex

    OpenAIRE

    Nancy Evelyn Magaña-Vergara; Porfirio de la Cruz-Cruz; Ana Lilia Peraza-Campos; Francisco Javier Martínez-Martínez; Juan Saulo González-González

    2018-01-01

    Molecular complexation is a strategy used to modify the physicochemical or biopharmaceutical properties of an active pharmaceutical ingredient. Solvent assisted grinding is a common method used to obtain solid complexes in the form of cocrystals. Lidocaine is a drug used as an anesthetic and for the treatment of chronic pain, which bears in its chemical structure an amide functional group able to form hydrogen bonds. Polyphenols are used as cocrystal coformers due to their ability to form O–H...

  7. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression

    DEFF Research Database (Denmark)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco

    2017-01-01

    BACKGROUND AND AIMS: Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. METHODS: Mitochondrial or endoplasmic re...

  8. The floating desalination complex GEYSER-1

    International Nuclear Information System (INIS)

    Vorobyov, V.M.

    1997-01-01

    A conventional floating desalination complex, GEYSER-1, is presented which is capable of producing 40,000 cubic meters per day (m 3 /d) of fresh water from brackish water or seawater. The complex includes a water intake system, a preliminary water preparation system, a high-pressure pump house and a power installation based on diesel or a gas turbines with service equipment. GEYSER-1 can be transported to the place of operation either by a heavy lift ship or by towing. (author)

  9. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes

    Directory of Open Access Journals (Sweden)

    Martina Vrsanska

    2016-11-01

    Full Text Available Ligninolytic enzymes, such as laccase, lignin peroxidase and manganese peroxidase, are biotechnologically-important enzymes. The ability of five white-rot fungal strains Daedaleopsis confragosa, Fomes fomentarius, Trametes gibbosa, Trametes suaveolens and Trametes versicolor to produce these enzymes has been studied. Three different copper(II complexes have been prepared ((Him[Cu(im4(H2O2](btc·3H2O, where im = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid, [Cu3(pmdien3(btc](ClO43·6H2O and [Cu3(mdpta3(btc](ClO43·4H2O, where pmdien = N,N,N′,N′′,N′′-pentamethyl-diethylenetriamine and mdpta = N,N-bis-(3-aminopropylmethyl- amine, and their potential application for laccase and peroxidases induction have been tested. The enzyme-inducing activities of the complexes were compared with that of copper sulfate, and it has been found that all of the complexes are suitable for the induction of laccase and peroxidase activities in white-rot fungi; however, the newly-synthesized complex M1 showed the greatest potential for the induction. With respect to the different copper inducers, this parameter seems to be important for enzyme activity, which depends also on the fungal strains.

  10. Knockdown of hypoxia-inducible factor-1 alpha reduces proliferation, induces apoptosis and attenuates the aggressive phenotype of retinoblastoma WERI-Rb-1 cells under hypoxic conditions.

    Science.gov (United States)

    Xia, Tian; Cheng, Hao; Zhu, Yu

    2014-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in tumor cell adaption to hypoxia by inducing the transcription of numerous genes. The role of HIF-1α in malignant retinoblastoma remains unclear. We analyzed the role of HIF-1α in WERI-Rb-1 retinoblastoma cells under hypoxic conditions. CoCl2 (125 mmol/L) was added to the culture media to mimic hypoxia. HIF-1α was silenced using siRNA. Gene and protein expression were measured by semi-quantitative RT-PCR and Western blotting. Cell cycle and apoptosis were analyzed by flow cytometry. Cell proliferation, adhesion and invasion were assayed using MTT, Transwell invasion, and cell adhesion assays respectively. Hypoxia significantly upregulated HIF-1α protein expression and the HIF-1α target genes VEGF, GLUT1, and Survivin mRNA. HIF-1α mRNA expression was not affected by hypoxia. Transfection of the siRNA expression plasmid pRNAT-CMV3.2/Neo-HIF-1α silenced HIF-1α by approximately 80% in hypoxic WERI-Rb-1 cells. The knockdown of HIF-1α under hypoxic conditions downregulated VEGF, GLUT1, and Survivin mRNA. It also inhibited proliferation, promoted apoptosis, induced the G0/G1 phase cell cycle arrest, and reduced the adhesion and invasion of WERI-Rb-1 cells. HIF-1α plays a major role in the survival and aggressive phenotype of retinoblastoma cells under hypoxic conditions. Targeting HIF-1α may be a promising therapeutic strategy for human malignant retinoblastoma.

  11. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites

    Directory of Open Access Journals (Sweden)

    Knezevich Anna

    2007-05-01

    Full Text Available Abstract HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.

  12. Targeted, On-Demand Charge Conversional Nanotherapeutics for Advanced Prostate Cancer

    Science.gov (United States)

    2016-09-01

    nanotherapeutics possess favorable pharmacological features to improve bioavailability. Additionally, such a therapeutic strategy to deliver therapeutic agents...High-Grade Prostate Cancer Characterization Using Fractional Order Calculus Diffusion Weighted MRI ... Pharmacological Blockade of Apurinic/Apyrimidinic Endonuclease 1 Redox Activity Downregulates Survivin Expression and Arrests Prostate Cancer Cell

  13. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death.

    Science.gov (United States)

    Megger, Dominik A; Rosowski, Kristin; Radunsky, Christian; Kösters, Jutta; Sitek, Barbara; Müller, Jens

    2017-04-05

    Three new complexes bearing the tridentate hydrazone-based ligand 2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)pyridine (L) were synthesized and structurally characterized. Biological tests indicate that the Zn(ii) complex [ZnCl 2 (L)] is of low cytotoxicity against the hepatocellular carcinoma cell line HepG2. In contrast, the Cu(ii) and Mn(ii) complexes [CuCl 2 (L)] and [MnCl 2 (L)] are highly cytotoxic with EC 50 values of 1.25 ± 0.01 μM and 20 ± 1 μM, respectively. A quantitative proteome analysis reveals that treatment of the cells with the Cu(ii) complex leads to a significantly altered abundance of 102 apoptosis-related proteins, whereas 38 proteins were up- or down-regulated by the Mn(ii) complex. A closer inspection of those proteins regulated only by the Cu(ii) complex suggests that the superior cytotoxic activity of this complex is likely to be related to an initiation of the caspase-independent cell death (CICD). In addition, an increased generation of reactive oxygen species (ROS) and a strong up-regulation of proteins responsive to oxidative stress suggest that alterations of the cellular redox metabolism likely contribute to the cytotoxicity of the Cu(ii) complex.

  14. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene

    Directory of Open Access Journals (Sweden)

    Shusaku Uchida

    2017-01-01

    Full Text Available Summary: Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. : Uchida et al. link CRTC1 synapse-to-nucleus shuttling in memory. Weak and strong training induce CRTC1 nuclear transport and transient Fgf1b transcription by a complex including CRTC1, CREB, and histone acetyltransferase CBP, whereas strong training alone maintains Fgf1b transcription through CRTC1-dependent substitution of KAT5 for CBP, leading to memory enhancement. Keywords: memory enhancement, long-term potentiation, hippocampus, nuclear transport, epigenetics, FGF1, CRTC1, KAT5/Tip60, HDAC3, CREB

  15. Synthesis, characterization and biocidal activities of heterobimetallic complexes having tin(IV) as a padlock

    Science.gov (United States)

    Husain, Ahmad; Nami, Shahab A. A.; Siddiqi, K. S.

    2010-04-01

    A mononuclear precursor complex, [(CH 3) 2Sn(tpdtc)] and several of its heterobimetallic derivatives of the type, [(CH 3) 2Sn(tpdtc)]MCl 2 have been synthesized by the simple addition reaction of transition metal chlorides, MCl 2· nH 2O where tpdtc = tetraethylenepentamine bis(dithiocarbamate) anion, M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II). The synthesized complexes have been systematically characterized by the physicochemical and spectroscopic techniques. A square-pyramidal geometry has been proposed for all the transition metal atoms with chloride ions occupying the axial while the three nitrogen atoms occupying the equatorial positions. A symmetrical bidentate coordination has been observed for the dithiocarbamato moiety leading to the formation of 18 member cavity. The thermal studies reveal that the mononuclear complex decomposes in three stages while its heterobimetallic analog exhibits a simple two-stage profile. The conductivity measurement data (1 mmol solution) implies a non-electrolytic behavior for all the complexes as evident by their low conductivity values obtained at room temperature. The heterobimetallic complexes have also been tested against the bacterial ( Escherichia coli and Pseudomonas aeruginosa) and antifungal strains ( Aspergillus niger and Fusarium oxysporum). All the complexes were found to be active against the test organisms and maximum activity was found for [(CH 3) 2Sn(tpdtc)]CuCl 2 complex.

  16. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  17. Spectroscopic properties and antimicrobial activity of dioxomolybdenum(VI complexes with heterocyclic S,S’-ligands

    Directory of Open Access Journals (Sweden)

    Sovilj Sofija P.

    2012-01-01

    Full Text Available Five new dioxomolybdenum(VI complexes of the general formula[MoO2(Rdtc2], 1-5, where Rdtc-refer to piperidine- (Pipdtc, 4-morpholine-(Morphdtc, 4-thiomorpholine-(Timdtc, piperazine- (Pzdtc or Nmethylpiperazine- (N-Mepzdtc dithiocarbamates, respectively, have been prepared. Elemental analysis, conductometric measurements, electronic, IR and NMR spectroscopy have been employed to characterize them. Complexes 1-5 contain a cis-MoO2 group and are of an octahedral geometry. Two dithiocarbamato ions join as bidentates with both the sulphur atoms to the molybdenum atom. The presence of different heteroatom in the piperidinо moiety influences the v(C----N and v(C----S vibrations, which decrease in the order of the complexes with: Pipdtc > N-Mepipdtc > Morphdtc > Pzdtc > Timdtc ligands. On the basis of spectral data, molecular structures of complexes 1-5 were optimized on semiempirical molecular-orbital level, and the geometries, as obtained from calculations, described. Antimicrobial activity was tested against nine different laboratory control strains of bacteria and two strains of yeast Candida albicans. All tested strains were sensitive. Complexes bearing heteroatom in position 4 of piperidine moiety are significantly more potent against bacteria tested comparing to corresponding ligands.

  18. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  19. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  20. Using activity theory to study cultural complexity in medical education

    NARCIS (Netherlands)

    Frambach, J.M.; Driessen, E.W.; Vleuten, C.P.M. van der

    2014-01-01

    There is a growing need for research on culture, cultural differences and cultural effects of globalization in medical education, but these are complex phenomena to investigate. Socio-cultural activity theory seems a useful framework to study cultural complexity, because it matches current views on