WorldWideScience

Sample records for complex reflection coefficient

  1. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi

    2017-09-18

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence, and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulae are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.

  2. Frequency Dependencies of the Exchange Spin Wave Reflection Coefficient on a One-Dimensional Magnon Crystal with Complex Interfaces

    Directory of Open Access Journals (Sweden)

    Serhii O. Reshetniak

    2017-09-01

    Conclusions. It is shown that the frequency dependencies are periodic, points of full transmission and areas, full of reflection. Decreasing exchange parameter value in interface causes the increase of reflectance coefficient. Changing the material parameters we get the necessary intensity value of the reflection coefficient depending on the frequency at a constant value of the external magnetic field.

  3. Development of reflectance-based crop coefficients for corn

    International Nuclear Information System (INIS)

    Neale, C.M.U.; Bausch, W.C.; Heermann, D.F.

    1989-01-01

    Concurrent measurements of reflected canopy radiation and the basal crop coefficient (K^b) for corn were conducted throughout a season in order to develop a reflectance-based crop coefficient model. Reflectance was measured in Landsat Thematic Mapper bands TM3 (0.63 - 0.69 um) and TM4 (0.76 - 0.90 um) and used in the calculation of a vegetation index called the normalized difference (ND). A linear transformation of the ND was used as the reflectance-based crop coefficient (Kcr). The transformation equates the ND for dry bare soil and the ND at effective cover, to the basal crop coefficient for dry soil evaporation and at effective cover, respectively. Basal crop coefficient values for com were obtained from daily evapotranspiration measurements of corn and alfalfa, using hydraulic weighing lysimeters. The Richards growth curve function was fitted to both sets of data. The K^b values were determined to be within -2.6% and 4.7% of the K^^ values. The date of effective cover obtained from the K^b data was within four days of the date on which the ND curve reached its maxima according to the Richards function. A comparison of the Kcr with basal crop curves from the literature for several years of data indicated good agreement. Reflectance-based crop coefficients are sensitive to periods of slow and fast growth induced by weather conditions, resulting in a real time coefficient, independent from the traditional time base parameters based on the day of planting and effective cover

  4. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2014-10-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires the joint estimation of spatial location and Doppler shift, which is a two dimensional search problem. Therefore, the computational complexity of ML estimation is prohibitively high. In this work, to estimate the parameters of a target, a reduced complexity optimum performance algorithm is proposed, which allow two dimensional fast Fourier transform to jointly estimate the spatial location and Doppler shift. To asses the performances of the proposed estimators, the Cramér-Rao-lower-bound (CRLB) is derived. Simulation results show that the mean square estimation error of the proposed estimators achieve the CRLB. © 2014 IEEE.

  5. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    Science.gov (United States)

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  6. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    Science.gov (United States)

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the

  7. Measurement of integrated coefficients of ultracold neutron reflection from solid surfaces

    International Nuclear Information System (INIS)

    Golikov, V.V.; Kulagin, E.N.; Nikitenko, Yu.V.

    1985-01-01

    The method of measurement of the integrated coefficients of ultracold neutrons (UCN) reflection from solid surfaces is reported. A simple formula is suggested which expresses the integrated coefficients of UCN reflection from a given sample through the measured counting rate of the detector with and without strong absorber (polyethelene). The parameters are determined describing anisotropic and inhomogeneity properties of UCN reflection from Al, Mg, Pb, Zn, Mo, stainless steel, T and V are measured. The thickness of oxide layers is determined within the 5-10A accuracy limits from the experimental coefficients of UCN reflection from metals having on their surfaces the oxides with boundary velocity larger than that for the metal. It has been determined that the density of 5000 A layer of heavy ice freezed on aluminium is 0.83 +- 0.05 from the crystal ice density

  8. STUDY OF REFLECTION COEFFICIENT DISTRIBUTION FOR ANTI-REFLECTION COATINGS ON SMALL-RADIUS OPTICAL PARTS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2015-03-01

    Full Text Available The paper deals with findings for the energy reflection coefficient distribution of anti- reflection coating along the surface of optical elements with a very small radius (2-12 mm. The factors influencing the magnitude of the surface area of the optical element, in which the energy reflection coefficient is constant, were detected. The main principles for theoretical models that describe the spectral characteristics of the multilayer interference coatings were used to achieve these objectives. The relative size of the enlightenment area is defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to its radius (ρ/r. The result of research is the following: this size is constant for a different value of the curvature radius for the optical element made of the same material. Its value is determined by the refractive index of material (nm, from which the optical element was made, and the design of antireflection coatings. For single-layer coatings this value is ρ/r = 0.5 when nm = 1.51; and ρ/r = 0.73 when nm = 1.75; for two-layer coatings ρ/r = 0.35 when nm = 1.51 and ρ/r = 0.41 when nm = 1.75. It is shown that with increasing of the material refractive index for the substrate size, the area of minimum reflection coefficient is increased. The paper considers a single-layer, two-layer, three-layer and five-layer structures of antireflection coatings. The findings give the possibility to conclude that equal thickness coverings formed on the optical element surface with a small radius make no equal reflection from the entire surface, and distribution of the layer thickness needs to be looked for, providing a uniform radiation reflection at all points of the spherical surface.

  9. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  10. Correlations and fluctuations in reflection coefficients for coherent wave propagation in disordered scattering media

    International Nuclear Information System (INIS)

    Wang, L.; Feng, S.

    1989-01-01

    The relation between the reflection coefficients and the Green's function for a coherent wave propagation in a disordered elastic-scattering medium is derived. The sum rule of the reflection and transmission coefficients corresponding to probability conservation is shown rigorously for an arbitrary scattering potential. The correlation function of the reflection coefficients is then calculated by using a Feynman-diagrammatic approach in the weak-localized multiple-scattering regime (L much-gt l much-gt λ). The result is in agreement with recent experiments on the so-called ''memory effect'' in reflection coefficients. A more general condition under which the memory effect can occur is derived. Differences between the the correlation functions for reflection and that for transmission are discussed

  11. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi; Stovas, Alexey

    2017-01-01

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer

  12. Low complexity joint estimation of reflection coefficient, spatial location, and Doppler shift for MIMO-radar by exploiting 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    In multiple-input multiple-output (MIMO) radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, maximum-likelihood (ML) estimation yields the best performance. For this problem, the ML estimation requires

  13. Research on the Fault Coefficient in Complex Electrical Engineering

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2015-08-01

    Full Text Available Fault detection and isolation in a complex system are research hotspots and frontier problems in the reliability engineering field. Fault identification can be regarded as a procedure of excavating key characteristics from massive failure data, then classifying and identifying fault samples. In this paper, based on the fundamental of feature extraction about the fault coefficient, we will discuss the fault coefficient feature in complex electrical engineering in detail. For general fault types in a complex power system, even if there is a strong white Gaussian stochastic interference, the fault coefficient feature is still accurate and reliable. The results about comparative analysis of noise influence will also demonstrate the strong anti-interference ability and great redundancy of the fault coefficient feature in complex electrical engineering.

  14. Rational reflection coefficient and inverse scattering on the line

    International Nuclear Information System (INIS)

    Sabatier, P.C.

    1983-01-01

    Inverse scattering for the Schroedinger equation on the line is studied for reflection and transmission coefficients that satisfy the usual regularity conditions and are rational functions of k. The origin is still a particular point, but the potentials do not need to be cut at this point like in previous studies. Giving up this restriction corresponds to the existence of poles for both reflection coefficients in both upper and lower half k-planes. It is shown that the problem reduces to solving a linear algebraic system. A different algorithm, made of a sequence of Darboux-Backlund transforms, gives also the solution in closed form and enables to study separately modifications of both sides of the potential due to the introduction of poles. Thus it paves the way for approximation studies. Generalizations and particular problems will be studied in forthcoming papers

  15. Measurements of the diffusion and reflection coefficients of Cd(1S0) in noble gases

    International Nuclear Information System (INIS)

    Rudecki, P.; Domyslawska, J.

    2003-01-01

    A new method of simultaneous determining of the diffusion coefficient and the reflection coefficient of atoms from the reservoir walls is presented. The diffusion coefficient of cadmium atoms in the ground state in buffer noble gas atoms such as Ne, Ar, Kr and Xe and reflection coefficient of Cd atoms from the quartz cell wall in the temperature range 350-550 K were determined. Experimental values diffusion coefficient are compared with theoretical ones calculated from a available potentials. (author)

  16. Determination of continuous complex refractive index dispersion of biotissue based on internal reflection

    Science.gov (United States)

    Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2016-01-01

    The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.

  17. High-order dynamic modeling and parameter identification of structural discontinuities in Timoshenko beams by using reflection coefficients

    Science.gov (United States)

    Fan, Qiang; Huang, Zhenyu; Zhang, Bing; Chen, Dayue

    2013-02-01

    Properties of discontinuities, such as bolt joints and cracks in the waveguide structures, are difficult to evaluate by either analytical or numerical methods due to the complexity and uncertainty of the discontinuities. In this paper, the discontinuity in a Timoshenko beam is modeled with high-order parameters and then these parameters are identified by using reflection coefficients at the discontinuity. The high-order model is composed of several one-order sub-models in series and each sub-model consists of inertia, stiffness and damping components in parallel. The order of the discontinuity model is determined based on the characteristics of the reflection coefficient curve and the accuracy requirement of the dynamic modeling. The model parameters are identified through the least-square fitting iteration method, of which the undetermined model parameters are updated in iteration to fit the dynamic reflection coefficient curve with the wave-based one. By using the spectral super-element method (SSEM), simulation cases, including one-order discontinuities on infinite- and finite-beams and a two-order discontinuity on an infinite beam, were employed to evaluate both the accuracy of the discontinuity model and the effectiveness of the identification method. For practical considerations, effects of measurement noise on the discontinuity parameter identification are investigated by adding different levels of noise to the simulated data. The simulation results were then validated by the corresponding experiments. Both the simulation and experimental results show that (1) the one-order discontinuities can be identified accurately with the maximum errors of 6.8% and 8.7%, respectively; (2) and the high-order discontinuities can be identified with the maximum errors of 15.8% and 16.2%, respectively; and (3) the high-order model can predict the complex discontinuity much more accurately than the one-order discontinuity model.

  18. Analytical computation of reflection and transmission coefficients for love waves

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.

    1995-09-01

    The computation of the transmission and reflection coefficients is an important step in the construction, if modal summation technique is used, of synthetic seismograms for 2-D or 3-D media. These coupling coefficients for Love waves at a vertical discontinuity are computed analytically. Numerical test for realistic structures show how the energy carried by an incoming mode is redistributed on the various modes existing on both sides of the vertical interface. (author). 15 refs, 8 figs

  19. Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient

    International Nuclear Information System (INIS)

    Pkrksypkin, A.I.; Ponomarev, L.I.

    1992-01-01

    Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested

  20. Sutherland models for complex reflection groups

    International Nuclear Information System (INIS)

    Crampe, N.; Young, C.A.S.

    2008-01-01

    There are known to be integrable Sutherland models associated to every real root system, or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining dynamical spin chains, and the freezing limit taken to obtain static chains of Haldane-Shastry type. By considering the relation of these models to the usual BC N case, we are led to systems with both real and complex reflection groups as symmetries. We demonstrate their integrability by means of new Dunkl operators, associated to wreath products of dihedral groups

  1. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Agricultural Univ., Nanjing; Chen Rushan; Zhang Yun

    2006-01-01

    The dielectric property of dispersive media is written as rational polynomial function, the relation between D and E is derived in time domain. It is named shift operator FDTD (SO-FDTD) method. The high accuracy and efficiency of this method is confirmed by computing the reflection coefficients of electromagnetic waves by a collisional plasma slab. The reflection coefficients between plasma and the atmosphere or vacuum can be calculated by using the SO-FDTD method. The result is that the reflection coefficients are affected by plasma thickness, electron numerical density, the distributing orderliness of electron density, and incidence wave frequency. (authors)

  2. The impact of different reference panels on spectral reflectance coefficients of some biological water pollutants

    Science.gov (United States)

    Jenerowicz, Agnieszka; Walczykowski, Piotr

    2015-10-01

    Monitoring of water environment and ecosystem, detecting water contaminants and understanding water quality parameters are most important tasks in water management and protection of whole aquatic environment. Detection of biological contaminants play a very important role in preserving human health and water management. To obtain accurate and precise results of determination of the level of biological contamination and to distinguish its type it is necessary to determine precisely spectral reflectance coefficients of several water biological pollutants with inter alia spectroradiometer. This paper presents a methodology and preliminary results of acquisition of spectral reflectance coefficients with different reference panels (e.g. with 5%, 20%, 50%, 80% and 96% of reflectivity) of several biological pollutants. The authors' main task was to measure spectral reflectance coefficients of different biological water pollutants with several reference panels and to select optimal reference standard, which would allow for distinguish different types of several biological contaminants. Moreover it was necessary to indicate the spectral range in which it is possible to discriminate investigated samples of biological contaminants. By conducting many series of measurements of several samples of different types of biological pollutants, authors had concluded how the reflectivity of reference panel influences the accuracy of acquisition of spectral reflectance coefficients. This research was crucial in order to be able to distinguish several types of biological pollutants and to determine the useful spectral range for detection of different kinds of biological contaminants with multispectral and hyperspectral imagery.

  3. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  4. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Non-invasive determination of the absorption coefficient of the brain from time-resolved reflectance using a neural network

    International Nuclear Information System (INIS)

    Jaeger, Marion; Kienle, Alwin

    2011-01-01

    We investigated the performance of a neural network for derivation of the absorption coefficient of the brain from simulated non-invasive time-resolved reflectance measurements on the head. A five-layered geometry was considered assuming that the optical properties (except the absorption coefficient of the brain) and the thickness of all layers were known with an uncertainty. A solution of the layered diffusion equation was used to train the neural network. We determined the absorption coefficient of the brain with an RMS error of <6% from reflectance data at a single distance calculated by diffusion theory. By applying the neural network to reflectance curves obtained from Monte Carlo simulations, similar errors were found. (note)

  6. Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal

    Science.gov (United States)

    Johns, Maureen; Liu, Hanli

    2003-07-01

    When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).

  7. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    Science.gov (United States)

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  8. A new fifth parameter for transverse isotropy III: reflection and transmission coefficients

    Science.gov (United States)

    Kawakatsu, Hitoshi

    2018-04-01

    The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.

  9. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  10. Remote sensing reflectance simulation of coastal optical complex water in the East China Sea

    Science.gov (United States)

    He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang

    2018-02-01

    In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.

  11. Rebound coefficient of collisionless gas in a rigid vessel. A model of reflection of field-reversed configuration

    International Nuclear Information System (INIS)

    Takaku, Yuichi; Hamada, Shigeo

    1996-01-01

    A system of collisionless neutral gas contained in a rigid vessel is considered as a simple model of reflection of field-reversed configuration (FRC) plasma by a magnetic mirror. The rebound coefficient of the system is calculated as a function of the incident speed of the vessel normalized by the thermal velocity of the gas before reflection. The coefficient is compared with experimental data of FIX (Osaka U.) and FRX-C/T(Los Alamos N.L.). Agreement is good for this simple model. Interesting is that the rebound coefficient takes the smallest value (∼0.365) as the incident speed tends to zero and approaches unity as it tends to infinity. This behavior is reverse to that expected for a system with collision dominated fluid instead of collisionless gas. By examining the rebound coefficient, therefore, it could be successfully inferred whether the ion mean free path in each experiment was longer or shorter than the plasma length. (author)

  12. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    Science.gov (United States)

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  13. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  14. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  15. On determination of enthalpies of complex formation reactions by means of temperature coefficient of complexing degree

    International Nuclear Information System (INIS)

    Povar, I.G.

    1995-01-01

    Equations describing the relation between temperature coefficient of ∂lnα/∂T complexing degree and the sum of changes in the enthalpy of complex formation of the composition M m L n δH mn multiplied by the weight coefficients k mm , are presented. A method to determine changes in the enthalpy of certain ΔH mm reactions from ∂lnα/∂T derivatives has been suggested. The best approximating equation from lnα/(T) dependence has been found. Errors of thus determined δH mm values are estimated and the results of calculation experiment for the system In 3+ -F - are provided. 10 refs., 2 figs., 3 tabs

  16. DETERMINING SPECTRAL REFLECTANCE COEFFICIENTS FROM HYPERSPECTRAL IMAGES OBTAINED FROM LOW ALTITUDES

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based, object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor

  17. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes

    Science.gov (United States)

    Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K.

    2016-06-01

    Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based), object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor mounted on an

  18. Reflection coefficients of permeant molecules in human red cell suspensions.

    Science.gov (United States)

    Owen, J D; Eyring, E M

    1975-08-01

    The Staverman reflection coefficient, sigma for several permeant molecules was determined in human red cell suspensions with a Durrum stopped-flow spectrophotometer. This procedure was first used with dog, cat, and beef red cells and with human red cells. The stopped-flow technique used was similar to the rapid-flow method used by those who originally reported sigma measurements in human red cells for molecules which rapidly penetrate the red cell membrane. The sigma values we obtained agreed with those previously reported for most of the slow penetrants, except malonamide, but disagreed with all the sigma values previously reported for the rapid penetrants. We were unable to calculate an "equivalent pore radius" with our sigma data. The advantages of our equipment and our experimental procedure are discussed. Our sigma data suggest that sigma is indirectly proportional to the log of the nonelectrolyte permeability coefficient, omega. Since a similar trend has been previously shown for log omega and molar volume of the permeant molecules, a correlatioo was shown between sigma and molar volume suggesting the membrane acts as a sieve.

  19. Simulating complex noise barrier reflections

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Roo, F. de

    2011-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  20. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  1. Theoretical calculations of the self-reflection coefficients for some species of ions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Z.M. E-mail: luozm@scu.edu.cn; Gou, C.; Hou, Q

    2002-06-01

    The bipartition model of ion transport has been applied to study the self-reflection coefficients of some species of ion beams which are normally incident to a surface. The computational results has been compared with the results taken from Eckstein and Biersack and the compilation data given by Thomas, Janev and Smith. It was found that there are in reasonable agreement between the results given by the bipartition model and the results given by Monte Carlo method.

  2. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    Directory of Open Access Journals (Sweden)

    Sang-In Baek

    2015-09-01

    Full Text Available Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  3. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  4. Directed clustering coefficient as a measure of systemic risk in complex banking networks

    Science.gov (United States)

    Tabak, Benjamin M.; Takami, Marcelo; Rocha, Jadson M. C.; Cajueiro, Daniel O.; Souza, Sergio R. S.

    2014-01-01

    Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among agents is not straightforward and it is very difficult to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

  5. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    NARCIS (Netherlands)

    Fernández Pantoja, M.; Yarovoy, A.G.; Rubio Bretones, A.; González García, S.

    2009-01-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which

  6. Inversion of reflection for the one-dimensional Dirac equation

    International Nuclear Information System (INIS)

    Clerk, G.L.; Davies, A.J.

    1991-01-01

    It is a general result of one-dimensional non-relativistic quantum mechanics that the coefficient of reflection (reflected flux) is the same irrespective of the direction of traversing a potential barrier, a result that is independent of the barrier shape. In this note, the authors consider the transmission coefficient instead, and derive a strong result, namely that the transmission amplitude is independent of the direction of barrier traversal. That is, the transmission amplitude has the same complex phase as well as being unchanged in magnitude by changing the barrier around. This process was called inversion of reflection. 2 refs

  7. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  8. Robust Automatic Speech Recognition Features using Complex Wavelet Packet Transform Coefficients

    Directory of Open Access Journals (Sweden)

    TjongWan Sen

    2009-11-01

    Full Text Available To improve the performance of phoneme based Automatic Speech Recognition (ASR in noisy environment; we developed a new technique that could add robustness to clean phonemes features. These robust features are obtained from Complex Wavelet Packet Transform (CWPT coefficients. Since the CWPT coefficients represent all different frequency bands of the input signal, decomposing the input signal into complete CWPT tree would also cover all frequencies involved in recognition process. For time overlapping signals with different frequency contents, e. g. phoneme signal with noises, its CWPT coefficients are the combination of CWPT coefficients of phoneme signal and CWPT coefficients of noises. The CWPT coefficients of phonemes signal would be changed according to frequency components contained in noises. Since the numbers of phonemes in every language are relatively small (limited and already well known, one could easily derive principal component vectors from clean training dataset using Principal Component Analysis (PCA. These principal component vectors could be used then to add robustness and minimize noises effects in testing phase. Simulation results, using Alpha Numeric 4 (AN4 from Carnegie Mellon University and NOISEX-92 examples from Rice University, showed that this new technique could be used as features extractor that improves the robustness of phoneme based ASR systems in various adverse noisy conditions and still preserves the performance in clean environments.

  9. A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II Complex: Synthesis, Photophysical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-06-01

    Full Text Available In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs, cis-dithiocyanato-4-(2,3-dimethylacrylic acid-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic-2,2'-bipyridyl ruthenium(II complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT band absorption with higher molar extinction coefficient (λmax = 518 nm, e = 44900 M−1cm−1, and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  10. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound.

    Science.gov (United States)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2015-11-01

    This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.

  11. Formulae of differentiation for solving differential equations with complex-valued random coefficients

    International Nuclear Information System (INIS)

    Kim, Ki Hong; Lee, Dong Hun

    1999-01-01

    Generalizing the work of Shapiro and Loginov, we derive new formulae of differentiation useful for solving differential equations with complex-valued random coefficients. We apply the formulae to the quantum-mechanical problem of noninteracting electrons moving in a correlated random potential in one dimension

  12. Reflection and Refraction of Light in Absorbing Media

    Science.gov (United States)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  13. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  14. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    Science.gov (United States)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  15. Integral particle reflection coefficient for oblique incidence of photons as universal function in the domain of initial energies up to 300 keV

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2014-01-01

    Full Text Available In this paper we present the results of calculations and analyses of the integral particle reflection coefficient of photons for oblique photon incidence on planar targets, in the domain of initial photon energies from 100 keV to 300 keV. The results are based on the Monte Carlo simulations of the photon reflection from water, concrete, aluminum, iron, and copper materials, performed by the MCNP code. It has been observed that the integral particle reflection coefficient as a function of the ratio of total cross-section of photons and effective atomic number of target material shows universal behavior for all the analyzed shielding materials in the selected energy domain. Analytical formulas for different angles of photon incidence have been proposed, which describe the reflection of photons for all the materials and energies analyzed.

  16. Far field effects of complex noise barrier reflections

    NARCIS (Netherlands)

    Lutgendorf, D.; Wessels, P.W.; Eerden, F.J.M. van den; Roo, F. de

    2012-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  17. Apparent partition coefficient in octanol-water and binding percentage to BSA of 153Sm(113,117Snm) complexes

    International Nuclear Information System (INIS)

    Yang Yuqing; Luo Shunzhong; Wang Guanquan; He Jiaheng; Bing Wenzeng; Pu Manfei; Wei Hongyuan; Wang Wenjin

    2004-01-01

    Apparent partition coefficient in octanol-water and binding percentage to BSA of 153 Sm-NTMP, 153 Sm-HEDTMP, 153 Sm-DCTMP, 153 Sm-EDTMP, 153 Sm-DTPMP, 113,117 Sn m -EDTMP, 113,117 Sn m -HEDTMP, 113,117 Sn m -DTPMP are measured. The results show that there is a linear relationship between the relative magnitude of the apparent partition coefficient in octanol-water and the relative magnitude of the binding percentage to BSA of these 153 Sm( 113,117 Sn m ) complexes. This linear relationship provides a new method for determination of the apparent partition coefficient in octanol-water of 153 Sm( 113,117 Sn m ) complexes of this kind. This linear relationship also implicates that hydrophobic force plays an important role in the binding of 153 Sm( 113,117 Sn m ) complexes to BSA

  18. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  19. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    Science.gov (United States)

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  20. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    Science.gov (United States)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  1. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    International Nuclear Information System (INIS)

    Jeong, In Sung; Choi, Hyo Sang; Chung, Dong Chul

    2017-01-01

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils

  2. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  3. The determination of acoustic reflection coefficients by using cepstral techniques, II: Extensions of the technique and considerations of accuracy

    Science.gov (United States)

    Bolton, J. S.; Gold, E.

    1986-10-01

    In a companion paper the cepstral technique for the measurement of reflection coefficients was described. In particular the concepts of extraction noise and extraction delay were introduced. They are considered further here, and, in addition, a means of extending the cepstral technique to accommodate surfaces having lengthy impulse responses is described. The character of extraction noise, a cepstral component which interferes with reflection measurements, is largely determined by the spectrum of the signal radiated from the source loudspeaker. Here the origin and effects of extraction noise are discussed and it is shown that inverse filtering techniques may be used to reduce extraction noise without making impractical demands of the electrical test signal or the source loudspeaker. The extraction delay, a factor which is introduced when removing the reflector impulse response from the power cepstrum, has previously been estimated by a cross-correlation technique. Here the importance of estimating the extraction delay accurately is emphasized by showing the effect of small spurious delays on the calculation of the normal impedance of a reflecting surface. The effects are shown to accord with theory, and it was found that the real part of the estimated surface normal impedance is very nearly maximized when the spurious delay is eliminated; this has suggested a new way of determining the extraction delay itself. Finally, the basic cepstral technique is suited only to the measurement of surfaces whose impulse responses are shorter than τ, the delay between the arrival of the direct and specularly reflected components at the measurement position. Here it is shown that this restriction can be eliminated, by using a process known as cepstral inversion, when the direct cepstrum has a duration less than τ and cepstral aliasing is insignificant. It is also possible to use this technique to deconvolve a signal from an echo sequence in the time domain, an operation

  4. Does formal complexity reflect cognitive complexity? Investigating aspects of the Chomsky Hierarchy in an artificial language learning study.

    Science.gov (United States)

    Öttl, Birgit; Jäger, Gerhard; Kaup, Barbara

    2015-01-01

    This study investigated whether formal complexity, as described by the Chomsky Hierarchy, corresponds to cognitive complexity during language learning. According to the Chomsky Hierarchy, nested dependencies (context-free) are less complex than cross-serial dependencies (mildly context-sensitive). In two artificial grammar learning (AGL) experiments participants were presented with a language containing either nested or cross-serial dependencies. A learning effect for both types of dependencies could be observed, but no difference between dependency types emerged. These behavioral findings do not seem to reflect complexity differences as described in the Chomsky Hierarchy. This study extends previous findings in demonstrating learning effects for nested and cross-serial dependencies with more natural stimulus materials in a classical AGL paradigm after only one hour of exposure. The current findings can be taken as a starting point for further exploring the degree to which the Chomsky Hierarchy reflects cognitive processes.

  5. Energy Reflection Coefficients for 5-10 keV He Ions Incident on Au, Ag, and Cu

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Littmark, U.

    1978-01-01

    The calorimetric deuterium-film method was used for measurements of the energy reflection coefficient γ for normal incidence of 5-10 keV He ions on Cu, Ag and Au. A theoretical calculation of γ by means of transport theory gives fair agreement with the experimental results. The experimental data...... the experimental and theoretical results for the He ions are in acceptable agreement with other experimental and theoretical results. For He ions, the experimental γ-values are 20-30% above the values for hydrogen ions for the same value of ε...

  6. Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections

    International Nuclear Information System (INIS)

    Markfort, D.

    1975-01-01

    Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de

  7. Energy reflection coefficient for H+ ions at energies between 10 and 80 keV

    International Nuclear Information System (INIS)

    Chen, C.K.; Bohdansky, J.; Eckstein, W.; Robinson, M.T.

    1984-04-01

    The energy reflection coefficient for H + ions at energies between 10 keV and 80 keV was determined by experiments and by computer calculations. Measurements were made with graphite, Al, Cu, Mo and W. targets. The angle of ion incidence was restricted to 85 0 , 78 0 and 70 0 measured from the surface normal. Calculated data were obtained by two different Monte Carlo computer programs (MARLOWE, TRIM). It was found that both the calculated and the measured data scale with the parameter epsilon cos 2 α, where epsilon is Lindhard's reduced energy and α the angle of incidence for the ions. The measured values are smaller than those calculated. This can be explained by surface roughness which developed during the ion irradiation

  8. Determination of electromagnetic absorption parameters by reflection measurements

    International Nuclear Information System (INIS)

    Vittitoe, C.N.

    1975-09-01

    The method described is for determining the electromagnetic absorption parameters of a material by measuring the optical reflection from a thick sample. With linearly polarized incident light (both perpendicular to and parallel to the plane of incidence), the ratio of the reflected intensities at three or more angles of incidence offers promise for determining the complex index of refraction of a material for a broad range of parameter values. The method may be applicable to molten materials, such as UO 2 , where high temperatures cause corrosion and containment difficulties. A method is given for extending the data to neighboring frequencies. Use of the method was successful for all portions of the complex index of refraction plane except for small values of the extinction coefficient

  9. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  10. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the

  11. Reflecting on complexity of biological systems: Kant and beyond?

    Science.gov (United States)

    Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy

    2003-01-01

    Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.

  12. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  13. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  14. Reflection at a complex potential barrier in the semiclassical theory of scattering

    International Nuclear Information System (INIS)

    Avishai, Y.; Knoll, J.

    1976-01-01

    The reflection of spherical waves at a complex potential barrier is discussed in the semiclassical approximation. We study the complex WKB method and the Uniform Approximation in the special case of weakly absorptive barriers, typical of surface transparent optical potentials used in heavy-ion reactions. It is found that the complex WKB results lead to a very accurate cross-section despite their inaccuracy in the most important phase shifts. Thereby, the amazing stamina of the WKB has been confirmed once more. (orig.) [de

  15. Advanced analysis techniques for X-ray reflectivities. Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Klaus Martin

    2005-07-01

    The first part of this thesis adresses the phase problem in X-ray reflectivity. The analytical properties of the reflection coefficient imply that the phase is completely determined by the Hilbert transform of the logarithm of the modulus and the zeros in the upper half complex plane (UHP). To account in addition for interfacial roughness, a new formula for the Hilbert-phase is derived.In the following, the conditions for which the reflection coefficient has zeros in the UHP is discussed and the existing sufficient condition is extended to rough multi-layer systems. Procedures for locating these zeros are developed. The second part of this thesis introduces a new iterative inversion method for X-ray reflectivity. It expands the profile in a set of eigenfunctions, which are discrete approximations of the eigenfunction of the classical reconstruction problem of a compact supported function from its partially known Fourier-transform. In this work, piecewise constant functions, polygons and second-order B-splines are used to expand the density profile. The eigenvalue problems for the calculation of the above mentioned approximations are stated and solved. The formalism for the calculation of the reflection coefficient for these profiles is developed in dynamical and single-scattering theory. In the experimental part of this work iterative inverse schemes are applied to the analysis of X-ray reflectivity. Different sample systems are investigated: For two titanium-carbon samples tiny details at the Ti/C interface such as the formation of a thin TiC layer can be observed.The density profiles obtained from the reflectivities taken from nickel-carbon samples show the formation of SiC inside the Si sub strate. Finally, the new inversion scheme is applied to a series of reflectivities from a 700 AaSiGe film on a substrate.

  16. Advanced analysis techniques for X-ray reflectivities. Theory and application

    International Nuclear Information System (INIS)

    Zimmermann, Klaus Martin

    2005-01-01

    The first part of this thesis adresses the phase problem in X-ray reflectivity. The analytical properties of the reflection coefficient imply that the phase is completely determined by the Hilbert transform of the logarithm of the modulus and the zeros in the upper half complex plane (UHP). To account in addition for interfacial roughness, a new formula for the Hilbert-phase is derived.In the following, the conditions for which the reflection coefficient has zeros in the UHP is discussed and the existing sufficient condition is extended to rough multi-layer systems. Procedures for locating these zeros are developed. The second part of this thesis introduces a new iterative inversion method for X-ray reflectivity. It expands the profile in a set of eigenfunctions, which are discrete approximations of the eigenfunction of the classical reconstruction problem of a compact supported function from its partially known Fourier-transform. In this work, piecewise constant functions, polygons and second-order B-splines are used to expand the density profile. The eigenvalue problems for the calculation of the above mentioned approximations are stated and solved. The formalism for the calculation of the reflection coefficient for these profiles is developed in dynamical and single-scattering theory. In the experimental part of this work iterative inverse schemes are applied to the analysis of X-ray reflectivity. Different sample systems are investigated: For two titanium-carbon samples tiny details at the Ti/C interface such as the formation of a thin TiC layer can be observed.The density profiles obtained from the reflectivities taken from nickel-carbon samples show the formation of SiC inside the Si sub strate. Finally, the new inversion scheme is applied to a series of reflectivities from a 700 AaSiGe film on a substrate.

  17. Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets

    International Nuclear Information System (INIS)

    Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod

    2005-01-01

    The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described

  18. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  19. Novel medium-throughput technique for investigating drug-cyclodextrin complexation by pH-metric titration using the partition coefficient method.

    Science.gov (United States)

    Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T

    2018-05-05

    The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Dark and bright solitons for the two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system with time-dependent coefficient

    Science.gov (United States)

    Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.

    2018-02-01

    In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.

  1. Visualising the Roots of Quadratic Equations with Complex Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  2. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    Science.gov (United States)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  3. Accounting for Antenna in Half-Space Fresnel Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    A. D'Alterio

    2012-01-01

    Full Text Available The problem of retrieving the Fresnel reflection coefficients of a half-space medium starting from measurements collected under a reflection mode multistatic configuration is dealt with. According to our previous results, reflection coefficient estimation is cast as the inversion of linear operator. However, here, we take a step ahead towards more realistic scenarios as the role of antennas (both transmitting and receiving is embodied in the estimation procedure. Numerical results are presented to show the effectiveness of the method for different types of half-space media.

  4. Characterizing the reflectivity of handheld display devices.

    Science.gov (United States)

    Liu, Peter; Badano, Aldo

    2014-08-01

    With increased use of handheld and tablet display devices for viewing medical images, methods for consistently measuring reflectivity of the devices are needed. In this note, the authors report on the characterization of diffuse reflections for handheld display devices including mobile phones and tablets using methods recommended by the American Association of Physicists in Medicine Task Group 18 (TG18). The authors modified the diffuse reflectance coefficient measurement method outlined in the TG18 report. The authors measured seven handheld display devices (two phones and five tablets) and three workstation displays. The device was attached to a black panel with Velcro. To study the effect of the back surface on the diffuse reflectance coefficient, the authors created Styrofoam masks with different size square openings and placed it in front of the device. Overall, for each display device, measurements of illuminance and reflected luminance on the display screen were taken. The authors measured with no mask, with masks of varying size, and with display-size masks, and calculated the corresponding diffuse reflectance coefficient. For all handhelds, the diffuse reflectance coefficient measured with no back panel were lower than measurements performed with a mask. The authors found an overall increase in reflectivity as the size of the mask decreases. For workstations displays, diffuse reflectance coefficients were higher when no back panel was used, and higher than with masks. In all cases, as luminance increased, illuminance increased, but not at the same rate. Since the size of handheld displays is smaller than that of workstation devices, the TG18 method suffers from a dependency on illumination condition. The authors show that the diffuse reflection coefficients can vary depending on the nature of the back surface of the illuminating box. The variability in the diffuse coefficient can be as large as 20% depending on the size of the mask. For all measurements

  5. In-line femtosecond common-path interferometer in reflection mode.

    Science.gov (United States)

    Chandezon, J; Rampnoux, J-M; Dilhaire, S; Audoin, B; Guillet, Y

    2015-10-19

    An innovative method to perform femtosecond time-resolved interferometry in reflection mode is proposed. The experiment consists in the combined use of a pump-probe setup and of a fully passive in-line femtosecond common-path interferometer. The originality of this interferometer relies on the use of a single birefringent crystal first to generate a pair of phase-locked pulses and second to recombine them to interfere. As predicted by analytical modeling, this interferometer measures the temporal derivative of the ultrafast changes of the complex optical reflection coefficient of the sample. Working conditions are illustrated through picosecond opto-acoustic experiments on a thin film.

  6. Optimization of traceable coaxial RF reflection standards with 7-mm-N-connector using genetic algorithms

    Directory of Open Access Journals (Sweden)

    T. Schrader

    2003-01-01

    Full Text Available A new coaxial device with 7-mm-N-connector was developed providing calculable complex reflection coefficients for traceable calibration of vector network analyzers (VNA. It was specifically designed to fill the gap between 0 Hz (DC, direct current and 250MHz, though the device was tested up to 10GHz. The frequency dependent reflection coefficient of this device can be described by a model, which is characterized by traceable measurements. It is therefore regarded as a “traceable model". The new idea of using such models for traceability has been verified, found to be valid and was used for these investigations. The DC resistance value was extracted from RF measurements up to 10 GHz by means of Genetic Algorithms (GA. The GA was used to obtain the elements of the model describing the reflection coefficient Γ of a network of SMD resistors. The DC values determined with the GA from RF measurements match the traceable value at DC within 3·10-3, which is in good agreement with measurements using reference air lines at GHz frequencies.

  7. Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment.

    Science.gov (United States)

    Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping

    2012-09-30

    A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Interlayer interactions in absorption and reflection spectra of bismuth HTSC crystals

    International Nuclear Information System (INIS)

    Kruchinin, S.P.; Yaremko, A.M.

    1992-01-01

    The HTSC reflection and absorption optic spectra peculiarities are analysed in the paper on the basis of bismuth and thallium. The approach suggested takes into account the complex character of crystals structure, possible localization of excitations in the isolated layers and further excitations exchange due to the interlayer interaction between cuprate (Cu O) and quasi-degenerate bismuth layers (Bi O/3pO). The expressions for the excitation and intensity energies of the corresponding transitions are obtained. It is shown that only part of excitations whose number is determined by the number of layers in the unit cell will be manifest in optical reflection and absorption spectra. The experimental results on spectral dependence of crystal reflection coefficients are analysed

  9. The optical constants and spectral specular reflectivity of highly oriented pyrolytic graphite (HOPG)

    International Nuclear Information System (INIS)

    Havstad, M.A.; Schildbach, M.A.; McLean, W. II.

    1993-08-01

    Measurements of the specular reflectivity and the optical constants of highly ordered pyrolytic graphite (HOPG) have been made using two independent optical systems. The first measures reflectance (at 1.06 μm and 293 K) by comparing the intensity of a laser beam before and after reflecting off the sample. The second determines the complex index of raft-action (from 0.55 to 8.45 μm, with sample temperatures of 293, 480, 900 and 1300 K) by ellipsometry. Agreement between the two methods is good. Moderate reflectivities are observed over the full spectral range of measurement: the spectral directional-hemispherical reflectivity at normal incidence varies from 0.41 at 0.55 μm to 0.74 at 8.45 μm. The components of the complex index of refraction increase smoothly with wavelength. The index of refraction increases from 3.10 at 0.55 μm to 7.84 at 8.45 μm. The extinction coefficient varies from 2.01 to 6.66 over the same range

  10. Influence of magnetic and ultrasonic fields on coefficient of reflectivity of GaAs, GaSb and InAs crystals

    International Nuclear Information System (INIS)

    Zaveryukhin, B.N.; Zaveryukhina, N.N.; Zaveryukhina, E.V.; Volodarskiy, V.V.

    2007-01-01

    Full text: Previously we demonstrated for the first time in the world that ultrasonic waves of the megahertz range can change the transport properties and a structure of semiconductors. In this work we have experimentally studied the influence of ultrasonic treatment on the spectral coefficients of reflection R in the magnetic fields of the samples of GaAs-, GaSb- and InAs-crystals. The reflectance spectra in the magnetic field of the samples before and after the ultrasonic treatment (UST) for a certain time were measured in a broad wavelength range including ultraviolet, visible, and infrared spectral regions. The semi-insulating GaAs-crystals had a thickness d=100 μm and a working area S of up to 3sm 2 . The p-GaSb- crystals had an area of S=0.25sm 2 and d =250 μm. The base p-GaSb-layers possessed the concentration N=2·10 17 sm 3 and n-GaSb-layers with a thickness of 0.5 m were created by diffusion doping with phosphorus. Besides, the experiments were performed also for of the n-InAs-crystals. The samples of the InAs-n crystals had a thickness of 100 μm an area S = 0.25 sm 2 . Some remains of sulfuric (S) were discovered in InAs-samples. As could was see from the experiments, all the initial IR spectra measured for the samples with various dopant concentrations NP exhibit maximums (peaks) for 0.2 μm and minimum (holes) for. The reflectance spectra measured after UST for time of t > l hour clearly reveal a shift of the R minima toward longer wavelengths and a general decrease in the reflectance of each sample. The shift of the R is unambiguous evidence of the acoustically stimulated diffusion of impurity (phosphorus) inward of the samples. Discovered peaks and holes slitted and changed their sizes in the magnetic fields. It should be emphasized that behavior of the R spectra of the GaAs-, In As- and GaSb- samples is determined by the same mechanisms. Changes of the R spectra after the UST are explained by acoustically stimulated diffusion of the dopant inward

  11. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    Science.gov (United States)

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  12. On nonlinear changes of the reflection coefficient of the fast wave at LH frequencies due to ponderomotive forces

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1991-09-01

    The nonlinear changes of the reflection coefficient R of fast waves launched by waveguide arrays may be significant even for power densities S in the range of 3 or 4 kW/cm 2 . For the input parameters chosen in the computations, the effects of ponderomotive forces lead to an increase in plasma density in front of the grill , whereas for the slow wave the plasma density always decreases with growing S. For small plasma density in front of the grill, ponderomotive forces thus lead to the decrease of R, whereas for high plasma densities R grows with growing power density S. The heating of the edge plasma by the wave tends to weaken these changes. (Z.S.) 6 figs., 17 refs

  13. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  14. Some Comments on the Use of de Moivre's Theorem to Solve Quadratic Equations with Real or Complex Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2014-01-01

    This paper describes how a simple application of de Moivre's theorem may be used to not only find the roots of a quadratic equation with real or generally complex coefficients but also to pinpoint their location in the Argand plane. This approach is much simpler than the comprehensive analysis presented by Bardell (2012, 2014), but it does not…

  15. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  16. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  17. Reflection of a polarized light cone

    Science.gov (United States)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  18. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash; Yellepeddi, Sarma B.; Jones, Burton

    2016-01-01

    to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical

  19. Burial diagenesis of deep sea chalk as reflected in Biot's coefficient

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Alam, Mohammad Monzurul

    2013-01-01

    to limestone as burial increases and porosity decreases. The porosity decrease is accompanied by an increasing velocity to elastic waves, and consequently a decreasing Biot's coefficient, as estimated from velocity and density of core samples. When the effective burial stress is normalized to total horizontal....... In the ooze, we find that the natural compaction causes an increasing stress on grain contact area, indicating that the ooze particles become strongly strained. In the chalk section, contact cement is probably the reason why particles become less strained as porosity declines. In the limestone, stress...... on particles apparently is low and not correlated with porosity, probably because the pore-filling cementation in this interval causes Biot's coefficient to decline as burial increases. Limestone from the water zone of the North sea Chalk Group follows the same stress trend as deep sea limestone. These results...

  20. Cultivating Reflective Practitioners in Technology Preparation: Constructing TPACK through Reflection

    Directory of Open Access Journals (Sweden)

    Liangyue Lu

    2013-12-01

    Full Text Available Teaching is a complex profession, which is further complicated by the integration of technology into classrooms. Reflection can help teachers unpack the complexity in their practice. Reflection can be an effective instructional strategy in helping preservice teachers develop technological pedagogical content knowledge (TPACK, the complex and dynamic knowledge necessary for effective technology integration into instruction. In this study, reflective activities were integrated into a Learning By Design (LBD environment, which was created to help preservice teachers develop TPACK. This paper investigated the participants’ TPACK development and examined how reflection helped them construct TPACK. Through content analysis of the participants’ reflective journals, the researcher found that the preservice teachers developed initial TPACK awareness. However, their reflection in technology knowledge and the content aspects of TPACK were limited and superficial. Interviews with the participants showed reflection helped the preservice teachers remember what they learned by describing and elaborating on their in-class experiences, pushed them to think about how to apply what they learned in their future classrooms, and helped them become more reflective and open-minded about using technology in classrooms. Finally, the researcher discussed this study’s implications for teacher educators and researchers.

  1. Derivation of Coefficients for the Bidirectional Reflection Distribution Function from AVHRR-data over Europe, under Consideration of the Helmholtz Reciprocity Law

    Science.gov (United States)

    Billing, H.; Koslowsky, D.

    In the AVHRR data of the polar orbiting NOAA Satellites, directional reflectance under a certain view from satellite and a certain illumination by the sun is measured. Due to the nearly sunsynchroneous orbit of the NOAA satellite, each area is seen under different viewing angles in successive days. Only after approximately 9 days, the conditions are again similar. Areas, seen in specular direction, may appear only half as bright, as if seen in antispecular direction. This deviation from a Lambertian reflector is a function of the surface roughness and the degree of coverage with vegetation. The NOAA afternoon satellites drift by half an hour from year to year. Thus even data from the same season, but different years, are seen under different illumination conditions. To derive the bidirectional reflection distribution function in dependence on satellite viewing angle and solar illumination becomes a very complicated procedure. Using the Helmholtz reciprocity principle (HRP), i.e. the symetrie in viewing and illumination, reduces the problem by one dimension. For different bidimensional reflection laws it will be tested, whether they can be formulated to fullfill the HRP. Via regression, the parameters will be deduced for time series of AVHRR data of 10 years from NOAA 11,14,16 and 17. Brdfunctions, suggested by Rao as well as a law, suggested by Ba seem to become unstable for low sun resp. large viewing zenit angles. Only brdfs with 4 coefficients can fit the observed distributions. A nonlinear temporal angular model (NTAM), suggested by Latifovic,Cihlar and Chen, seems to be suitable to describe even the hot spot and the dependence on plant growth. The coefficients of these brdf-function will be derived via regression for monthly series of cloud free data for the European area, where AVHRR data in full resolution are received in Berlin. Using these coefficients, monthly maps of surface roughness are produced for the above area for the time since 1985. Ba, M

  2. Apparent diffusion coefficient value as a biomarker reflecting morphological and biological features of prostate cancer.

    Science.gov (United States)

    Bae, Hyeyeol; Yoshida, Soichiro; Matsuoka, Yoh; Nakajima, Hiroshi; Ito, Eisaku; Tanaka, Hiroshi; Oya, Miyako; Nakayama, Takayuki; Takeshita, Hideki; Kijima, Toshiki; Ishioka, Junichiro; Numao, Noboru; Koga, Fumitaka; Saito, Kazutaka; Akashi, Takumi; Fujii, Yasuhisa; Kihara, Kazunori

    2014-03-01

    To assess whether there is an association between the apparent diffusion coefficient (ADC) value and the pathological characteristics of prostate cancer. The study cohort consisted of 29 consecutive patients with prostate cancer treated with radical prostatectomy. All patients underwent diffusion-weighted MRI before the prostate biopsy. In 42 tumor foci, the associations of the ADC values with the clinicopathological characteristics and Ki-67 labeling index (LI) were analyzed. High-grade cancers (Gleason score [GS] ≥ 4 + 3), larger cancers (maximum diameter (MD) ≥ 16 mm), and highly proliferating cancers (Ki-67 LI ≥ 4.43 %) had significantly lower ADC values, respectively (P value according to age, prostate-specific antigen, presence of extra-prostatic extension, and intra-tumoral stroma proportion. Multivariate analysis showed that GS, Ki-67 LI, and MD had independent and significant correlations with ADC value (P value to predict high-grade cancer foci are 81.8 and 93.5 %, respectively. A low ADC value reflects the morphological and biological features of prostate cancer. Analyzing the ADC value may make it possible to more precisely predict the cancer aggressiveness of each focus before treatment.

  3. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    Science.gov (United States)

    FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.

    2009-12-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.

  4. Complexities of management of a urostomy in Ehlers-Danlos syndrome: a reflective account.

    Science.gov (United States)

    Oxenham, Julie

    Mary (pseudonym) is a 30-year-old woman who underwent a urinary diversion and formation of an ileal conduit/urostomy (urinary stoma) due to the formation of multiple bladder diverticula, which caused micturition difficulties and recurrent urinary tract infections with associated pain and discomfort. The bladder diverticula were caused by Ehlers-Danlos syndrome (EDS), a hereditary disorder of the connective tissue or, particulary, defective collagen. Surgical intervention in patients with EDS is prone to complications due to poor wound healing, including issues of dehiscence, postoperative bleeding and poor uptake of anaesthesia and analgesia. After an initial presentation of the syndrome of EDS and Mary's history, this article offers a reflective account (informed by Gibbs' Reflective Cycle) and illustrates the complexities of caring for an individual with EDS who undergoes stoma formation. The author, a stoma care nurse, demonstrates how using purposeful reflection resulted in better understanding and awareness of caring for an individual with a rare syndrome and the nursing challenges this presented.

  5. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    Science.gov (United States)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  6. Note on the coefficient of variations of neuronal spike trains.

    Science.gov (United States)

    Lengler, Johannes; Steger, Angelika

    2017-08-01

    It is known that many neurons in the brain show spike trains with a coefficient of variation (CV) of the interspike times of approximately 1, thus resembling the properties of Poisson spike trains. Computational studies have been able to reproduce this phenomenon. However, the underlying models were too complex to be examined analytically. In this paper, we offer a simple model that shows the same effect but is accessible to an analytic treatment. The model is a random walk model with a reflecting barrier; we give explicit formulas for the CV in the regime of excess inhibition. We also analyze the effect of probabilistic synapses in our model and show that it resembles previous findings that were obtained by simulation.

  7. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2017-06-16

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  8. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2017-01-01

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  9. Revealing Layers of Pristine Oriented Crystals Embedded Within Deep Ice Clouds Using Differential Reflectivity and the Copolar Correlation Coefficient

    Science.gov (United States)

    Keat, W. J.; Westbrook, C. D.

    2017-11-01

    Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.

  10. A simple approach to enhance the performance of complex-coefficient filter-based PLL in grid-connected applications

    DEFF Research Database (Denmark)

    Ramezani, Malek; Golestan, Saeed; Li, Shuhui

    2018-01-01

    In recent years, a large number of three-phase phase-locked loops (PLLs) have been developed. One of the most popular ones is the complex coefficient filterbased PLL (CCF-PLL). The CCFs benefit from a sequence selective filtering ability and, hence, enable the CCF-PLL to selectively reject/extract...... disturbances before the PLL control loop while maintaining an acceptable dynamic behavior. The aim of this paper is presenting a simple yet effective approach to enhance the standard CCF-PLL performance without requiring any additional computational load....

  11. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  12. Diffusion coefficient of three-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-01-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions

  13. A Reflectance Model for Relatively Clear and Turbid Waters

    Directory of Open Access Journals (Sweden)

    S. P. Tiwari

    2013-02-01

    Full Text Available Accurate modeling of spectral remote sensing reflectance (Rrs is of great interest for ocean colour studies in highly turbid and relatively clear waters. In this work a semianalytical model that simulates the spectral curves of remote sensing reflectance of these waters is developed based on the inherent optical properties (IOPs and f and Q factors. For accommodating differences in the optical properties of the water and accounting for their directional variations, IOPs and f and Q factors are derived as a function of phytoplankton pigments, suspended sediments and solar zenith angle. Results of this model are compared with in-situ bio-optical data collected at 83 stations encompassing highly turbid/relatively cleared waters of the South Sea of Korea. Measured and modeled remote sensing reflectances agree favorably in both magnitude and spectral shape, with considerably low errors (mean relative error MRE -0.0327; root mean square error RMSE 0.205, bias -0.0727 and slope 1.15 and correlation coefficient R2 0.74. These results suggest that the new model has the ability to reproduce measured reflectance values and has potentially profound implications for remote sensing of complex waters in this region.

  14. Reflection and transformation of acoustic waves at the interface in superfluid 3He-A

    International Nuclear Information System (INIS)

    Kekutiya, Sh.E.; Chkhaidze, N.D.

    1997-01-01

    Reflection and transformation of acoustic waves in 3 He-A and 3 He-A 1 are considered for two cases: (1) at the boundary with a solid impermeable wall at an arbitrary angle of incidence of a wave and (2) for normal incidence of waves on the interface between a free liquid and a system of periodic plane-parallel capillaries filling the semi-space. For the first case we have calculated the reflection coefficients of the first and the second sounds and spin and spin-temperature waves as well as the coefficients of transformation of these waves into each other. It is shown that the longitudinal wave undergoes no transformation into other waves, there occurs instead its complete reflection from the solid wall. The angle of incidence at which the energy attenuation coefficient of the first sound is maximum, and the interval of angles corresponding to the attenuation and the total interval reflection of the second sound are estimated. For the second case we have obtained: the coefficients of excitation of the fourth sound and the magneto-acoustic wave by the first and the second sounds; the reflection coefficients for the first and the second sounds and the longitudinal spin wave; the coefficient of transformation of the first sound into the second one and vice versa; the coefficient of reflection of the fourth sound from the capillary system - free liquid interface; the coefficient of excitation of longitudinal spin wave in free helium by the same wave in a capillary

  15. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Le Hardy, D. [Université de Nantes, LTN UMR CNRS 6607 (France); Favennec, Y., E-mail: yann.favennec@univ-nantes.fr [Université de Nantes, LTN UMR CNRS 6607 (France); Rousseau, B. [Université de Nantes, LTN UMR CNRS 6607 (France); Hecht, F. [Sorbonne Universités, UPMC Université Paris 06, UMR 7598, inria de Paris, Laboratoire Jacques-Louis Lions, F-75005, Paris (France)

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  16. The reflected amplitude ratio of multilayers and superlattice describe the dynamical diffraction of x-rays

    International Nuclear Information System (INIS)

    Bhatti, Q.A.; Mangi, F.A.

    2006-01-01

    Calculating the rocking curves of complicated layered structures, such as non-ideal super lattices on perfect crystals are clearly exposed with observed diffraction profile. Recursion formulas for calculating reflected amplitude ratio of multilayer and super lattices have been involved from the Takagi-Taupin differential equation, which describes the dynamical diffraction of X-rays in deformed crystal. The Kinematical theory can computing time only in case of ideal superlattice for which geometric series can be used but the reflectivity must be below 10 % so that multiple reflections can be neglected for a perfect crystal of arbitrary thickness the absorption at the centre of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter- deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-rays diffraction calculations give the result very similar to those of macroscopic optical description in terms of the complex index of refraction and Frensnel relation coefficient. (author)

  17. On the accuracy of Rüger's approximation for reflection coefficients in HTI media: implications for the determination of fracture density and orientation from seismic AVAZ data

    International Nuclear Information System (INIS)

    Ali, Aamir; Jakobsen, Morten

    2011-01-01

    We have investigated the accuracy of Rüger's approximation for PP reflection coefficients in HTI media (relative to an exact generalization of Zoeppritz to anisotropy derived by Schoenberg and Protazio) within the context of seismic fracture characterization. We consider the inverse problem of seismic amplitude-versus-angle and azimuth (AVAZ) inversion with respect to fracture density and azimuthal fracture orientation, as well as the forward problem of calculating PP reflection coefficients for different contrasts and anisotropy levels. The T-matrix approach was used to relate the contrast and anisotropy level to the parameters of the fractures (in the case of a single set of vertical fractures). We have found that Rüger's approximation can be used to recover the true fracture density with small uncertainty if, and only if, the fracture density and contrast are significantly smaller than the values that are believed to occur in many practically interesting cases of fractured (carbonate) reservoirs. In one example involving a minimal contrast and a fracture density in the range 0.05–0.1, Rüger's approximation performed satisfactorily for inversion, although the forward modelling results were not very accurate at high incident angles. But for fracture densities larger than 0.1 (which we believe may well occur in real cases), Rüger's approximation did not perform satisfactorily for forward or inverse modelling. However, it appears that Rüger's approximation can always be used to obtain estimates of the azimuthal fracture orientation with small uncertainty, even when the contrast and anisotropy levels are extremely large. In order to illustrate the significance of our findings within the context of seismic fracture characterization, we analysed a set of synthetic seismic AVAZ data associated with a fault facies model where the fracture density decreases exponentially with distance from the fault core, and a set of real seismic AVAZ data involving offset

  18. Reciprocal relations for transmission coefficients - Theory and application

    Science.gov (United States)

    Qu, Jianmin; Achenbach, Jan D.; Roberts, Ronald A.

    1989-01-01

    The authors present a rigorous proof of certain intuitively plausible reciprocal relations for time harmonic plane-wave transmission and reflection at the interface between a fluid and an anisotropic elastic solid. Precise forms of the reciprocity relations for the transmission coefficients and for the transmitted energy fluxes are derived, based on the reciprocity theorem of elastodynamics. It is shown that the reciprocity relations can be used in conjunction with measured values of peak amplitudes for transmission through a slab of the solid (water-solid-water) to obtain the water-solid coefficients. Experiments were performed for a slab of a unidirectional fiber-reinforced composite. Good agreement of the experimentally measured transmission coefficients with theoretical values was obtained.

  19. Sound excitation at reflection of two electromagnetic waves from dence semibounded plasma

    International Nuclear Information System (INIS)

    Livdan, D.O.; Muratov, V.I.; Shuklin, A.P.

    1988-01-01

    The problem of two electromagnetic waves reflection by semibounded plasma which is nontransparent for each of these waves is solved. The reflection coefficients are obtained for normally incident waves. It is shown that the moduli of the reflection coefficients differ from the unit and this is due to the interaction of the external raiation with the acoustic wave excited in plasma. The energy flux in plasma is calculated

  20. Daytime Water Detection Based on Sky Reflections

    Science.gov (United States)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  1. Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current quality is one of the most important issues for operating three-phase grid-connected inverter in distributed generation systems. In practice, the grid current quality is degraded in case of non-ideal utility voltage. A new control strategy is proposed for the three-phase gridconnected...... inverter. Different from the traditional method, our proposal utilizes the unique abc-frame complex-coefficient filter and controller to achieve the balanced, sinusoidal grid current. The main feature of the proposed method is simple and easy to implement without any frame transformation. The theoretical...

  2. Criticality coefficient calculation for a small PWR using Monte Carlo Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Trombetta, Debora M.; Su, Jian, E-mail: dtrombetta@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Chirayath, Sunil S., E-mail: sunilsc@tamu.edu [Department of Nuclear Engineering and Nuclear Security Science and Policy Institute, Texas A and M University, TX (United States)

    2015-07-01

    Computational models of reactors are increasingly used to predict nuclear reactor physics parameters responsible for reactivity changes which could lead to accidents and losses. In this work, preliminary results for criticality coefficient calculation using the Monte Carlo transport code MCNPX were presented for a small PWR. The computational modeling developed consists of the core with fuel elements, radial reflectors, and control rods inside a pressure vessel. Three different geometries were simulated, a single fuel pin, a fuel assembly and the core, with the aim to compare the criticality coefficients among themselves.The criticality coefficients calculated were: Doppler Temperature Coefficient, Coolant Temperature Coefficient, Coolant Void Coefficient, Power Coefficient, and Control Rod Worth. The coefficient values calculated by the MCNP code were compared with literature results, showing good agreement with reference data, which validate the computational model developed and allow it to be used to perform more complex studies. Criticality Coefficient values for the three simulations done had little discrepancy for almost all coefficients investigated, the only exception was the Power Coefficient. Preliminary results presented show that simple modelling as a fuel assembly can describe changes at almost all the criticality coefficients, avoiding the need of a complex core simulation. (author)

  3. Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites

    Science.gov (United States)

    Mull, M. A.; Chudnovsky, A.; Moet, A.

    1987-01-01

    In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.

  4. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  5. Reflection and transmission of light at periodic layered metamaterial films

    Science.gov (United States)

    Paul, Thomas; Menzel, Christoph; Śmigaj, Wojciech; Rockstuhl, Carsten; Lalanne, Philippe; Lederer, Falk

    2011-09-01

    The appropriate description of light scattering (transmission/reflection) at a bulky artificial medium, consisting of a sequence of functional metamaterial and natural material films, represents a major challenge in current theoretical nano-optics. Because in many relevant cases, in particular, in the optical domain, a metamaterial must not be described by an effective permittivity and permeability the usual Fresnel formalism cannot be applied. A reliable alternative consists in using a Bloch mode formalism known, e.g., from the theory of photonic crystals. It permits to split this complex issue into two more elementary ones, namely the study of light propagation in an infinitely extended metamaterial and the analysis of light scattering at interfaces between adjacent meta and natural materials. The first problem is routinely solved by calculating the relevant Bloch modes and their dispersion relations. The second task is more involved and represents the subject of the present study. It consists in using the general Bloch mode orthogonality to derive rigorous expressions for the reflection and transmission coefficients at an interface between two three-dimensional absorptive periodic media for arbitrary incidence. A considerable simplification can be achieved if only the fundamental Bloch modes of both media govern the scattering properties at the interface. If this approximation is valid, which depends on the longitudinal metamaterial period, the periodic metamaterial may be termed homogeneous. Only in this case the disentanglement of the fundamental modes of both media can be performed and the reflection/transmission coefficients can be expressed in terms of two impedances, each depending solely on the properties of the fundamental mode of the respective medium. In order to complement the picture, we apply the present formalism to the quite general problem of reflection/transmission at a metamaterial film sandwiched between a dissimilar metamaterial. This

  6. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  7. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Complex Network Model for Analyzing Railway Accidents Based on the Maximal Information Coefficient

    International Nuclear Information System (INIS)

    Shao Fu-Bo; Li Ke-Ping

    2016-01-01

    It is an important issue to identify important influencing factors in railway accident analysis. In this paper, employing the good measure of dependence for two-variable relationships, the maximal information coefficient (MIC), which can capture a wide range of associations, a complex network model for railway accident analysis is designed in which nodes denote factors of railway accidents and edges are generated between two factors of which MIC values are larger than or equal to the dependent criterion. The variety of network structure is studied. As the increasing of the dependent criterion, the network becomes to an approximate scale-free network. Moreover, employing the proposed network, important influencing factors are identified. And we find that the annual track density-gross tonnage factor is an important factor which is a cut vertex when the dependent criterion is equal to 0.3. From the network, it is found that the railway development is unbalanced for different states which is consistent with the fact. (paper)

  9. Diffusion coefficient calculations for cylindrical cells

    International Nuclear Information System (INIS)

    Lam-Hime, M.

    1983-03-01

    An accurate and general diffusion coefficient calculation for cylindrical cells is described using isotropic scattering integral transport theory. This method has been particularly applied to large regular lattices of graphite-moderated reactors with annular coolant channels. The cells are divided into homogeneous zones, and a zone-wise flux expansion is used to formulate a collision probability problem. The reflection of neutrons at the cell boundary is accounted for by the conservation of the neutron momentum. The uncorrected diffusion coefficient Benoist's definition is used, and the described formulation does not neglect any effect. Angular correlation terms, energy coupling non-uniformity and anisotropy of the classical flux are exactly taken into account. Results for gas-graphite typical cells are given showing the importance of these approximations

  10. Reflection and absorption of ordinary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Croci, R.

    1990-11-01

    This study treats the system of Vlasov and Maxwell equations for the Fourier transform in space and time of a plasma referred to Cartesian coordinates with the coordinate z parallel to the uniform equilibrium magnetic field with the equilibrium plasma density dependent on ηx, where η is a parameter. The k y component of the wave vector is taken equal to zero, whereas k z is different from zero. When the interaction of ordinary and extraordinary waves is neglected, the Fourier transform of the electric field of the ordinary waves obeys a homogeneous integral equation with principal part integrals, which is solved in the case of weak absorption and sufficiently small η (essentially smaller than vacuum wave vector), but without limitations on the ratio of the wavelength to the Larmor radius (the usual approximation being limited to wavelengths much smaller than the Larmor radius). The reflection and transmission coefficients and the total energy absorption are given in this approximation, whereas the energy conservation theorem for the reflection and transmission coefficients in an absorption-free plasma are derived for every value of η without explicit knowledge of the solutions. Finally, a general and compact equation for the eigenvalues which does not require complex analysis and knowledge of all solutions of the dispersion relation is given. (orig.)

  11. Classification of Several Optically Complex Waters in China Using in Situ Remote Sensing Reflectance

    Directory of Open Access Journals (Sweden)

    Qian Shen

    2015-11-01

    Full Text Available Determining the dominant optically active substances in water bodies via classification can improve the accuracy of bio-optical and water quality parameters estimated by remote sensing. This study provides four robust centroid sets from in situ remote sensing reflectance (Rrs (λ data presenting typical optical types obtained by plugging different similarity measures into fuzzy c-means (FCM clustering. Four typical types of waters were studied: (1 highly mixed eutrophic waters, with the proportion of absorption of colored dissolved organic matter (CDOM, phytoplankton, and non-living particulate matter at approximately 20%, 20%, and 60% respectively; (2 CDOM-dominated relatively clear waters, with approximately 45% by proportion of CDOM absorption; (3 nonliving solids-dominated waters, with approximately 88% by proportion of absorption of nonliving particulate matter; and (4 cyanobacteria-composed scum. We also simulated spectra from seven ocean color satellite sensors to assess their classification ability. POLarization and Directionality of the Earth's Reflectances (POLDER, Sentinel-2A, and MEdium Resolution Imaging Spectrometer (MERIS were found to perform better than the rest. Further, a classification tree for MERIS, in which the characteristics of Rrs (709/Rrs (681, Rrs (560/Rrs (709, Rrs (560/Rrs (620, and Rrs (709/Rrs (761 are integrated, is also proposed in this paper. The overall accuracy and Kappa coefficient of the proposed classification tree are 76.2% and 0.632, respectively.

  12. Monoenergetic particle transport in a semi-infinite medium with reflection

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1993-01-01

    Next to neutron or photon transport in infinite geometry, particle transport in semi-infinite geometry is probably the most investigated transport problem. When the mean free path for particle interaction is small compared to the physical dimension of the scattering medium, the infinite or semi-infinite geometry assumption is reasonable for a variety of applications. These include nondestructive testing, photon transport in plant canopies, and inverse problems associated with well logging. Another important application of the transport solution in a semi-infinite medium is as a benchmark to which other more approximate methods can be compared. In this paper, the transport solution in a semi-infinite medium with both diffuse and specular reflection at the free surface is solved analytically and numerically evaluated. The approach is based on a little-known solution obtained by Sobelev for the problem with specular reflection, which itself originates from the classical albedo problem solution without reflection. Using Sobelev's solution as a partial Green's function, the exiting flux for diffuse reflection can be obtained. In this way, the exiting flux for a half-space with both constant diffuse and specular reflection coefficients is obtained for the first time. This expression can then be extended to the complex plane to obtain the interior flux as an inverse Laplace transform, which is numerically evaluated

  13. Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy

    Science.gov (United States)

    Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.

    2008-12-01

    The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.

  14. [Elderly human being with ostomy and environments of care: reflection on the perspective of complexity].

    Science.gov (United States)

    Barros, Edaiane Joana Lima; Santos, Silvana Sidney Costa; Lunardi, Valéria Lerch; Lunardi Filho, Wilson Danilo

    2012-01-01

    This is discussion about the relationship between elderly human beings with ostomy and their environments care, under the perspective of Complexity Edgar Morin. An axis holds the reflection: environments of care for elderly humans with ostomy. In this sense, we present three types of environment that surround the context of elderly humans with ostomy: home environment, group environment and hospital environment. This brings, as a social contribution, a new look about resizing caring of elderly humans with ostomy in their environment. It is considered that the environment hosting this human being contains a diversity of feelings, emotions, experiences; it binds multiple meanings, from the Complexity perspective, about the relationship between the environment and the caring process.

  15. Quantum reflection in the linearly downward potential

    Science.gov (United States)

    Chamnan, N.; Krunavakarn, B.

    2017-09-01

    In this work, the motion of a particle in one dimension under the influence of the linearly downward potential well is studied within the context of the non-relativistic quantum mechanics. The attention is paid on the paradoxical phenomenon of the reflection of a particle that is in contrast between classical and quantum physics. Classically, the reflection effect occurs only at a potential barrier. To demonstrate such counter-intuitive phenomenon, the Schrödinger equation is solved to obtain the reflection coefficient in the scattering state by considering an incident particle that is represented by a monochromatic plane wave having an energy E > 0, propagates freely from left to right, pass through the potential well. The continuity conditions at boundaries give the desired result that is expressed in terms of the Airy functions which depends on the incident energy E, the strength jV 0 j and the range L of the well. The value of the reflection coefficient R lies in the interval 0 < R < 1, and its behavior is the decreasing function with respect to the range L.

  16. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  17. Photon albedo coefficients as functions of μ/Zeff parameter

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan L.

    2013-01-01

    Full Text Available This paper presents the results of the analyses of photon reflection from planar targets for normal photon incidence and for different shielding materials (water, concrete, aluminum, iron, and copper, in the range of the initial photon energies from 20 keV to 300 keV. Calculations of photon reflection parameters based on the results of Monte Carlo simulations of the photon transport have been performed using MCNP4C code. Integral reflection coefficients, presented as functions of the ratio of total cross-section of photons and effective atomic number of target material, show universal behaviour for all the analyzed shielding materials in the selected energy domain.

  18. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    Science.gov (United States)

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  19. Plasma density fluctuation measurements from coherent and incoherent microwave reflection

    International Nuclear Information System (INIS)

    Conway, G.D.; Schott, L.; Hirose, A.

    1996-01-01

    Using the spatial coherency present in a reflected microwave signal (Conway et al 1994 Rev. Sci. Instrum. 65 2920) it is possible to measure a coherent, Γ c , and an incoherent, Γ i , reflection coefficient (proportional to the radar cross section) from a turbulent plasma cutoff layer. Results acquired with a 17 GHz reflectometer from a STOR-M tokamak edge region (r/a ∼ 0.8) give significant Γ c and Γ i , which suggests two-dimensional structure in the reflection layer. Using a 'distorted-mirror' model for the plasma fluctuations, estimates of an effective radial width, σ, and poloidal correlation length, L p , can be derived from the reflection coefficients. STOR-M results typically give a σ of a few millimetres and an L p of a couple of centimetres. (author)

  20. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    Science.gov (United States)

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  1. Analysis of flow coefficient in chair manufacture

    OpenAIRE

    Ivković Dragoljub; Živković Slaven

    2005-01-01

    The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely ma...

  2. Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces

    CERN Document Server

    Jevtić, Miroljub; Arsenović, Miloš

    2016-01-01

    This book provides a systematic overview of the theory of Taylor coefficients of functions in some classical spaces of analytic functions and especially of the coefficient multipliers between spaces of Hardy type. Offering a comprehensive reference guide to the subject, it is the first of its kind in this area. After several introductory chapters covering the basic material, a large variety of results obtained over the past 80 years, including the most recent ones, are treated in detail. Several chapters end with discussions of practical applications and related topics that graduate students and experts in other subjects may find useful for their own purposes. Thus, a further aim of the book is to communicate to non-specialists some concrete facts that may be of value in their own work. The book can also be used as a textbook or a supplementary reference for an advanced graduate course. It is primarily intended for specialists in complex and functional analysis, graduate students, and experts in other related...

  3. Multi-attribute integrated measurement of node importance in complex networks.

    Science.gov (United States)

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  4. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  5. A program for calculating and plotting soft x-ray optical interaction coefficients for molecules

    International Nuclear Information System (INIS)

    Thomas, M.M.; Davis, J.C.; Jacobsen, C.J.; Perera, R.C.C.

    1989-08-01

    Comprehensive tables for atomic scattering factor components, f1 and f2, were compiled by Henke et al. for the extended photon region 50 - 10000 eV. Accurate calculations of optical interaction coefficients for absorption, reflection and scattering by material systems (e.g. filters, multi-layers, etc...), which have widespread application, can be based simply upon the atomic scattering factors for the elements comprising the material, except near the absorption threshold energies. These calculations based upon the weighted sum of f1 and f2 for each atomic species present can be very tedious if done by hand. This led us to develop a user friendly program to perform these calculations on an IBM PC or compatible computer. By entering the chemical formula, density and thickness of up to six molecules, values of the f1, f2, mass absorption transmission efficiencies, attenuation lengths, mirror reflectivities and complex indices of refraction can be calculated and plotted as a function of energy or wavelength. This program will be available distribution. 7 refs., 1 fig

  6. Minimum wall pressure coefficient of orifice plate energy dissipater

    Directory of Open Access Journals (Sweden)

    Wan-zheng Ai

    2015-01-01

    Full Text Available Orifice plate energy dissipaters have been successfully used in large-scale hydropower projects due to their simple structure, convenient construction procedure, and high energy dissipation ratio. The minimum wall pressure coefficient of an orifice plate can indirectly reflect its cavitation characteristics: the lower the minimum wall pressure coefficient is, the better the ability of the orifice plate to resist cavitation damage is. Thus, it is important to study the minimum wall pressure coefficient of the orifice plate. In this study, this coefficient and related parameters, such as the contraction ratio, defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter; the relative thickness, defined as the ratio of the orifice plate thickness to the tunnel diameter; and the Reynolds number of the flow through the orifice plate, were theoretically analyzed, and their relationships were obtained through physical model experiments. It can be concluded that the minimum wall pressure coefficient is mainly dominated by the contraction ratio and relative thickness. The lower the contraction ratio and relative thickness are, the larger the minimum wall pressure coefficient is. The effects of the Reynolds number on the minimum wall pressure coefficient can be neglected when it is larger than 105. An empirical expression was presented to calculate the minimum wall pressure coefficient in this study.

  7. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    Science.gov (United States)

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015

  8. A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain

    International Nuclear Information System (INIS)

    Yun, J.I.

    2009-01-01

    Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio (W i ) between sloping and horizontal surface is defined as multiplication of the relative solar intensity (k i ) and the slope irradiance ratio (r i ) at an hourly interval. The k i is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The r i is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of W i on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano (c.a., 570 m diameter for the bottom circle and 90 m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error (RMSE) of 1.61 MJ m −2 for the whole period but the RMSE for April to October (i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape

  9. Usefulness of charge-transfer complexation for the assessment of sympathomimetic drugs: Spectroscopic properties of drug ephedrine hydrochloride complexed with some π-acceptors

    Science.gov (United States)

    Refat, Moamen S.; Ibrahim, Omar B.; Saad, Hosam A.; Adam, Abdel Majid A.

    2014-05-01

    Recently, ephedrine (Eph) assessment in food products, pharmaceutical formulations, human fluids of athletes and detection of drug toxicity and abuse, has gained a growing interest. To provide basic data that can be used to assessment of Eph quantitatively based on charge-transfer (CT) complexation, the CT complexes of Eph with 7‧,8,8‧-tetracyanoquinodimethane (TCNQ), dichlorodicyanobenzoquinone (DDQ), 1,3-dinitrobenzene (DNB) or tetrabromothiophene (TBT) were synthesized and spectroscopically investigated. The newly synthesized complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. The formation constant (KCT), molar extinction coefficient (εCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermal decomposition behavior of these complexes was also studied, and their kinetic thermodynamic parameters were calculated with Coats-Redfern and Horowitz-Metzger equations.

  10. Reconstruction of hyperspectral reflectance for optically complex turbid inland lakes: test of a new scheme and implications for inversion algorithms.

    Science.gov (United States)

    Sun, Deyong; Hu, Chuanmin; Qiu, Zhongfeng; Wang, Shengqiang

    2015-06-01

    A new scheme has been proposed by Lee et al. (2014) to reconstruct hyperspectral (400 - 700 nm, 5 nm resolution) remote sensing reflectance (Rrs(λ), sr-1) of representative global waters using measurements at 15 spectral bands. This study tested its applicability to optically complex turbid inland waters in China, where Rrs(λ) are typically much higher than those used in Lee et al. (2014). Strong interdependence of Rrs(λ) between neighboring bands (≤ 10 nm interval) was confirmed, with Pearson correlation coefficient (PCC) mostly above 0.98. The scheme of Lee et al. (2014) for Rrs(λ) re-construction with its original global parameterization worked well with this data set, while new parameterization showed improvement in reducing uncertainties in the reconstructed Rrs(λ). Mean absolute error (MAERrs(λi)) in the reconstructed Rrs(λ) was mostly -1 between 400 and 700nm, and mean relative error (MRERrs(λi)) was rs(λ) spectra. When Rrs(λ) at the MODIS bands were used to reconstruct the hyperspectral Rrs(λ), MAERrs(λi) was -1 and MRERrs(λi) was rs(λ) at the MERIS bands were used, MAERrs(λi) in the reconstructed hyperspectral Rrs(λ) was -1 and MRERrs(λi) was rs(λ) data using spectral bands that may not exist on satellite sensors.

  11. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  12. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  13. MORET: a Monte Carlo program for fast computation of the effective multiplying factors of fissile media within complex geometries

    International Nuclear Information System (INIS)

    Caizergues, Robert; Poullot, Gilles; Teillet, J.-R.

    1976-06-01

    The MORET code determines effective multiplying factors. It uses the Monte Carlo technique and the multigroup theory; a collision is taken as isotropic, but anisotropy is taken into account by means of the transport correction. Complex geometries can be rapidly treated: the array to be studied is divided in simple elementary volumes (spheres, cylinders, boxes, cones, half space planes...) to which are applied operators of the theory of sets. Some constant or differential (albedos) reflection coefficients simulate neighboring reflections on the outer volume [fr

  14. A Search Complexity Improvement of Vector Quantization to Immittance Spectral Frequency Coefficients in AMR-WB Speech Codec

    Directory of Open Access Journals (Sweden)

    Bing-Jhih Yao

    2016-09-01

    Full Text Available An adaptive multi-rate wideband (AMR-WB code is a speech codec developed on the basis of an algebraic code-excited linear-prediction (ACELP coding technique, and has a double advantage of low bit rates and high speech quality. This coding technique is widely used in modern mobile communication systems for a high speech quality in handheld devices. However, a major disadvantage is that a vector quantization (VQ of immittance spectral frequency (ISF coefficients occupies a significant computational load in the AMR-WB encoder. Hence, this paper presents a triangular inequality elimination (TIE algorithm combined with a dynamic mechanism and an intersection mechanism, abbreviated as the DI-TIE algorithm, to remarkably improve the complexity of ISF coefficient quantization in the AMR-WB speech codec. Both mechanisms are designed in a way that recursively enhances the performance of the TIE algorithm. At the end of this work, this proposal is experimentally validated as a superior search algorithm relative to a conventional TIE, a multiple TIE (MTIE, and an equal-average equal-variance equal-norm nearest neighbor search (EEENNS approach. With a full search algorithm as a benchmark for search load comparison, this work provides a search load reduction above 77%, a figure far beyond 36% in the TIE, 49% in the MTIE, and 68% in the EEENNS approach.

  15. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  16. Retrieving Constitutive Parameters of Plasmonic Multilayers from Reflection and Transmission Coefficients

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, E. A.; Zhukovsky, Sergei

    2014-01-01

    We show how to correctly extract the effective permittivity and permeability of plasmonic multilayers in the optical domain. For material parameters retrieval the classical Nicolson-Ross-Weir method is commonly used. However, its direct application leads to spurious zero-permittivity points and f...... and false permeability resonances in the case of total reflection from the slab. We offer a way to overcome this issue and retrieve correct constitutive parameters of plasmonic multilayers...

  17. Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach

    Science.gov (United States)

    Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.

    2018-06-01

    A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.

  18. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths

    Science.gov (United States)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.

    2016-01-01

    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  19. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  20. Lattice cell diffusion coefficients. Definitions and comparisons

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1980-01-01

    Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)

  1. Additions and corrections to the absorption coefficients of CO2 ice: Applications to the Martian south polar cap

    International Nuclear Information System (INIS)

    Calvin, W.M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here

  2. A fast algorithm for computing binomial coefficients modulo powers of two.

    Science.gov (United States)

    Andreica, Mugurel Ionut

    2013-01-01

    I present a new algorithm for computing binomial coefficients modulo 2N. The proposed method has an O(N3·Multiplication(N)+N4) preprocessing time, after which a binomial coefficient C(P, Q) with 0≤Q≤P≤2N-1 can be computed modulo 2N in O(N2·log(N)·Multiplication(N)) time. Multiplication(N) denotes the time complexity of multiplying two N-bit numbers, which can range from O(N2) to O(N·log(N)·log(log(N))) or better. Thus, the overall time complexity for evaluating M binomial coefficients C(P, Q) modulo 2N with 0≤Q≤P≤2N-1 is O((N3+M·N2·log(N))·Multiplication(N)+N4). After preprocessing, we can actually compute binomial coefficients modulo any 2R with R≤N. For larger values of P and Q, variations of Lucas' theorem must be used first in order to reduce the computation to the evaluation of multiple (O(log(P))) binomial coefficients C(P', Q') (or restricted types of factorials P'!) modulo 2N with 0≤Q'≤P'≤2N-1.

  3. Wave Reflection in 3D Conditions

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Andersen, Thomas Lykke

    2010-01-01

    Based on recent experiments carried out in wave basin on breakwaters with armour layer of rocks and cubes, this paper examines the dependence of the reflection coefficient on wave directional spreading and obliquity. Results suggest that long-crested and short-crested waves give similar reflectio...

  4. Thor, a thorium-reflected plutonium-metal critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1979-01-01

    Critical specifications of Thor, an old assembly of thorium-reflected plutonium, have been refined. These specifications are brought together with void coefficients, Rossi-alpha values, fission traverses, and spectral indices

  5. Reflection and Transmission of Acoustic Waves through the Layer of Multifractional Bubbly Liquid

    Directory of Open Access Journals (Sweden)

    Gubaidullin Damir Anvarovich

    2018-01-01

    Full Text Available The mathematical model that determines reflection and transmission of acoustic wave through a medium containing multifractioanl bubbly liquid is presented. For the water-water with bubbles-water model the wave reflection and transmission coefficients are calculated. The influence of the bubble layer thickness on the investigated coefficients is shown. The theory compared with the experiment. It is shown that the theoretical results describe and explain well the available experimental data. It is revealed that the special dispersion and dissipative properties of the layer of bubbly liquid can significantly influence on the reflection and transmission of acoustic waves in multilayer medium

  6. Reflection and transmission of ion acoustic waves from a plasma discontinuity

    International Nuclear Information System (INIS)

    Gary, S.P.; Alexeff, I.; Bloomberg, H.W.

    1975-01-01

    Transmission and reflection coefficients are calculated for an ion acoustic wave incident from the upstream direction upon a plasma discontinuity of width much less than the wavelength. In the limit of an infinitely strong discontinuity there is complete in phase reflection. (U.S.)

  7. Determination of transport and reaction swarm coefficients from the analysis of complex transient pulses from the pulsed Townsend experiment

    International Nuclear Information System (INIS)

    Bekstein, A; De Urquijo, J; Rodríguez-Luna, J C; Juárez, A M; Ducasse, O

    2012-01-01

    We present in this paper the interpretation and analysis of transient pulses from a pulsed Townsend experiment by solving the continuity equations of the charged carriers (electrons and ions) involved in the avalanche. The set of second order partial differential equations is solved by SIMAV, a simulator designed specifically for the pulsed Townsend avalanche. Complex situations involving processes such as electron detachment, ion-molecule reactions, Penning ionization and secondary electron emission from ion impact at the cathode, virtually impossible to solve analytically, are discussed here to illustrate the capability of the simulator to help explain the various reaction processes involved in the avalanche, and also to derive some of the transport and reaction coefficients.

  8. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  9. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  10. On time-dependent diffusion coefficients arising from stochastic processes with memory

    Science.gov (United States)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  11. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    Science.gov (United States)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-01

    Electromechanical properties of a number of ferroelectric films including PbZrxTi1-xO3(PZT), 0.9PbMg1/3Nb2/3O3-0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.

  12. GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2016-06-01

    Full Text Available Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.

  13. Object detection by correlation coefficients using azimuthally averaged reference projections.

    Science.gov (United States)

    Nicholson, William V

    2004-11-01

    A method of computing correlation coefficients for object detection that takes advantage of using azimuthally averaged reference projections is described and compared with two alternative methods-computing a cross-correlation function or a local correlation coefficient versus the azimuthally averaged reference projections. Two examples of an application from structural biology involving the detection of projection views of biological macromolecules in electron micrographs are discussed. It is found that a novel approach to computing a local correlation coefficient versus azimuthally averaged reference projections, using a rotational correlation coefficient, outperforms using a cross-correlation function and a local correlation coefficient in object detection from simulated images with a range of levels of simulated additive noise. The three approaches perform similarly in detecting macromolecular views in electron microscope images of a globular macrolecular complex (the ribosome). The rotational correlation coefficient outperforms the other methods in detection of keyhole limpet hemocyanin macromolecular views in electron micrographs.

  14. Spectroscopic method for determination of the absorption coefficient in brain tissue

    Science.gov (United States)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  15. Self-reflection in a system of excitons and biexcitons in semiconductors

    International Nuclear Information System (INIS)

    Khadzhi, P I; Lyakhomskaya, K D

    1999-01-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted. (nonlinear optical phenomena)

  16. Study of cadmium-humic interactions and determination of stability constants of cadmium-humate complexes from their diffusion coefficients obtained by scanned stripping voltammetry and dynamic light scattering techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.

    for extracting other speciation parameters of the systems. This study revealed that Cd sup(2+) ion along with small dynamic Cd complexes was predominantly present in a Cd-HA system at pH 5 with high diffusion coefficients. HA molecules were in aggregated form...

  17. A new methodology for determining dispersion coefficient using ordinary and partial differential transport equations.

    Science.gov (United States)

    Cho, Kyung Hwa; Lee, Seungwon; Ham, Young Sik; Hwang, Jin Hwan; Cha, Sung Min; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    The present study proposes a methodology for determining the effective dispersion coefficient based on the field measurements performed in Gwangju (GJ) Creek in South Korea which is environmentally degraded by the artificial interferences such as weirs and culverts. Many previous works determining the dispersion coefficient were limited in application due to the complexity and artificial interferences in natural stream. Therefore, the sequential combination of N-Tank-In-Series (NTIS) model and Advection-Dispersion-Reaction (ADR) model was proposed for evaluating dispersion process in complex stream channel in this study. The series of water quality data were intensively monitored in the field to determine the effective dispersion coefficient of E. coli in rainy day. As a result, the suggested methodology reasonably estimates the dispersion coefficient for GJ Creek with 1.25 m(2)/s. Also, the sequential combined method provided Number of tank-Velocity-Dispersion coefficient (NVD) curves for convenient evaluation of dispersion coefficient of other rivers or streams. Comparing the previous studies, the present methodology is quite general and simple for determining the effective dispersion coefficients which are applicable for other rivers and streams.

  18. Optical characterization and blu-ray recording properties of metal(II) azo barbituric acid complex films

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: xyli@siom.ac.cn; Wu, Y.Q. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Lab of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Haerbin 150080 (China)], E-mail: yqwu@siom.ac.cn; Gu, D.D.; Gan, F.X. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2009-02-25

    Smooth thin films of nickel(II), cobalt(II) and zinc(II) complexes with azo barbituric acid were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrates in 300-700 nm wavelength region were measured. Optical constants (complex refractive index N = n + ik) of the thin films prepared on single-crystal silicon substrates in 275-695 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constant {epsilon} ({epsilon} = {epsilon}{sub 1} + i{epsilon}{sub 2}) as well as absorption coefficient {alpha} of thin films were calculated at 405 nm. In addition, static optical recording properties of the cobalt(II) complex thin film with an Ag reflective layer was carried out using a 406.7 nm blue-violet laser and a high numerical aperture (NA) of 0.90. Clear recording marks with high reflectivity contrast (>60%) at proper laser power and pulse width were obtained, and the size of recording mark was as small as 250 nm. The results indicate that these metal(II) complexes are promising organic recording medium for the blu-ray optical storage system.

  19. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    Science.gov (United States)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  20. [Hydrologic variability and sensitivity based on Hurst coefficient and Bartels statistic].

    Science.gov (United States)

    Lei, Xu; Xie, Ping; Wu, Zi Yi; Sang, Yan Fang; Zhao, Jiang Yan; Li, Bin Bin

    2018-04-01

    Due to the global climate change and frequent human activities in recent years, the pure stochastic components of hydrological sequence is mixed with one or several of the variation ingredients, including jump, trend, period and dependency. It is urgently needed to clarify which indices should be used to quantify the degree of their variability. In this study, we defined the hydrological variability based on Hurst coefficient and Bartels statistic, and used Monte Carlo statistical tests to test and analyze their sensitivity to different variants. When the hydrological sequence had jump or trend variation, both Hurst coefficient and Bartels statistic could reflect the variation, with the Hurst coefficient being more sensitive to weak jump or trend variation. When the sequence had period, only the Bartels statistic could detect the mutation of the sequence. When the sequence had a dependency, both the Hurst coefficient and the Bartels statistics could reflect the variation, with the latter could detect weaker dependent variations. For the four variations, both the Hurst variability and Bartels variability increased with the increases of variation range. Thus, they could be used to measure the variation intensity of the hydrological sequence. We analyzed the temperature series of different weather stations in the Lancang River basin. Results showed that the temperature of all stations showed the upward trend or jump, indicating that the entire basin had experienced warming in recent years and the temperature variability in the upper and lower reaches was much higher. This case study showed the practicability of the proposed method.

  1. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    Science.gov (United States)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  2. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  3. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah

    2015-10-05

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms is directly affected by the size of the grid: increasing the number of points will enhance the resolution of the algorithm but exponentially increase its complexity. In this work, to estimate the parameters of a target, a reduced complexity super resolution algorithm is proposed. For off-the-grid targets, it uses a low order two dimensional fast Fourier transform to determine a suboptimal solution and then an iterative algorithm to jointly estimate the spatial location and Doppler shift. Simulation results show that the mean square estimation error of the proposed estimators achieve the Cram\\'er-Rao lower bound. © 2015 IEEE.

  4. Khovanov homology for virtual knots with arbitrary coefficients

    International Nuclear Information System (INIS)

    Manturov, Vassily O

    2007-01-01

    The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for 'twisted virtual knots' in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms

  5. A High Molar Extinction Coefficient Ru(II Complex Functionalized with cis-Dithiocyanato-bis-(9-anthracenyl-10-(2-methyl-2-butenoic acid-1,10-phenanthroline: Potential Sensitizer for Stable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Adewale O. Adeloye

    2014-01-01

    Full Text Available New heteroleptic ruthenium(II complex was formulated as [Ru(L12(NCS2], where L1 = 9-anthracenyl-10-(2-methyl-2-butenoic acid-1,10-phenanthroline was synthesized and its photophysical properties were studied and compared to previously reported analogue complex containing no anthracene moiety [Ru(L22(NCS2], L2 = (2-methyl-2-butenoic acid-1,10-phenanthroline. The two complexes though exhibit very strong molar extinction coefficient values; however, [Ru(L12(NCS2] shows better characteristic broad and intense metal-to-ligand charge transfer (MLCT absorption band and higher molar absorptivity coefficient at (λmax=522 nm, ε=6.60×104 M−1 cm−1 than that of [Ru(L22(NCS2] complex, (λmax=446 nm, ε=4.82×104 M−1 cm−1. At room temperature, long wavelength emissions with strong intensity ratio centered at 660 nm were recorded for [Ru(L12(NCS2] complex with a bathochromic shift (λem=700 nm for [Ru(L22(NCS2] complex. It was shown that the luminescence wavelength characteristic of the complexes may be a function relating to the increasing length of π-conjugation and/or molecular weight. A preliminary cyclic voltammetry of [Ru(L12(NCS2] complex also exhibits good electroredox activity with oxidation potential of about 1.04 V, significantly better than other Ru(II polypyridine complexes containing bidentate ligands.

  6. Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E; Desai, R.G.P.; Desa, B.A.E

    This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...

  7. The seismic reflection inverse problem

    International Nuclear Information System (INIS)

    Symes, W W

    2009-01-01

    The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)

  8. Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab

    International Nuclear Information System (INIS)

    Yi Hongliang; Tan Heping; Lu Yiping

    2005-01-01

    Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index

  9. Singularities of the transmission coefficient and anomalous scattering by a dielectric slab

    Science.gov (United States)

    Shestopalov, Yury

    2018-03-01

    We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.

  10. Analytical model of diffuse reflectance spectrum of skin tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  11. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media

    Czech Academy of Sciences Publication Activity Database

    Pšenčík, Ivan; Martins, J. L.

    2001-01-01

    Roč. 45, č. 2 (2001), s. 176-199 ISSN 0039-3169. [ICTCA'99. Trieste, 10.05.1999-14.05.1999] Institutional research plan: CEZ:AV0Z3012916 Keywords : elastic media * anisotropy * seismic reflection Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.680, year: 2001

  12. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    Energy Technology Data Exchange (ETDEWEB)

    Couture, O; Cherin, E; Foster, F S [Imaging Research, Sunnybrook Health Sciences Centre/University of Toronto, Toronto (Canada)

    2007-07-21

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  13. Influence of roughness parameters on coefficient of friction under ...

    Indian Academy of Sciences (India)

    S¯adhan¯a Vol. 33, Part 3, June 2008, pp. ... Surface texture and thus roughness parameters influence coefficient of friction during sliding. ..... tural irregularities and complexities of the natural system, fractal is widely used to explain the natural ...

  14. Prediction and measurement of the reflection of the fundamental anti-symmetric Lamb wave from cracks and notches

    International Nuclear Information System (INIS)

    Lowe, M.J.S.; Cawley, P.; Kao, J-Y; Diligent, O.

    2000-01-01

    The interaction of the fundamental antisymmetric Lamb wave (a o ) with cracks and with notches of different depth and width has been investigated both experimentally and by finite element analysis. Excellent agreement between the predictions and the measurements has been obtained. It has been shown that the reflection coefficient is a function of both the notch width to wavelength and notch depth to wavelength ratios. Both the relationship between the reflection coefficient and notch, depth, and the frequency dependence of the reflection coefficient, are very different for the a o mode compared to the s o mode which was studied earlier. Physical insight into the reasons for the different behavior is given by examination of the stress fields and opening displacements at the crack or notch

  15. Hydrodynamic Coefficients Identification and Experimental Investigation for an Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Shaorong XIE

    2014-02-01

    Full Text Available Hydrodynamic coefficients are the foundation of unmanned underwater vehicles modeling and controller design. In order to reduce identification complexity and acquire necessary hydrodynamic coefficients for controllers design, the motion of the unmanned underwater vehicle was separated into vertical motion and horizontal motion models. Hydrodynamic coefficients were regarded as mapping parameters from input forces and moments to output velocities and acceleration of the unmanned underwater vehicle. The motion models of the unmanned underwater vehicle were nonlinear and Genetic Algorithm was adopted to identify those hydrodynamic coefficients. To verify the identification quality, velocities and acceleration of the unmanned underwater vehicle was measured using inertial sensor under the same conditions as Genetic Algorithm identification. Curves similarity between measured velocities and acceleration and those identified by Genetic Algorithm were used as optimizing standard. It is found that the curves similarity were high and identified hydrodynamic coefficients of the unmanned underwater vehicle satisfied the measured motion states well.

  16. Reflections around Artefacts: Using a Deliberative Approach to Teaching Reflective Practices in Fashion Studies

    Science.gov (United States)

    Ryan, Michael; Brough, Dean

    2012-01-01

    While requiring students to think reflectively is a desirable teaching goal, it is often fraught with complexity and is sometimes poorly implemented in higher education. In this paper, we describe an approach to academic reflective practices that fitted a design subject in fashion education and was perceived as effective in enhancing student…

  17. The practice of reflection in the russian goodwill when buying enterprises as a property complex

    Directory of Open Access Journals (Sweden)

    O. A. Ovchinnikova

    2016-01-01

    Full Text Available When buying enterprises as a property complex, firm-the buyer can pay for it as excess cost of the acquired entity on its balance sheet, and an amount less than the value of the assets on the balance sheet of the acquiree. Based on the requirements of the Russian legislation, in the account of the buyer acquires an intangible asset that distinguishes the Russian from the international practice. International financial reporting standards do not recognize goodwill an intangible asset of the buyer enterprise. Therefore, it is necessary to specify the Russian practice of accounting transactions in the purchase of enterprises as property complex. The article presents a definition of the property complex, based on the requirements of the Civil Code of the Russian Federation, highlighted the stages of transfer of the property complex of the specified accounting documents that must be decorated, the analysis of the approaches of domestic and foreign authors to the recognition and measurement of goodwill, studied the specificity of the requirements of the Russian normative-legislative acts to the category “goodwill”, “intangible asset”. Based on the requirements of the Russian legislation, a positive goodwill is recognized in intangible asset (goodwill, in contrast to the negative goodwill (badwill, which immediately applies on other income of the organisation – the buyer of the enterprise – a property complex. On the positive business reputation, then the requirements of the Russian legislation, a positive goodwill is recognized intangible asset. In this paper, the authors proposed a model accounting for the purchase of enterprise as property complex as a result of which the acquisition price of an enterprise as a property complex exceeds its carrying amount of the assessment, therefore, in accounting, the buyer acquires an intangible asset in the form of a positive business reputation, compiled and substantiated recommended to reflect this

  18. Effect of reflection on Hα emissions in Alcator C-MOD

    International Nuclear Information System (INIS)

    Karney, C.F.; Stotler, D.P.; Skinner, C.H.; Terry, J.L.; Pappas, D.A.

    1999-01-01

    In order to explain anomalous intensity ratios which have been observed in Alcator C-MOD, the H α emissions in that experiment have been modeled with the DEGAS 2 code including the effects of wall reflection. By assuming that the first wall has different reflection coefficients for the two polarizations, we have qualitatively reproduced the observed anomaly. copyright 1999 American Institute of Physics

  19. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    Science.gov (United States)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  20. Selective reflection of resonance radiation from excited media

    International Nuclear Information System (INIS)

    Veklenko, B.A.; Gusarov, R.B.; Sherkunov, Yu.B.

    1998-01-01

    According to quantum electrodynamics, the cross section for resonant scattering of radiation on an aggregate of excited atoms can be written as a sum of positive definite terms. This type of structure is not consistent with the Fresnel formulas for the reflection coefficient of radiation from thermally excited media. The difference shows up on a macroscopic level and indicates that semiclassical radiation theory cannot be used. A study of the correlation between elastic scattering and stimulated emission processes clarifies the reason for the discrepancies. The resulting singularities require summing of Feynman diagrams which appear beginning in the sixth order of perturbation theory. A lower bound estimate for the reflection coefficient from a plane layer is given, including processes which violate the statistics of radiation. The contribution of stimulated emission processes caused by the initially scattered photon are examined specifically. An experiment is proposed which would settle the choice of theories

  1. A study on reflection pattern of swells from the shoreline of peninsular India

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Johnson, G.

    and tidal current on the reflected waves were examined. For the locations off the west coast of India, seasons have large impact on the reflection coefficient and were relatively less during the monsoon season due to the increase in incident wave energy...

  2. Spontaneous brain network activity: Analysis of its temporal complexity

    Directory of Open Access Journals (Sweden)

    Mangor Pedersen

    2017-06-01

    Full Text Available The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node and participation coefficients (the between-module connectivity of a node were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1 Entropy is higher for the participation coefficient than for the clustering coefficient. (2 The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3 The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy. In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient and integration (the participation coefficient are temporally complex

  3. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juices

    Science.gov (United States)

    Qin, Jianwei; Lu, Renfu

    2005-11-01

    Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.

  4. Predicting seed yield in perennial ryegrass using repeated canopy reflectance measurements and PLSR

    DEFF Research Database (Denmark)

    Gislum, René; Deleuran, Lise Christina; Boelt, Birte

    2009-01-01

    with first year seed crops using three sowing rates and three spring nitrogen (N) application rates. PLSR models were developed for each year and showed correlation coefficients of 0.71, 0.76, and 0.92, respectively. Regression coefficients showed in these experiments that the optimum time for canopy...... reflectance measurements was from approximately 600 cumulative growing degree-days (CGDD) to approximately 900 CGDD. This is the period just before and at heading of the seed crop. Furthermore, regression coefficients showed that information about N and water is important. The results support the development......Repeated canopy reflectance measurements together with partial least-squares regression (PLSR) were used to predict seed yield in perennial ryegrass (Lolium perenne L.). The measurements were performed during the spring and summer growing seasons of 2001 to 2003 in three field experiments...

  5. Clebsch-Gordan coefficients of discrete groups in subgroup bases

    Science.gov (United States)

    Chen, Gaoli

    2018-04-01

    We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Particularly, they are invariant under basis transformations of irreducible representations of both the group and its subgroup. We then impose on the embedding factors constraints, which relate them to their counterparts under complex conjugate and therefore restrict the phases of embedding factors. In some cases, the phase ambiguities are reduced to sign ambiguities. We describe the procedure of obtaining embedding factors and then calculate CG coefficients of the group 𝒫𝒮ℒ2(7) in terms of embedding factors of its subgroups S4 and 𝒯7.

  6. Dew point measurement technique utilizing fiber cut reflection

    Science.gov (United States)

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  7. Analysis of flow coefficient in chair manufacture

    Directory of Open Access Journals (Sweden)

    Ivković Dragoljub

    2005-01-01

    Full Text Available The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely made of sawn timber as the basic material. They belong to the group of export products, so it is especially significant to analyze the duration of the production cycle, and the type and the degree of stoppages in this type of production. Parallel method of production is applied in chair manufacture. The study shows that the value of flow coefficient is close to one or higher, in most cases. The results indicate that the percentage of interoperational stoppage is unjustifiably high, so it is proposed how to decrease the percentage of stoppages in the manufacturing process.

  8. Demystifying the reflective clinical journal

    International Nuclear Information System (INIS)

    Milinkovic, Danielle; Field, Nikki

    2005-01-01

    Student learning on clinical placement is a complex issue and cannot be defined solely by just doing things. Reflection during clinical practice is essential if the student is going to learn from the experience. Therefore it is important for educators to include as part of clinical education programs learning strategies that encourage reflection. The reflective clinical journal is an educational tool that is employed by the School of Medical Radiation Sciences at the University of Sydney to encourage reflection of undergraduate radiation therapy students whilst on clinical placement. This discussion paper explores the key concepts of reflection and the reflective clinical journal. Due to the paucity of information about this issue in radiation therapy the literature reviewed is from across all areas of the health sciences

  9. Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2006-01-01

    Full Text Available Octanol-water partition coefficient of two hundred and six polychlorinated biphenyls was model by the use of an original method based on complex information obtained from compounds structure. The regression analysis shows that best results are obtained in four-varied model (r2 = 0.9168. The prediction ability of the model was studied through leave-one-out analysis (r2cv(loo = 0.9093 and in training and test sets analysis. Modeling the octanol-water partition coefficient of polychlorinated biphenyls by integration of complex structural information provide a stable and performing four-varied model, allowing us to make remarks about relationship between structure of polychlorinated biphenyls and associated octanol-water partition coefficients.

  10. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo

    2016-01-01

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed...

  11. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  12. Calculation of Reflectance and Transmittance of Coating With Optically Rough Surfaces

    International Nuclear Information System (INIS)

    El-Depsy, A.; Shawky, A.M.

    2011-01-01

    For ideal surfaces, components of the reflected beam are related to the components of the incident beam by Fresnel reflection equation. The surfaces encountered in engineering applications deviate from ideal as a result of roughness, oxidization and contamination; hence the Radiative properties of these real surfaces differ greatly from those predicted by electromagnetic theory. In regard to problems of radiative heat transfer; the roughness of surfaces may be divided into two categories: (1) small surface irregularities such that the incident radiation cannot undergo more than a single reflection, (2) deep cavities in which the incident radiation undergoes multi-reflection. The normally incident radiation from rough surface having small irregularities is reflected partly specularly and partly diffusely [1]. Kubelka-Munk theory (K-M) [2] describes optical characteristics (e.g. reflectance, transmittance and absorbance) by a variety of light scattering media including paints, textiles and papers, and It is widely used in various industrial applications. Moder developments in radiative transfer theory (RTT) enable the derivation of (K-M) parameters from first principles [3]. Kubelka and Munk proposed a theory based on a model of two light fluxes travelling in the forward and backward directions. Subsequently a number of authors refined the theory and compared it with experimental data [4]. Several authors attempted to relate the Kubelka- Munk coefficients to the transport coefficients [5,6

  13. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    Energy Technology Data Exchange (ETDEWEB)

    Yuhki, Naoya; O' Brien, S.J. (National Cancer Institute, Frederick, MD (USA))

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.

  14. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    International Nuclear Information System (INIS)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations

  15. Relations between coefficients of fractional parentage

    International Nuclear Information System (INIS)

    Zamick, L.

    2007-01-01

    For each of the (9/2) (11/2), and (13/2) single j shells we have only one state with J=j v=3 for a five particle system. For four identical particles there can be more than one state of seniority four. We note some 'ratio' relations for the coefficients of fractional parentage for the four and five identical particle systems, which are found in the works of de Shalit and Talmi [Nuclear Shell Theory (Academic Press, New York, 1963)] and Talmi [Simple Models of Complex Nuclei (Harwood Academic, Reading, UK, 1993)] to be useful for explaining the vanishing of a five particle coefficients of fractional parentage (cfp). These relations are used to show that there is a special (g 9/2 ) 4 I=4 v=4 wave function that cannot be admixed with an I=4 v=2 wave function, even with seniority violating interactions

  16. Computation of infinite dilute activity coefficients of binary liquid alloys using complex formation model

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E., E-mail: draweoe2004@yahoo.com; Oshakuade, O.M.

    2016-04-15

    A new method for calculating Infinite Dilute Activity Coefficients (γ{sup ∞}s) of binary liquid alloys has been developed. This method is basically computing γ{sup ∞}s from experimental thermodynamic integral free energy of mixing data using Complex formation model. The new method was first used to theoretically compute the γ{sup ∞}s of 10 binary alloys whose γ{sup ∞}s have been determined by experiments. The significant agreement between the computed values and the available experimental values served as impetus for applying the new method to 22 selected binary liquid alloys whose γ{sup ∞}s are either nonexistent or incomplete. In order to verify the reliability of the computed γ{sup ∞}s of the 22 selected alloys, we recomputed the γ{sup ∞}s using three other existing methods of computing or estimating γ{sup ∞}s and then used the γ{sup ∞}s obtained from each of the four methods (the new method inclusive) to compute thermodynamic activities of components of each of the binary systems. The computed activities were compared with available experimental activities. It is observed that the results from the method being proposed, in most of the selected alloys, showed better agreement with experimental activity data. Thus, the new method is an alternative and in certain instances, more reliable approach of computing γ{sup ∞}s of binary liquid alloys.

  17. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  18. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    Science.gov (United States)

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  19. Identifying and ranking influential spreaders in complex networks by combining a local-degree sum and the clustering coefficient

    Science.gov (United States)

    Li, Mengtian; Zhang, Ruisheng; Hu, Rongjing; Yang, Fan; Yao, Yabing; Yuan, Yongna

    2018-03-01

    Identifying influential spreaders is a crucial problem that can help authorities to control the spreading process in complex networks. Based on the classical degree centrality (DC), several improved measures have been presented. However, these measures cannot rank spreaders accurately. In this paper, we first calculate the sum of the degrees of the nearest neighbors of a given node, and based on the calculated sum, a novel centrality named clustered local-degree (CLD) is proposed, which combines the sum and the clustering coefficients of nodes to rank spreaders. By assuming that the spreading process in networks follows the susceptible-infectious-recovered (SIR) model, we perform extensive simulations on a series of real networks to compare the performances between the CLD centrality and other six measures. The results show that the CLD centrality has a competitive performance in distinguishing the spreading ability of nodes, and exposes the best performance to identify influential spreaders accurately.

  20. Center-of-mass and breathing oscillations in small complex plasma disks

    International Nuclear Information System (INIS)

    Sheridan, T.E.

    2005-01-01

    Center-of-mass and breathing oscillations of a complex (dusty) plasma disk are excited for n=3 and 5 microspheres (≅10 μm diameter) with neutral argon pressures P≅1-4 Pa. The mode frequencies and damping rates are determined directly from measured resonance curves. Millikan's coefficient for the Epstein drag force, the Debye length, and the particle charge is found by comparison with theory. The damping rates are the same for both modes and for n=3 and 5, as predicted. Millikan's coefficient is found to be δ=1.55±0.16, in agreement with δ=1.44 for diffuse reflection. A consistent value of the Debye length that decreases with pressure is measured. The average particle charge for n=3 particles is found to be more negative than that for n=5 particles for the same conditions, indicating that the effective ion collection area of the particles increases as their separation decreases

  1. Hodge-DeRham theory with degenerating coefficients

    International Nuclear Information System (INIS)

    Fouad, E.

    2006-12-01

    Let L be a variation of Hod ge structures on the complement X* of a normal crossing divisor (NCD) Y in a smooth analytic variety X and let j : X* = X - Y → X denote the open embedding. The purpose of this paper is to describe the weight filtration W on a combinatorial logarithmic complex computing the (higher) direct image j * L, underlying a mixed Hodge complex when X is proper, proving in this way the results in the note [14] generalizing the constant coefficients case. When a morphism f : X → D to a complex disc is given with Y = f -1 (0), the weight filtration on the complex of nearby cocycles Ψ f (L) on Y can be described by these logarithmic techniques and a comparison theorem shows that the filtration coincides with the weight defined by the logarithm of the monodromy which provides the link with various results on the subject. (author)

  2. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  3. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  4. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  5. Theoretical and Numerical Approaches for Determining the Reflection and Transmission Coefficients of OPEFB-PCL Composites at X-Band Frequencies.

    Science.gov (United States)

    Ahmad, Ahmad F; Abbas, Zulkifly; Obaiys, Suzan J; Ibrahim, Norazowa; Hashim, Mansor; Khaleel, Haider

    2015-01-01

    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.

  6. Theoretical and Numerical Approaches for Determining the Reflection and Transmission Coefficients of OPEFB-PCL Composites at X-Band Frequencies.

    Directory of Open Access Journals (Sweden)

    Ahmad F Ahmad

    Full Text Available Bio-composites of oil palm empty fruit bunch (OPEFB fibres and polycaprolactones (PCL with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB and a high matrix percentage (87.8%PCL provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC, connected with the Agilent vector network analyzer (VNA, is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.

  7. Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas

    International Nuclear Information System (INIS)

    Liao Kai; Chen Jisheng; Li Chao

    2010-01-01

    The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)

  8. Computation of the optical properties of turbid media from slope and curvature of spatially resolved reflectance curves

    International Nuclear Information System (INIS)

    Jäger, Marion; Foschum, Florian; Kienle, Alwin

    2013-01-01

    The optical properties of turbid media were calculated from the curvature at the radial distance ρ O and the slope at the radial distance ρ* of simulated spatially resolved reflectance curves (ρ O (ρ*) denotes a decrease of the spatially resolved reflectance curve of 0.75 (2.4) orders of magnitude relative to the reflectance value at 1.2 mm). We found correlations between the curvature at ρ O and the reduced scattering coefficient as well as the slope at ρ* and the absorption coefficient. For the determination of the optical properties we used these two correlations. The calculation of the reduced scattering coefficient from the curvature at ρ O is practically independent from the absorption coefficient. Knowing the reduced scattering coefficient within a certain accuracy allows the determination of the absorption coefficient from the slope at ρ*. Additionally, we investigated the performance of an artificial neural network for the determination of the optical properties using the above explained correlations. This means we used the derivatives as input data. Our artificial neural network was capable to learn the mapping between the optical properties and the derivatives. In effect, the results for the determined optical properties improved in comparison to the above explained method. Finally, the procedure was compared to an artificial neural network that was trained without using the derivatives. (note)

  9. Sound absorption coefficient of coal bottom ash concrete for railway application

    Science.gov (United States)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  10. Use of code DTF-4 for determining the coefficient of back-reflection of the neutron within the thermonuclear plasma of a thermonuclear reactor controlled by the rate of the fission reactions. Pt. 1

    International Nuclear Information System (INIS)

    Cristea, G.

    1975-01-01

    The neutron problems are discussed of the thermonuclear reactor controlled by the rate of the fission reactions. The results obtained by rolling the DTF-4 program in a spherical geometry in the case of an ''external source'' problem permit to draw conclusions concerning the problems of the neutronics system of this thermonuclear reactor type. A relation is deduced for estimating the coefficient of back-reflection of the neutrons within the thermonuclear plasma and the focussion system is discussed of the neutronics of this reactor type

  11. Sedimentation Velocity Analysis of Large Oligomeric Chromatin Complexes Using Interference Detection.

    Science.gov (United States)

    Rogge, Ryan A; Hansen, Jeffrey C

    2015-01-01

    Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.

  12. TN approximation to reflected slab and computation of the critical half thicknesses

    International Nuclear Information System (INIS)

    Anli, F.; Guengoer, S.; Yasa, F.; Oztuerk, H.

    2006-01-01

    The criticality solution to one-speed neutron transport equation using the T N approximation is described for reflected slab. In the solution, Marshak type boundary condition is used. The critical half thicknesses are computed for different values of c and reflection coefficients. Computations are made by using the both T N and P N approximation for the comparison

  13. Analysis of seismic reflectivity and AVO pattern of BSR using OBS data in the southwestern offshore region of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, W.B.; Yang, H.R. [Jinwen Univ. of Science and Technology, Hsintien City, Taipei County, Taiwan (China). Dept. of Environment and Property Management; Schnurle, P.; Liu, C.S. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Lee, C.S. [National Taiwan Ocean Univ., Keelung, Taiwan (China). Inst. of Applied Earth Science; Wang, Y.; Chung, S.H.; Chen, S.C. [Ministry of Economic Affairs, Taiwan (China). Central Geological Survey

    2008-07-01

    Regional multi-channel seismic reflection profiles that were conducted in Taiwan from 2003 to 2006 resulted in the identification of a gas hydrate-related bottom simulating reflector (BSR) in the broad southwestern offshore region of Taiwan. In order to understand the regional distribution of methane hydrate bearing layers and explore concentrated hydrate bearing layers, this paper presented a comprehensive analysis of reflection coefficient and amplitude-versus-offset (AVO) pattern of BSR using ocean bottom seismographs (OBSs) seismic data acquired in the southwestern offshore region of Taiwan. The study focused on the analysis and interpretation of airgun array signals recorded by OBSs during 2004 and 2006. Ten profiles of seismic reflection/refraction with a total length of about 140 km and recorded by 50 recovered OBSs were acquired on the active and passive margins in offshore southwestern Taiwan. Amplitudes of the direct water arrival, the multiple, and the BSR were picked interactively for all the OBS lines. A quantitative representation of reflector strength was provided by calculation of reflection coefficients. In general, the seafloor reflection coefficients for the active and passive margins were estimated as 0.1-0.25. The paper presented the data and analysis as well as the results of the study. It was concluded that the results of calculated reflection coefficient of the BSR in offshore southwest Taiwan suggested that inferred hydrate concentration for the passive margin profiles was relatively higher than that for the active margin profiles. 4 refs.

  14. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  15. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  16. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  17. FDTD analysis of reflection of electromagnetic wave from a conductive plane covered with inhomogeneous time-varying plasma

    International Nuclear Information System (INIS)

    Liu Shaobin; Mo Jinjun; Yuan Naichang

    2003-01-01

    A finite-difference time-domain (FDTD) algorithm is applied to study the electro-magnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collisions frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasma are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave

  18. Thin transparent film characterization by photothermal reflectance (abstract)

    Science.gov (United States)

    Li Voti, R.; Wright, O. B.; Matsuda, O.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal reflectance methods have been intensively applied to the nondestructive testing of opaque thin films [D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996); C. Bento and D. P. Almond, Meas. Sci. Technol. 6, 1022 (1995); J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. Opt. 22, 3169 (1983)]. The basic principle is based on thermal wave interferometry: the opaque specimen is illuminated by a laser beam, periodically chopped at the frequency f, so as to generate a plane thermal wave in the surface region. This wave propagates in the film, approaches the rear interface (film-bulk), is partially reflected back, reaches the front surface, is again partially reflected back and so on, giving rise to thermal wave interference. A consequence of this interference is that the surface temperature may be enhanced (constructive interference) or reduced (destructive interference) by simply scanning the frequency f (that is, the thermal diffusion length μ=√D/πf ), so as to observe damped oscillations as a function of f; in practice only the first oscillation may be clearly resolved and used to measure either the film thickness d or the film thermal diffusivity D, and this situation occurs when μ≈d. In general, photothermal reflectance does not measure directly the surface temperature variation, but rather a directly related signal determined by the thermo-optic coefficients and the sample geometry; for detection it is common to monitor the optical reflectivity variation of a probe beam normally incident on the sample. If the thin film is partially transparent to the probe, the theory becomes more difficult [O. Matsuda and O. B. Wright, J. Opt. Soc. Am. B (in press)] and one should consider the probe beam multiple reflections in the thin film. The probe modulation is optically inhomogeneous due to the temperature-induced changes in refractive index. Although in the past the complexity of the analysis has impeded

  19. The nature of crustal reflectivity at the southwest Iberian margin

    Science.gov (United States)

    Buffett, G. G.; Torne, M.; Carbonell, R.; Melchiorre, M.; Vergés, J.; Fernàndez, M.

    2017-11-01

    Reprocessing of multi-channel seismic reflection data acquired over the northern margin of the Gulf of Cádiz (SW Iberian margin) places new constraints on the upper crustal structure of the Guadalquivir-Portimão Bank. The data presented have been processed with optimized stacking and interval velocity models, a better approach to multiple attenuation, preserved amplitude information to derive the nature of seismic reflectivity, and accurate time-to-depth conversion after migration. The reprocessed data reveal a bright upper crustal reflector just underneath the Paleozoic basement that spatially coincides with the local positive free-air gravity high called the Gulf of Cádiz Gravity High. To investigate the nature of this reflector and to decipher whether it could be associated with pieces of mantle material emplaced at upper crustal levels, we calculated its reflection coefficient and compared it to a buried high-density ultramafic body (serpentinized peridotite) at the Gorringe Bank. Its reflection coefficient ratio with respect to the sea floor differs by only 4.6% with that calculated for the high-density ultramafic body of the Gorringe Bank, while it differs by 35.8% compared to a drilled Miocene limestone unconformity. This means that the Gulf of Cádiz reflector has a velocity and/or density contrast similar to the peridotite at the Gorringe Bank. However, considering the depth at which it is found (between 2.0 and 4.0 km) and the available geological information, it seems unlikely that the estimated shortening from the Oligocene to present is sufficient to emplace pieces of mantle material at these shallow levels. Therefore, and despite the similarity in its reflection coefficient with the peridotites of the Gorringe Bank, our preferred interpretation is that the upper crustal Gulf of Cádiz reflector represents the seismic response of high-density intracrustal magmatic intrusions that may partially contribute to the Gulf of Cádiz Gravity High.

  20. O the Determination of the Complex Refractive Index of Powdered Materials in the 9 TO 11 Micrometer Spectral Region Utilizing AN Attenuated Total Reflectance Technique.

    Science.gov (United States)

    Gillespie, James Bryce

    1982-03-01

    A specific method of determining the complex refractive index of powdered materials using attenuated total reflectance (ATR) spectroscopy was investigated. A very precise laser/goniometric ATR system was assembled and applied to powdered samples of carbon blacks, graphite, kaolin clay, quartz, calcite, and sodalime glass beads. The reflectivity data fell into two categories: (1) data representative of a medium having a unique effective refractive index and (2) data representative of a scattering medium having no unique refractive index. Data of the first kind were obtained from all the carbon black, graphite, and kaolin clay samples. The Fahrenfort-Visser solution of the Fresnel equations was applied to the goniometric reflectivity data for these samples to obtain the complex refractive index of these effective media. The complex refractive index obtained in this manner is not that of the bulk material but is instead a value which may be related to the bulk material value through some refractive index mixing rule. A systematic experiment using carbon black of particle size 0.0106 mm diameter was conducted to determine the applicability of several mixture rules for the volume packing fraction range of .2 to .6 which is most often encountered. The Bruggemann effective medium theory produced credible results while the Lorentz-Lorenz rule and the empirical Biot-Arago rule were invalid in this volume packing region. The Bruggemann rule was applied to lampblack, Mogul-L carbon black, graphite, and kaolin clay to obtain the complex refractive indices of these materials from the ATR spectroscopy data. Goniometric reflectivity data representative of an inhomogeneous scattering medium were obtained from all the powdered quartz, powdered calcite, and sodalime glass beads samples. These samples all contained particles with diameters nearly as large as the wavelength. These data demonstrate that the ATR technique, coupled with an effective medium analysis, may be used to obtain

  1. Measurement of distribution coefficients of U series radionuclides on soils under shallow land environment (2). pH dependence of distribution coefficients

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Inagawa, Satoshi; Sasaki, Tomozou

    2001-01-01

    In order to study sorption behavior of U series radionuclides (Pb, Ra, Th, Ac, Pa and U) under aerated zone environment (loam-rain water system) and aquifer environment (sand-groundwater system) for safety assessment of U bearing waste, pH dependence of distribution coefficients of each element has been obtained. The pH dependence of distribution coefficients of Pb, Ra, Th, Ac and U was analyzed by model calculation based on aqueous speciation of each element and soil surface charge characteristics, which is composed of a cation exchange capacity and surface hydroxyl groups. From the model calculation, the sorption behavior of Pb, Ra, Th, Ac and U could be described by a combination of cation exchange reaction and surface-complexation model. (author)

  2. A comparison between two global optimization algorithms (genetic and differential evolution) to calculate the reflection coefficients in fractured media; Uma comparacao entre dois algoritmos de otimizacao global (algoritmo genetico e evolucao diferencial) para inversao de coeficientes de reflexao em meios fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Vanzeler, Francisco Joclean Alves

    1999-06-01

    In this work, we extract the elastic stiffness and mass density from an multi azimuthal qP-wave reflection coefficients at an interface separating two anisotropic media with monoclinic symmetry with at least one of its planes of symmetry parallel to the interface. This objective was reach by forward and inverse modeling. We calculate the q-P-wave reflection for three models (I, II, III) of anisotropic equivalent medium: isotropic medium above a TIH medium; TIV medium above a TIH medium; and orthorhombic medium above a TIH medium. The TIH medium is equivalent an isotropic fractured medium with equivalent elastic stiffness and mass density calculated by the Hudson formulation. The reflection coefficients used was on its exact form and was generated for models I, II and III in multi-azimuthal/incidence angles and contaminated by gaussian noise. In the inverse modeling we work with GA and with DE algorithms to calculate the inversion parameter (5 elastic stiffness and mass density for bottom media and Vs of upper isotropic media) by minimization of 12 norm of difference between the true and synthetic reflection coefficient. We assume that we know the parameter of the upper media of the three models, except Vs for model one in especial case of inversion of upper media.The parameter to be determined by inverse modeling are parametrized in model space for values that is in according with the value of the observed velocity of propagation of elastic waves in the earth crust, and the resolution of measure, and constraints of elastic stability of the solid media. The GA and DE algorithms reached good inversion to the models with at least three azimuthal angles, (0 deg C, 45 deg C and 90 deg C) and incidence angles of 34 deg C for model I, and 50 deg C inverted only by GA for models II and III; and the especial case take by DE that need at least 44 deg C to invert the model I with the Vs of the upper media. From this results we can see the potential to determine from q

  3. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  4. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    Science.gov (United States)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  5. Schur Stability Regions for Complex Quadratic Polynomials

    Science.gov (United States)

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  6. Complexity dynamics and Hopf bifurcation analysis based on the first Lyapunov coefficient about 3D IS-LM macroeconomics system

    Science.gov (United States)

    Ma, Junhai; Ren, Wenbo; Zhan, Xueli

    2017-04-01

    Based on the study of scholars at home and abroad, this paper improves the three-dimensional IS-LM model in macroeconomics, analyzes the equilibrium point of the system and stability conditions, focuses on the parameters and complex dynamic characteristics when Hopf bifurcation occurs in the three-dimensional IS-LM macroeconomics system. In order to analyze the stability of limit cycles when Hopf bifurcation occurs, this paper further introduces the first Lyapunov coefficient to judge the limit cycles, i.e. from a practical view of the business cycle. Numerical simulation results show that within the range of most of the parameters, the limit cycle of 3D IS-LM macroeconomics is stable, that is, the business cycle is stable; with the increase of the parameters, limit cycles becomes unstable, and the value range of the parameters in this situation is small. The research results of this paper have good guide significance for the analysis of macroeconomics system.

  7. New Complexity Scalable MPEG Encoding Techniques for Mobile Applications

    Directory of Open Access Journals (Sweden)

    Stephan Mietens

    2004-03-01

    Full Text Available Complexity scalability offers the advantage of one-time design of video applications for a large product family, including mobile devices, without the need of redesigning the applications on the algorithmic level to meet the requirements of the different products. In this paper, we present complexity scalable MPEG encoding having core modules with modifications for scalability. The interdependencies of the scalable modules and the system performance are evaluated. Experimental results show scalability giving a smooth change in complexity and corresponding video quality. Scalability is basically achieved by varying the number of computed DCT coefficients and the number of evaluated motion vectors but other modules are designed such they scale with the previous parameters. In the experiments using the “Stefan” sequence, the elapsed execution time of the scalable encoder, reflecting the computational complexity, can be gradually reduced to roughly 50% of its original execution time. The video quality scales between 20 dB and 48 dB PSNR with unity quantizer setting, and between 21.5 dB and 38.5 dB PSNR for different sequences targeting 1500 kbps. The implemented encoder and the scalability techniques can be successfully applied in mobile systems based on MPEG video compression.

  8. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  9. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  10. Determination of surface tension coefficient of liquids by diffraction of light on capillary waves

    International Nuclear Information System (INIS)

    Nikolić, D; Nešić, Lj

    2012-01-01

    This paper describes a simple technique for determining the coefficient of the surface tension of liquids, based on laser light diffraction on capillary waves. Capillary waves of given frequency are created by an exciter needle acting on the surface of liquid and represent a reflective diffraction grating, the constant of which (the wavelength of capillary waves) can be determined based on a known incidence angle of light (grazing angle). We obtain the coefficient of the surface tension of liquids by applying the dispersion relation for capillary waves and analyze the difficulties that arise when setting up and conducting the experiment in detail. (paper)

  11. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  12. Properties of interstellar dust in reflection nebulae

    International Nuclear Information System (INIS)

    Sellgren, K.

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer

  13. Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients

    International Nuclear Information System (INIS)

    Guseinov, I.I.; Oezmen, A.; Atav, Ue

    1995-01-01

    Using binomial coefficients the Clebsch-Gordan and Gaunt coefficients were calculated for extremely large quantum numbers. The main advantage of this approach is directly calculating these coefficients, instead of using recursion relations. Accuracy of the results is quite high for quantum numbers l 1 , and l 2 up to 100. Despite direct calculation, the CPU times are found comparable with those given in the related literature. 11 refs., 1 fig., 2 tabs

  14. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  15. Audibility of individual reflections in a complete sound field, III

    DEFF Research Database (Denmark)

    Bech, Søren

    1996-01-01

    This paper reports on the influence of individual reflections on the auditory localization of a loudspeaker in a small room. The sound field produced by a single loudspeaker positioned in a normal listening room has been simulated using an electroacoustic setup. The setup models the direct sound......-independent absorption coefficients of the room surfaces, and (2) a loudspeaker with directivity according to a standard two-way system and absorption coefficients according to real materials. The results have shown that subjects can distinguish reliably between timbre and localization, that the spectrum level above 2 k...

  16. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    International Nuclear Information System (INIS)

    Havstad, M.A.; Qiu, T.

    1995-04-01

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 μm. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given

  17. Link prediction with node clustering coefficient

    Science.gov (United States)

    Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve

    2016-06-01

    Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.

  18. Optical fringe-reflection deflectometry with bundle adjustment

    Science.gov (United States)

    Xiao, Yong-Liang; Li, Sikun; Zhang, Qican; Zhong, Jianxin; Su, Xianyu; You, Zhisheng

    2018-06-01

    Liquid crystal display (LCD) screens are located outside of a camera's field of view in fringe-reflection deflectometry. Therefore, fringes that are displayed on LCD screens are obtained through specular reflection by a fixed camera. Thus, the pose calibration between the camera and LCD screen is one of the main challenges in fringe-reflection deflectometry. A markerless planar mirror is used to reflect the LCD screen more than three times, and the fringes are mapped into the fixed camera. The geometrical calibration can be accomplished by estimating the pose between the camera and the virtual image of fringes. Considering the relation between their pose, the incidence and reflection rays can be unified in the camera frame, and a forward triangulation intersection can be operated in the camera frame to measure three-dimensional (3D) coordinates of the specular surface. In the final optimization, constraint-bundle adjustment is operated to refine simultaneously the camera intrinsic parameters, including distortion coefficients, estimated geometrical pose between the LCD screen and camera, and 3D coordinates of the specular surface, with the help of the absolute phase collinear constraint. Simulation and experiment results demonstrate that the pose calibration with planar mirror reflection is simple and feasible, and the constraint-bundle adjustment can enhance the 3D coordinate measurement accuracy in fringe-reflection deflectometry.

  19. How well do clinical pain assessment tools reflect pain in infants?

    Science.gov (United States)

    Slater, Rebeccah; Cantarella, Anne; Franck, Linda; Meek, Judith; Fitzgerald, Maria

    2008-06-24

    Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing. Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP) score in the same infant to the same stimulus (n = 12, 33 test occasions). Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57). Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p free.

  20. Kubelka-Munk reflectance theory applied to porcelain veneer systems using a colorimeter.

    Science.gov (United States)

    Davis, B K; Johnston, W M; Saba, R F

    1994-01-01

    The purpose of this study was to demonstrate the ability of Kubelka-Munk reflectance theory to predict color parameters of veneer porcelain on various backings using colorimetric measurements. Tristimulus absorption and scattering coefficients were used to predict the respective tristimulus reflectance values of A1, D3, and translucent porcelain samples after they had been bonded to light and dark substrates using universal, opaque, and untinted shades of bonding resin. Observed and predicted reflectance values exhibited high correlation (r2 > or = 0.93 for each porcelain shade). Kubelka-Munk theory offers an accurate prediction for the resultant colorimetric reflectance parameters of veneer porcelain bonded to variously colored backings.

  1. Data sets for hydrogen reflection and their use in neutral transport calculations

    International Nuclear Information System (INIS)

    Eckstein, W.; Heifetz, D.B.

    1986-08-01

    A realistic characterization of the interaction of ions and neutral particles with device walls is important for any edge plasma calculation. Present reflection models vary in detail and computational efficiency. This paper presents a data set for the distribution of the reflection coefficient, R N , over reflected energy, polar, and azimuthal angles, as functions of incident polar angle and energy. These results have been computed using a vectorized version of the TRIM Monte Carlo code. The data are stored using an algorithm for reducing the data into three one-dimensional distributions, resulting in a realistic reflection model which can be used very efficiently in plasma edge calculations. (orig.)

  2. Detailed Analysis of Amplitude and Slope Diffraction Coefficients for knife-edge structure in S-UTD-CH Model

    Directory of Open Access Journals (Sweden)

    Eray Arik

    2017-03-01

    Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.

  3. Determination of the isotopic coefficient for x2N using a dimensional analysis of the Schroedinger equation

    International Nuclear Information System (INIS)

    Pali, R.; Coss, R. de; Mustre de Leon, J.

    1999-01-01

    The adimensionalization of equations which govern the dynamics of a physical system can be very useful when studying the qualitative behavior of any variable involved in those equations. In a dynamic system like a particle moving in an effective potential, the isotopic coefficient measure the degree of anharmonicity of the potential. In general each eigenstate has a different coefficient. In this work, we determined the isotopic coefficients for potentials of the form V(x) ∝ x 2N (N=1,2,3,...) through the adimensionalization process of the Schroedinger equation. We found an analytic expression for the isotopic coefficient which depends only of N but not on the eigenstate. The isotopic coefficient value starts at 1/2 for N=1 (harmonic potential) and gradually converges to 1.0 when N increments. This reflects the fact that the potential is more anharmonic for increasing N. (Author)

  4. Interdisciplinarity and self-reflection in civic education

    DEFF Research Database (Denmark)

    Christensen, Torben Spanget

    2013-01-01

    are complex and can only be understood interdisciplinary. Therefore the ability to reflect problems interdisciplinary is crucial to the global citizen. The second argument is that the ability of self-reflection is necessary for citizens in their efforts to understand, maintain and develop their own...... on interdisciplinarity and self-reflection-as-citizen as key tools for analyzing societal problems and to act democratically on them. And it is suggested that dealing with interdisciplinarity requires use of second order concepts and that self-reflection as citizens requires third order concepts...

  5. Predictive QSPR Modelling for the Second Virial Coefficient of the Pure Organic Compounds.

    Science.gov (United States)

    Mokshyna, E; Polishchuk, P G; Nedostup, V I; Kuzmin, V E

    2015-01-01

    In this article we developed a system of the predictive models for the second virial coefficients of the pure compounds. Second virial coefficient is the property derived from the virial equation of state, and is of particular interest as it describes pair intermolecular interactions. The two-layer QSPR models were developed, which exploited the well-known physical equations and allowed us to include this information into traditional QSPR methodology. This shows some new perspectives for work with temperature-dependent properties. It was shown that 2D descriptors can be successfully used for modeling of complex thermodynamic properties like virial coefficients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye

    Science.gov (United States)

    Madan, Christopher R.; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B.; Sommer, Tobias

    2018-01-01

    Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term ‘visual complexity.’ Visual complexity can be described as, “a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components.” Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli. PMID:29403412

  7. Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye.

    Science.gov (United States)

    Madan, Christopher R; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B; Sommer, Tobias

    2017-01-01

    Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term 'visual complexity.' Visual complexity can be described as, "a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components." Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an 'arousal-complexity bias' to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli.

  8. Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye

    Directory of Open Access Journals (Sweden)

    Christopher R. Madan

    2018-01-01

    Full Text Available Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term ‘visual complexity.’ Visual complexity can be described as, “a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components.” Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli.

  9. Critical thinking evaluation in reflective writing: Development and testing of Carter Assessment of Critical Thinking in Midwifery (Reflection).

    Science.gov (United States)

    Carter, Amanda G; Creedy, Debra K; Sidebotham, Mary

    2017-11-01

    develop and test a tool designed for use by academics to evaluate pre-registration midwifery students' critical thinking skills in reflective writing. a descriptive cohort design was used. a random sample (n = 100) of archived student reflective writings based on a clinical event or experience during 2014 and 2015. a staged model for tool development was used to develop a fifteen item scale involving item generation; mapping of draft items to critical thinking concepts and expert review to test content validity; inter-rater reliability testing; pilot testing of the tool on 100 reflective writings; and psychometric testing. Item scores were analysed for mean, range and standard deviation. Internal reliability, content and construct validity were assessed. expert review of the tool revealed a high content validity index score of 0.98. Using two independent raters to establish inter-rater reliability, good absolute agreement of 72% was achieved with a Kappa coefficient K = 0.43 (pcritical thinking in reflective writing. Validation with large diverse samples is warranted. reflective practice is a key learning and teaching strategy in undergraduate Bachelor of Midwifery programmes and essential for safe, competent practice. There is the potential to enhance critical thinking development by assessingreflective writing with the CACTiM (reflection) tool to provide formative and summative feedback to students and inform teaching strategies. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Quantized correlation coefficient for measuring reproducibility of ChIP-chip data

    Directory of Open Access Journals (Sweden)

    Kuroda Mitzi I

    2010-07-01

    Full Text Available Abstract Background Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data. Results We develop the Quantized correlation coefficient (QCC that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization, a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis. Conclusions To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.

  11. Quantized correlation coefficient for measuring reproducibility of ChIP-chip data.

    Science.gov (United States)

    Peng, Shouyong; Kuroda, Mitzi I; Park, Peter J

    2010-07-27

    Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data. We develop the Quantized correlation coefficient (QCC) that is much less dependent on the amount of signal. This involves discretization of data into set of quantiles (quantization), a merging procedure to group the background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal. The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging procedure can also suggest a proper quantile threshold for separating signal from background for further analysis. To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number and gene expression data.

  12. Some features of light propagation through layers with a complex refractive index

    International Nuclear Information System (INIS)

    Efimov, V.V.; Sementsov, D.I.

    1994-01-01

    By solving Maxwell's equations, expressions are obtained for the energy fluxes both inside and outside a layer with a complex refractive index at normal incidence of light. It is shown that inside the layer, along with fluxes of forward and backward waves, an interference flux can be distinguished whose magnitude is proportional to the imaginary part of the refractive index. A detailed numerical analysis of the energy transmission (T) and reflection (R) coefficients versus the thickness of the layer with negative absorption is performed for normal incidence of light onto the layer surface. Total distribution of the energy flux over the layer thickness is considered both for absorbing and amplifying layers. 13 refs., 4 figs

  13. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model

    International Nuclear Information System (INIS)

    Kienle, A.; Glanzmann, T.

    1999-01-01

    We have investigated the possibility of determining the optical coefficients of muscle in the extremities with in vivo time-resolved reflectance measurements using a layered model. A solution of the diffusion equation for two layers was fitted to three-layered Monte Carlo calculations simulating the skin, the subcutaneous fat and the muscle. Relative time-resolved reflectance data at two distances were used to derive the optical coefficients of the layers. We found for skin and subcutaneous fat layer thicknesses (l 2 ) of up to 10 mm that the estimated absorption coefficients of the second layer of the diffusion model have differences of less than 20% compared with those of the muscle layer of the Monte Carlo simulations if the thickness of the first layer of the diffusion model is also fitted. If l 2 is known, the differences are less than 5%, whereas the use of a semi-infinite model delivers differences of up to 55%. Even if l 2 is only approximately known the absorption coefficient of the muscle can be determined accurately. Experimentally, the time-resolved reflectance was measured on the forearms of volunteers at two distances from the incident beam by means of a streak camera. The thicknesses of the tissues involved were determined by ultrasound. The optical coefficients were derived from these measurements by applying the two-layered diffusion model, and results in accordance with the theoretical studies were observed. (author)

  14. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    Science.gov (United States)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  15. Theory of the Andreev reflection and the density of states in proximity contact normal-superconducting infinite double-layer

    International Nuclear Information System (INIS)

    Nagato, Yasushi; Nagai, Katsuhiko

    1993-01-01

    Proximity contact N-S double-layer with infinite layer widths is studied in the clean limit. The finite reflection at the interface is taken into account. Starting from a recent theory of finite width double-layer by Ashida et al., the authors obtain explicit expressions for the quasi-classical Green's function which already satisfy the boundary condition and include no exploding terms at infinities. The self-consistent pair potentials are obtained numerically with sufficient accuracy. The Andreev reflection at the N-S interface is discussed on the basis of the self-consistent pair potential. It is shown that there exists a resonance state in a potential valley formed between the depressed pair potential and the partially reflecting interface, which leads to a peak of the Andreev reflection coefficient with the height unity slightly below the bulk superconductor energy gap. They also find general relationship between the Andreev reflection coefficient and the local density of states of the superconductor just at the interface

  16. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  17. Assessment of satellite derived diffuse attenuation coefficients ...

    Science.gov (United States)

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that

  18. Open-Ended Waveguide Measurement and Numerical Simulation of the Reflectivity of Petri Dish Supported Skin Cell Monolayers in the mm-wave Range

    Science.gov (United States)

    Beneduci, Amerigo; Chidichimo, Giuseppe

    2012-05-01

    Open-ended waveguide reflectometry is a promising tool for permittivity and other material properties calculation at mm-waves (30-300 GHz). Measurement of the reflection coefficient does not require sample manipulation, allowing in vivo and in vitro non destructive studies on cells. Here we used this technique for measuring the power reflection coefficient (reflectivity) of water and Petri dish supported human skin melanoma and keratinocyte cell cultures, in the 53-72 GHz frequency range. The dependence of the reflectivity on polystyrene or glass thickness of the Petri base plate and on the cell layer thickness was analyzed. Permittivity data were then easily retrieved by using a plane wave-dominant mode approach for formulating the reflectivity at the aperture of the flange-mounted open-ended rectangular waveguide probe. Limits and validity of such an approximate approach were analyzed and compared with full-wave near field formulations for which magnitude and phase of the reflection coefficient must be measured and solved using complicated systems of integral equations and extensive numerical calculation. Finally, Petri dish reflectivity measured by the open-ended waveguide method was compared with that numerically simulated under far-field exposure conditions used in a large number of in vitro studies. Such an analysis showed that, under certain conditions, open-ended reflectivity values approach the far field ones.

  19. Osmotic and activity coefficients of triorganophosphates in n-octane

    International Nuclear Information System (INIS)

    Sagert, N.H.; Lau, D.W.P.

    1982-01-01

    Vapour pressure osmometry was used to measure osmotic coefficients for tributylphosphate (TBP), tricresylphosphate (TCP), and triethylhexylphosphate (THEP) in n-octane at 30, 40, 50, and 60 0 C and at molalities up to 0.3 mol/kg. Activity coefficients and excess thermodynamic properties (unsymmetrical definition) were calculated from these osmotic coefficients. At 30 0 C, the excess Gibbs free energies for 0.1 mol of solute in 1.0 kg n-octane were -42 J, -66 J, and -20 J for TBP, TCP, and TEHP, respectively. The more ideal behavior of the TEHP-octane system is attributed to the increasing importance of hydrocarbon-hydrocarbon interactions as the chain length is increased. The excess enthalpies for 0.1 mol of solute in 1.0 kg of solvent were -100 J, and -300 J, and -150 J for TBP, TCP, and TEHP, respectively. Thus, association of these solutes arises primarily from entropic effects. Our data could generally be accommodated adequately by postulating association of monomers into dimmers. The exception was TCP at lower temperatures, where more complex models were required

  20. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    Science.gov (United States)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  1. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (pcorrelated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Variation of wave speed determined by the PU-loop with proximity to a reflection site.

    Science.gov (United States)

    Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W

    2011-01-01

    Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.

  3. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    and the inequality is sharp for the inverse of the Koebe function k(z) = z/(1 − z)2. An alternative approach to the inverse coefficient problem for functions in the class S has been investigated by Schaeffer and Spencer [27] and FitzGerald [6]. Although, the inverse coefficient problem for the class S has been completely solved ...

  4. Bound states and scattering coefficients of the -aδ(x)+bδ'(x) potential

    International Nuclear Information System (INIS)

    Gadella, M.; Negro, J.; Nieto, L.M.

    2009-01-01

    We show that a one-dimensional Schroedinger equation in which the potential is a delta well plus a δ ' interaction at the same point has a bound state, and we obtain the energy of this bound state in terms of the parameters. In addition, the expression of the reflection and transmission coefficients is also fully determined

  5. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    Science.gov (United States)

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  6. Synthesis, reactivity, and properties of N-fused porphyrin rhenium(I) tricarbonyl complexes.

    Science.gov (United States)

    Toganoh, Motoki; Ikeda, Shinya; Furuta, Hiroyuki

    2007-11-12

    The thermal reactions of N-fused tetraarylporphyrins or N-confused tetraarylporphyrins with Re2(CO)10 gave the rhenium(I) tricarbonyl complexes bearing N-fused porphyrinato ligands (4) in moderate to good yields. The rhenium complexes 4 are characterized by mass, IR, 1H, and 13C NMR spectroscopy, and the structures of tetraphenylporphynato complex 4a and its nitro derivative 15 are determined by X-ray single crystal analysis. The rhenium complexes 4 show excellent stability against heat, light, acids, bases, and oxidants. The aromatic substitution reactions of 4 proceed without a loss of the center metal to give the nitro (15), formyl (16), benzoyl (17), and cyano derivatives (19), regioselectively. In the electrochemical measurements for 4, one reversible oxidation wave and two reversible reduction waves are observed. Their redox potentials imply narrow HOMO-LUMO band gaps of 4 and are consistent with their electronic absorption spectra, in which the absorption edges exceed 1000 nm. Theoretical study reveals that the HOMO and LUMO of the rhenium complexes are exclusively composed of the N-fused porphyrin skeleton. Protonation of 4 takes place at the 21-position regioselectively, reflecting the high coefficient of the C21 atom in the HOMO orbital. The skeletal rearrangement reaction from N-confused porphyrin Re(I) complex (8) to N-fused porphyrin Re(I) complex (4) is suggested from the mechanistic study as well as DFT calculations.

  7. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  8. NNLO coefficient functions of Higgs and Drell-Yan cross sections in Mellin space

    International Nuclear Information System (INIS)

    Bluemlein, J.; Ravindran, V.

    2004-06-01

    We calculate the Mellin moments of next-to-next-to-leading order coefficient functions of the Drell-Yan and Higgs production cross sections. The results can be expressed in term of finite harmonic sums which are maximally threefold up to weight four. Various algebraic relations among these finite sums reduce the complexity of the results suitable for fast numerical evaluations. It is shown that only five non-trivial functions occur besides Euler's ψ-function in the representation of these Wilson coefficients. (orig.)

  9. The effect of experimental resolution on crystal reflectivity and secondary extinction in neutron diffraction

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1965-01-01

    The reflectivity for neutrons of a plane slab crystal is calculated in the transmission case when the crystal is placed between two Seller collimators. The calculations indicate that the crystal reflectivity, as well as the secondary extinction coefficient, depends signicantly on the angular...... resolution of the collimators. Curves are given for the extinction of the crystal with different crystal and collimator parameters....

  10. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  11. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  12. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  13. Diffusion coefficients of the ternary system (2-hydroxypropyl-{beta}-cyclodextrin + caffeine + water) at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana C.F. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)], E-mail: anacfrib@ci.uc.pt; Santos, Cecilia I.A.V. [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: cecilia.alves@uah.es; Lobo, Victor M.M. [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)], E-mail: vlobo@ci.uc.pt; Cabral, Ana M.T.D.P.V. [Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra (Portugal)], E-mail: acabral@ff.uc.pt; Veiga, Francisco J.B. [Faculty of Pharmacy, University of Coimbra, 3000-295 Coimbra (Portugal)], E-mail: fveiga@ci.uc.pt; Esteso, Miguel A. [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: miguel.esteso@uah.es

    2009-12-15

    Ternary mutual diffusion coefficients measured by Taylor dispersion method (D{sub 11}, D{sub 22}, D{sub 12}, and D{sub 21}) are reported for aqueous solutions of 2-hydroxypropyl-{beta}-cyclodextrin (HP-{beta}-CD) + caffeine at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol . dm{sup -3}, for each solute, respectively. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and thermodynamic behaviour of caffeine and 2-hydroxypropyl-{beta}-cyclodextrin in solution. For example, from these data it will be possible to estimate some parameters, such as the fraction of associated species HP-{beta}-CD (X{sub 1}) and caffeine (X{sub 2}) in this complex, the monomer and dimer fractions, X{sub 2}{sup M} and X{sub 2}{sup D}, respectively, and the limiting diffusion coefficients of the HP-{beta}-CD, D{sub HPBCD}{sup 0}, of the dimers caffeine entities, D{sub D}{sup 0}, and of those complexes (1:1), D{sub complex}{sup 0}.

  14. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    Science.gov (United States)

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  15. Tensor models, Kronecker coefficients and permutation centralizer algebras

    Science.gov (United States)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  16. Feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify iron-cyanide (Fe-CN) complexes in soil

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-04-01

    Contaminated sites create a significant risk to human health, by poisoning drinking water, soil, air and as a consequence food. Continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze considerable amount of samples. At the present time quantitative determination of Fe-CN concentration in soil usually requires a time consuming two step process: digestion of the sample (e.g., micro distillation system) and its analytical detection performed, e.g., by automated spectrophotometrical flow injection analysis (FIA). In order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS) to quantify the Fe-CN complexes in soil matrix, 42 soil samples were collected (8 to 12.520 mg kg-1CN) indicating single symmetrical CN band in the range 2092 - 2084 cm-1. Partial least squares (PLS) calibration-validation model revealed IR response to CNtot exceeding 1268 mg kg-1 (limit of detection, LOD). Subsequently, leave-one-out cross-validation (LOO-CV) was performed on soil samples containing low CNtot (900 mg kg-1 resulted in LOD equal to 3494 mg kg-1. Our results indicate that spectroscopic data in combination with PLS statistics can efficiently be used to predict Fe-CN concentrations in soil. We conclude that the protocol applied in this study can strongly reduce the time and costs essential for the spatial and vertical screening of the site affected by complexed Fe-CN.

  17. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    International Nuclear Information System (INIS)

    Habib Ullah, M; Islam, M T

    2014-01-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < −10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart. (paper)

  18. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  19. The Physical Significance of the Synthetic Running Correlation Coefficient and Its Applications in Oceanic and Atmospheric Studies

    Science.gov (United States)

    Zhao, Jinping; Cao, Yong; Wang, Xin

    2018-06-01

    In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs.

  20. The N400 and Late Positive Complex (LPC Effects Reflect Controlled Rather than Automatic Mechanisms of Sentence Processing

    Directory of Open Access Journals (Sweden)

    Boris Kotchoubey

    2012-08-01

    Full Text Available This study compared automatic and controlled cognitive processes that underlie event-related potentials (ERPs effects during speech perception. Sentences were presented to French native speakers, and the final word could be congruent or incongruent, and presented at one of four levels of degradation (using a modulation with pink noise: no degradation, mild degradation (2 levels, or strong degradation. We assumed that degradation impairs controlled more than automatic processes. The N400 and Late Positive Complex (LPC effects were defined as the differences between the corresponding wave amplitudes to incongruent words minus congruent words. Under mild degradation, where controlled sentence-level processing could still occur (as indicated by behavioral data, both N400 and LPC effects were delayed and the latter effect was reduced. Under strong degradation, where sentence processing was rather automatic (as indicated by behavioral data, no ERP effect remained. These results suggest that ERP effects elicited in complex contexts, such as sentences, reflect controlled rather than automatic mechanisms of speech processing. These results differ from the results of experiments that used word-pair or word-list paradigms.

  1. Low-frequency asymptotic analysis of seismic reflection from afluid-saturated medium

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.B.; Korneev, V.A.; Goloshubin, G.M.; Patzek, T.W.

    2004-04-14

    Reflection of a seismic wave from a plane interface betweentwo elastic media does not depend on the frequency. If one of the mediais poroelastic and fluid-saturated, then the reflection becomesfrequency-dependent. This paper presents a low-frequency asymptoticformula for the reflection of seismic plane p-wave from a fluid-saturatedporous medium. The obtained asymptotic scaling of the frequency-dependentcomponent of the reflection coefficient shows that it is asymptoticallyproportional to the square root of the product of the reservoir fluidmobility and the frequency of the signal. The dependence of this scalingon the dynamic Darcy's law relaxation time is investigated as well.Derivation of the main equations of the theory of poroelasticity from thedynamic filtration theory reveals that this relaxation time isproportional to Biot's tortuosity parameter.

  2. Reflections on Self-Reflection: Contemplating Flawed Self-Judgments in the Clinic, Classroom, and Office Cubicle.

    Science.gov (United States)

    Dunning, David; Heath, Chip; Suls, Jerry M

    2018-03-01

    We reflect back on our 2004 monograph reviewing the implications of faulty self-judgment for health, education, and the workplace. The review proved popular, no doubt because the importance of accurate self-assessment is best reflected in just how broad the literature is that touches on this topic. We discuss opportunities and challenges to be found in the future study of self-judgment accuracy and error, and suggest that designing interventions aimed at improving self-judgments may prove to be a worthwhile but complex and nuanced task.

  3. Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field

    Science.gov (United States)

    Gumerov, Nail A.

    1999-01-01

    Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.

  4. Recurrence relations between transformation coefficients of hyperspherical harmonics and their application to Moshinsky coefficients

    International Nuclear Information System (INIS)

    Raynal, J.

    1976-01-01

    Closed formulae and recurrence relations for the transformation of a two-body harmonic oscillator wave function to the hyperspherical formalism are given. With them Moshinsky or Smirnov coefficients are obtained from the transformation coefficients of hyperspheric harmonics. For these coefficients the diagonalization method of Talman and Lande reduces to simple recurrence relations which can be used directly to compute them. New closed formulae for these coefficients are also derived: they are needed to compute the two simplest coefficients which determine the sign for the recurrence relation. (Auth.)

  5. Why is the Ratio of Reflectivity Effective for Chlorophyll Estimation in the Lake Water?

    Directory of Open Access Journals (Sweden)

    Kazuo Oki

    2010-07-01

    Full Text Available The reasons why it is effective to estimate the chlorophyll-a concentration with the ratio of spectral radiance reflectance at the red light region and near infrared regions were shown in theory using a two-flow model. It was found that all of the backscattering coefficients can consequently be ignored by using the ratio of spectral radiance reflectance, which is the ratio of the upward radiance to the downward irradiance, at the red light and near infrared regions. In other words, the ratio can be expressed by using only absorption coefficients, which are more stable for measurement than backscattering coefficients. In addition, the band selection is crucial for producing the band ratio when the chlorophyll-a concentration is estimated without the effects of backscattering. I conclude that the two wavelengths selected must be close, but one must be within the absorption range of chlorophyll-a, and the other must be outside of the absorption range of chlorophyll-a, in order to accurately estimate the chlorophyll-a concentration.

  6. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  7. What Kind of Reflection Do We Need in Public Management?

    Science.gov (United States)

    Knassmüller, Monika; Meyer, Renate E.

    2013-01-01

    In a rapidly changing and increasingly complex environment, the importance of reflection for public managers has been acknowledged almost unanimously by academics as well as practitioners. In this article we highlight the necessity to look at reflection in a more nuanced way. Reflection is a broad and multifaceted concept and public sector work…

  8. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  9. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.

    Science.gov (United States)

    Hao, Dapeng; Ren, Cong; Li, Chuanxing

    2012-05-01

    A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling). Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn't show dependence of degree. Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to "deterministic model" of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  11. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    Science.gov (United States)

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  12. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  13. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    Science.gov (United States)

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  14. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    Science.gov (United States)

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  15. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    Science.gov (United States)

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  16. Enhancing Reflective Practice in Multicultural Counseling through Cultural Auditing

    Science.gov (United States)

    Collins, Sandra; Arthur, Nancy; Wong-Wylie, Gina

    2010-01-01

    Counselors work in an increasingly complex cultural milieu where every encounter with a client must be considered multicultural in nature. Reflective practice is a central component of professional competence and necessarily involves attention to culture. The cultural auditing model provides an effective and flexible reflective process for…

  17. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    Science.gov (United States)

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  18. Diffusion, sorption and stability of radionuclide-organic complexes in clays and clay-organic complexes

    International Nuclear Information System (INIS)

    Staunton, S.; Rees, L.V.C.

    1991-01-01

    The dependence on various parameters of the diffusion coefficient of neptunium (V) in clay systems has been studied. The effect of the clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands have been investigated. The diffusion coefficients were compared to those predicted if diffusion occurred only in the liquid phase and adsorption was reversible; agreement was fairly good. An approximation to the diffusion coefficient can thus be obtained from readily measured experimental parameters. There is no evidence of surface phase diffusion. The most significant factor in determining the diffusion coefficient is the magnitude of the distribution ratio, itself highly dependent on the nature of the clay. Neither EDTA nor citrate modified the diffusion coefficient. Although the presence of 1 or 100 mg dm -3 of Aldrich humic acid had little effect on the distribution ratio of neptunium, it caused a lowering of the measured diffusion coefficient. This is interpreted in terms of the limiting liquid phase diffusion coefficient and the true liquid phase impedance factor of neptunium-humic acid complexes. 21 figs; 3 tabs; 20 refs

  19. Reflections and meditations upon complex chromosomal exchanges.

    Science.gov (United States)

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  20. Optimized probabilistic calibration of safety coefficients in defect severity assessments; Dimensionnement probabiliste optimise des coefficients de securite dans les etudes de nocivite de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Ardillon, E.; Pitner, P.; Barthelet, B. [Electricite de France, Direction des Etudes at Recherches, 92 - Clamart (France)

    1997-12-31

    The construction codes currently used in nuclear engineering recommend analysis methods and criteria consistent with a deterministic approach. Since 1993, in the framework of work related to the RSEM codes, the EFMT Branch has launched a probabilistic approach to establish a link between the current `deterministic` rules and failure risk assessments for the structures considered. There is an explicit link between the two approaches in the elementary strength/load case where the variables are Gaussian. This case provides the basis for the proposed methodology. In the complex case discussed in this paper, involving cracked piping with numerous non-Gaussian inputs, for a given failure mode, there is an implicit relationship between the target reliability level and the partial safety coefficients attached to each variable. The mean flaw size is the intermediate parameter used to make this link and allows flexibility in the choice of coefficients, thereby raising the question of optimized calibration. The approach is illustrated by the choice of coefficients based on the coordinates of the most probable failure point, resulting in a single set of coefficients adapted to the immediate vicinity of a given situation. In cases where the criterion must guarantee a given reliability level for a number of different operating situations, no set of coefficients can entirely guarantee the target reliability level. So, an optimized set of coefficients has to be selected, ensuring a reliability level as uniform as possible over the scope considered. This paper compares an initial coefficient proposal with a choice based on the design point method. The intermediate variable in assessing the reliability level is the mean flaw size, which would seem compatible with problems encountered under operating conditions. In addition, realistic risk assessment requires validation of the main variable distribution assumptions. We give an example of adjustment of distribution assumptions to

  1. Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.

    Science.gov (United States)

    Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M

    2011-09-15

    The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Estimating Longitudinal Dispersion Coefficient of Pollutants Using Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Hossein Riahi Modvar

    2008-09-01

    Full Text Available Longitudinal dispersion coefficient in rivers and natural streams is usually estimated by simple inaccurate empirical relations because of the complexity of the phenomenon. In this study, the adaptive neuro-fuzzy inference system (ANFIS is used to develop a new flexible tool for predicting the longitudinal dispersion coefficient. The system has the ability to understand and realize the phenomenon without the need for mathematical governing equations.. The training and testing of this new model are accomplished using a set of available published filed data. Several statistical and graphical criteria are used to check the accuracy of the model. The dispersion coefficient values predicted by the ANFIS model compares satisfactorily with the measured data. The predicted values are also compared with those predicted by existing empirical equations reported in the literature to find that the ANFIS model with R2=0.99 and RMSE=15.18 in training stage and R2=0.91 and RMSE=187.8 in testing stage is superior in predicting the dispersion coefficient to the most accurate empirical equation with R2=0.48 and RMSE=295.7. The proposed methodology is a new approach to estimating dispersion coefficient in streams and can be combined with mathematical models of pollutant transfer or real-time updating of these models.

  3. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  4. Weyl q-coefficients for uq(3) and Racah q -coefficients for suq(2)

    International Nuclear Information System (INIS)

    Asherova, R.M.; Smirnov, Yu.F.; Tolstoy, V.N.

    1996-01-01

    With the aid of the projection-operator technique, the general analytic expression for the elements of the matrix that relates the U and T bases of an arbitrary finite-dimensional irreducible representation of the uq(3) quantum algebra (Weyl q-coefficients) is obtained for the case where the deformation parameter q is not equal to a square root of unity. The procedure for resummation of q-factorial expressions is used to prove that, modulo phase factors, these Weyl q-coefficients coincide with Racah q-coefficients for the suq(2) quantum algebra. It is also shown that, on the basis of one general formula, the q-analogs of all known general analytic expressions for the 6j symbols (and Racah coefficients) of the Lie algebras of the angular momentum can be obtained by using this resummation procedure. The symmetry properties of these q coefficients are discussed. The result is formulated in the following way: the general formulas for the q-6j symbols (Racah q-coefficients) of the suq(2) quantum algebra are obtained from the general formulas for the conventional 6j symbols (Racah coefficients) of the su(2) Lie algebra by replacing directly all factorials with q-factorials, the symmetry properties of the q-6j symbols being completely coincident with the symmetry properties of the conventional 6j symbols

  5. On the non-closure of particle backscattering coefficient in oligotrophic oceans.

    Science.gov (United States)

    Lee, ZhongPing; Huot, Yannick

    2014-11-17

    Many studies have consistently found that the particle backscattering coefficient (bbp) in oligotrophic oceans estimated from remote-sensing reflectance (Rrs) using semi-analytical algorithms is higher than that from in situ measurements. This overestimation can be as high as ~300% for some oligotrophic ocean regions. Various sources potentially responsible for this discrepancy are examined. Further, after applying an empirical algorithm to correct the impact from Raman scattering, it is found that bbp from analytical inversion of Rrs is in good agreement with that from in situ measurements, and that a closure is achieved.

  6. Remote sensing reflectance of Pomeranian lakes and the Baltic

    Directory of Open Access Journals (Sweden)

    Dariusz Ficek

    2011-11-01

    Full Text Available The remote sensing reflectance Rrs, concentrations of chlorophyll a and other pigments Ci, suspended particulate matter concentrations CSPM and coloured dissolved organic matter absorption coefficient aCDOM(λ were measured in the euphotic zones of 15 Pomeranian lakes in 2007-2010. On the basis of 235 sets of data points obtained from simultaneous estimates of these quantities, we classified the lake waters into three types. The first one, with the lowest aCDOM(440 nm (usually between 0.1 and 1.3 m-1 and chlorophyll a concentrations 1.3 10 m-1, up to 17.4 m-1 in Lake Pyszne; it has a relatively low reflectance (Rrs 4 mg m-3, up to 336 mg m-3 in Lake Gardno. The remote sensing reflectance spectra in these waters always exhibit three peaks (Rrs > 0.005 sr-1: a broad one at 560-580 nm, a smaller one at ca 650 nm and a well-pronounced one at 690-720 nm. These Rrs(λ peaks correspond to the relatively low absorption of light by the various optically active components of the lake water and the considerable scattering (over the entire spectral range investigated due to the high SPM concentrations there. The remote sensing maximum at λ ≈ 690-720 nm is higher still as a result of the natural fluorescence of chlorophyll a. Empirical relationships between the spectral reflectance band ratios at selected wavelengths and the various optically active components for these lake waters are also established: for example, the chlorophyll a concentration in surface water layer Ca = 6.432 e4.556X, where X = [max Rrs (695 ≤ λ ≤ 720 - Rrs(λ = 670] / max Rrs (695 ≤ λ ≤ 720, and the coefficient of determination R2 = 0.95.

  7. Reflection of ion acoustic waves by the plasma sheath

    International Nuclear Information System (INIS)

    Ibrahim, I.; Kuehl, H.H.

    1984-01-01

    The reflection coefficient R for linear monochromatic ion acoustic waves incident on the transonic layer and sheath from the plasma interior is calculated. The treatment differs from previous analyses in that (1) the exact zero-order ion density and velocity profiles for a planar, bounded plasma are used, and the zero-order charge separation is not neglected, and (2) the first-order quantities near the transonic layer are considered in detail, including first-order charge separation, whereby it is found that no coupling to the beam modes exists, and that the functional form of the first-order solution is completely determined. It is shown that the upper bound for Vertical BarRVertical Bar is (1)/(3) . The largest reflection occurs for frequencies which are small compared with the ionization frequency, and generally decreases with increasing frequency. By Fourier superposition, the reflection of a pulse is computed. For a narrow incident pulse, the reflected pulse is greatly distorted and is small compared with the incident pulse. For a broad pulse, the reflected pulse is similar in shape to the incident pulse, and has a magnitude which is approximately (1)/(3) of the incident pulse

  8. LAI inversion from optical reflectance using a neural network trained with a multiple scattering model

    Science.gov (United States)

    Smith, James A.

    1992-01-01

    The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI 1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.

  9. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  10. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    Directory of Open Access Journals (Sweden)

    Yoshihisa Aizu

    2013-06-01

    Full Text Available A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.

  11. Influence of ionization on reflection of solitary waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Jyoti,; Malik, Hitendra K.; Kumar, Ravinder; Dahiya, Raj P.

    2013-01-01

    The reflection of nonlinear solitary waves is studied in a nonuniform, magnetized plasma diffusing from an ionization source along the magnetic field lines. Contribution of the ionization term is included in the continuity equation. The behavior of solitary waves is governed by modified form of Korteweg–de Vries equation (called mKdV equation). In order to investigate the reflection of solitary waves, the mKdV equations for the right and left going waves are derived, and solved by finding new transformations coupled at the point of reflection, for obtaining the expression of reflection coefficient. Contrary to the case of usual inhomogeneous plasma, the present analysis shows that a combination of usual sech 2 structure and tanh structure (called the tail of soliton) arises due to the influence of ionization term. Interestingly, this tailing structure disappears after the reflection of the soliton and hence, the soliton is downshifted prominently

  12. Anti-reflective polymer-nanocomposite coatings fabricated by RIR-MAPLE

    Science.gov (United States)

    Singaravalu, S.; Mayo, D. C.; Park, H. K.; Schriver, K. E.; Haglund, R. F.

    2013-02-01

    There is increasing demand for functional polymeric optical coatings for plastic substrates. In the case of anti-reflective (AR) coatings, this is challenging because polymers exhibit a relatively narrow range of refractive indices. We synthesized a four-layer AR stack using hybrid polymer:nanoparticle materials deposited by resonant infrared matrixassisted pulsed laser evaporation (RIR-MAPLE). An Er:YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and PMMA, alternating with a low-index solution of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with relative transmission over 94%, scattering less than 5% and a reflection coefficient below 0.8% across the visible range.

  13. Development of database on the distribution coefficient. 1. Collection of the distribution coefficient data

    Energy Technology Data Exchange (ETDEWEB)

    Takebe, Shinichi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The distribution coefficient is very important parameter for environmental impact assessment on the disposal of radioactive waste arising from research institutes. The literature survey in the country was mainly carried out for the purpose of selecting the reasonable distribution coefficient value on the utilization of this value in the safety evaluation. This report was arranged much informations on the distribution coefficient for inputting to the database for each literature, and was summarized as a literature information data on the distribution coefficient. (author)

  14. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    Science.gov (United States)

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure

    Directory of Open Access Journals (Sweden)

    Hao Dapeng

    2012-05-01

    Full Text Available Abstract Background A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling. Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. Results We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn’t show dependence of degree. Conclusions Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to “deterministic model” of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  16. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-05-07

    Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is

  17. Complex analysis conformal inequalities and the Bieberbach conjecture

    CERN Document Server

    Kythe, Prem K

    2015-01-01

    Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Löwner theory. He then presents Schiffer’s variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of a-convex functions, and numerical estimates of the coefficient problem. The boo...

  18. How well do clinical pain assessment tools reflect pain in infants?

    Directory of Open Access Journals (Sweden)

    Rebeccah Slater

    2008-06-01

    Full Text Available Pain in infancy is poorly understood, and medical staff often have difficulty assessing whether an infant is in pain. Current pain assessment tools rely on behavioural and physiological measures, such as change in facial expression, which may not accurately reflect pain experience. Our ability to measure cortical pain responses in young infants gives us the first opportunity to evaluate pain assessment tools with respect to the sensory input and establish whether the resultant pain scores reflect cortical pain processing.Cortical haemodynamic activity was measured in infants, aged 25-43 wk postmenstrual, using near-infrared spectroscopy following a clinically required heel lance and compared to the magnitude of the premature infant pain profile (PIPP score in the same infant to the same stimulus (n = 12, 33 test occasions. Overall, there was good correlation between the PIPP score and the level of cortical activity (regression coefficient = 0.72, 95% confidence interval [CI] limits 0.32-1.11, p = 0.001; correlation coefficient = 0.57. Of the different PIPP components, facial expression correlated best with cortical activity (regression coefficient = 1.26, 95% CI limits 0.84-1.67, p < 0.0001; correlation coefficient = 0.74 (n = 12, 33 test occasions. Cortical pain responses were still recorded in some infants who did not display a change in facial expression.While painful stimulation generally evokes parallel cortical and behavioural responses in infants, pain may be processed at the cortical level without producing detectable behavioural changes. As a result, an infant with a low pain score based on behavioural assessment tools alone may not be pain free.

  19. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  20. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  1. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    Science.gov (United States)

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  2. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William; Genton, Marc G.

    2012-01-01

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  3. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William

    2012-11-29

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  4. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    Full Text Available The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  5. A hierarchical estimator development for estimation of tire-road friction coefficient.

    Science.gov (United States)

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  6. A convolutional approach to reflection symmetry

    DEFF Research Database (Denmark)

    Cicconet, Marcelo; Birodkar, Vighnesh; Lund, Mads

    2017-01-01

    We present a convolutional approach to reflection symmetry detection in 2D. Our model, built on the products of complex-valued wavelet convolutions, simplifies previous edge-based pairwise methods. Being parameter-centered, as opposed to feature-centered, it has certain computational advantages w...

  7. Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering.

    Science.gov (United States)

    Rosenthal, Amir; Horowitz, Moshe; Kieckbusch, Sven; Brinkmeyer, Ernst

    2007-10-01

    We demonstrate experimentally, for the first time to our knowledge, a reconstruction of a highly reflecting fiber Bragg grating from its complex reflection spectrum by using a regularization algorithm. The regularization method is based on correcting the measured reflection spectrum at the Bragg zone frequencies and enables the reconstruction of the grating profile using the integral-layer-peeling algorithm. A grating with an approximately uniform profile and with a maximum reflectivity of 99.98% was accurately reconstructed by measuring only its complex reflection spectrum.

  8. Entropic Movement Complexity Reflects Subjective Creativity Rankings of Visualized Hand Motion Trajectories

    Science.gov (United States)

    Peng, Zhen; Braun, Daniel A.

    2015-01-01

    In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896

  9. The coefficient of restitution of pressurized balls: a mechanistic model

    Science.gov (United States)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  10. On the Kendall Correlation Coefficient

    OpenAIRE

    Stepanov, Alexei

    2015-01-01

    In the present paper, we first discuss the Kendall rank correlation coefficient. In continuous case, we define the Kendall rank correlation coefficient in terms of the concomitants of order statistics, find the expected value of the Kendall rank correlation coefficient and show that the later is free of n. We also prove that in continuous case the Kendall correlation coefficient converges in probability to its expected value. We then propose to consider the expected value of the Kendall rank ...

  11. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  12. Data mining-based coefficient of influence factors optimization of test paper reliability

    Science.gov (United States)

    Xu, Peiyao; Jiang, Huiping; Wei, Jieyao

    2018-05-01

    Test is a significant part of the teaching process. It demonstrates the final outcome of school teaching through teachers' teaching level and students' scores. The analysis of test paper is a complex operation that has the characteristics of non-linear relation in the length of the paper, time duration and the degree of difficulty. It is therefore difficult to optimize the coefficient of influence factors under different conditions in order to get text papers with clearly higher reliability with general methods [1]. With data mining techniques like Support Vector Regression (SVR) and Genetic Algorithm (GA), we can model the test paper analysis and optimize the coefficient of impact factors for higher reliability. It's easy to find that the combination of SVR and GA can get an effective advance in reliability from the test results. The optimal coefficient of influence factors optimization has a practicability in actual application, and the whole optimizing operation can offer model basis for test paper analysis.

  13. Correlation coefficients in neutron β-decay

    International Nuclear Information System (INIS)

    Byrne, J.

    1978-01-01

    The various angular and polarisation coefficients in neutron decay are the principal sources of information on the β-interaction. Measurements of the electron-neutrino angular correlation coefficient (a), the neutron-spin-electron-momentum correlation coefficient (A), the neutron-spin-neutrino-momentum correlation coefficient (B), and the triple correlation coefficient D and time-reversal invariance are reviewed and the results discussed. (U.K.)

  14. Bounds for OPE coefficients on the Regge trajectory

    Science.gov (United States)

    Costa, Miguel S.; Hansen, Tobias; Penedones, João

    2017-10-01

    We consider the Regge limit of the CFT correlation functions and , where J is a vector current, T is the stress tensor and O is some scalar operator. These correlation functions are related by a type of Fourier transform to the AdS phase shift of the dual 2-to-2 scattering process. AdS unitarity was conjectured some time ago to be positivity of the imaginary part of this bulk phase shift. This condition was recently proved using purely CFT arguments. For large N CFTs we further expand on these ideas, by considering the phase shift in the Regge limit, which is dominated by the leading Regge pole with spin j( ν), where ν is a spectral parameter. We compute the phase shift as a function of the bulk impact parameter, and then use AdS unitarity to impose bounds on the analytically continued OPE coefficients {C}_JJ}j(ν )} and C TTj(ν) that describe the coupling to the leading Regge trajectory of the current J and stress tensor T. AdS unitarity implies that the OPE coefficients associated to non-minimal couplings of the bulk theory vanish at the intercept value ν = 0, for any CFT. Focusing on the case of large gap theories, this result can be used to show that the physical OPE coefficients {C}_{JJT and C TTT , associated to non-minimal bulk couplings, scale with the gap Δ g as Δ g - 2 or Δ g - 4 . Also, looking directly at the unitarity condition imposed at the OPE coefficients {C_JJT and C TTT results precisely in the known conformal collider bounds, giving a new CFT derivation of these bounds. We finish with remarks on finite N theories and show directly in the CFT that the spin function j( ν) is convex, extending this property to the continuation to complex spin.

  15. Intuition in medical practice: A reflection on Donald Schön's reflective practitioner.

    Science.gov (United States)

    Mickleborough, Tim

    2015-01-01

    In a recent commentary, Dr. Abhishek Biswas asks the question whether physicians should rely on their "gut feeling" when making clinical decisions. Biswas describes a situation where his intuition resulted in an immediate course of action that prompted urgent medical attention for a patient who had "routine" pain. Inspired by the author's account, I would like to further Biswas' discussion and examine its importance using the educational theories of Donald Schön and his concept of the reflective practitioner. Schön argues that technical knowledge alone is not sufficient to solve the complex problems that professionals face on a daily basis and intuition, developed through a reflective practice, is crucial for any professional's practice, especially in a time of greater uncertainty in the workplace.

  16. 'Combined reflectance stratigraphy' - subdivision of loess successions by diffuse reflectance spectrometry (DRS)

    Science.gov (United States)

    Szeberényi, Jozsef; Bradak-Hayashi, Balázs; Kiss, Klaudia; Kovács, József; Varga, György; Balázs, Réka; Szalai, Zoltán; Viczián, István

    2016-04-01

    The different varieties of loess (and intercalated paleosol layers) together constitute one of the most widespread terrestrial sediments, which was deposited, altered, and redeposited in the course of the changing climatic conditions of the Pleistocene. To reveal more information about Pleistocene climate cycles and/or environments the detailed lithostratigraphical subdivision and classification of the loess variations and paleosols are necessary. Beside the numerous method such as various field measurements, semi-quantitative tests and laboratory investigations, diffuse reflectance spectroscopy (DRS) is one of the well applied method on loess/paleosol sequences. Generally, DRS has been used to separate the detrital and pedogenic mineral component of the loess sections by the hematite/goethite ratio. DRS also has been applied as a joint method of various environmental magnetic investigations such as magnetic susceptibility- and isothermal remanent magnetization measurements. In our study the so-called "combined reflectance stratigraphy method" were developed. At First, complex mathematical method was applied to compare the results of the spectral reflectance measurements. One of the most preferred multivariate methods is cluster analysis. Its scope is to group and compare the loess variations and paleosol based on the similarity and common properties of their reflectance curves. In the Second, beside the basic subdivision of the profiles by the different reflectance curves of the layers, the most characteristic wavelength section of the reflectance curve was determined. This sections played the most important role during the classification of the different materials of the section. The reflectance value of individual samples, belonged to the characteristic wavelength were depicted in the function of depth and well correlated with other proxies like grain size distribution and magnetic susceptibility data. The results of the correlation showed the significance of

  17. Identification of literary movements using complex networks to represent texts

    International Nuclear Information System (INIS)

    Amancio, Diego Raphael; Oliveira, Osvaldo N Jr; Fontoura Costa, Luciano da

    2012-01-01

    The use of statistical methods to analyze large databases of text has been useful in unveiling patterns of human behavior and establishing historical links between cultures and languages. In this study, we identified literary movements by treating books published from 1590 to 1922 as complex networks, whose metrics were analyzed with multivariate techniques to generate six clusters of books. The latter correspond to time periods coinciding with relevant literary movements over the last five centuries. The most important factor contributing to the distinctions between different literary styles was the average shortest path length, in particular the asymmetry of its distribution. Furthermore, over time there has emerged a trend toward larger average shortest path lengths, which is correlated with increased syntactic complexity, and a more uniform use of the words reflected in a smaller power-law coefficient for the distribution of word frequency. Changes in literary style were also found to be driven by opposition to earlier writing styles, as revealed by the analysis performed with geometrical concepts. The approaches adopted here are generic and may be extended to analyze a number of features of languages and cultures. (paper)

  18. Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties.

    Science.gov (United States)

    Lhommé, Frederic; Caucheteur, Christophe; Chah, Karima; Blondel, Michel; Mégret, Patrice

    2005-02-01

    A simple, accurate, and fast method to synthesize the physical parameters of a fiber Bragg grating numerically from its reflectivity is proposed and demonstrated. Our program uses the transfer matrix method and is based on a Nelder-Mead simplex optimization algorithm. It can be applied to both uniform and nonuniform (apodized and chirped) fiber Bragg gratings. The method is then used to synthesize a uniform Bragg grating from its reflectivity taken at different temperatures. It gives a good estimate of the thermal expansion coefficient and the thermo-optic coefficient of the fiber.

  19. Secondary emission coefficient dependence on the angle of incidence of primary electrons on CsI and LiF layers. [0. 9 to 3 keV, mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shabel' nikova, A E; Yasnopol' skii, N L

    1976-08-01

    The angular dependence was studied of the secondary emission coefficient sigma for CsI and LiF dielectrics which have large sigma in conditions of normal incidence of primary electrons. Measurements were taken down to the angle of 85 deg for energies of primary electrons between 0.9 and 3 keV. In the whole range of angles a nonmonotonic angular dependence sigma is observed. The dependence shows itself particularly clearly for CsI at large energies of primary electrons. Such a behaviour is due to the decrease in the depth of yield of inelastically reflected electrons and to the increase in the inelastic reflection coefficient of the substance.

  20. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  1. Sensitivity Analysis of Different Infiltration Equations and Their Coefficients under Various Initial Soil Moisture and Ponding Depth

    Directory of Open Access Journals (Sweden)

    ali javadi

    2015-06-01

    Full Text Available Infiltration is a complex process that changed by initial moisture and water head on the soil surface. The main objective of this study was to estimate the coefficients of infiltration equations, Kostiakov-Lewis, Philip and Horton, and evaluate the sensitivity of these equations and their coefficients under various initial conditions (initial moisture soil and boundary (water head on soil surface. Therefore, one-and two-dimensional infiltration for basin (or border irrigation were simulated by changing the initial soil moisture and water head on soil surface from irrigation to other irrigation using the solution of the Richards’ equation (HYDRUS model. To determine the coefficients of infiltration equations, outputs of the HYDRUS model (cumulative infiltration over time were fitted using the Excel Solver. Comparison of infiltration sensitivity equations and their coefficients in one-and two-dimensional infiltration showed infiltration equations and their sensitivity coefficients were similar function but quantitatively in most cases sensitive two-dimensional equations and their coefficients were greater than one dimension. In both dimensions the soil adsorption coefficient Philip equation as the sensitive coefficient and Horton equation as the sensitive equation under various initial moisture soil and water head on soil surface were identified.

  2. Low Complexity Parameter Estimation For Off-the-Grid Targets

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2015-01-01

    In multiple-input multiple-output radar, to estimate the reflection coefficient, spatial location, and Doppler shift of a target, a derived cost function is usually evaluated and optimized over a grid of points. The performance of such algorithms

  3. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    International Nuclear Information System (INIS)

    Linjun, Xie; Guohong, Xue; Ming, Zhang

    2016-01-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k f of the HDS is obtained. So, the

  4. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Linjun, Xie, E-mail: linjunx@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Guohong, Xue; Ming, Zhang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2016-08-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k{sub f} of the HDS is obtained. So, the

  5. COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments

    International Nuclear Information System (INIS)

    Thompson, I.J.; Barnett, A.R.

    1985-01-01

    The routine COULCC calculates both the oscillating and the exponentially varying Coulomb wave functions, and their radial derivations, for complex eta(Sommerfeld parameter), complex energies and complex angular momenta. The functions for uncharged scattering (spherical Bessels) and cylindrical Bessel functions are special cases which are more easily solved. Two linearly independent solutions are found, in general, to the differential equation f''(x)+g(x)f(x)=0, where g(x) has x 0 , x -1 and x -2 terms, with coefficients 1, -2eta and -lambda(lambda+1), respectively. (orig.)

  6. A neural network based approach for determination of optical scattering and absorption coefficients of biological tissue

    International Nuclear Information System (INIS)

    Warncke, D; Lewis, E; Leahy, M; Lochmann, S

    2009-01-01

    The propagation of light in biological tissue depends on the absorption and reduced scattering coefficient. The aim of this project is the determination of these two optical properties using spatially resolved reflectance measurements. The sensor system consists of five laser sources at different wavelengths, an optical fibre probe and five photodiodes. For these kinds of measurements it has been shown that an often used solution of the diffusion equation can not be applied. Therefore a neural network is being developed to extract the needed optical properties out of the reflectance data. Data sets for the training, validation and testing process are provided by Monte Carlo Simulations.

  7. Analysis of an anti-reflecting nanowire transparent electrode for solar cells

    Science.gov (United States)

    Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui

    2017-03-01

    Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

  8. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  9. Principle of the determination of neutron multiplication coefficients by the Monte Carlo method. Application. Description of a code for ibm 360-75; Principe de la determination des coefficients de multiplication neutronique par methode de Monte-Carlo. Application. Description d'un code pour IBM 360-75

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J; Parisot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The determination of neutron multiplication coefficients by the Monte Carlo method can be carried out in different ways; the are first examined particularly complex geometries; it makes use of multi-group isotropic cross sections. The performances of this code are illustrated by some examples. (author) [French] La determination des coefficients de multiplication neutronique par methode de Monte Carlo peut se faire par differentes voies, elles sont successivement examinees et comparees. On en deduit un code rapide pour des geometries particulierement complexes, il utilise des sections efficaces multigroupes isotropes. Les performances de ce code sont demontrees par quelques exemples. (auteur)

  10. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  11. Studies of Scattering, Reflectivity, and Transmitivity in WBAN Channel: Feasibility of Using UWB

    Science.gov (United States)

    Kabir, Md. Humaun; Ashrafuzzaman, Kazi; Chowdhury, M. Sanaullah; Kwak, Kyung Sup

    2010-01-01

    The Wireless Personal Area Network (WPAN) is one of the fledging paradigms that the next generation of wireless systems is sprouting towards. Among them, a more specific category is the Wireless Body Area Network (WBAN) used for health monitoring. On the other hand, Ultra-Wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications. One big challenge in adoption of UWB in WBAN is the fact that signals get attenuated exponentially. Due to the intrinsic structural complexity in human body, electromagnetic waves show a profound variation during propagation through it. The reflection and transmission coefficients of human body are highly dependent upon the dielectric constants as well as upon the frequency. The difference in structural materials such as fat, muscles and blood essentially makes electromagnetic wave attenuation to be different along the way. Thus, a complete characterization of body channel is a challenging task. The connection between attenuation and frequency of the signal makes the investigation of UWB in WBAN an interesting proposition. In this paper, we study analytically the impact of body channels on electromagnetic signal propagation with reference to UWB. In the process, scattering, reflectivity and transmitivity have been addressed with analysis of approximate layer-wise modeling, and with numerical depictions. Pulses with Gaussian profile have been employed in our analysis. It shows that, under reasonable practical approximations, the human body channel can be modeled in layers so as to have the effects of total reflections or total transmissions in certain frequency bands. This could help decide such design issues as antenna characteristics of implant devices for WBAN employing UWB. PMID:22219673

  12. Studies of Scattering, Reflectivity, and Transmitivity in WBAN Channel: Feasibility of Using UWB

    Directory of Open Access Journals (Sweden)

    Md. Humaun Kabir

    2010-06-01

    Full Text Available The Wireless Personal Area Network (WPAN is one of the fledging paradigms that the next generation of wireless systems is sprouting towards. Among them, a more specific category is the Wireless Body Area Network (WBAN used for health monitoring. On the other hand, Ultra-Wideband (UWB comes with a number of desirable features at the physical layer for wireless communications. One big challenge in adoption of UWB in WBAN is the fact that signals get attenuated exponentially. Due to the intrinsic structural complexity in human body, electromagnetic waves show a profound variation during propagation through it. The reflection and transmission coefficients of human body are highly dependent upon the dielectric constants as well as upon the frequency. The difference in structural materials such as fat, muscles and blood essentially makes electromagnetic wave attenuation to be different along the way. Thus, a complete characterization of body channel is a challenging task. The connection between attenuation and frequency of the signal makes the investigation of UWB in WBAN an interesting proposition. In this paper, we study analytically the impact of body channels on electromagnetic signal propagation with reference to UWB. In the process, scattering, reflectivity and transmitivity have been addressed with analysis of approximate layer-wise modeling, and with numerical depictions. Pulses with Gaussian profile have been employed in our analysis. It shows that, under reasonable practical approximations, the human body channel can be modeled in layers so as to have the effects of total reflections or total transmissions in certain frequency bands. This could help decide such design issues as antenna characteristics of implant devices for WBAN employing UWB.

  13. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients

  14. Clustering Coefficients for Correlation Networks.

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  15. Clustering Coefficients for Correlation Networks

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  16. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  17. Estimating the beam attenuation coefficient in coastal waters from AVHRR imagery

    Science.gov (United States)

    Gould, Richard W.; Arnone, Robert A.

    1997-09-01

    This paper presents an algorithm to estimate particle beam attenuation at 660 nm ( cp660) in coastal areas using the red and near-infrared channels of the NOAA AVHRR satellite sensor. In situ reflectance spectra and cp660 measurements were collected at 23 stations in Case I and II waters during an April 1993 cruise in the northern Gulf of Mexico. The reflectance spectra were weighted by the spectral response of the AVHRR sensor and integrated over the channel 1 waveband to estimate the atmospherically corrected signal recorded by the satellite. An empirical relationship between integrated reflectance and cp660 values was derived with a linear correlation coefficient of 0.88. Because the AVHRR sensor requires a strong channel 1 signal, the algorithm is applicable in highly turbid areas ( cp660 > 1.5 m -1) where scattering from suspended sediment strongly controls the shape and magnitude of the red (550-650 nm) reflectance spectrum. The algorithm was tested on a data set collected 2 years later in different coastal waters in the northern Gulf of Mexico and satellite estimates of cp660 averaged within 37% of measured values. Application of the algorithm provides daily images of nearshore regions at 1 km resolution for evaluating processes affecting ocean color distribution patterns (tides, winds, currents, river discharge). Further validation and refinement of the algorithm are in progress to permit quantitative application in other coastal areas. Published by Elsevier Science Ltd

  18. Sensitivity Analysis of Different Infiltration Equations and Their Coefficients under Various Initial Soil Moisture and Ponding Depth

    OpenAIRE

    ali javadi; M. Mashal; M.H. Ebrahimian

    2015-01-01

    Infiltration is a complex process that changed by initial moisture and water head on the soil surface. The main objective of this study was to estimate the coefficients of infiltration equations, Kostiakov-Lewis, Philip and Horton, and evaluate the sensitivity of these equations and their coefficients under various initial conditions (initial moisture soil) and boundary (water head on soil surface). Therefore, one-and two-dimensional infiltration for basin (or border) irrigation were simulate...

  19. Complex centers of polynomial differential equations

    Directory of Open Access Journals (Sweden)

    Mohamad Ali M. Alwash

    2007-07-01

    Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.

  20. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  1. Determination of the X-ray mass absorption coefficient by measurement of the intensity of AgKα Compton scattered radiation

    International Nuclear Information System (INIS)

    Franzini, M.; Leoni, L.; Saitta, M.

    1976-01-01

    By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)

  2. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    Science.gov (United States)

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  3. Reflective practice and its implications for pharmacy education.

    Science.gov (United States)

    Tsingos, Cherie; Bosnic-Anticevich, Sinthia; Smith, Lorraine

    2014-02-12

    Pharmacy students require critical-thinking and problem-solving skills to integrate theory learned in the classroom with the complexities of practice, yet many pharmacy students fall short of acquiring these skills.(1-2) Reflective practice activities encourage learning from the student's own experiences and those of others, and offer a possible solution for the integration of knowledge-based curricula with the ambiguities of practice, as well as enhance communication and collaboration within a multidisciplinary team. Although reflective practices have been embraced elsewhere in health professions education, their strengths and shortcomings need to be considered when implementing such practices into pharmacy curricula. This review provides an overview of the evolution of theories related to reflective practice, critically examines the use of reflective tools (such as portfolios and blogs), and discusses the implications of implementing reflective practices in pharmacy education.

  4. High Molar Extinction Coefficient Ru(II-Mixed Ligand Polypyridyl Complexes for Dye Sensitized Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available Two new ruthenium(II mixed ligand terpyridine complexes, “Ru(Htcterpy(NCS(L1 (N(C4H94, mLBD1” and Ru(Htcterpy(NCS(L2(N(C4H94, mLBD2 were synthesized and fully characterized by UV-Vis, emission, cyclic voltammogram, and other spectroscopic means, and the structures of the compounds are confirmed by 1H-NMR, ESI-MASS, and FT-IR spectroscopes. The influence of the substitution of L1 and L2 on solar-to-electrical energy conversion efficiency (η of dye-sensitized solar cells (DSSCs was evaluated relative to reference black dye. The dyes showed molar extinction coefficients of 17600 M−1 cm−1 for mLBD1 and 21300 M−1 cm−1 for mLBD2 both at λ maximum of 512 nm, while black dye has shown 8660 M−1 cm−1 at λ maximum of 615 nm. The monochromatic incident photon-to-collected electron conversion efficiencies of 60.71% and 75.89% were obtained for mLBD1 and mLBD2 dyes, respectively. The energy conversion efficiencies of mLBD1 and mLBD2 dyes are 3.15% (SC=11.86 mA/cm2, OC=613 mV, ff=0.4337 and 3.36% (SC=12.71 mA/cm2, OC=655 mV, ff=0.4042, respectively, measured at the AM1.5G conditions, the reference black dye-sensitized solar cell, fabricated and evaluated under identical conditions exhibited η-value of 2.69% (SC=10.95 mA/cm2, OC=655 mV, ff=0.3750.

  5. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  6. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  8. Determination and analysis of the dispersive optical constants of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo[4,5-b][1,4]dithiinylidene)-DDQ complex thin film

    International Nuclear Information System (INIS)

    Atalay, Y.; Basoglu, A.; Avci, D.; Arslan, M.; Ozturk, T.; Ertas, E.

    2008-01-01

    The synthesis and optical properties of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo [4,5-b] [1,4]dithiinylidene)-2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) complex thin film were investigated by the optical characterization. The optical constants such as refractive index, extinction coefficient and absorption coefficient were determined using the transmittance T(λ) and reflectance R(λ) spectra and the refractive index dispersion was analyzed using single oscillator of Wemple-Didomenico model. The single oscillator energy E 0 and the dispersion energy E d were calculated. The effect of temperature on refractive dispersion and optical band gap E g is also discussed. As a result, the annealing temperatures have an important effect on refractive index of thin film

  9. Developing Future Leaders: The Role of Reflection in the Classroom

    Science.gov (United States)

    Roberts, Cynthia

    2008-01-01

    Leadership development continues to be a topic of conversation, education, and research. Reflection has been named as one of the key competencies needed for effective leaders particularly as the workplace grows more complex and multicultural. But how does one develop reflective skill in college students, the leaders of the future? This paper…

  10. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  11. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  12. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976

    Science.gov (United States)

    Gordon, S.; Mcbride, B. J.

    1976-01-01

    A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.

  13. Contribution to the measurement of the reflection coefficient for curved crystals between 50 and 80 keV; Contribution a la mesure du coefficient de reflexion de cristaux courbes entre 50 keV et 80 keV

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-09-01

    In the first part, we summarize the main approximate theories dealing with the diffraction of electromagnetic radiation by the crystalline medium, allowing the determination of the characteristic properties of flat and bent crystals used in X and gamma-Ray spectroscopy ('Laue Case'). We describe the experimental setting and we explain our method to measure {gamma}: reflectivity of elastically or plastically bent-crystals from narrow wave-length intervals in the continuous X-Ray spectrum. We discuss our experimental results obtained with different crystals (quartz (3140), Al (200), FLi (200) and compare them with theoretical ones. Finally, we refer to a use of the bent-crystal spectrometer (Cauchois arrangement) in dosimetry. (author) [French] Dans la premiere partie, nous resumons les principales approximations theoriques qui traitent la diffraction du rayonnement electromagnetique par le milieu cristallin et permettent de determiner les grandeurs caracteristiques des lames cristallines planes ou courbees utilisees 'par transmission' en spectroscopie X ou gamma. Apres avoir decrit le montage experimental, nous exposons la methode de mesure de {gamma}: coefficient de reflexion de cristaux courbes (elastiquement ou plastiquement). Le domaine energetique etudie est voisin de 100 keV. Dans cette methode, nous n'utilisons pas des rayonnements monoenergetiques provenant de transitions atomiques ou nucleaires mais des bandes etroites d'energie appartenant au spectre continu du rayonnement emis par un tube a rayons X. Les resultats experimentaux obtenus avec differents cristaux (quartz (3140), Al (200), FLi (200)) sont discutes et compares a ceux prevus par la theorie. Nous mentionnons, enfin, une application en dosimetrie du spectrographe a cristal couche (Geometrie Cauchois). (auteur)

  14. Invar hardening under keeping of low values of temperature coefficient of linear expansion

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Shiryaeva, A.N.; Omel'chenko, A.V.

    1982-01-01

    Complex invar alloying with chromium, zirconium and nitrogen is conducted for increasing hardness and assuring low values of the temperature coefficient of linear expansion. It is shown that alloying with nitride-forming elements-chromium, zirconium and the following high-temperature saturation under high pressure with nitrogen provides the invar hardening at assuring a low temperature coefficient of linear expansion. Saturation with nitrogen under 100 MPa pressure at 1050 deg C during 3 hours permits to prepare an invar containing up to 0.2% N 2 uniformly distributed over the whole cross section of samples with 4 mm diameter. Nitrogen in invar alloys alloyed with chromium and zirconium affects the Curie point similarly to carbon and nickel shifting it towards higher temperatures, it slightly changes the value of the temperature coefficient of linear expansion and provides linear character of thermal expansion dependence on temperature in the +100 deg C - -180 deg C range

  15. Reflective pedagogical competences in health education

    DEFF Research Database (Denmark)

    Wistoft, Karen; Nordentoft, Helle Merete

    2010-01-01

    Health educators face value complexity in their practices as well as their reflections on practice. Actions and decisions are no longer based on traditional norms, values and objective knowledge. The complexity of social and cultural changes in health care environments often leave professionals...... in situations in which educational action and choice of rationale are contingent and subject to discussion. We introduce and exemplify this thematic scope by taking our point of departure in experiences from a health educational development project in Denmark with public health nurses (PHN) working...

  16. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  17. Reflection and transmission of seismic waves under initial stress at the earth's core-mantle boundary

    Directory of Open Access Journals (Sweden)

    Sukhendu Dey

    1980-01-01

    Full Text Available In the present paper the influence of the initial stress is shown on the reflection and transmission of P waves at the core-mantle boundary. Taking a particular value of the inherent initial stress, the variations of reflection and transmission coefficients with respect to the angle of emergence are represented by graphs. These graphs when compared with those having no initial stress show that the effect of the initial stress is to produce a reflected P and S waves with numerically higher amplitudes but a transmitted P wave with smaller amplitude. A method is also indicated in this paper to calculate the actual value of the initial stress near the core-mantle boundary by measuring the amplitudes of incident and reflected P waves.

  18. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    Science.gov (United States)

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  19. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  20. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  1. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  2. Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator

    International Nuclear Information System (INIS)

    Saifuddin, Md.; Biswas, Santanu; Samanta, Sudip; Sarkar, Susmita; Chattopadhyay, Joydev

    2016-01-01

    The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.

  3. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  4. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  5. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  6. Comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront

    KAUST Repository

    Tamamitsu, Miu

    2017-08-27

    The Sparsity of the Gradient (SoG) is a robust autofocusing criterion for holography, where the gradient modulus of the complex refocused hologram is calculated, on which a sparsity metric is applied. Here, we compare two different choices of sparsity metrics used in SoG, specifically, the Gini index (GI) and the Tamura coefficient (TC), for holographic autofocusing on dense/connected or sparse samples. We provide a theoretical analysis predicting that for uniformly distributed image data, TC and GI exhibit similar behavior, while for naturally sparse images containing few high-valued signal entries and many low-valued noisy background pixels, TC is more sensitive to distribution changes in the signal and more resistive to background noise. These predictions are also confirmed by experimental results using SoG-based holographic autofocusing on dense and connected samples (such as stained breast tissue sections) as well as highly sparse samples (such as isolated Giardia lamblia cysts). Through these experiments, we found that ToG and GoG offer almost identical autofocusing performance on dense and connected samples, whereas for naturally sparse samples, GoG should be calculated on a relatively small region of interest (ROI) closely surrounding the object, while ToG offers more flexibility in choosing a larger ROI containing more background pixels.

  7. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime

    KAUST Repository

    Alias, Mohd Sharizal

    2018-02-15

    A distributed Bragg reflector (DBR) composed of Y2O3-doped HfO2 (YDH)/SiO2 layers with high reflectivity spectrum centered at a wavelength of ~240 nm is deposited using radio-frequency magnetron sputtering. Before the DBR deposition, optical properties for a single layer of YDH, SiO2, and HfO2 thin films were studied using spectroscopic ellipsometry and spectrophotometry. To investigate the performance of YDH as a material for the high refractive index layer in the DBR, a comparison of its optical properties was made with HfO2 thin films. Due to larger optical bandgap, the YDH thin films demonstrated higher transparency, lower extinction coefficient, and lower absorption coefficient in the UV-C regime (especially for wavelengths below 250 nm) compared to the HfO2 thin films. The deposited YDH/SiO2 DBR consisting of 15 periods achieved a reflectivity higher than 99.9% at the wavelength of ~240 nm with a stopband of ~50 nm. The high reflectivity and broad stopband of YDH/SiO2 DBRs will enable further advancement of various photonic devices such as vertical-cavity surface-emitting lasers, resonant-cavity light-emitting diodes, and resonant-cavity photodetectors operating in the UV-C wavelength regime.

  8. Metal–organic complexation in the marine environment

    Directory of Open Access Journals (Sweden)

    Witter Amy

    2001-09-01

    Full Text Available We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE. These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample.

  9. Discovery of the Linear Region of Near Infrared Diffuse Reflectance Spectra Using the Kubelka-Munk Theory

    Directory of Open Access Journals (Sweden)

    Shengyun Dai

    2018-05-01

    Full Text Available Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS models of harpagoside. Data showed that the particle size distribution of 125–150 μm for Radix Scrophulariae exhibited the best prediction ability with Rpre2 = 0.9513, RMSEP = 0.1029 mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90–180 μm exhibited the best prediction ability with Rpre2 = 0.8919, RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent and scatter coefficient s (particle size-dependent. The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was >4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90–180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  10. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  11. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  12. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  13. Statistical screening of input variables in a complex computer code

    International Nuclear Information System (INIS)

    Krieger, T.J.

    1982-01-01

    A method is presented for ''statistical screening'' of input variables in a complex computer code. The object is to determine the ''effective'' or important input variables by estimating the relative magnitudes of their associated sensitivity coefficients. This is accomplished by performing a numerical experiment consisting of a relatively small number of computer runs with the code followed by a statistical analysis of the results. A formula for estimating the sensitivity coefficients is derived. Reference is made to an earlier work in which the method was applied to a complex reactor code with good results

  14. Experimental measurement of compressibility coefficients of synthetic sandstone in hydrostatic conditions

    International Nuclear Information System (INIS)

    Asaei, H; Moosavi, M

    2013-01-01

    For the characterization of the mechanical behavior of porous media in elastic conditions, the theory of poroelasticity is used. The number of poroelastic coefficients is greater in elastic conditions because of the complexity of porous media. The laboratory measurement of poroelastic coefficients needs a system that can control and measure the variables of poroelasticity. In this paper, experimental measurements of these coefficients are presented. Laboratory tests are performed using a system designed by the authors. Laboratory hydrostatic tests are performed on cylindrical samples in drained, pore pressure loading, undrained and dry conditions. Compressibilities (bulk and pore compressibility), effective stress and Skempton coefficients are measured by these tests. Samples are made of a composition (sand and cement) and are made by a compaction process synthetically. Calibration tests are performed for the setup to identify possible errors in the system and to correct the results of the main tests. This is done by performing similar compressibility tests at each stress level on a cylindrical steel sample (5.47 mm in diameter) with a longitudinal hole along it (hollow cylinder). A steel sample is used to assume an incompressible sample. The results of the tests are compared with the theory of poroelasticity and the obtained graphs and their errors are analyzed. This study shows that the results of the drained and pore pressure loading tests are compatible with poroelastic formulation, while the undrained results have errors because of extra fluid volume in the pore pressure system and calibration difficulties. (paper)

  15. A low-frequency asymptotic model of seismic reflection from a high-permeability layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy; Goloshubin, Gennady

    2009-03-01

    Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.

  16. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  17. Multi-segmental movement patterns reflect juggling complexity and skill level.

    Science.gov (United States)

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effective reflection of a pulse sequence from a four-wave mirror with thermal nonlinearity under parametric feedback

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Kruzhilin, Iu. I.; Krymskii, M. I.

    1989-04-01

    A four-wave mirror with thermal nonlinearity has been experimentally realized with the interaction of corunning waves under parametric feedback with a nonreciprocal element. The effective reflection of a sequence of pulses with duration of about 300 ns from a neodymium-glass laser with maximal reflection coefficients greater than 30 has been demonstrated. The quality of the radiation reflected from the mirror is studied. A significant reduction in the steady-state lasing threshold has been shown with thermal nonlinearity at small angles of the interacting beam convergence, compared to the case of counterrunning convergence.

  19. Sensitivity analysis of an experimental methodology to determine radionuclide diffusion coefficients in granite

    International Nuclear Information System (INIS)

    Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Rigato, V.

    2005-01-01

    Full text of publication follows: The long-term quantitative analysis of the migration behaviour of the relevant radionuclides (RN) within the geological barrier of a radioactive waste repository requires, amongst other data, the introduction of reliable transport parameters, as diffusion coefficients. Since the determination of diffusion coefficients within crystalline rocks is complex and requires long experimental times even for non-sorbing radionuclides, the data available in the literature are very scarce. The nuclear ion beam technique RBS (Rutherford Backscattering Spectrometry) that is successfully used to determine diffusion profiles in thin film science is here examined as possible suitable technique to determine the diffusion coefficients of different RN within granite. As first step, the technique sensitivity and limitations to analyse diffusion coefficients in granite samples is evaluated, considering that the technique is especially sensitive to heavy elements. The required experimental conditions in terms of experimental times, concentration and methodology of analysis are discussed. The diffusants were selected accounting the RBS sensitivity but also trying to cover different behaviours of critical RN and a wide range of possible oxidation states. In particular, Cs(I) was chosen as representative fission product, while as relevant actinides or homologues, the diffusion of Th(IV), U(IV) and Eu (III) was studied. The diffusion of these above-mentioned cations is compared to the diffusion of Re, and I as representative of anionic species. The methodology allowed evaluating diffusion coefficients in the granite samples and, for most of the elements, the values obtained are in agreement with the values found in the literature. The diffusion coefficients calculated ranged from 10 -13 to 10 -16 m 2 /s. It is remarkable that the RBS technique is especially promising to determine diffusion coefficients of high-sorbing RN and it is applicable to a wide range

  20. Prototypes and matrix relevance learning in complex fourier space

    NARCIS (Netherlands)

    Straat, M.; Kaden, M.; Gay, M.; Villmann, T.; Lampe, Alexander; Seiffert, U.; Biehl, M.; Melchert, F.

    2017-01-01

    In this contribution, we consider the classification of time-series and similar functional data which can be represented in complex Fourier coefficient space. We apply versions of Learning Vector Quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger

  1. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Science.gov (United States)

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  2. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  3. The Possibility Using the Power Production Function of Complex Variable for Economic Forecasting

    Directory of Open Access Journals (Sweden)

    Sergey Gennadyevich Svetunkov

    2016-09-01

    Full Text Available The possibility of dynamic analysis and forecasting production results using the power production functions of complex variables with real coefficients is considered. This model expands the arsenal of instrumental methods and allows multivariate production forecasts which are unattainable by other methods of real variables as the functions of complex variables simulate the production differently in comparison with the models of real variables. The values of coefficients of the power production functions of complex variables can be calculated for each statistical observation. This allows to consider the change of the coefficients over time, to analyze this trend and predict the values of the coefficients for a given term, thereby to predict the form of the production function, which forecasts the operating results. Thus, the model of the production function with variable coefficients is introduced into the scientific circulation. With this model, the inverse problem of forecasting might be solved, such as the determination of the necessary quantities of labor and capital to achieve the desired operational results. The study is based on the principles of the modern methodology of complex-valued economy, one of its sections is the complex-valued patterns of production functions. In the article, the possibility of economic forecasting is tested on the example of the UK economy. The results of this prediction are compared with the forecasts obtained by other methods, which have led to the conclusion about the effectiveness of the proposed approach and the method of forecasting at the macro levels of production systems. A complex-valued power model of the production function is recommended for the multivariate prediction of sustainable production systems — the global economy, the economies of individual countries, major industries and regions.

  4. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    International Nuclear Information System (INIS)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang; Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred; Stepan, Holger

    2014-01-01

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm 2 . Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R 2 = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  5. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  6. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    Science.gov (United States)

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. How to and how not to develop a theory of change to evaluate a complex intervention: reflections on an experience in the Democratic Republic of Congo.

    Science.gov (United States)

    Maini, Rishma; Mounier-Jack, Sandra; Borghi, Josephine

    2018-01-01

    Theories of change (ToCs) describe how interventions can bring about long-term outcomes through a logical sequence of intermediate outcomes and have been used to design and measure the impact of public health programmes in several countries. In recognition of their capacity to provide a framework for monitoring and evaluation, they are being increasingly employed in the development sector. The construction of a ToC typically occurs through a consultative process, requiring stakeholders to reflect on how their programmes can bring about change. ToCs help make explicit any underlying assumptions, acknowledge the role of context and provide evidence to justify the chain of causal pathways. However, while much literature exists on how to develop a ToC with respect to interventions in theory, there is comparatively little reflection on applying it in practice to complex interventions in the health sector. This paper describes the initial process of developing a ToC to inform the design of an evaluation of a complex intervention aiming to improve government payments to health workers in the Democratic Republic of Congo. Lessons learnt include: the need for the ToC to understand how the intervention produces effects on the wider system and having broad stakeholder engagement at the outset to maximise chances of the intervention's success and ensure ownership. Power relationships between stakeholders may also affect the ToC discourse but can be minimised by having an independent facilitator. We hope these insights are of use to other global public health practitioners using this approach to evaluate complex interventions.

  8. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  9. Measurement of partial coefficients of sputtering of titanium atoms from TiC and TiN coatings

    International Nuclear Information System (INIS)

    Vychegzhanin, G.A.; Gribanov, Yu.A.; Dikij, N.P.; Zhmurin, P.N.; Letuchij, A.N.; Matyash, P.P.; Sidokur, P.I.; Shono, D.A.

    1989-01-01

    Method of laser fluorescent spectroscopy was used to measure partial coefficients of sputtering of titanium atoms from TiC and TiN coatings under irradiation by 1 keV hydrogen ions. Irradiation was conducted in a plant with reflective discharge. Investigation of damaged layer in irradiated samples was conducted. The presence of near-the-surface layer enrichment with titanium atoms was revealed both in TiC and TiN samples. 12 refs.; 4 figs

  10. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  11. Implications of NGA for NEHRP site coefficients

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  12. Assessment of LabSOCS as a tool for the calculation of self-attenuation coefficients in gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.; De Medeiros, M. P.; Garcez, R.; Filgueiras, R.; Thalhofer, J.; Da Silva, A. X. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Av. Horacio Macedo 2030, 21945-970 Rio de Janeiro (Brazil); Freitas R, W., E-mail: marqueslopez@yahoo.com.br [Instituto Militar de Engenharia, Secao de Engenharia Nuclear, Praca Gen. Tiburcio 80, 22290-270 Urca, Rio de Janeiro (Brazil)

    2017-10-15

    In spectrometry, the self-attenuation coefficients are fundamental to correct the efficiency of the detection of samples whose density is different from the radioactive standard. To facilitate the procedure of coefficient calculation, mathematical simulations have been widespread as a tool. In this paper, LabSOCS was used to calculate the self-attenuation coefficients for some geometries and the values found were compared to those obtained with MCNPX and experimental values. The percentage deviations found for the self-attenuation coefficient calculated by LabSOCS were below 1.6%, when compared to experimental values. In the extrapolation zone of the fitting curve of the experimental model, the deviations were below 1.9%. The results obtained show that the deviations increase proportionally to the amplitude between the density values of the radioactive standard and the sample. High percentage deviations were also obtained in simulations whose samples had high densities, complex geometries and low energy levels. However, the results indicate that LabSOCS is a tool which may be used in the calculation of self-attenuation coefficients. (Author)

  13. Enabling self-reflection with LifelogExplorer : generating simple views from complex data

    NARCIS (Netherlands)

    Kocielnik, R.D.; Maggi, F.M.; Sidorova, N.

    2013-01-01

    Nowadays, people are overwhelmed with multiple tasks and responsibilities, resulting in increasing stress level. At the same time, it becomes harder to find time for self-reflection and diagnostics of problems that can be source of stress. In this paper, we propose a tool that supports a person in

  14. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    Science.gov (United States)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    Analysis of runoff and peaks therein is essential for designing hydraulic infrastructures and for assessing the hydrological implications of likely scenarios of climate and/or land-use change. Different methods are available to calculate runoff coefficients. For instance, the runoff coefficient of a catchment can be described either as the ratio of total depth of runoff to total depth of rainfall or as the ratio of peak flow to rainfall intensity for the time of concentration (Dhakal et al. 2012). If the first definition is considered, runoff coefficients represent the global effect of different features and states of catchments and its determination requires a suitable analysis according to the objectives pursued (Chow et al., 1988). In this work, rainfall-runoff data and physical attributes from small rural catchments located in the Iberian Peninsula (Portugal and Spain) were examined in order to compare the representative values of runoff coefficients using three different approaches: i) statistical analysis of rainfall-runoff data and their quantiles (Dhakal et al., 2012); ii) probabilistic runoff coefficients from the rank-ordered pairs of observed rainfall-runoff data and their relationships with rainfall depths (Schaake et al., 1967); iii) finally, a multiple linear model based on geomorphological attributes. These catchments exhibit great variety with respect to their natural settings, such as climate, topography and lithology. We present a preliminary analysis of the rainfall-runoff relationships as well as their variability in a complex context such as the Iberian Peninsula where contrasted environmental systems coexist. We also discuss reference parameters representing runoff coefficients commonly included into hydrological models. This study is conceived as the first step to explore further working protocols and modeling gaps in a very susceptible area to the climate change such as the Iberian Peninsula's, where the analysis of runoff coefficients is

  15. Reflections on Conformal Spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink

  16. Computational study of the effect of glyoxal-sulfate clustering on the Henry's Law coefficient of glyoxal

    DEFF Research Database (Denmark)

    Kurtén, Theo; Elm, Jonas; Prisle, Nønne L.

    2015-01-01

    . Although the glyoxal molecule interacts only weakly with sulfate, its hydrated forms (C2O3H4 and C2O4H6) form strong complexes with sulfate, displacing water molecules from the solvation shell and increasing the uptake of glyoxal into sulfate-containing aqueous solutions, including sulfate...... coefficient enhancement and found it to be in reasonable agreement with experimental results. This indicates that the complexation of glyoxal hydrates with sulfate can explain the observed uptake enhancement....

  17. Zinc removal from wastewater by complexation-microfiltration process

    Directory of Open Access Journals (Sweden)

    Trivunac Katarina

    2012-01-01

    Full Text Available As a result of its wide industrial applications, zinc has become an important contaminant in aquatic environment since it is a toxic heavy metal and some of its compounds such as zinc arsenate and zinc cyanide, may be extremely hazardous. Therefore, there is a growing need for developing simple methods capable of separating and recovering trace zinc from environmental waters. Nowadays, the ultra and microfiltration method for trace metals removal from waters by the addition of water-soluble polymers into the aqueous solutions has become a significant research area. The choice of watersoluble macroligands remains important for developing this technology. Sodium carboxymethyl cellulose (Na-CMC was selected as complexing agent. The microfiltration experiments were carried out in stirred dead-end cell. To separate formed polymer-metal complex Versapor membranes were used. The concentration of heavy metal ions after microfiltration in aqueous solution was determined using atomic absorption spectroscopy (AAS. Effects of amount of complexing agent, pH value, type of anion, ionic strength and operating pressure on the flux (J and rejection coefficient (R were investigated. Experimental results indicate a considerable influence of the pH, ionic strength and type of anion on the rejection coefficient, while effect of amount of complexing agent is relatively insignificant. The Na-CMC used in the research proved to be very effective, which may be supported by the high rejection coefficients obtained (99%.

  18. Stochastic electromagnetic radiation of complex sources

    NARCIS (Netherlands)

    Naus, H.W.L.

    2007-01-01

    The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a

  19. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application.

    Science.gov (United States)

    Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio

    2012-10-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.

  20. Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V I; Marusin, N V; Panchenko, V Ya; Savelyev, A G; Seminogov, V N; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2013-12-31

    We propose a method for measuring simultaneously the refractive index n{sub f}, extinction coefficient m{sub f} and thickness H{sub f} of thin films. The method is based on the resonant excitation of waveguide modes in the film by a TE- or a TM-polarised laser beam in the geometry of frustrated total internal reflection. The values of n{sub f}, m{sub f} and H{sub f} are found by minimising the functional φ = [N{sup -1}Σ{sup N}{sub i=1}(R{sub exp}(θ{sub i}) – R{sub thr}(θ{sub i})){sup 2}]{sup 1/2}, where R{sub exp}(θ{sub i}) and R{sub thr}(θ{sub i}) are the experimental and theoretical coefficients of reflection of the light beam from the interface between the measuring prism and the film at an angle of incidence θ{sub i}. The errors in determining n{sub f}, m{sub f} and H{sub f} by this method are ±2 × 10{sup -4}, ±1 × 10{sup -3} and ±0.5%, respectively. (fiber and integrated optics)

  1. Probabilistic optimization of safety coefficients

    International Nuclear Information System (INIS)

    Marques, M.; Devictor, N.; Magistris, F. de

    1999-01-01

    This article describes a reliability-based method for the optimization of safety coefficients defined and used in design codes. The purpose of the optimization is to determine the partial safety coefficients which minimize an objective function for sets of components and loading situations covered by a design rule. This objective function is a sum of distances between the reliability of the components designed using the safety coefficients and a target reliability. The advantage of this method is shown on the examples of the reactor vessel, a vapour pipe and the safety injection circuit. (authors)

  2. Estimation of the simple correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  3. Study on Material Parameters Identification of Brain Tissue Considering Uncertainty of Friction Coefficient

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng

    2017-10-01

    Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.

  4. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  5. Complex harmonic modal analysis of rotor systems

    International Nuclear Information System (INIS)

    Han, Dong Ju

    2015-01-01

    Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions

  6. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  7. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.

  8. [Correction of light refraction and reflection in medical transmission optical tomography].

    Science.gov (United States)

    Tereshchenko, S A; Potapov, D A

    2002-01-01

    The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.

  9. Gini coefficient as a life table function

    Directory of Open Access Journals (Sweden)

    2003-06-01

    Full Text Available This paper presents a toolkit for measuring and analyzing inter-individual inequality in length of life by Gini coefficient. Gini coefficient and four other inequality measures are defined on the length-of-life distribution. Properties of these measures and their empirical testing on mortality data suggest a possibility for different judgements about the direction of changes in the degree of inequality by using different measures. A new computational procedure for the estimation of Gini coefficient from life tables is developed and tested on about four hundred real life tables. The estimates of Gini coefficient are precise enough even for abridged life tables with the final age group of 85+. New formulae have been developed for the decomposition of differences between Gini coefficients by age and cause of death. A new method for decomposition of age-components into effects of mortality and composition of population by group is developed. Temporal changes in the effects of elimination of causes of death on Gini coefficient are analyzed. Numerous empirical examples show: Lorenz curves for Sweden, Russia and Bangladesh in 1995, proportional changes in Gini coefficient and four other measures of inequality for the USA in 1950-1995 and for Russia in 1959-2000. Further shown are errors of estimates of Gini coefficient when computed from various types of mortality data of France, Japan, Sweden and the USA in 1900-95, decompositions of the USA-UK difference in life expectancies and Gini coefficients by age and cause of death in 1997. As well, effects of elimination of major causes of death in the UK in 1951-96 on Gini coefficient, age-specific effects of mortality and educational composition of the Russian population on changes in life expectancy and Gini coefficient between 1979 and 1989. Illustrated as well are variations in life expectancy and Gini coefficient across 32 countries in 1996-1999 and associated changes in life expectancy and Gini

  10. Projective cohomology over a chain complex

    International Nuclear Information System (INIS)

    Abd El-Sattar, A. Dabbour; Salama, T.M.

    1989-07-01

    In the present work we study some topics of spectrums with morphisms and then define a cohomology construction for compact Hausdorff spaces over a chain complex as the coefficient group. It is proved that this construction is δ-functor. (author). 16 refs

  11. Reflection as a Learning Tool in Graduate Medical Education: A Systematic Review.

    Science.gov (United States)

    Winkel, Abigail Ford; Yingling, Sandra; Jones, Aubrie-Ann; Nicholson, Joey

    2017-08-01

    Graduate medical education programs employ reflection to advance a range of outcomes for physicians in training. However, the most effective applications of this tool have not been fully explored. A systematic review of the literature examined interventions reporting the use of reflection in graduate medical education. The authors searched Medline/PubMed, Embase, Cochrane CENTRAL, and ERIC for studies of reflection as a teaching tool to develop medical trainees' capacities. Key words and subject headings included reflection , narrative , residents/GME , and education / teaching / learning . No language or date limits were applied. The search yielded 1308 citations between inception for each database and June 15, 2015. A total of 16 studies, encompassing 477 residents and fellows, met eligibility criteria. Study quality was assessed using the Critical Appraisal Skills Programme Qualitative Checklist. The authors conducted a thematic analysis of the 16 articles. Outcomes studied encompassed the impact of reflection on empathy, comfort with learning in complex situations, and engagement in the learning process. Reflection increased learning of complex subjects and deepened professional values. It appears to be an effective tool for improving attitudes and comfort when exploring difficult material. Limitations include that most studies had small samples, used volunteers, and did not measure behavioral outcomes. Critical reflection is a tool that can amplify learning in residents and fellows. Added research is needed to understand how reflection can influence growth in professional capacities and patient-level outcomes in ways that can be measured.

  12. The reflection seismology measurement method

    International Nuclear Information System (INIS)

    Sprecher, C.

    1987-01-01

    Even though data acquisition and data processing procedures have become more and more complex in recent decades, the end products of a reflection seismic survey have remained simple and illustrative. A seismic section resembles a geological cross-section and can be interpreted without in-depth knowledge provided that the basic principles behind the method are understood. This article attempts to convey some insight into the methodology without claiming to be scientifically exact or complete. (author)

  13. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  15. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity

    Science.gov (United States)

    Mohamed, Gehad G.; Soliman, Madiha H.

    2010-08-01

    Sulpiride (SPR; L) is a substituted benzamide antipsychotic which is reported to be a selective antagonist of central dopamine receptors and claimed to have mood-elevating properties. The ligation behaviour of SPR drug is studied in order to give an idea about its potentiality towards some transition metals in vitro systems. Metal complexes of SPR have been synthesized by reaction with different metal chlorides. The metal complexes of SPR with the formula [MCl 2(L) 2(H 2O) 2]· nH 2O [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); n = 0-2] and [FeCl 2(HL)(H 2O) 3]Cl·H 2O have been synthesized and characterized using elemental analysis (CHN), electronic (infrared, solid reflectance and 1H NMR spectra) and thermal analyses (TG and DTA). The molar conductance data reveal that the bivalent metal chelates are non-electrolytes while Fe(III) complex is 1:1 electrolyte. IR spectra show that SPR is coordinated to the metal ions in a neutral monodentate manner with the amide O. From the magnetic and solid reflectance spectra, octahedral geometry is suggested. The thermal decomposition processes of these complexes were discussed. The correlation coefficient, the activation energies, E*, the pre-exponential factor, A, and the entropies, Δ S*, enthalpies, Δ H*, Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The synthesized ligand and its metal complexes were also screened for their antibacterial and antifungal activity against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Aspergillus flavus and Candida albicans). The activity data show that the metal complexes are found to have antibacterial and antifungal activity than the parent drug and less than the standard.

  16. Adaptive Green-Kubo estimates of transport coefficients from molecular dynamics based on robust error analysis

    Science.gov (United States)

    Jones, Reese E.; Mandadapu, Kranthi K.

    2012-04-01

    We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.

  17. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  18. The Reflective Learning Continuum: Reflecting on Reflection

    Science.gov (United States)

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  19. DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients

    Science.gov (United States)

    Chen, Yingyuan; Cai, Lihui; Wang, Ruofan; Song, Zhenxi; Deng, Bin; Wang, Jiang; Yu, Haitao

    2018-01-01

    Alzheimer's disease (AD) is a degenerative disorder of neural system that affects mainly the older population. Recently, many researches show that the EEG of AD patients can be characterized by EEG slowing, enhanced complexity of the EEG signals, and EEG synchrony. In order to examine the neural synchrony at multi scales, and to find a biomarker that help detecting AD in diagnosis, detrended cross-correlation analysis (DCCA) of EEG signals is applied in this paper. Several parameters, namely DCCA coefficients in the whole brain, DCCA coefficients at a specific scale, maximum DCCA coefficient over the span of all time scales and the corresponding scale of such coefficients, were extracted to examine the synchronization, respectively. The results show that DCCA coefficients have a trend of increase as scale increases, and decreases as electrode distance increases. Comparing DCCA coefficients in AD patients with healthy controls, a decrease of synchronization in the whole brain, and a bigger scale corresponding to maximum correlation is discovered in AD patients. The change of max-correlation scale may relate to the slowing of oscillatory activities. Linear combination of max DCCA coefficient and max-correlation scale reaches a classification accuracy of 90%. From the above results, it is reasonable to conclude that DCCA coefficient reveals the change of both oscillation and synchrony in AD, and thus is a powerful tool to differentiate AD patients from healthy elderly individuals.

  20. Transfer coefficients of radionuclides secreted in milk of dairy cows

    International Nuclear Information System (INIS)

    Sam, D.; Williams, W.F.; Rockmann, D.D.; Allen, J.T.

    1980-01-01

    This study simulated experimentally the transfer of radionuclides to milk of dairy cows on a worst-case situation using various radionuclides known to emanate from nuclear power stations and which have been detected on particulates. Two lactating Holstein cows were administered orally one gelatin capsule containing 10 radionuclides in water-soluble form per day for 14 consecutive days. Milk samples were collected and aliquots analyzed in a germanium lithium-drifted detector coupled to a 2048-multichannel gamma-ray analyzer to measure small amounts of complex mixtures of radionuclides. The transfer coefficients of the radionuclides were calculated when their secretion in milk reached or approached a plateau of concentration. The radionuclides and their transfer coefficients to milk were: chromium 51 less than 0.01%; manganese 54 0.033 +- 0.005%; cobalt 60 0.01 +- 0.002%; iron 59 0.0048 +- 0.002%; zinc 65 0.31 +- 0.07%; selenium 75 0.29 +- 0.1%; antimony 125 0.011 +- 0.003%; iodine 131 0.88 +- 0.05%; and cesium 137 0.79 +- 0.08%

  1. Automating the Detection of Reflection-on-Action

    Science.gov (United States)

    Saucerman, Jenny; Ruis, A. R.; Shaffer, David Williamson

    2017-01-01

    Learning to solve "complex problems"--problems whose solutions require the application of more than basic facts and skills--is critical to meaningful participation in the economic, social, and cultural life of the digital age. In this paper, we use a theoretical understanding of how professionals use reflection-in-action to solve complex…

  2. Transmission and total reflection of subhertz electromagnetic waves at the earth-atmosphere interface

    International Nuclear Information System (INIS)

    Shiozawa, Toshiyuki

    2010-01-01

    For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f 0 which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f 0 falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.

  3. The Gini coefficient: a methodological pilot study to assess fetal brain development employing postmortem diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, Adrian; Sorge, Ina; Hirsch, Wolfgang [University Hospital Leipzig, Department of Pediatric Radiology, Leipzig (Germany); Riffert, Till; Dhital, Bibek; Knoesche, Thomas R.; Anwander, Alfred [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Stepan, Holger [University Leipzig, Department of Obstetrics, Leipzig (Germany)

    2014-10-15

    Diffusion-weighted imaging (DWI) is important in the assessment of fetal brain development. However, it is clinically challenging and time-consuming to prepare neuromorphological examinations to assess real brain age and to detect abnormalities. To demonstrate that the Gini coefficient can be a simple, intuitive parameter for modelling fetal brain development. Postmortem fetal specimens(n = 28) were evaluated by diffusion-weighted imaging (DWI) on a 3-T MRI scanner using 60 directions, 0.7-mm isotropic voxels and b-values of 0, 150, 1,600 s/mm{sup 2}. Constrained spherical deconvolution (CSD) was used as the local diffusion model. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and complexity (CX) maps were generated. CX was defined as a novel diffusion metric. On the basis of those three parameters, the Gini coefficient was calculated. Study of fetal brain development in postmortem specimens was feasible using DWI. The Gini coefficient could be calculated for the combination of the three diffusion parameters. This multidimensional Gini coefficient correlated well with age (Adjusted R{sup 2} = 0.59) between the ages of 17 and 26 gestational weeks. We propose a new method that uses an economics concept, the Gini coefficient, to describe the whole brain with one simple and intuitive measure, which can be used to assess the brain's developmental state. (orig.)

  4. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  5. Experimental determination of the heat transfer coefficient in shell-and-tube condensers using the Wilson plot method

    Directory of Open Access Journals (Sweden)

    Havlik Jan

    2017-01-01

    Full Text Available This article deals with the experimental determination of heat transfer coefficients. The calculation of heat transfer coefficients constitutes a crucial issue in design and sizing of heat exchangers. The Wilson plot method and its modifications based on measured experimental data utilization provide an appropriate tool for the analysis of convection heat transfer processes and the determination of convection coefficients in complex cases. A modification of the Wilson plot method for shell-and-tube condensers is proposed. The original Wilson plot method considers a constant value of thermal resistance on the condensation side. The heat transfer coefficient on the cooling side is determined based on the change in thermal resistance for different conditions (fluid velocity and temperature. The modification is based on the validation of the Nusselt theory for calculating the heat transfer coefficient on the condensation side. A change of thermal resistance on the condensation side is expected and the value is part of the calculation. It is possible to improve the determination accuracy of the criterion equation for calculation of the heat transfer coefficient using the proposed modification. The criterion equation proposed by this modification for the tested shell-and-tube condenser achieves good agreement with the experimental results and also with commonly used theoretical methods.

  6. Inter-band and intra-band reflections in graphene–insulator–superconductor junctions with zigzag or armchair edge

    Energy Technology Data Exchange (ETDEWEB)

    Duque, M.F., E-mail: mfduqued@unal.edu.co; Gomez P, S., E-mail: sgomezp@unal.edu.co; Herrera, W.J., E-mail: jherreraw@unal.edu.co

    2014-12-15

    We analyze electron–electron and Andreev reflections (AR) for a graphene–insulator–superconductor junction for zigzag and armchair edges, where the insulator is modeled as a potential barrier characterized by a strength. We calculate the reflection probabilities and differential conductance using the Bogoliubov–de Gennes–Dirac (BdGD) equations. For low doping values and zigzag edge the reflection coefficients have the same behavior that in a graphene–superconductor junction. However for high doping values the reflection probabilities have a periodicity of πwith the strength barrier values. For high doping values and armchair edge the electron–electron reflections associated to K′ valley increase and AR associated to K valley decrease. We compare our results with the differential conductance obtained by the Green formalism. We show that the effect of barrier strength for high doping resembles the behavior when a hopping between graphene and superconductor interfaces is considered.

  7. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study.

    Science.gov (United States)

    Barbosa, Thaís da Silva; Peirone, Silvina; Barrera, Javier A; Abrate, Juan P A; Lane, Silvia I; Arbilla, Graciela; Bauerfeldt, Glauco Favilla

    2015-04-14

    The kinetics of the cis-3-hexene + OH reaction were investigated by an experimental relative rate method and at the density functional theory level. The experimental set-up consisted of a 200 L Teflon bag, operated at atmospheric pressure and 298 K. OH radicals were produced by the photolysis of H2O2 at 254 nm. Relative rate coefficients were determined by comparing the decays of the cis-3-hexene and reference compounds (cyclohexene, 2-buten-1-ol and allyl ether). The mean second-order rate coefficient value found was (6.27 ± 0.66) × 10(-11) cm(3) molecule(-1) s(-1), the uncertainty being estimated by propagation of errors. Theoretical calculations for the addition reaction of OH to cis-3-hexene have also been performed, at the BHandHLYP/aug-cc-pVDZ level, in order to investigate the reaction mechanism, to clarify the experimental observations and to model the reaction kinetics. Different conformations of the reactants, pre-barrier complexes and saddle points were considered in our calculations. The individual rate coefficients, calculated for each conformer of the reactant, at 298 K, using a microcanonical variational transition state method, are 4.19 × 10(-11) and 1.23 × 10(-10) cm(3) molecule(-1) s(-1). The global rate coefficient was estimated from the Boltzmann distribution of the conformers to be 8.10 × 10(-11) cm(3) molecule(-1) s(-1), which is in agreement with the experimental value. Rate coefficients calculated over the temperature range from 200-500 K are also given. Our results suggest that the complex mechanism, explicitly considering different conformations for the stationary points, must be taken into account for a proper description of the reaction kinetics.

  8. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes.

    Science.gov (United States)

    Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne

    2012-08-30

    To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  10. Anti-reflecting and passivating coatings for silicon solar cells on a basis of SO2 and TiO2 layers

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Nikulin, V.Eh.; Shorin, V.F.; Topanov, B.G.; Dikhanbaev, K.K.

    2002-01-01

    An analysis of influence of passivating layer on performance of anti-reflection coating of solar cells is carried out. The introduction of passivating SiO 2 layer between a frontal surface of the solar cell and TiO 2 +SiO 2 anti-reflection coating increase total reflection. If a thickness of a passivating layer no more than 20 Angstrom an increase of reflection does not exceed 0.5 %. However, for effective passivation the thickness of the passivating layer has to be within 100-1000 Angstrom region, thus the interference contribution of the passivating layer becomes essential and the AC is necessary to calculate as triple system SiO 2 -TiO 2 -SiO 2 . Such the three layers system ensuring average coefficient of reflection less of 3.5 % in a range 0.4-1.1 μm if the thickness of passivating SiO 2 layer no more 200 Angstrom. For solar cells with passivating SiO 2 layer thickness of 100 Angstrom and protective glass of non-interference thickness the single layer AC from TiO 2 allows to receive average value of reflection coefficient for a spectral range 0.4-1.1 μm no more than 9.5 %. The introduction of two additional layers SiO 2 and TiO 2 allows to reduce this value on 2.0-3.0 %. The comparison of calculation and experimental results is given. (author)

  11. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  12. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  13. Meta-Analysis of Coefficient Alpha

    Science.gov (United States)

    Rodriguez, Michael C.; Maeda, Yukiko

    2006-01-01

    The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…

  14. Genetic basis of a cognitive complexity metric

    NARCIS (Netherlands)

    Hansell, Narelle K; Halford, Graeme S; Andrews, Glenda; Shum, David H K; Harris, Sarah E; Davies, Gail; Franic, Sanja; Christoforou, Andrea; Zietsch, Brendan; Painter, Jodie; Medland, Sarah E; Ehli, Erik A; Davies, Gareth E; Steen, Vidar M; Lundervold, Astri J; Reinvang, Ivar; Montgomery, Grant W; Espeseth, Thomas; Hulshoff Pol, Hilleke E; Starr, John M; Martin, Nicholas G; Le Hellard, Stephanie; Boomsma, Dorret I; Deary, Ian J; Wright, Margaret J

    2015-01-01

    Relational complexity (RC) is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using

  15. Genetic Basis of a Cognitive Complexity Metric

    NARCIS (Netherlands)

    Hansell, N.K.; Halford, G.S.; Andrews, G.; Shum, D.H.K.; Harris, S.E.; Davies, G.; Franic, S.; Christoforou, A.; Zietsch, B.; Painter, J.; Medland, S.E.; Ehli, E.A.; Davies, G.E.; Steen, V.M.; Lundervold, A.J.; Reinvang, I.; Montgomery, G.W.; Espeseth, T.; Hulshoff Pol, H.E.; Starr, J.M.; Martin, N.G.; Le Hellard, S.; Boomsma, D.I.; Deary, I.J.; Wright, M.J.

    2015-01-01

    Relational complexity (RC) is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using

  16. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  17. Determination of first Townsend coefficient in pure isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Iara B.; Vivaldini, Tulio C.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2010-07-01

    Full text. Electron transport parameters in gases play an important role for detector design, discharge modelling and validation of the electron impact cross-sections involved. Recently, the experiments in high energy physics and the development of gaseous detectors operating in high electric fields have motivated the determination of these parameters in gases with complex structure. This work presents measurements of first Townsend coefficient (alpha) in pure isobutane, choosing due to its importance for the development of gaseous detectors. The measurements were obtained with a parallel plate chamber, protected against discharges by the anode made of a high resistivity ({rho} = 2 x 10{sup 10} {Omega}{center_dot}m) glass plate (32.5 x 32.5mm{sup 2}). The experimental method is based on the Pulsed Townsend technique, where the primary ionization is produced through the incidence of a nitrogen laser beam (MNL202-LD LTB) onto the cathode (40mm diameter) made of aluminum. The electrons released drift toward the anode under the electric field applied through a high voltage power supply (225-30R Bertan). This charges movement produces an electric current which is measured by an electrometer (610C Keithley), directly connected to the cathode. Considering the solution of the Townsend equation for uniform electric fields, from the ratio between the current measured in avalanche regime (I) and the primary ionization current (I{sub 0}), the first Townsend coefficient can be determined, since {alpha} = d{sup -1} In(I/I{sub 0}), where d is the gap between the electrodes. The validation of the technique was provided by measurements of first Townsend coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The alpha coefficient in isobutane was measured as a function of the reduced electric field in the range of 139Td up to 208Td (1Td = 1 x 10{sup 21} V.m{sup 2}). The obtained values were compared with those simulated by Imonte code

  18. Determination of first Townsend coefficient in pure isobutane

    International Nuclear Information System (INIS)

    Lima, Iara B.; Vivaldini, Tulio C.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2010-01-01

    Full text. Electron transport parameters in gases play an important role for detector design, discharge modelling and validation of the electron impact cross-sections involved. Recently, the experiments in high energy physics and the development of gaseous detectors operating in high electric fields have motivated the determination of these parameters in gases with complex structure. This work presents measurements of first Townsend coefficient (alpha) in pure isobutane, choosing due to its importance for the development of gaseous detectors. The measurements were obtained with a parallel plate chamber, protected against discharges by the anode made of a high resistivity (ρ = 2 x 10 10 Ω·m) glass plate (32.5 x 32.5mm 2 ). The experimental method is based on the Pulsed Townsend technique, where the primary ionization is produced through the incidence of a nitrogen laser beam (MNL202-LD LTB) onto the cathode (40mm diameter) made of aluminum. The electrons released drift toward the anode under the electric field applied through a high voltage power supply (225-30R Bertan). This charges movement produces an electric current which is measured by an electrometer (610C Keithley), directly connected to the cathode. Considering the solution of the Townsend equation for uniform electric fields, from the ratio between the current measured in avalanche regime (I) and the primary ionization current (I 0 ), the first Townsend coefficient can be determined, since α = d -1 In(I/I 0 ), where d is the gap between the electrodes. The validation of the technique was provided by measurements of first Townsend coefficient in pure nitrogen, a widely studied gas, which has well-established data in literature. The alpha coefficient in isobutane was measured as a function of the reduced electric field in the range of 139Td up to 208Td (1Td = 1 x 10 21 V.m 2 ). The obtained values were compared with those simulated by Imonte code (version 4.5) and the only experimental results available

  19. Experimental Investigation of Discharge Coefficient in Mesh Panel Bottom Intakes

    Directory of Open Access Journals (Sweden)

    keivan bina

    2012-04-01

    Full Text Available Bottom racks is a hydraulic structure which is placed in the bed of stream through which, part of flow in the main channel is diverted. These structures have very wide application in industry, irrigation, drainage and etc. Of course much attention had been paid to the study of such structures, but characteristics of flow through bottom racks are complex. The present study was directed to estimate the discharge coefficient of a new kind of bottom racks including both transverse and longitudinal bars that named "mesh panel racks" without considering any solids in the fluid. This kind of bottom intake has advantages from structural point of view and has less deformation under static and dynamic loads. Laboratory setup with three mesh panel intakes was built and the effects of various parameters such as racks slope, porosity and geometry were explored. A dimensional analysis using Buckingham theory showed the effective hydraulic and geometric factors that affect the discharge coefficient (Cd of bottom racks. Then, a statistical approach to determine the discharge coefficient of a rack structure was developed with linear and nonlinear regression using SPSS software. The efficiency of the proposed technique is high enough that the associated error is limited to 10%. Finally, hydraulic performance of mesh panel intakes was compared with regular type of bottom intakes, which consist of longitudinal bars. For this purpose, diverted discharge through both type of intakes calculated in same situation

  20. Measuring Resource Inequality: The Gini Coefficient

    Directory of Open Access Journals (Sweden)

    Michael T. Catalano

    2009-07-01

    Full Text Available This paper stems from work done by the authors at the Mathematics for Social Justice Workshop held in June of 2007 at Middlebury College. We provide a description of the Gini coefficient and some discussion of how it can be used to promote quantitative literacy skills in mathematics courses. The Gini Coefficient was introduced in 1921 by Italian statistician Corrado Gini as a measure of inequality. It is defined as twice the area between two curves. One, the Lorenz curve for a given population with respect to a given resource, represents the cumulative percentage of the resource as a function of the cumulative percentage of the population that shares that percentage of the resource. The second curve is the line y = x which is the Lorenz curve for a population which shares the resource equally. The Gini coefficient can be interpreted as the percentage of inequality represented in the population with respect to the given resource. We propose that the Gini coefficient can be used to enhance students’ understanding of calculus concepts and provide practice for students in using both calculus and quantitative literacy skills. Our examples are based mainly on distribution of energy resources using publicly available data from the Energy Information Agency of the United States Government. For energy resources within the United States, we find that by household, the Gini coefficient is 0.346, while using the 51 data points represented by the states and Washington D.C., the Gini coefficient is 0.158. When we consider the countries of the world as a population of 210, the Gini coefficient is 0.670. We close with ideas for questions which can be posed to students and discussion of the experiences two other mathematics instructors have had incorporating the Gini coefficient into pre-calculus-level mathematics classes.

  1. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  2. Transport Coefficients from Large Deviation Functions

    Directory of Open Access Journals (Sweden)

    Chloe Ya Gao

    2017-10-01

    Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  3. Transport Coefficients from Large Deviation Functions

    Science.gov (United States)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  4. Power coefficient anomaly in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H

    1980-12-15

    Operation of the JOYO experimental fast reactor with the MK-I core has been divided into two phases: (1) 50 MWt power ascension and operation; and (2) 75 MWt power ascension and operation. The 50 MWt power-up tests were conducted in August 1978. In these tests, the measured reactivity loss due to power increases from 15 MWt to 50 MWt was 0.28% ..delta.. K/K, and agreed well with the predicted value of 0.27% ..delta.. K/K. The 75 MWt power ascension tests were conducted in July-August 1979. In the process of the first power increase above 50 MWt to 65 MWt conducted on July 11, 1979, an anomalously large negative power coefficient was observed. The value was about twice the power coefficient values measured in the tests below 50 MW. In order to reproduce the anomaly, the reactor power was decreased and again increased up to the maximum power of 65 MWt. However, the large negative power coefficient was not observed at this time. In the succeeding power increase from 65 MWt to 75 MWt, a similar anomalous power coefficient was again observed. This anomaly disappeared in the subsequent power ascensions to 75 MWt, and the magnitude of the power coefficient gradually decreased with power cycles above the 50 MWt level.

  5. The OHS consultant as a 'political reflective navigator' in technological change processes

    DEFF Research Database (Denmark)

    Broberg, Ole

    2004-01-01

    between different roles and mobilize different types of knowledge depending on the context; the consultant is a navigator in the sense of knowing how to navigate in the complex organization surrounding the technological change process. The competencies of a political reflective navigator are outlined...... of OHS consultants is placed on the line between an expert and a process consultant. Based on evidence from the cases and on the concepts of actor-network theory on technological development, we suggest a supplementary third role, that of the 'political reflective navigator', where the OHS consultant...... is an 'actor' who pursues a work environment agenda in a complex network in which other actors pursue other agendas such as productivity, economics, quality, etc. The consultant is political in the sense of pursuing a work environment agenda; the consultant is reflective in the sense of being able to switch...

  6. 2012 Symposium on Chaos, Complexity and Leadership

    CERN Document Server

    Erçetin, Şefika

    2014-01-01

    These proceedings from the 2012 symposium on "Chaos, complexity and leadership"  reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are  Leadership and Management applications of Chaos and Complexity Theory.

  7. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    Science.gov (United States)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  8. Energy and complex industrial systems environmental emissions data reporting and acquisition

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Hamilton, L.D.

    1987-07-01

    The Joint International Atomic Energy Agency (IAEA), UNEP and WHO Project on Assessing and Managing Health and Environmental risks from Energy and Other Complex Technologies intends to complile emissions data for mportant energy systems and other complex technologies from a wide variety of countries. To facilitate data generation and compilation, this report: outlines data reporting protocols; identifies potential information sources; demonstrates how to estimate coefficients; presents some compiled US emission coefficients or criteria air pollutants for some energy process; and, compares national air emission standards for electricity generating plants in OECD member countries. 27 refs., 2 fis., 1 tabs

  9. Reliability of reflectance measures in passive filters

    Science.gov (United States)

    Saldiva de André, Carmen Diva; Afonso de André, Paulo; Rocha, Francisco Marcelo; Saldiva, Paulo Hilário Nascimento; Carvalho de Oliveira, Regiani; Singer, Julio M.

    2014-08-01

    Measurements of optical reflectance in passive filters impregnated with a reactive chemical solution may be transformed to ozone concentrations via a calibration curve and constitute a low cost alternative for environmental monitoring, mainly to estimate human exposure. Given the possibility of errors caused by exposure bias, it is common to consider sets of m filters exposed during a certain period to estimate the latent reflectance on n different sample occasions at a certain location. Mixed models with sample occasions as random effects are useful to analyze data obtained under such setups. The intra-class correlation coefficient of the mean of the m measurements is an indicator of the reliability of the latent reflectance estimates. Our objective is to determine m in order to obtain a pre-specified reliability of the estimates, taking possible outliers into account. To illustrate the procedure, we consider an experiment conducted at the Laboratory of Experimental Air Pollution, University of São Paulo, Brazil (LPAE/FMUSP), where sets of m = 3 filters were exposed during 7 days on n = 9 different occasions at a certain location. The results show that the reliability of the latent reflectance estimates for each occasion obtained under homoskedasticity is km = 0.74. A residual analysis suggests that the within-occasion variance for two of the occasions should be different from the others. A refined model with two within-occasion variance components was considered, yielding km = 0.56 for these occasions and km = 0.87 for the remaining ones. To guarantee that all estimates have a reliability of at least 80% we require measurements on m = 10 filters on each occasion.

  10. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    Science.gov (United States)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  11. Temperature dependence of Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal

    Directory of Open Access Journals (Sweden)

    Qieni Lu

    2015-08-01

    Full Text Available We measure temperature dependence on Kerr coefficient and quadratic polarized optical coefficient of a paraelectric Mn:Fe:KTN crystal simultaneously in this work, based on digital holographic interferometry (DHI. And the spatial distribution of the field-induced refractive index change can also be visualized and estimated by numerically retrieving sequential phase maps of Mn:Fe:KTN crystal from recording digital holograms in different states. The refractive indices decrease with increasing temperature and quadratic polarized optical coefficient is insensitive to temperature. The experimental results suggest that the DHI method presented here is highly applicable in both visualizing the temporal and spatial behavior of the internal electric field and accurately measuring electro-optic coefficient for electrooptical media.

  12. The utility of vignettes to stimulate reflection on professionalism: theory and practice.

    Science.gov (United States)

    Bernabeo, E C; Holmboe, E S; Ross, K; Chesluk, B; Ginsburg, S

    2013-08-01

    Professionalism remains a substantive theme in medical literature. There is an emerging emphasis on sociological and complex adaptive systems perspectives that refocuses attention from just the individual role to working within one's system to enact professionalism in practice. Reflecting on responses to professional dilemmas may be one method to help practicing physicians identify both internal and external factors contributing to (un) professional behavior. We present a rationale and theoretical framework that supports and guides a reflective approach to the self assessment of professionalism. Guided by principles grounded in this theoretical framework, we developed and piloted a set of vignettes on professionally challenging situations, designed to stimulate reflection in practicing physicians. Findings show that participants found the vignettes to be authentic and typical, and reported the group experience as facilitative around discussions of professional ambiguity. Providing an opportunity for physicians to reflect on professional behavior in an open and safe forum may be a practical way to guide physicians to assess themselves on professional behavior and engage with the complexities of their work. The finding that the focus groups led to reflection at a group level suggests that effective reflection on professional behavior may require a socially interactive process. Emphasizing both the behaviors and the internal and external context in which they occur can thus be viewed as critically important for understanding professionalism in practicing physicians.

  13. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  14. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  15. Transport coefficients for electrons in argon in crossed electric and magnetic rf fields

    International Nuclear Information System (INIS)

    Raspopovic, Z M; Dujko, S; Makabe, T; Petrovic, Z Lj

    2005-01-01

    Monte Carlo simulations of electron transport have been performed in crossed electric and magnetic rf fields in argon. It was found that a magnetic field strongly affects electron transport, producing complex behaviour of the transport coefficients that cannot be predicted on the basis of dc field theory. In particular, it is important that a magnetic field, if it has sufficiently high amplitude, allows energy gain from the electric field only over a brief period of time, which leads to a pulse of directed motion and consequently to cyclotron oscillations being imprinted on the transport coefficients. Furthermore, this may lead to negative diffusion. The behaviour of drift velocities is also interesting, with a linear (sawtooth) dependence for the perpendicular drift velocity and bursts of drift for the longitudinal. Non-conservative effects are, on the other hand, reduced by the increasing magnetic field

  16. Fourier X-ray line shape analysis of lattice defects from a single reflection

    International Nuclear Information System (INIS)

    Misra, N.K.; Bhanumurthy, K.

    1981-01-01

    A method of single reflection Fourier analysis has been described considering the fact that the rms strain (averaged over a distance) is not independent of averaging distance. Following the procedure of N.K. Misra and T.B. Ghosh (1976) and considering the initial slopes of dAsub(L)/dL against L curves, (Asub(L) is the Lsub(th) order Fourier coefficient) the effective size of the coherently diffracting domains and the rms strain in them are determined. The results of this analysis for pure Ti and Ag-3.55% Ga, Ag-15% In and Cu-12.46% Ge alloys compare fairly well with those obtained from different multiple reflections techniques. (author)

  17. Time series of low-degree geopotential coefficients from SLR data: estimation of Earth's figure axis and LOD variations

    Science.gov (United States)

    Luceri, V.; Sciarretta, C.; Bianco, G.

    2012-12-01

    The redistribution of the mass within the earth system induces changes in the Earth's gravity field. In particular, the second-degree geopotential coefficients reflect the behaviour of the Earth's inertia tensor of order 2, describing the main mass variations of our planet impacting the EOPs. Thanks to the long record of accurate and continuous laser ranging observations to Lageos and other geodetic satellites, SLR is the only current space technique capable to monitor the long time variability of the Earth's gravity field with adequate accuracy. Time series of low-degree geopotential coefficients are estimated with our analysis of SLR data (spanning more than 25 years) from several geodetic satellites in order to detect trends and periodic variations related to tidal effects and atmospheric/oceanic mass variations. This study is focused on the variations of the second-degree Stokes coefficients related to the Earth's principal figure axis and oblateness: C21, S21 and C20. On the other hand, surface mass load variations induce excitations in the EOPs that are proportional to the same second-degree coefficients. The time series of direct estimates of low degree geopotential and those derived from the EOP excitation functions are compared and presented together with their time and frequency analysis.

  18. Ionization current in N2 gas. Part 7. ; Diffusion and reflection of metastable particles. N2 gas chu ni okeru denri denryu. 7. ; Jun antei reiki ryushi no kakusan to hansha

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.; Ito, H.; Sekizawa, H. (Chiba Inst. of Technology, Chiba (Japan)); Ikuta, N. (Tokushima Univ., Tokushima (Japan))

    1993-06-20

    The energy loss process in quenching of excited particles by collision to other ones and solid surfaces was investigated with metastable excited particles formed in weakly ionized gases. The measured lifetime of N2 metastable particles in N2, N2/CO, N2/CH3 gases during Townsent discharge did not agree with the Molnar's theoretical value which was obtained by solving diffusion equations using the boundary condition that assumes the density of excited particles to be zero at electrodes and tube walls. Strange behavior was observed too, that is, coefficients of diffusion and reaction rate determined by the theoretical lifetime change systematically with the distance between electrodes. Then, the novel boundary condition that takes reflection coefficient into account was applied to solve diffusion equations. The results obtained could account for experimental results without any discrepancy. The analysis of results clarified the dependence of various parameters of metastable excited particles on the reflection coefficient. The increase of reflection coefficient decreases the surface quenching of excited particles at electrodes and elongs effectively excited lifetime and increases the number of collisional quenching in gas phases. 16 refs., 8 figs.

  19. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    Science.gov (United States)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  20. Thermodynamically based constraints for rate coefficients of large biochemical networks.

    Science.gov (United States)

    Vlad, Marcel O; Ross, John

    2009-01-01

    Wegscheider cyclicity conditions are relationships among the rate coefficients of a complex reaction network, which ensure the compatibility of kinetic equations with the conditions for thermodynamic equilibrium. The detailed balance at equilibrium, that is the equilibration of forward and backward rates for each elementary reaction, leads to compatibility between the conditions of kinetic and thermodynamic equilibrium. Therefore, Wegscheider cyclicity conditions can be derived by eliminating the equilibrium concentrations from the conditions of detailed balance. We develop matrix algebra tools needed to carry out this elimination, reexamine an old derivation of the general form of Wegscheider cyclicity condition, and develop new derivations which lead to more compact and easier-to-use formulas. We derive scaling laws for the nonequilibrium rates of a complex reaction network, which include Wegscheider conditions as a particular case. The scaling laws for the rates are used for clarifying the kinetic and thermodynamic meaning of Wegscheider cyclicity conditions. Finally, we discuss different ways of using Wegscheider cyclicity conditions for kinetic computations in systems biology.