Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Quantum transport in complex system
International Nuclear Information System (INIS)
Kusnezov, D.; Bulgac, A.; DoDang, G.
1998-01-01
We derive the influence function and the effective dynamics of a quantum systems coupled to a chaotic environment, using very general parametric and banded random matrices to describe the quantum properties of a chaotic bath. We find that only in certain limits the thermalization can result from the environment. We study the general transport problems including escape, fusion and tunneling (fission). (author)
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum-information processing in disordered and complex quantum systems
International Nuclear Information System (INIS)
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-01-01
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Note on transmitted complexity for quantum dynamical systems
Watanabe, Noboru; Muto, Masahiro
2017-10-01
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Classical and quantum mechanics of complex Hamiltonian systems ...
Indian Academy of Sciences (India)
Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.
Classical and quantum mechanics of complex Hamiltonian systems
Indian Academy of Sciences (India)
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...
Dynamics of a Simple Quantum System in a Complex Environment
Bulgac, A; Kusnezov, D; Bulgac, Aurel; Dang, Gui Do; Kusnezov, Dimitri
1998-01-01
We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body intrinsic system/environment. By modelling the intrinsic many-body system with parametric random matrices, we study the types of effective stochastic models which emerge from random matrix theory. Using the Feynman-Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the solutions for some representative cases and make connections to well known limiting results, particularly to Brownian motion, Kramers classical limit and the Caldeira-Leggett approach.
Open quantum maps from complex scaling of kicked scattering systems
Mertig, Normann; Shudo, Akira
2018-04-01
We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.
Norm estimates of complex symmetric operators applied to quantum systems
International Nuclear Information System (INIS)
Prodan, Emil; Garcia, Stephan R; Putinar, Mihai
2006-01-01
This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances
Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems
Energy Technology Data Exchange (ETDEWEB)
Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)
2014-05-15
The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)
Increasing complexity with quantum physics.
Anders, Janet; Wiesner, Karoline
2011-09-01
We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Energy Technology Data Exchange (ETDEWEB)
Ananth, Nandini [Univ. of California, Berkeley, CA (United States)
2008-01-01
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex
Correlations in quantum systems and branch points in the complex plane
Rotter, I.
2001-01-01
Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.
Numerical approaches to complex quantum, semiclassical and classical systems
Energy Technology Data Exchange (ETDEWEB)
Schubert, Gerald
2008-11-03
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Numerical approaches to complex quantum, semiclassical and classical systems
International Nuclear Information System (INIS)
Schubert, Gerald
2008-01-01
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Numerical approaches to time evolution of complex quantum systems
International Nuclear Information System (INIS)
Fehske, Holger; Schleede, Jens; Schubert, Gerald; Wellein, Gerhard; Filinov, Vladimir S.; Bishop, Alan R.
2009-01-01
We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.
Stabilizing simulations of complex stochastic representations for quantum dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Perret, C; Petersen, W P, E-mail: wpp@math.ethz.ch [Seminar for Applied Mathematics, ETH, Zurich (Switzerland)
2011-03-04
Path integral representations of quantum dynamics can often be formulated as stochastic differential equations (SDEs). In a series of papers, Corney and Drummond (2004 Phys. Rev. Lett. 93 260401), Deuar and Drummond (2001 Comput. Phys. Commun. 142 442-5), Drummond and Gardnier (1980 J. Phys. A: Math. Gen. 13 2353-68), Gardiner and Zoller (2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer Series in Synergetics) 3rd edn (Berlin: Springer)) and Gilchrist et al (1997 Phys. Rev. A 55 3014-32) and their collaborators have derived SDEs from coherent states representations for density matrices. Computationally, these SDEs are attractive because they seem simple to simulate. They can be quite unstable, however. In this paper, we consider some of the instabilities and propose a few remedies. Particularly, because the variances of the simulated paths typically grow exponentially, the processes become de-localized in relatively short times. Hence, the issues of boundary conditions and stable integration methods become important. We use the Bose-Einstein Hamiltonian as an example. Our results reveal that it is possible to significantly extend integration times and show the periodic structure of certain functionals.
Energy Technology Data Exchange (ETDEWEB)
Freitag, Mark A. [Iowa State Univ., Ames, IA (United States)
2001-12-31
The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Brezinski, Mark E; Rupnick, Maria
2016-01-01
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743
Linear-algebraic bath transformation for simulating complex open quantum systems
International Nuclear Information System (INIS)
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Aspuru-Guzik, Alán; Yung, Man-Hong
2014-01-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics. (paper)
International Nuclear Information System (INIS)
Drabant, B.; Schlieker, M.
1993-01-01
The complex quantum groups are constructed. They are q-deformations of the real Lie groups which are obtained as the complex groups corresponding to the Lie algebras of type A n-1 , B n , C n . Following the ideas of Faddeev, Reshetikhin and Takhtajan Hopf algebras of regular functionals U R for these complexified quantum groups are constructed. One has thus in particular found a construction scheme for the q-Lorentz algebra to be identified as U(sl q (2,C). (orig.)
Gessner, Manuel; Breuer, Heinz-Peter
2013-04-01
We obtain exact analytic expressions for a class of functions expressed as integrals over the Haar measure of the unitary group in d dimensions. Based on these general mathematical results, we investigate generic dynamical properties of complex open quantum systems, employing arguments from ensemble theory. We further generalize these results to arbitrary eigenvalue distributions, allowing a detailed comparison of typical regular and chaotic systems with the help of concepts from random matrix theory. To illustrate the physical relevance and the general applicability of our results we present a series of examples related to the fields of open quantum systems and nonequilibrium quantum thermodynamics. These include the effect of initial correlations, the average quantum dynamical maps, the generic dynamics of system-environment pure state entanglement and, finally, the equilibration of generic open and closed quantum systems.
Reconfigurable optical implementation of quantum complex networks
Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V.
2018-05-01
Network theory has played a dominant role in understanding the structure of complex systems and their dynamics. Recently, quantum complex networks, i.e. collections of quantum systems arranged in a non-regular topology, have been theoretically explored leading to significant progress in a multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum communication, extreme violation of local realism, and quantum gravity theories. Despite important progress in several quantum platforms, the implementation of complex networks with arbitrary topology in quantum experiments is still a demanding task, especially if we require both a significant size of the network and the capability of generating arbitrary topology—from regular to any kind of non-trivial structure—in a single setup. Here we propose an all optical and reconfigurable implementation of quantum complex networks. The experimental proposal is based on optical frequency combs, parametric processes, pulse shaping and multimode measurements allowing the arbitrary control of the number of the nodes (optical modes) and topology of the links (interactions between the modes) within the network. Moreover, we also show how to simulate quantum dynamics within the network combined with the ability to address its individual nodes. To demonstrate the versatility of these features, we discuss the implementation of two recently proposed probing techniques for quantum complex networks and structured environments.
Algorithmic complexity of quantum capacity
Oskouei, Samad Khabbazi; Mancini, Stefano
2018-04-01
We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.
Quantum Kolmogorov complexity and bounded quantum memory
International Nuclear Information System (INIS)
Miyadera, Takayuki
2011-01-01
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
From atomic to mesoscale the role of quantum coherence in systems of various complexities
Novikova, Irina
2015-01-01
This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.
Feasible quantum communication complexity protocol
International Nuclear Information System (INIS)
Galvao, Ernesto F.
2002-01-01
I show that a simple multiparty communication task can be performed more efficiently with quantum communication than with classical communication, even with low detection efficiency η. The task is a communication complexity problem in which distant parties need to compute a function of the distributed inputs, while minimizing the amount of communication between them. A realistic quantum optical setup is suggested that can demonstrate a five-party quantum protocol with higher-than-classical performance, provided η>0.33
Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N
2008-10-23
The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.
Dependence of the quantum speed limit on system size and control complexity
Lee, Juneseo; Arenz, Christian; Rabitz, Herschel; Russell, Benjamin
2018-06-01
We extend the work in 2017 New J. Phys. 19 103015 by deriving a lower bound for the minimum time necessary to implement a unitary transformation on a generic, closed quantum system with an arbitrary number of classical control fields. This bound is explicitly analyzed for a specific N-level system similar to those used to represent simple models of an atom, or the first excitation sector of a Heisenberg spin chain, both of which are of interest in quantum control for quantum computation. Specifically, it is shown that the resultant bound depends on the dimension of the system, and on the number of controls used to implement a specific target unitary operation. The value of the bound determined numerically, and an estimate of the true minimum gate time are systematically compared for a range of system dimension and number of controls; special attention is drawn to the relationship between these two variables. It is seen that the bound captures the scaling of the minimum time well for the systems studied, and quantitatively is correct in the order of magnitude.
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
Dynamics of a complex quantum magnet
International Nuclear Information System (INIS)
Landry, James W.; Coppersmith, S. N.
2003-01-01
We have computed the low energy quantum states and low frequency dynamical susceptibility of complex quantum spin systems in the limit of strong interactions, obtaining exact results for system sizes enormously larger than accessible previously. The ground state is a complex superposition of a substantial fraction of all the classical ground states, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the behavior of single spins. These results show that strongly interacting quantum systems can organize to generate coherent excitations and shed light on recent experiments demonstrating that coherent excitations are present in a disordered spin liquid. The dependence of the energy spectra on system size differs qualitatively from that of the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interactions are giving rise to these unusual spectral properties
Quantum theory in complex Hilbert space
International Nuclear Information System (INIS)
Sharma, C.S.
1988-01-01
The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system
Quantum Dot Systems : A versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum
Akulin, V.M; Kurizki, G; Pellegrin, S
2005-01-01
This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
International Nuclear Information System (INIS)
Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin
2016-01-01
Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.
Quantum Kolmogorov complexity and the quantum Turing machine
Energy Technology Data Exchange (ETDEWEB)
Mueller, M.
2007-08-31
The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to A. Berthiaume et al. (2001), defining the complexity of a quantum bit (qubit) string as the length of the shortest quantum input for a universal quantum computer that outputs the desired string. Except for slight modifications, it is this definition of quantum Kolmogorov complexity that we study in this thesis. We start by analyzing certain aspects of the underlying quantum Turing machine (QTM) model in a more detailed formal rigour than was done previously. Afterwards, we apply these results to quantum Kolmogorov complexity. Our first result is a proof of the existence of a universal QTM which simulates every other QTM for an arbitrary number of time steps and than halts with probability one. In addition, we show that every input that makes a QTM almost halt can be modified to make the universal QTM halt entirely, by adding at most a constant number of qubits. It follows that quantum Kolmogorov complexity has the invariance property, i.e. it depends on the choice of the universal QTM only up to an additive constant. Moreover, the quantum complexity of classical strings agrees with classical complexity, again up to an additive constant. The proofs are based on several analytic estimates. Furthermore, we prove several incompressibility theorems for quantum Kolmogorov complexity. Finally, we show that for ergodic quantum information sources, complexity rate and entropy rate coincide with probability one. The thesis is finished with an outlook on a possible application of quantum Kolmogorov complexity in statistical mechanics. (orig.)
Adiabatic passage for a lossy two-level quantum system by a complex time method
International Nuclear Information System (INIS)
Dridi, G; Guérin, S
2012-01-01
Using a complex time method with the formalism of Stokes lines, we establish a generalization of the Davis–Dykhne–Pechukas formula which gives in the adiabatic limit the transition probability of a lossy two-state system driven by an external frequency-chirped pulse-shaped field. The conditions that allow this generalization are derived. We illustrate the result with the dissipative Allen–Eberly and Rosen–Zener models. (paper)
Quantum Dot Systems: a versatile platform for quantum simulations
International Nuclear Information System (INIS)
Barthelemy, Pierre; Vandersypen, Lieven M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Complex transformation method and resonances in one-body quantum systems
International Nuclear Information System (INIS)
Sigal, I.M.
1984-01-01
We develop a new spectral deformation method in order to treat the resonance problem in one-body systems. Our result on the meromorphic continuation of matrix elements of the resolvent across the continuous spectrum overlaps considerably with an earlier result of E. Balslev [B] but our method is much simpler and more convenient, we believe, in applications. It is inspired by the local distortion technique of Nuttall-Thomas-Babbitt-Balslev, further developed in [B] but patterned on the complex scaling method of Combes and Balslev. The method is applicable to the multicenter problems in which each potential can be represented, roughly speaking, as a sum of exponentially decaying and dilation-analytic, spherically symmetric parts
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
International Nuclear Information System (INIS)
Chou, Chia-Chun
2016-01-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-10-15
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Quantum complexity of graph and algebraic problems
International Nuclear Information System (INIS)
Doern, Sebastian
2008-01-01
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
Quantum complexity of graph and algebraic problems
Energy Technology Data Exchange (ETDEWEB)
Doern, Sebastian
2008-02-04
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
Entropy type complexity of quantum processes
International Nuclear Information System (INIS)
Watanabe, Noboru
2014-01-01
von Neumann entropy represents the amount of information in the quantum state, and this was extended by Ohya for general quantum systems [10]. Umegaki first defined the quantum relative entropy for σ-finite von Neumann algebras, which was extended by Araki, and Uhlmann, for general von Neumann algebras and *-algebras, respectively. In 1983 Ohya introduced the quantum mutual entropy by using compound states; this describes the amount of information correctly transmitted through the quantum channel, which was also extended by Ohya for general quantum systems. In this paper, we briefly explain Ohya's S-mixing entropy and the quantum mutual entropy for general quantum systems. By using structure equivalent class, we will introduce entropy type functionals based on quantum information theory to improve treatment for the Gaussian communication process. (paper)
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
Complexity of Quantum Impurity Problems
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Distinguishability of quantum states and shannon complexity in quantum cryptography
Arbekov, I. M.; Molotkov, S. N.
2017-07-01
The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.
Complex quantum network geometries: Evolution and phase transitions
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G.; Lahti, P.
2017-10-01
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Superrenormalizable quantum gravity with complex ghosts
Directory of Open Access Journals (Sweden)
Leonardo Modesto
2016-04-01
Full Text Available We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable. Keywords: Quantum gravity, Higher derivatives, Complex poles
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
The quantum 2-sphere as a complex quantum manifold
International Nuclear Information System (INIS)
Chu Chongsun; Ho Peiming; Zumino, B.
1996-01-01
We describe the quantum sphere of Podles for c=0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q (2) coefficients as well as under the action of SU q (2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane. (orig.)
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of a K-system to a non-commutative dynamical system by requiring that an invariantly defined memory loss be 100%. We give some examples of quantum K-systems and show that they cannot contain any quasi-periodic subsystem. 13 refs. (Author)
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Quantum Dynamics in Biological Systems
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
Toward a Definition of Complexity for Quantum Field Theory States.
Chapman, Shira; Heller, Michal P; Marrochio, Hugo; Pastawski, Fernando
2018-03-23
We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form su(1,1) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.
Toward a Definition of Complexity for Quantum Field Theory States
Chapman, Shira; Heller, Michal P.; Marrochio, Hugo; Pastawski, Fernando
2018-03-01
We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form s u (1 ,1 ) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.
Identifying the quantum correlations in light-harvesting complexes
International Nuclear Information System (INIS)
Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.
2010-01-01
One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.
Dimensional discontinuity in quantum communication complexity at dimension seven
Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2017-02-01
Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
International Nuclear Information System (INIS)
Vourdas, A
2005-01-01
A finite quantum system in which the position and momentum take values in the Galois field GF(p l ) is constructed from a smaller quantum system in which the position and momentum take values in Z p , using field extension. The Galois trace is used in the definition of the Fourier transform. The Heisenberg-Weyl group of displacements and the Sp(2, GF(p l )) group of symplectic transformations are studied. A class of transformations inspired by the Frobenius maps in Galois fields is introduced. The relationship of this 'Galois quantum system' with its subsystems in which the position and momentum take values in subfields of GF(p l ) is discussed
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Classical system underlying a diffracting quantum billiard
Indian Academy of Sciences (India)
Manan Jain
2018-01-05
Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Bipartite quantum states and random complex networks
International Nuclear Information System (INIS)
Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo
2012-01-01
We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)
International Nuclear Information System (INIS)
Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; Genovese, Luigi
2017-01-01
We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same time a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.
Correlation Functions in Open Quantum-Classical Systems
Hsieh, Chang-Yu; Kapral, Raymond
2013-01-01
Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...
Stern-Gerlach Experiments and Complex Numbers in Quantum Physics
Sivakumar, S.
2012-01-01
It is often stated that complex numbers are essential in quantum theory. In this article, the need for complex numbers in quantum theory is motivated using the results of tandem Stern-Gerlach experiments
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-01-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-10-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks.
Optimized Binomial Quantum States of Complex Oscillators with Real Spectrum
International Nuclear Information System (INIS)
Zelaya, K D; Rosas-Ortiz, O
2016-01-01
Classical and nonclassical states of quantum complex oscillators with real spectrum are presented. Such states are bi-orthonormal superpositions of n +1 energy eigenvectors of the system with binomial-like coefficients. For large values of n these optimized binomial states behave as photon added coherent states when the imaginary part of the potential is cancelled. (paper)
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Chernia, Zelig; Tsori, Yoav
2018-03-01
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
Quantum interference experiments with complex organic molecules
International Nuclear Information System (INIS)
Eibenberger, S. I.
2015-01-01
Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to
Liouville quantum gravity on complex tori
Energy Technology Data Exchange (ETDEWEB)
David, François [Institut de Physique Théorique, CNRS, URA 2306, CEA, IPhT, Gif-sur-Yvette (France); Rhodes, Rémi [Université Paris-Est Marne la Vallée, LAMA, Champs sur Marne (France); Vargas, Vincent [ENS Paris, DMA, 45 rue d’Ulm, 75005 Paris (France)
2016-02-15
In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere [“Liouville quantum gravity on the Riemann sphere,” e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.
Superrenormalizable quantum gravity with complex ghosts
Energy Technology Data Exchange (ETDEWEB)
Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn [Department of Physics & Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Shapiro, Ilya L., E-mail: shapiro@fisica.ufjf.br [Departamento de Fisica – ICE, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, Minas Gerais (Brazil); Tomsk State Pedagogical University and Tomsk State University, 634041, Tomsk (Russian Federation)
2016-04-10
We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable.
Quantum transport in the FMO photosynthetic light-harvesting complex.
Karafyllidis, Ioannis G
2017-06-01
The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.
Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar
2017-11-01
Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.
Decoherence in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2005-01-01
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes
Quantum mechanical studies of complex ferroelectric perovskites
Ramer, Nicholas John
In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Asymptotically open quantum systems
International Nuclear Information System (INIS)
Westrich, M.
2008-04-01
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Directory of Open Access Journals (Sweden)
Andrey V. Tokar
2014-03-01
Full Text Available The structure and spectral properties for molecular complexes, which formed by added monomer form of pentaplast as well as N-phenylbenzamide with some species of intermolecular interaction in system «penton-terlon» have been investigated at ab initio level of theory. It is shown, that the main contribution in total energy of molecules have included by dispersion forces, which realized between Chlorine atom of CH2Cl-group and Hydrogen atoms of benzene rings with amide fragment. The proposed theoretical models are validated in reflection of spectral and energetic characteristics of investigating system. Finally, the results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.
International Nuclear Information System (INIS)
Matsumoto, Atsushi
2004-01-01
The equilibrium state at very low temperature and phase state at 0 K between the particle 1 and particle 2 and the particle 12, which particle 1 bond with particle 2, of infinite uniform system was investigated. Boson and fermion are thought as particle and three kinds of reactions are considered. On the case of boson + boson ? boson, the system is all molecules or atoms when ΔE≠0 and T=0, and the density is not determined under Tc when ΔE=0. On the case of boson + fermion ? fermion, molecules and atoms are able to exist together at T=0. On fermion + fermion ? boson, molecule is formed and condensed. The chemical equilibrium between particles and complex particles and three cases of equilibrium are explained. (S.Y.)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Complex dynamics in planar two-electron quantum dots
International Nuclear Information System (INIS)
Schroeter, Sebastian Josef Arthur
2013-01-01
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an
Complex dynamics in planar two-electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schroeter, Sebastian Josef Arthur
2013-06-25
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two
Geometry of real and complex canonical transformations in quantum mechanics
International Nuclear Information System (INIS)
Grossmann, A.
1977-08-01
Quantum mechanics of finitely many particles involves the group of linear (and affine) canonical transformations. A well-defined ray representation of this group acts in the space of states of any quantum-mechanical system with finitely many degrees of freedom and plays a central role in many different contexts. This representation appears quite naturally in quantum mechanics over phase space (Weyl-Wigner correspondence), that it becomes, when suitably written, just a matter of looking at one object from different symplectic reference frames. This is particularly interesting for complex canonical transformations which are represented by unbounded operators. The list of references gives an idea of the variety of motivations and points of view in the subject
The detectability lemma and its applications to quantum Hamiltonian complexity
International Nuclear Information System (INIS)
Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph
2011-01-01
Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general
Algorithmic Complexity in Cosmology and Quantum Gravity
Directory of Open Access Journals (Sweden)
D. Singleton
2002-01-01
Full Text Available Abstract: In this article we use the idea of algorithmic complexity (AC to study various cosmological scenarios, and as a means of quantizing the ravitational interaction. We look at 5D and 7D cosmological models where the Universe begins as a higher dimensional Planck size spacetime which fluctuates between Euclidean and Lorentzian signatures. These fluctuations are overned by the AC of the two different signatures. At some point a transition to a 4D Lorentzian signature Universe occurs, with the extra dimensions becoming "frozen" or non-dynamical. We also apply the idea of algorithmic complexity to study composite wormholes, the entropy of black holes, and the path integral for quantum gravity. Some of the physical consequences of the idea presented here are:the birth of the Universe with a fluctuating metric signature; the transition from a fluctuating metric signature to Lorentzian one; "frozen" extra dimensions as a consequence of this transition; quantum handles in the spacetime foam as regions with multidimensional gravity.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Entanglement in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2007-01-01
In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states
Loop quantum cosmology with complex Ashtekar variables
International Nuclear Information System (INIS)
Achour, Jibril Ben; Grain, Julien; Noui, Karim
2015-01-01
We construct and study loop quantum cosmology (LQC) when the Barbero–Immirzi parameter takes the complex value γ=±i. We refer to this new approach to quantum cosmology as complex LQC. This formulation is obtained via an analytic continuation of the Hamiltonian constraint (with no inverse volume corrections) from real γ to γ=±i, in the simple case of a flat FLRW Universe coupled to a massless scalar field with no cosmological constant. For this, we first compute the non-local curvature operator (defined by the trace of the holonomy of the connection around a fundamental plaquette) evaluated in an arbitrary spin j representation, and find a new close formula for its expression. This allows us to define explicitly a one parameter family of regularizations of the Hamiltonian constraint in LQC, parametrized by the spin j. It is immediate to see that any spin j regularization leads to a bouncing scenario. Then, motivated in particular by previous results on black hole thermodynamics, we perform the analytic continuation of the Hamiltonian constraint to values of the Barbero–Immirzi parameter given by γ=±i and to spins j=(1/2)(−1+is) where s is real. Even if the area spectrum then becomes continuous, we show that the complex LQC defined in this way does also replace the initial big-bang singularity by a big-bounce. In addition to this, the maximal density and the minimal volume of the Universe are obviously independent of γ. Furthermore, the dynamics before and after the bounce is not symmetrical anymore, which makes a clear distinction between these two phases of the evolution of the Universe. (paper)
Quantum models of classical systems
International Nuclear Information System (INIS)
Hájíček, P
2015-01-01
Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Design of magnetic coordination complexes for quantum computing.
Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier
2012-01-21
A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The overview of recent developments in the theory of quantum chaos is presented with the special emphasis on a number of unsolved problems and current apparent contradictions. The relation between dynamical quantum chaos and statistical random matrix theory is discussed. 97 refs
Complex geometry and quantum string theory
International Nuclear Information System (INIS)
Belavin, A.A.; Knizhnik, V.G.
1986-01-01
Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry
A prototype quantum cryptography system
Energy Technology Data Exchange (ETDEWEB)
Surasak, Chiangga
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to {approx} 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
A prototype quantum cryptography system
International Nuclear Information System (INIS)
Chiangga Surasak
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to ∼ 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
Upper bounds on quantum uncertainty products and complexity measures
Energy Technology Data Exchange (ETDEWEB)
Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S. [Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Department of Applied Mathematics, University of Granada, Granada (Spain) and Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain); Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain)
2011-10-15
The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.
Quantum communication complexity advantage implies violation of a Bell inequality
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-01-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Complex quantum group, dual algebra and bicovariant differential calculus
International Nuclear Information System (INIS)
Carow-Watamura, U.; Watamura, Satoshi
1993-01-01
The method used to construct the bicovariant bimodule in ref. [CSWW] is applied to examine the structure of the dual algebra and the bicovariant differential calculus of the complex quantum group. The complex quantum group Fun q (SL(N, C)) is defined by requiring that it contains Fun q (SU(N)) as a subalgebra analogously to the quantum Lorentz group. Analyzing the properties of the fundamental bimodule, we show that the dual algebra has the structure of the twisted product Fun q (SU(N))x tilde Fun q (SU(N)) reg *. Then the bicovariant differential calculi on the complex quantum group are constructed. (orig.)
Quantum State Description Complexity (Invited Talk)
Vazirani, Umesh V.
2011-01-01
Quantum states generally require exponential sized classical descriptions, but the long conjectured area law provides hope that a large class of natural quantum states can be described succinctly. Recent progress in formally proving the area law is described.
Complex Systems: An Introduction
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...
Quantum communication complexity advantage implies violation of a Bell inequality
H. Buhrman (Harry); L. Czekaj (Lłukasz); A. Grudka (Andrzej); M. Horodecki (Michalł); P. Horodecki (Pawelł); M. Markiewicz (Marcin); F. Speelman (Florian); S. Strelchuk (Sergii)
2015-01-01
htmlabstractWe obtain a general connection between a quantum advantage in communication complexity and non-locality. We show that given any protocol offering a (sufficiently large) quantum advantage in communication complexity, there exists a way of obtaining measurement statistics which violate
Quantum Transport in Mesoscopic Systems
Indian Academy of Sciences (India)
voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics
International Nuclear Information System (INIS)
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2006-01-01
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared--it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification - a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10 -7 calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity
Quantum speed limits in open system dynamics
del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.
2012-01-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...
Design of coherent quantum observers for linear quantum systems
International Nuclear Information System (INIS)
Vuglar, Shanon L; Amini, Hadis
2014-01-01
Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks
Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.
2017-12-01
We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.
Contextual logic for quantum systems
International Nuclear Information System (INIS)
Domenech, Graciela; Freytes, Hector
2005-01-01
In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Weaving and neural complexity in symmetric quantum states
Susa, Cristian E.; Girolami, Davide
2018-04-01
We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.
A Universal Quantum Circuit Scheme For Finding Complex Eigenvalues
Daskin, Anmer; Grama, Ananth; Kais, Sabre
2013-01-01
We present a general quantum circuit design for finding eigenvalues of non-unitary matrices on quantum computers using the iterative phase estimation algorithm. In particular, we show how the method can be used for the simulation of resonance states for quantum systems.
Theoretical study of excitonic complexes in semiconductors quantum wells
International Nuclear Information System (INIS)
Dacal, Luis Carlos Ogando
2001-08-01
A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al 0.3 Ga 0.7 As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)
Quantum energy teleportation in a quantum Hall system
Energy Technology Data Exchange (ETDEWEB)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Minimized state complexity of quantum-encoded cryptic processes
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Exceptional points in open quantum systems
International Nuclear Information System (INIS)
Mueller, Markus; Rotter, Ingrid
2008-01-01
Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
Exponential complexity and ontological theories of quantum mechanics
International Nuclear Information System (INIS)
Montina, A.
2008-01-01
Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods
The quantum Hall effect in quantum dot systems
International Nuclear Information System (INIS)
Beltukov, Y M; Greshnov, A A
2014-01-01
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given
The brachistochrone problem in open quantum systems
International Nuclear Information System (INIS)
Rotter, Ingrid
2007-01-01
Recently, the quantum brachistochrone problem has been discussed in the literature by using non-Hermitian Hamilton operators of different types. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al for the transmission through microwave cavities of different shapes are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can not be described in the framework of the standard quantum mechanics with the Hermitian Hamilton operator and consideration of S matrix poles
Complex Langevin simulation of real time quantum evolution
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.
1986-07-01
Complex Langevin methods are used to study the time evolution of quantum mechanical wave packets. We do not need any Feynman ε regularization for the numerical evaluation of the double time path integral. (author)
Harel, Elad; Engel, Gregory S
2012-01-17
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.
On quantum mechanics for macroscopic systems
International Nuclear Information System (INIS)
Primas, H.
1992-01-01
The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?
Quantum tomography and classical propagator for quadratic quantum systems
International Nuclear Information System (INIS)
Man'ko, O.V.
1999-03-01
The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Complex Systems and Dependability
Zamojski, Wojciech; Sugier, Jaroslaw
2012-01-01
Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth
Negele, John W
1988-01-01
This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.
QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS
Directory of Open Access Journals (Sweden)
Aurelian ISAR
2015-01-01
Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.
Quantum communication complexity advantage implies violation of a Bell inequality
H. Buhrman (Harry); L. Czekaj (Lłukasz); A. Grudka (Andrzej); M. Horodecki (Michalł); P. Horodecki (Pawelł); M. Markiewicz (Marcin); F. Speelman (Florian); S. Strelchuk (Sergii)
2016-01-01
textabstractWe obtain a general connection between a large quantumadvantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Quantum systems, channels, information. A mathematical introduction
Energy Technology Data Exchange (ETDEWEB)
Holevo, Alexander S.
2012-07-01
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Complex scattering dynamics and the quantum Hall effects
International Nuclear Information System (INIS)
Trugman, S.A.
1994-01-01
We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects
Complex dynamics of the integer quantum Hall effect
International Nuclear Information System (INIS)
Trugman, S.A.; Nicopoulos, V.N.; Florida Univ., Gainesville, FL
1991-01-01
We investigate both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the integer quantum Hall effect. Classical scattering is complex, due in one case to the approach of scattering states to an infinite number of bound states. We show that bound states are generic, and occur for all but extremely smooth scattering potentials (|rvec ∇| → 0). Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances rather than classical bound states. Extended scatterers provide an explanation for the breakdown of the QHE at a comparatively small Hall voltage. 16 refs., 14 figs
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
International Nuclear Information System (INIS)
Baecker, Arnd
2007-01-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Quantum control of optomechanical systems
International Nuclear Information System (INIS)
Hofer, S.
2015-01-01
This thesis explores the prospects of entanglement-enhanced quantum control of optomechanical systems. We first discuss several pulsed schemes in which the radiation-pressure interaction is used to generate EPR entanglement between the mechanical mode of a cavity-optomechanical system and a travelling-wave light pulse. The entanglement created in this way can be used as a resource for mechanical state preparation. On the basis of this protocol, we introduce an optomechanical teleportation scheme to transfer an arbitrary light state onto the mechanical system. Furthermore, we describe how one can create a mechanical non-classical state (i.e., a state with a negative Wigner function) by single-photon detection, and, in a similar protocol, how optomechanical systems can be used to demonstrate the violation of a Bell inequality. The second part of the thesis is dedicated to time-continuous quantum control protocols. Making use of optimal-control techniques, we analyse measurement-based feedback cooling of a mechanical oscillator and demonstrate that ground-state cooling is achievable in the sideband-resolved, blue-detuned regime. We then extend this homodyne-detection based setup and introduce the notion of a time-continuous Bell measurement---a generalisation of the standard continuous variable Bell measurement to a continuous measurement setting. Combining this concept with continuous feedback we analyse the generation of a squeezed mechanical steady state via time-continuous teleportation, and the creation of bipartite mechanical entanglement by entanglement swapping. Finally we discuss an experiment demonstrating the evaluation of the conditional optomechanical quantum state by Kalman filtering, constituting a important step towards time-continuous quantum control of optomechanical systems and the possible realisation of the protocols presented in this thesis. (author) [de
Loss energy states of nonstationary quantum systems
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1978-01-01
The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed
Cui, Ping
-electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Quantum Electron Tunneling in Respiratory Complex I1
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.
2014-01-01
We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666
Covariant differential complexes of quantum linear groups
International Nuclear Information System (INIS)
Isaev, A.P.; Pyatov, P.N.
1993-01-01
We consider the possible covariant external algebra structures for Cartan's 1-forms (Ω) on G L q (N) and S L q (N). Our starting point is that Ω s realize an adjoint representation of quantum group and all monomials of Ω s possess the unique ordering. For the obtained external algebras we define the differential mapping d possessing the usual nilpotence condition, and the generally deformed version of Leibnitz rules. The status of the known examples of G L q (N)-differential calculi in the proposed classification scheme and the problems of S L q (N)-reduction are discussed. (author.). 26 refs
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2015-01-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...
Repeated interactions in open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Global quantum discord in multipartite systems
Energy Technology Data Exchange (ETDEWEB)
Rulli, C. C.; Sarandy, M. S. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Quantum dynamics simulation of a small quantum system embedded in a classical environment
International Nuclear Information System (INIS)
Berendsen, H.J.C.; Mavri, J.; Mavri, J.
1996-01-01
The authors wish to consider quantum-dynamical processes that are not restricted to motion on a ground state Born-Oppenheimer surface, but may involve transitions between states. The authors interest is in such processes occurring in a complex environment that modulates the quantum process and interacts with it. In a system containing thousands degrees of freedom, the essential quantum behaviour is generally restricted to a small subsystem containing only a few degrees of freedom, while the environment can be treated classically. The challenge is threefold: 1) to treat the quantum subsystem correctly in a quantum-dynamical sense, 2) to treat the environment correctly in a classical dynamical sense, 3) to couple both systems in such a way that errors in the average or long-term behaviour are minimized. After an exposition of the theory, an insight into quantum-dynamical behaviour by using pictorial analogue, valid for a simple two-level system is given. Then, the authors give a short survey of applications related to collision processes involving quantum levels of one particle, and to proton transfer processes along hydrogen bonds in complex environments. Finally, they conclude with some general remarks on the validity of their approach. (N.T.)
Complex logistics audit system
Directory of Open Access Journals (Sweden)
Zuzana Marková
2010-02-01
Full Text Available Complex logistics audit system is a tool for realization of logistical audit in the company. The current methods for logistics auditare based on “ad hok” analysis of logisticsl system. This paper describes system for complex logistics audit. It is a global diagnosticsof logistics processes and functions of enterprise. The goal of logistics audit is to provide comparative documentation for managementabout state of logistics in company and to show the potential of logistics changes in order to achieve more effective companyperformance.
Investigating non-Markovian dynamics of quantum open systems
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings
International Nuclear Information System (INIS)
R-Fulla, M.; Marín, J.H.; Suaza, Y.A.; Duque, C.A.; Mora-Ramos, M.E.
2014-01-01
The energy structure of an on-axis two-donor system (D 2 0 ) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D 2 0 complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D 2 0 energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D 2 0 complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D 2 0 →D 0 +D + +e − . • We compare the D 0 eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D 2 0 spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D 2 0 complex
The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.
Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O
2017-12-01
The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.
Boccara, Nino
2010-01-01
Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).
2011-01-01
The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t...(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...
Entangling transformations in composite finite quantum systems
International Nuclear Information System (INIS)
Vourdas, A
2003-01-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Propagating wave correlations in complex systems
International Nuclear Information System (INIS)
Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor
2017-01-01
We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)
Complexity of Economical Systems
Directory of Open Access Journals (Sweden)
G. P. Pavlos
2015-01-01
Full Text Available In this study new theoretical concepts are described concerning the interpretation of economical complex dynamics. In addition a summary of an extended algorithm of nonlinear time series analysis is provided which is applied not only in economical time series but also in other physical complex systems (e.g. [22, 24]. In general, Economy is a vast and complicated set of arrangements and actions wherein agents—consumers, firms, banks, investors, government agencies—buy and sell, speculate, trade, oversee, bring products into being, offer services, invest in companies, strategize, explore, forecast, compete, learn, innovate, and adapt. As a result the economic and financial variables such as foreign exchange rates, gross domestic product, interest rates, production, stock market prices and unemployment exhibit large-amplitude and aperiodic fluctuations evident in complex systems. Thus, the Economics can be considered as spatially distributed non-equilibrium complex system, for which new theoretical concepts, such as Tsallis non extensive statistical mechanics and strange dynamics, percolation, nonGaussian, multifractal and multiscale dynamics related to fractional Langevin equations can be used for modeling and understanding of the economical complexity locally or globally.
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Quantum simulations of small electron-hole complexes
International Nuclear Information System (INIS)
Lee, M.A.; Kalia, R.K.; Vashishta, P.D.
1984-09-01
The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig
Quantum mechanical calculations on weakly interacting complexes
Heijmen, T.G.A.
1998-01-01
Symmetry-adapted perturbation theory (SAPT) has been applied to compute the intermolecular potential energy surfaces and the interaction-induced electrical properties of weakly interacting complexes. Asymptotic (large R) expressions have been derived for the contributions to the collision-induced
Quantum physics, relativity and complex spacetime towards a new synthesis
Kaiser, Gerald
1990-01-01
A new synthesis of the principles of quantum mechanics and Relativity is proposed in the context of complex differential geometry. The positivity of the energy implies that wave functions and fields can be extended to complex spacetime, and it is shown that this complexification has a solid physical interpretation as an extended phase space. The extended fields can be said to be realistic wavelet transforms of the original fields. A new, algebraic theory of wavelets is developed.
Managing Complex Dynamical Systems
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo
2001-01-01
The world of artificial systems is reaching complexity levels that es cape human understanding. Surface traffic, electricity distribution, air planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Quantum entanglement and quantum information in biological systems (DNA)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications
Energy Technology Data Exchange (ETDEWEB)
Wu, Zhigang [Colorado School of Mines, Golden, CO (United States)
2017-05-31
A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is to develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow
Dissipation and decoherence in quantum systems
International Nuclear Information System (INIS)
Menskii, Mikhail B
2003-01-01
The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Complex dynamics in diatomic molecules. Part II: Quantum trajectories
International Nuclear Information System (INIS)
Yang, C.-D.; Weng, H.-J.
2008-01-01
The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166-179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. E-Infinity theory - some recent results and new interpretations. Chaos, Solitons and Fractals 2006;29:845-853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons and Fractals 2004;22:495-511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons and Fractals 2007;32:370-374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons and Fractals 1996;7:821-843] approach to quantum
Efficient tomography of a quantum many-body system
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Description of an open quantum mechanical system
International Nuclear Information System (INIS)
Rotter, I.; Forschungszentrum Rossendorf e.V.
1994-05-01
A model for the description of an open quantum mechanical many-particle system is formulated. It starts from the shell model and treats the continuous states by a coupled channels method. The mixing of the discrete shell model states via the continuum of decay channels results in the genuine decaying states of the system. These states are eigenstates of a non-Hermitean Hamilton operator the eigenvalues of which give both the energies and the widths of the states. All correlations between two particles which are caused by the two-particle residual interaction, are taken into account including those via the continuum. In the formalism describing the open quantum mechanical system, the coupling between the system and its environment appears nonlinearly. If the resonance states start to overlap, a redistribution of the spectroscopic values ('trapping effect') takes place. As a result, the complexity of the system is reduced at high level density, structures in space and time are formed. This redistribution describes, on the one hand, the transition from the well-known nuclear properties at low level density to those at high level density and fits, on the other hand, into the concept of selforganization. (orig.)
On the role of complex phases in the quantum statistics of weak measurements
International Nuclear Information System (INIS)
Hofmann, Holger F
2011-01-01
Weak measurements carried out between quantum state preparation and post-selection result in complex values for self-adjoint operators, corresponding to complex conditional probabilities for the projections on specific eigenstates. In this paper it is shown that the complex phases of these weak conditional probabilities describe the dynamic response of the system to unitary transformations. Quantum mechanics thus unifies the statistical overlap of different states with the dynamical structure of transformations between these states. Specifically, it is possible to identify the phase of weak conditional probabilities directly with the action of a unitary transform that maximizes the overlap of initial and final states. This action provides a quantitative measure of how much quantum correlations can diverge from the deterministic relations between physical properties expected from classical physics or hidden variable theories. In terms of quantum information, the phases of weak conditional probabilities thus represent the logical tension between sets of three quantum states that is at the heart of quantum paradoxes. (paper)
Quantum open system theory: bipartite aspects.
Yu, T; Eberly, J H
2006-10-06
We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.
Hybrid quantum systems: Outsourcing superconducting qubits
Cleland, Andrew
Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.
International Nuclear Information System (INIS)
Schreckenberg, M
2004-01-01
This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)
Macroscopic quantum systems and gravitational phenomena
International Nuclear Information System (INIS)
Pikovski, I.
2014-01-01
Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de
Controllable Subspaces of Open Quantum Dynamical Systems
International Nuclear Information System (INIS)
Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi
2008-01-01
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
Capacity on wireless quantum cellular communication system
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Experimental demonstration of subcarrier multiplexed quantum key distribution system.
Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José
2012-06-01
We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.
Chaotic systems in complex phase space
Indian Academy of Sciences (India)
figure 1, a qualitative change in the complex behaviour is quite evident in ..... [19] S Fishman, Quantum Localization in Quantum Chaos, Proc. of the International ... of the 44th Scottish Universities Summer School in Physics, Stirling, August ...
Manipulating Quantum Coherence in Solid State Systems
Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"
2007-01-01
The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
One-time pad, complexity of verification of keys, and practical security of quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)
2016-11-15
A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.
One-time pad, complexity of verification of keys, and practical security of quantum cryptography
International Nuclear Information System (INIS)
Molotkov, S. N.
2016-01-01
A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.
Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues
International Nuclear Information System (INIS)
Connor, J.N.L.; Smith, A.D.
1983-01-01
Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition
Smooth controllability of infinite-dimensional quantum-mechanical systems
International Nuclear Information System (INIS)
Wu, Re-Bing; Tarn, Tzyh-Jong; Li, Chun-Wen
2006-01-01
Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Dynamical entropy for infinite quantum systems
International Nuclear Information System (INIS)
Hudetz, T.
1990-01-01
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the Shannon Entropy of Quantum Systems
Directory of Open Access Journals (Sweden)
Yifan Xing
2013-01-01
Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum dot systems: artificial atoms with tunable properties
International Nuclear Information System (INIS)
Weis, J.
2005-01-01
Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)
Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot
Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping
2018-05-01
We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.
Quantum chemical prediction of antennae structures in lanthanide complexes
International Nuclear Information System (INIS)
Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S.
2008-01-01
In this paper the quantum chemical semiempirical procedure recently proposed by us to predict ground- and excited-state geometries of lanthanide complexes, the pseudo coordination centre method (PCC), is preliminarily compared with the semiempirical sparkle model for the calculation of lanthanide complexes (SMLC). Contrary to the SMLC method, where the rare-earth ion is replaced by a reparameterized sparkle atom, in our approach we replace it with a metal ion which is already present in the chosen semiempirical parameterization. This implies that in the optimization of the geometry of the complexes a different weight is implicitly given to the complex region including the rare-earth ion and its neighbour atoms with respect to the region of the ligands aggregate. As a consequence our approach is expected to reproduce better than the SMLC one the geometry of the ligands aggregate embedded in the complex, while the contrary happens for the coordination distances
Complex adaptive systems ecology
DEFF Research Database (Denmark)
Sommerlund, Julie
2003-01-01
In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Interaction between classical and quantum systems
International Nuclear Information System (INIS)
Sherry, T.N.; Sudarshan, E.C.G.
1977-10-01
An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work
Relativistic quantum Darwinism in Dirac fermion and graphene systems
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
Forecasting in Complex Systems
Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.
2014-12-01
Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification
Synchronization in Quantum Key Distribution Systems
Directory of Open Access Journals (Sweden)
Anton Pljonkin
2017-10-01
Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.
Mixing and entropy increase in quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Pflug, A.; Thirring, W.
1989-01-01
This paper attempts to explain the key feature of deterministic chaotic classical systems and how they can be translated to quantum systems. To do so we develop the appropriate algebraic language for the non-specialist. 22 refs. (Author)
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Yanagisawa, Masahiro
2007-01-01
We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.
Quantum contextuality in N-boson systems
International Nuclear Information System (INIS)
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-01-01
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
International Nuclear Information System (INIS)
Volkov, M. V.; Elander, N.; Yakovlev, S. L.; Yarevsky, E. A.
2013-01-01
The complex-rotation method adapted to solving the multichannel scattering problem in the two-body system where the interaction potential contains the long-range Coulomb components is described. The scattering problem is reformulated as the problem of solving a nonhomogeneous Schrödinger equation in which the nonhomogeneous term involves a Coulomb potential cut off at large distances. The incident wave appearing in the nonhomogeneous term is a solution of the Schrödinger equation with longrange Coulomb interaction. This formulation is free from approximations associated with a direct cutoff of Coulomb interaction at large distances. The efficiency of this formalism is demonstrated by considering the example of solving scattering problems in the α-α and p-p systems.
Deterministic constant-temperature dynamics for dissipative quantum systems
International Nuclear Information System (INIS)
Sergi, Alessandro
2007-01-01
A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)
States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings
Energy Technology Data Exchange (ETDEWEB)
R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2014-06-13
The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.
Commuting quantum circuits and complexity of Ising partition functions
International Nuclear Information System (INIS)
Fujii, Keisuke; Morimae, Tomoyuki
2017-01-01
Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)
Equilibration and thermalization in finite quantum systems
International Nuclear Information System (INIS)
Yukalov, V I
2011-01-01
Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned
Limit cycles in quantum systems
Energy Technology Data Exchange (ETDEWEB)
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Complex logic functions implemented with quantum dot bionanophotonic circuits.
Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L
2014-03-26
We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.
Simulation of quantum systems by the tomography Monte Carlo method
International Nuclear Information System (INIS)
Bogdanov, Yu I
2007-01-01
A new method of statistical simulation of quantum systems is presented which is based on the generation of data by the Monte Carlo method and their purposeful tomography with the energy minimisation. The numerical solution of the problem is based on the optimisation of the target functional providing a compromise between the maximisation of the statistical likelihood function and the energy minimisation. The method does not involve complicated and ill-posed multidimensional computational procedures and can be used to calculate the wave functions and energies of the ground and excited stationary sates of complex quantum systems. The applications of the method are illustrated. (fifth seminar in memory of d.n. klyshko)
Dynamical singularities of glassy systems in a quantum quench.
Obuchi, Tomoyuki; Takahashi, Kazutaka
2012-11-01
We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Coherence protection in coupled quantum systems
Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.
2018-02-01
The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.
System and method for making quantum dots
Bakr, Osman; Pan, Jun; El-Ballouli, Ala'a O.; Knudsen, Kristian Rahbek; Abdelhady, Ahmed L.
2015-01-01
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments
Stabilization of classic and quantum systems
International Nuclear Information System (INIS)
Buts, V.A.
2012-01-01
It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.
Ground states of quantum spin systems
International Nuclear Information System (INIS)
Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.
1978-07-01
The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume
Quantum Phenomena in Low-Dimensional Systems
Geller, Michael R.
2001-01-01
A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.
Quantum fluctuations in mesoscopic and macroscopic systems
International Nuclear Information System (INIS)
Cerdeira, H.A.; Guinea Lopez, F.; Weiss, U.
1991-01-01
The conference presentations have been grouped in three chapters; Quantum Transport (4 papers), Dissipation in Discrete Systems (7 papers) and Mesoscopic Junction, Rings and Arrays (6 papers). A separate abstract was prepared for each paper. Refs and figs
Approach to equilibrium in infinite quantum systems
International Nuclear Information System (INIS)
Haag, R.
1975-01-01
Ergodic theory of infinite quantum systems is discussed. The framework of this theory is based in an algebra of quasi-local observables. Nonrelativistic situation, i.e., Galilei invariance and Clifford algebra, is used [pt
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
International Nuclear Information System (INIS)
Zhu, Ka-Di; Li, Wai-Sang
2003-01-01
The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Complex scattering dynamics and the integer quantum Hall effect
International Nuclear Information System (INIS)
Trugman, S.A.; Waugh, F.R.
1987-01-01
The effect of a magnetic field on potential scattering is investigated microscopically. A magnetic field renders the scattering of a classical charged particle far more complex than previously suspected. Consequences include possible 1/f noise and an explanation of the observed breakdown of the quantum Hall effect at large currents. A particular scatterer is described by a discontinuous one dimensional Hamiltonian map, a class of maps that has not previously been studied. A renormalization group analysis indicates that singular behavior arises from the interplay of electron orbits that are periodic and orbits that are quasiperiodic
Entropy lower bounds of quantum decision tree complexity
Shi, Yaoyun
2000-01-01
We prove a general lower bound of quantum decision tree complexity in terms of some entropy notion. We regard the computation as a communication process in which the oracle and the computer exchange several rounds of messages, each round consisting of O(log(n)) bits. Let E(f) be the Shannon entropy of the random variable f(X), where X is uniformly random in f's domain. Our main result is that it takes \\Omega(E(f)) queries to compute any \\emph{total} function f. It is interesting to contrast t...
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Exotic quantum order in low-dimensional systems
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Radtke, T.; Fritzsche, S.
2008-11-01
with ⩾2GHz or newer, and about 5-20 MB of working memory (in addition to the memory for the Maple environment). Especially when working with symbolic expressions, however, the requirements on CPU time and memory critically depend on the size of the quantum registers, owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several symbolic Kraus operators, result for multi-qubit systems often in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often only a numerical evaluation is possible eventually. Since the complexity of the various commands of the FEYNMAN program and the possible usage scenarios can be very different, no general scaling law for CPU time or the memory requirements can be given. References: [1] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91. [2] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 175 (2006) 145. [3] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 176 (2007) 617.
A quantum CISC compiler and scalable assembler for quantum computing on large systems
Energy Technology Data Exchange (ETDEWEB)
Schulte-Herbrueggen, Thomas; Spoerl, Andreas; Glaser, Steffen [Dept. Chemistry, Technical University of Munich (TUM), 85747 Garching (Germany)
2008-07-01
Using the cutting edge high-speed parallel cluster HLRB-II (with a total LINPACK performance of 63.3 TFlops/s) we present a quantum CISC compiler into time-optimised or decoherence-protected complex instruction sets. They comprise effective multi-qubit interactions with up to 10 qubits. We show how to assemble these medium-sized CISC-modules in a scalable way for quantum computation on large systems. Extending the toolbox of universal gates by optimised complex multi-qubit instruction sets paves the way to fight decoherence in realistic Markovian and non-Markovian settings. The advantage of quantum CISC compilation over standard RISC compilations into one- and two-qubit universal gates is demonstrated inter alia for the quantum Fourier transform (QFT) and for multiply-controlled NOT gates. The speed-up is up to factor of six thus giving significantly better performance under decoherence. - Implications for upper limits to time complexities are also derived.
Isoperiodic classical systems and their quantum counterparts
International Nuclear Information System (INIS)
Asorey, M.; Carinena, J.F.; Marmo, G.; Perelomov, A.
2007-01-01
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h 2 ) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems
Quantum system lifetimes and measurement perturbations
International Nuclear Information System (INIS)
Najakov, E.
1977-05-01
The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied
Noise management to achieve superiority in quantum information systems
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Conductance in double quantum well systems
International Nuclear Information System (INIS)
Hasbun, J E
2003-01-01
The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)
Quantum optical properties in plasmonic systems
Energy Technology Data Exchange (ETDEWEB)
Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum statistics of many-particle systems
International Nuclear Information System (INIS)
Kraeft, W.D.; Ebeling, W.; Kremp, D.; Ropke, G.
1986-01-01
This paper presents the elements of quantum statistics and discusses the quantum mechanics of many-particle systems. The method of second quantization is discussed and the Bogolyubov hierarchy is examined. The general properties of the correlation function and one-particle Green's function are examined. The paper presents dynamical and thermodynamical information contained in the spectral function. An equation of motion is given for the one-particle Green's function. T-matrix and thermodynamic properties in binary collision approximation are discussed
Multifunctional quantum dots and liposome complexes in drug delivery
Wang, Qi; Chao, Yimin
2018-01-01
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655
Multifunctional quantum dots and liposome complexes in drug delivery.
Wang, Qi; Chao, Yi-Min
2017-09-03
Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.
Wigner Functions for Arbitrary Quantum Systems.
Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae
2016-10-28
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
Transitivity and ergodicity of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.; Wiklicky, H.
1987-01-01
First we try to generalize the notion of a topological transitive or a topologically mixing system for quantum mechanical systems in a consistent way. Furthermore we compare these ergodic properties with the classical results. Finaly we deal with some aspects of nearly abelian systems and investigate some relations between these notions. 11 refs. (Author)
Classical Boolean logic gates with quantum systems
International Nuclear Information System (INIS)
Renaud, N; Joachim, C
2011-01-01
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Perturbation expansions of stochastic wavefunctions for open quantum systems
Ke, Yaling; Zhao, Yi
2017-11-01
Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Incoherent control of locally controllable quantum systems
International Nuclear Information System (INIS)
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-01-01
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
International Nuclear Information System (INIS)
Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T
2007-01-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
Kraus, Christina V.
2009-01-01
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they
Quantum games in open systems using biophysical Hamiltonians
International Nuclear Information System (INIS)
Faber, Jean; Portugal, Renato; Rosa, Luiz Pinguelli
2006-01-01
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Quantum Google algorithm. Construction and application to complex networks
Paparo, G. D.; Müller, M.; Comellas, F.; Martin-Delgado, M. A.
2014-07-01
We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.
Complex-network description of thermal quantum states in the Ising spin chain
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
Scattering theory for open quantum systems
International Nuclear Information System (INIS)
Behrndt, Jussi
2006-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A D can be regarded as the Hamiltonian of a closed system which contains the open system {A D ,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Recent advances in quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Recent advances in quantum integrable systems
International Nuclear Information System (INIS)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.
2005-01-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies
Epidemic Dynamics in Open Quantum Spin Systems
Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor
2017-10-01
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Criticality and entanglement in random quantum systems
International Nuclear Information System (INIS)
Refael, G; Moore, J E
2009-01-01
We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Develop of a quantum electromechanical hybrid system
Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew
In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.
Time dilation in quantum systems and decoherence
International Nuclear Information System (INIS)
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-01-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)
Josephson tunneling in bilayer quantum Hall system
International Nuclear Information System (INIS)
Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.
2012-01-01
A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.
Quantum trajectories in complex space: One-dimensional stationary scattering problems
International Nuclear Information System (INIS)
Chou, C.-C.; Wyatt, Robert E.
2008-01-01
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems
Teleportation in an indivisible quantum system
Directory of Open Access Journals (Sweden)
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
Tunneling with dissipation in open quantum systems
International Nuclear Information System (INIS)
Adamyan, G.G.; Antonenko, N.V.; Scheid, W.
1997-01-01
Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered
International Nuclear Information System (INIS)
Fan Hongyi; Lu Hailiang; Xu Xuefen
2006-01-01
We introduce the bipartite entangled states to present a quantum mechanical version of complex wavelet transform. Using the technique of integral within an ordered product of operators we show that the complex wavelet transform can be studied in terms of various quantum state vectors in two-mode Fock space. In this way the creterion for mother wavelet can be examined quantum-mechanically and therefore more deeply.
Theoretical modelling of quantum circuit systems
International Nuclear Information System (INIS)
Stiffell, Peter Barry
2002-01-01
The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)
Towards practical characterization of quantum systems with quantum Hamiltonian learning
Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.
2017-01-01
Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.
Quantum dynamics of classical stochastic systems
Energy Technology Data Exchange (ETDEWEB)
Casati, G
1983-01-01
It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.
Quantum information and continuous variable systems
International Nuclear Information System (INIS)
Giedke, G.K.
2001-08-01
This thesis treats several questions concerning quantum information theory of infinite dimensional continuous variable (CV) systems. We investigate the separability properties of Gaussian states of such systems. Both the separability and the distillability problem for bipartite Gaussian states are solved by deriving operational criteria for these properties. We consider multipartite Gaussian states and obtain a necessary and sufficient condition that allows the complete classification of three-mode tripartite states according to their separability properties. Moreover we study entanglement distillation protocols. We show that the standard protocols for qubits are robust against imperfect implementation of the required quantum operations. For bipartite Gaussian states we find a universal scheme to distill all distillable states and propose a concrete quantum optical realization. (author)
Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian
2018-06-01
In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.
Quantum Computing in Condensed Matter Systems
National Research Council Canada - National Science Library
Privman, V
1997-01-01
Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...
Measuring Complexity of SAP Systems
Directory of Open Access Journals (Sweden)
Ilja Holub
2016-10-01
Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Classical system boundaries cannot be determined within quantum Darwinism
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Sequential Bethe vectors and the quantum Ernst system
International Nuclear Information System (INIS)
Niedermaier, M.; Samtleben, H.
2000-01-01
We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)
Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-04-29
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.
Computer modeling of properties of complex molecular systems
Energy Technology Data Exchange (ETDEWEB)
Kulkova, E.Yu. [Moscow State University of Technology “STANKIN”, Vadkovsky per., 1, Moscow 101472 (Russian Federation); Khrenova, M.G.; Polyakov, I.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); Nemukhin, A.V. [Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow 119991 (Russian Federation); N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow 119334 (Russian Federation)
2015-03-10
Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
An impurity-induced gap system as a quantum data bus for quantum state transfer
International Nuclear Information System (INIS)
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-01-01
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer
International Nuclear Information System (INIS)
Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng
2016-01-01
Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.
European Conference on Complex Systems
Pellegrini, Francesco; Caldarelli, Guido; Merelli, Emanuela
2016-01-01
This work contains a stringent selection of extended contributions presented at the meeting of 2014 and its satellite meetings, reflecting scope, diversity and richness of research areas in the field, both fundamental and applied. The ECCS meeting, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. It offers cutting edge research and unique opportunities to study novel scientific approaches in a multitude of application areas. ECCS'14, its eleventh occurrence, took place in Lucca, Italy. It gathered some 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. The editors are among the best specialists in the area. The book is of great interest to scientists, researchers and graduate students in complexity, complex systems and networks.
SUSY anomaly in quantum-mechanical systems
International Nuclear Information System (INIS)
Smilga, A.V.
1987-01-01
Explicit examples of supersymmetric systems involving finite numbers of degrees of freedom where quantum supersymmetry algebra cannot be preserved on the classical level, are constructed. Resolving the ordering ambiguities in different ways leads either to a modified algebra or to a reduced algebra, or totally destroys supersymmetry
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Quantum dissipation of a simple conservative system
International Nuclear Information System (INIS)
Ibeh, G. J.; Mshelia, E. D.
2014-01-01
A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.
Quantum field theory and multiparticle systems
International Nuclear Information System (INIS)
Trlifaj, M.
1981-01-01
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
Coherent control in simple quantum systems
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Correlation effects in superconducting quantum dot systems
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Group Theoretical Approach for Controlled Quantum Mechanical Systems
National Research Council Canada - National Science Library
Tarn, Tzyh-Jong
2007-01-01
The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...
Symmetry and stability of open quantum systems
International Nuclear Information System (INIS)
Scutaru, H.
1979-01-01
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
Sustainability of environment-assisted energy transfer in quantum photobiological complexes
Energy Technology Data Exchange (ETDEWEB)
Zloshchastiev, Konstantin G. [Institute of Systems Science, Durban University of Technology (South Africa)
2017-09-15
It is shown that quantum sustainability is a universal phenomenon which emerges during environment-assisted electronic excitation energy transfer (EET) in photobiological complexes (PBCs), such as photosynthetic reaction centers and centers of melanogenesis. We demonstrate that quantum photobiological systems must be sustainable for them to simultaneously endure continuous energy transfer and keep their internal structure from destruction or critical instability. These quantum effects occur due to the interaction of PBCs with their environment which can be described by means of the reduced density operator and effective non-Hermitian Hamiltonian (NH). Sustainable NH models of EET predict the coherence beats, followed by the decrease of coherence down to a small, yet non-zero value. This indicates that in sustainable PBCs, quantum effects survive on a much larger time scale than the energy relaxation of an exciton. We show that sustainable evolution significantly lowers the entropy of PBCs and improves the speed and capacity of EET. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
Anomaly Detection for Complex Systems
National Aeronautics and Space Administration — In performance maintenance in large, complex systems, sensor information from sub-components tends to be readily available, and can be used to make predictions about...
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Decentralized control of complex systems
Siljak, Dragoslav D
2011-01-01
Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Security of practical quantum key distribution systems
Energy Technology Data Exchange (ETDEWEB)
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Quantum chemical investigation of levofloxacin-boron complexes: A computational approach
Sayin, Koray; Karakaş, Duran
2018-04-01
Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.
International Nuclear Information System (INIS)
Halliwell, J. J.
2009-01-01
In the quantization of simple cosmological models (minisuperspace models) described by the Wheeler-DeWitt equation, an important step is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation. This gives sensible semiclassical results but lacks an underlying operator formalism. In this paper, we address the issue of constructing probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in nonrelativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit, and are closely related to an intersection number operator. The definitions of class operators given here handle the key case in which the underlying classical system has multiple crossings of the boundaries of the regions of interest. We show that oscillatory WKB solutions to the Wheeler-DeWitt equation give approximate decoherence of histories, as do superpositions of WKB solutions, as long as the regions of configuration space are sufficiently large. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures
Hybrid quantum systems of ions and atoms
Sias, Carlo; Köhl, Michael
2014-01-01
In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.
Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems
Tanaka, Shu; Tamura, Ryo
2012-01-01
Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...
Fracchia, F.; Filippi, Claudia; Amovilli, C.
2014-01-01
We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we
Irreversible processes in quantum mechanical systems
International Nuclear Information System (INIS)
Talkner, P.
1979-01-01
Although the information provided by the evolution of the density matrix of a quantum system is equivalent with the knowledge of all observables at a given time, it turns out ot be insufficient to answer certain questions in quantum optics or linear response theory where the commutator of certain observables at different space-time points is needed. In this doctoral thesis we prove the existence of density matrices for common probabilities at multiple times and discuss their properties and their characterization independent of a special representation. We start with a compilation of definitions and properties of classical common probabilities and correlation functions. In the second chapter we give the definition of a quantum mechanical Markov process and derive the properties of propagators, generators and conditional probabilities as well as their mutual relations. The third chapter is devoted to a treatment of quantum mechanical systems in thermal equilibrium for which the principle of detailed balance holds as a consequence of microreversibility. We work out the symmetry properties of the two-sided correlation functions which turn out to be analogous to those in classical processes. In the final chapter we use the Gaussian behavior of the stationary correlation function of an oscillator and determine a class of Markov processes which are characterized by dissipative Lionville operators. We succeed in obtaining the canonical representation in a purely algebraic way by means of similarity transformations. Starting from this representation it is particularly easy to calculate the propagator and the correlation function. (HJ) 891 HJ/HJ 892 MKO
Quantum transport through complex networks - from light-harvesting proteins to semiconductor devices
Energy Technology Data Exchange (ETDEWEB)
Kreisbeck, Christoph
2012-06-18
Electron transport through small systems in semiconductor devices plays an essential role for many applications in micro-electronics. One focus of current research lies on establishing conceptually new devices based on ballistic transport in high mobility AlGaAs/AlGa samples. In the ballistic regime, the transport characteristics are determined by coherent interference effects. In order to guide experimentalists to an improved device design, the characterization and understanding of intrinsic device properties is crucial. We develop a time-dependent approach that allows us to simulate experimentally fabricated, complex devicegeometries with an extension of up to a few micrometers. Particularly, we explore the physical origin of unexpected effects that have been detected in recent experiments on transport through Aharonov-Bohm waveguide-interferometers. Such interferometers can be configured as detectors for transfer properties of embedded quantum systems. We demonstrate that a four-terminal waveguide-ring is a suitable setup for measuring the transmission phase of a harmonic quantum dot. Quantum effects are not restricted exclusively to artificial devices but have been found in biological systems as well. Pioneering experiments reveal quantum effects in light-harvesting complexes, the building blocks of photosynthesis. We discuss the Fenna-Matthews-Olson complex, which is a network of coupled bacteriochlorophylls. It acts as an energy wire in the photosynthetic apparatus of green sulfur bacteria. Recent experimental findings suggest that energy transfer takes place in the form of coherent wave-like motion, rather than through classical hopping from one bacteriochlorophyll to the next. However, the question of why and how coherent transfer emerges in light-harvesting complexes is still open. The challenge is to merge seemingly contradictory features that are observed in experiments on two-dimensional spectroscopy into a consistent theory. Here, we provide such a
Mathematical Structure in Quantum Systems and applications
International Nuclear Information System (INIS)
Cavero-Pelaez, I.; Clemente-Gallardo, J.; Marmo, G.; Muñoz--Castañeda, J.M.
2013-01-01
This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Classical Information Storage in an n-Level Quantum System
Frenkel, Péter E.; Weiner, Mihály
2015-12-01
A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.
Controllability of multi-partite quantum systems and selective excitation of quantum dots
International Nuclear Information System (INIS)
Schirmer, S G; Pullen, I C H; Solomon, A I
2005-01-01
We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots
PsiQuaSP-A library for efficient computation of symmetric open quantum systems.
Gegg, Michael; Richter, Marten
2017-11-24
In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Quantum and classical dynamics in biologically inspired systems
International Nuclear Information System (INIS)
Guerreschi, G.
2012-01-01
Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and
Language Networks as Complex Systems
Lee, Max Kueiming; Ou, Sheue-Jen
2008-01-01
Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…
Excess Entropy Production in Quantum System: Quantum Master Equation Approach
Nakajima, Satoshi; Tokura, Yasuhiro
2017-12-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Lukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems
Directory of Open Access Journals (Sweden)
James F. Glazebrook
2010-06-01
Full Text Available The fundamentals of Lukasiewicz-Moisil logic algebras and their applications to complex genetic network dynamics and highly complex systems are presented in the context of a categorical ontology theory of levels, Medical Bioinformatics and self-organizing, highly complex systems. Quantum Automata were defined in refs.[2] and [3] as generalized, probabilistic automata with quantum state spaces [1]. Their next-state functions operate through transitions between quantum states defined by the quantum equations of motions in the SchrÄodinger representation, with both initial and boundary conditions in space-time. A new theorem is proven which states that the category of quantum automata and automata-homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R-Systems which are open, dynamic biosystem networks [4] with de¯ned biological relations that represent physiological functions of primordial(s, single cells and the simpler organisms. A new category of quantum computers is also defined in terms of reversible quantum automata with quantum state spaces represented by topological groupoids that admit a local characterization through unique, quantum Lie algebroids. On the other hand, the category of n-Lukasiewicz algebras has a subcategory of centered n-Lukasiewicz algebras (as proven in ref. [2] which can be employed to design and construct subcategories of quantum automata based on n-Lukasiewicz diagrams of existing VLSI. Furthermore, as shown in ref. [2] the category of centered n-Lukasiewicz algebras and the category of Boolean algebras are naturally equivalent. A `no-go' conjecture is also proposed which states that Generalized (M,R-Systems
Process tomography via sequential measurements on a single quantum system
CSIR Research Space (South Africa)
Bassa, H
2015-09-01
Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Mixing properties of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of topological mixing for automorphisms of C * -algebras in two ways. We show that for Galilean invariant Fermi systems the weaker form of mixing is satisfied. With some additional requirement on the range of the interaction we can also demonstrate the stronger mixing property. (Author)
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Using a quantum dot system to realize perfect state transfer
International Nuclear Information System (INIS)
Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang
2011-01-01
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Reality and dimension of space and the complexity of quantum mechanics
International Nuclear Information System (INIS)
Mirman, R.
1988-01-01
The dimension (and signature) of space is a result of distances being real numbers and quantum mechanical state functions being complex ones; it is an inescapable consequence of quantum mechanics and group theory. So nonrelativistic quantum mechanics cannot be complete (it requires ad hoc additional assumptions) and consistent (nor can classical physics), leading to relativity, quantum mechanics, and field theory. Implications of the constraints of consistency and physical reasonableness and of group theory for the structure of these theories are considered. It appears that there are simple, perhaps unavoidable reasons for the laws of physics, the nature of the world they describe, and the space in which they act
Quantum communications system with integrated photonic devices
Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John
2017-11-14
Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.
Engineering quantum hyperentangled states in atomic systems
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Physical approach to complex systems
Kwapień, Jarosław; Drożdż, Stanisław
2012-06-01
Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but
International Nuclear Information System (INIS)
Nesterov, Alexander I; Aceves de la Cruz, F
2008-01-01
We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase
Classical treatments of quantum mechanical effects in collisions of weakly bound complexes
International Nuclear Information System (INIS)
Lopez, Jose G.; McCoy, Anne B.
2005-01-01
Classical and quantum simulations of Ne + Ar 2 collision dynamics are performed in order to investigate where quantum mechanical effects are most important and where classical simulations provide good descriptions of the dynamics. It is found that when Ar 2 is in a low-lying vibrational state, the differences between the results of quantum and quasiclassical simulations are profound. However, excellent agreement between the results of the quantum and classical simulations can be achieved when the initial conditions for the classical trajectories are sampled from the quantum phase space distribution given by the Wigner function. These effects are largest when collisions occur under constrained geometries or when Ar 2 is in its ground vibrational state. The results of this work suggest that sampling the initial conditions using the Wigner function provides a straightforward way to incorporate the most important quantum mechanical effects in simulations of collisions involving very cold weakly bound complexes
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Seniority in quantum many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2010-01-01
The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.
Low-rank driving in quantum systems
International Nuclear Information System (INIS)
Burkey, R.S.
1989-01-01
A new property of quantum systems called low-rank driving is introduced. Numerous simplifications in the solution of the time-dependent Schroedinger equation are pointed out for systems having this property. These simplifications are in the areas of finding eigenvalues, taking the Laplace transform, converting Schroedinger's equation to an integral form, discretizing the continuum, generalizing the Weisskopf-Wigner approximation, band-diagonalizing the Hamiltonian, finding new exact solutions to Schroedinger's equation, and so forth. The principal physical application considered is the phenomenon of coherent populations-trapping in continuum-continuum interactions
Quantum chaos in a fermion system
International Nuclear Information System (INIS)
Pal, Santanu
1992-01-01
With the growing realisation that the dynamics of a system with a few degrees of freedom is chaotic more as a rule than an exception, the relevance of quantum chaos in nuclear single-particle motion is now receiving closer scrutinisation. This on one hand is helping to gain a deeper understanding of dissipative processes in nuclear dynamics as well as revealing certain interesting features of a fermion system on the other. In the present talk, we would discuss the chaotic features of the single-particle motion in a di nucleus with a view to study the signatures of an effective underlying classical dynamics in the system. As the present day understanding of quantum chaos relies quite heavily on the existence of classical trajectories, it is rather interesting to study how far such considerations can be pushed for systems which do not have a obvious classical analogue such as the spin-orbit interaction in our system. This question has been further investigated for a relativistic fermion system, similar to the Bogoliubov bag. This model is particularly suited as spin, without a classical analogue, has its natural place in the Dirac equation. The results of this study have been presented in the talk. (author). 25 refs., 14 figs
Quantum integrable systems related to lie algebras
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1983-01-01
Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Energy Technology Data Exchange (ETDEWEB)
Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2016-09-05
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.
2016-09-01
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Control landscapes for observable preparation with open quantum systems
International Nuclear Information System (INIS)
Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin
2008-01-01
A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape
Conditional density matrix: systems and subsystems in quantum mechanics
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
A new quantum mechanical notion - Conditional Density Matrix - is discussed and is applied to describe some physical processes. This notion is a natural generalization of von Neumann density matrix for such processes as divisions of quantum systems into subsystems and reunifications of subsystems into new joint systems. Conditional Density Matrix assigns a quantum state to a subsystem of a composite system on condition that another part of the composite system is in some pure state
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
International Nuclear Information System (INIS)
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-01-01
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
On quantum chaos, stochastic webs and localization in a quantum mechanical kick system
International Nuclear Information System (INIS)
Engel, U.M.
2007-01-01
In this study quantum chaos is discussed using the kicked harmonic oscillator as a model system. The kicked harmonic oscillator is characterized by an exceptional scenario of weak chaos: In the case of resonance between the frequency of the harmonic oscillator and the frequency of the periodic forcing, stochastic webs in phase space are generated by the classical dynamics. For the quantum dynamics of this system it is shown that the resulting Husimi distributions in quantum phase space exhibit the same web-like structures as the classical webs. The quantum dynamics is characterized by diffusive energy growth - just as the classical dynamics in the channels of the webs. In the case of nonresonance, the classically diffusive dynamics is found to be quantum mechanically suppressed. This bounded energy growth, which corresponds to localization in quantum phase space, is explained analytically by mapping the system onto the Anderson model. In this way, within the context of quantum chaos, the kicked harmonic oscillator is characterized by exhibiting its noteworthy geometrical and dynamical properties both classically and quantum mechanically, while at the same time there are also very distinct quantum deviations from classical properties, the most prominent example being quantum localization. (orig.)
Decaying states as complex energy eigenvectors in generalized quantum mechanics
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Chiu, C.B.; Gorini, V.
1977-04-01
The problem of particle decay is reexamined within the Hamiltonian formalism. By deforming contours of integration, the survival amplitude is expressed as a sum of purely exponential contributions arising from the simple poles of the resolvent on the second sheet plus a background integral along a complex contour GAMMA running below the location of the poles. One observes that the time dependence of the survival amplitude in the small time region is strongly correlated to the asymptotic behaviour of the energy spectrum of the system; one computes the small time behavior of the survival amplitude for a wide variety of asymptotic behaviors. In the special case of the Lee model, using a formal procedure of analytic continuation, it is shown that a complete set of complex energy eigenvectors of the Hamiltonian can be associated with the poles of the resolvent of the background contour GAMMA. These poles and points along GAMMA correspond to the discrete and the continuum states respectively. In this context, each unstable particle is associated with a well defined object, which is a discrete generalized eigenstate of the Hamiltonian having a complex eigenvalue, with its real and negative imaginary parts being the mass and half width of the particle respectively. Finally, one briefly discusses the analytic continuation of the scattering amplitude within this generalized scheme, and notes the appearance of ''redundant poles'' which do not correspond to discrete solutions of the modified eigenvalue problem
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-01
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.
Quantum chemistry on a superconducting quantum processor
Energy Technology Data Exchange (ETDEWEB)
Kaicher, Michael P.; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2016-07-01
Quantum chemistry is the most promising civilian application for quantum processors to date. We study its adaptation to superconducting (sc) quantum systems, computing the ground state energy of LiH through a variational hybrid quantum classical algorithm. We demonstrate how interactions native to sc qubits further reduce the amount of quantum resources needed, pushing sc architectures as a near-term candidate for simulations of more complex atoms/molecules.
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
DEFF Research Database (Denmark)
de Palma, Giacomo; Trevisan, Dario
2018-01-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Quantum revivals and magnetization tunneling in effective spin systems
International Nuclear Information System (INIS)
Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R
2016-01-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)
Directory of Open Access Journals (Sweden)
Irina V. Martynenko
2016-07-01
Full Text Available The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy.
Unstable particles as open quantum systems
International Nuclear Information System (INIS)
Caban, Pawel; Rembielinski, Jakub; Smolinski, Kordian A.; Walczak, Zbigniew
2005-01-01
We present the probability-preserving description of the decaying particle within the framework of quantum mechanics of open systems, taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace-preserving maps forming a one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems, which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence
Quantum Zeno effect for exponentially decaying systems
International Nuclear Information System (INIS)
Koshino, Kazuki; Shimizu, Akira
2004-01-01
The quantum Zeno effect - suppression of decay by frequent measurements - was believed to occur only when the response of the detector is so quick that the initial tiny deviation from the exponential decay law is detectable. However, we show that it can occur even for exactly exponentially decaying systems, for which this condition is never satisfied, by considering a realistic case where the detector has a finite energy band of detection. The conventional theories correspond to the limit of an infinite bandwidth. This implies that the Zeno effect occurs more widely than expected thus far
Superconducting system for adiabatic quantum computing
Energy Technology Data Exchange (ETDEWEB)
Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)
2006-06-01
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.
Quantum-size colloid metal systems
International Nuclear Information System (INIS)
Roldugin, V.I.
2000-01-01
In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Combinations of complex dynamical systems
Pilgrim, Kevin M
2003-01-01
This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.
Semiotics of constructed complex systems
Energy Technology Data Exchange (ETDEWEB)
Landauer, C.; Bellman, K.L.
1996-12-31
The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.
Moretti, Valter; Oppio, Marco
As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Moments of generalized Husimi distributions and complexity of many-body quantum states
International Nuclear Information System (INIS)
Sugita, Ayumu
2003-01-01
We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution
Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems
Sukhanov, Aleksander
2005-01-01
The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...
5th International Conference on Complex Systems
Braha, Dan; Bar-Yam, Yaneer
2011-01-01
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.
7th International Conference on Complex Systems
Braha, Dan; Bar-Yam, Yaneer
2012-01-01
The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.
Information dynamics and open systems classical and quantum approach
Ingarden, R S; Ohya, M
1997-01-01
This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Energy Technology Data Exchange (ETDEWEB)
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum Accelerators for High-performance Computing Systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL
2017-11-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.
Computational models of complex systems
Dabbaghian, Vahid
2014-01-01
Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...
Stationary states of two-level open quantum systems
International Nuclear Information System (INIS)
Gardas, Bartlomiej; Puchala, Zbigniew
2011-01-01
A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.
Repetitive Interrogation of 2-Level Quantum Systems
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Quantum systems related to root systems and radial parts of Laplace operators
Olshanetsky, M. A.; Perelomov, A. M.
2002-01-01
The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.
QuantumOptics.jl: A Julia framework for simulating open quantum systems
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system
International Nuclear Information System (INIS)
Hao, Liang; Wang, Chuan; Long, Gui Lu
2010-01-01
Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.
Conditional quantum entropy power inequality for d-level quantum systems
Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok
2018-04-01
We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.
Quantum field theory in stationary coordinate systems
International Nuclear Information System (INIS)
Pfautsch, J.D.
1981-01-01
Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge
Architectures and Applications for Scalable Quantum Information Systems
2007-01-01
Gershenfeld and I. Chuang. Quantum computing with molecules. Scientific American, June 1998. [16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit , R...AFRL-IF-RS-TR-2007-12 Final Technical Report January 2007 ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS...NUMBER 5b. GRANT NUMBER FA8750-01-2-0521 4. TITLE AND SUBTITLE ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS 5c
Projective measurements in quantum and classical optical systems
CSIR Research Space (South Africa)
Roux, FS
2014-09-01
Full Text Available equally well to both classical and quantum optical systems. A projective measurement, in the context of quantum mechanics, is understood to be the process where a projection operator operates on some input state. Often this projection operator is composed...) Projective measurements in quantum and classical optical systems Filippus S. Roux* and Yingwen Zhang CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa (Received 3 July 2014; published 22 September 2014) Experimental setups for the optical...
Constructing quantum games from a system of Bell's inequalities
International Nuclear Information System (INIS)
Iqbal, Azhar; Abbott, Derek
2010-01-01
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.
Directory of Open Access Journals (Sweden)
Jha Prashant
2009-08-01
Full Text Available Abstract Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI, U(V, U(IV, U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG, and U-2-Keto-3-doxyoctanoate (KDO with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI to U(IV is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V- and U(IV-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI and U(IV rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.
Quantum uncertainty in critical systems with three spins interaction
International Nuclear Information System (INIS)
Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C
2015-01-01
In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)
Synchronization of complex chaotic systems in series expansion form
International Nuclear Information System (INIS)
Ge Zhengming; Yang Chenghsiung
2007-01-01
This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
On the kinetic theory of quantum systems
International Nuclear Information System (INIS)
Calkoen, C.J.
1986-01-01
The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3 Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)
Renner, R; Cirac, J I
2009-03-20
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
sl (6,r) as the group of symmetries for non relativistic quantum systems
African Journals Online (AJOL)
It is shown that the 13 one parameter generators of the Lie group SL(6, R) are the maximal group of symmetries for nonrelativistic quantum systems. The group action on the set of states S Ĥ (H complex Hilbert space) preserves transition probabilities as well as the dynamics of the system. By considering a prolongation of ...
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Energy Technology Data Exchange (ETDEWEB)
Mohseni, M. [Google Research, Venice, California 90291 (United States); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shabani, A. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Lloyd, S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rabitz, H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)
2014-01-21
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
International Nuclear Information System (INIS)
Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.
2014-01-01
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k B λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap
Modeling Power Systems as Complex Adaptive Systems
Energy Technology Data Exchange (ETDEWEB)
Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.
2004-12-30
Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.
Software Systems for High-performance Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Britt, Keith A [ORNL
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Quantum Computing in Fock Space Systems
Berezin, Alexander A.
1997-04-01
Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).
Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.
2018-06-01
Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.
Shrinked systems. Quantum physics on new paths
International Nuclear Information System (INIS)
Audretsch, J.
2005-01-01
This introducing textbook for students of higher semesters of physics, chemistry, and informatics treats a in latest time dynamically expanding field of physics. This book deals among others with the themes quantum information theory, quantum communications, quantum computing, teleportation, hidden parameters, which-way-marking, quantum measuring process, POVM, quantum channels and mediates by this not only a deepened understanding of quantum theory but also basic science, in order to follow the fast development of the field respectively to enter a special field of research. Commented recommendations for further literature as well as exercise problems help the reader to find quickly a founded approach to the theoretical foundations of future key technologies. The book can be made to a base of courses and seminars. Because the required basic knowledge in mathematics and quantum theory is presented in introductory chapters, the book is also suited for the self-study
International Nuclear Information System (INIS)
Gusakov, V.E.; Bel'ko, V.I.; Dorozhkin, N.N.
2015-01-01
We report on adaptation of quantum chemistry software - Quantum Espresso and LASTO - for the electronic structure calculations for the complex solid-state systems on the GeForce series GPUs using the nVIDIA CUDA technology. Specifically, protective covering based on transition metal nitrides are considered. (authors)
Interdisciplinary Symposium on Complex Systems
Zelinka, Ivan; Rössler, Otto
2014-01-01
The book you hold in your hands is the outcome of the "ISCS 2013: Interdisciplinary Symposium on Complex Systems" held at the historical capital of Bohemia as a continuation of our series of symposia in the science of complex systems. Prague, one of the most beautiful European cities, has its own beautiful genius loci. Here, a great number of important discoveries were made and many important scientists spent fruitful and creative years to leave unforgettable traces. The perhaps most significant period was the time of Rudolf II who was a great supporter of the art and the science and attracted a great number of prominent minds to Prague. This trend would continue. Tycho Brahe, Niels Henrik Abel, Johannes Kepler, Bernard Bolzano, August Cauchy Christian Doppler, Ernst Mach, Albert Einstein and many others followed developing fundamental mathematical and physical theories or expanding them. Thus in the beginning of the 17th century, Kepler formulated here the first two of his three laws of planetary motion on ...
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
De Palma, Giacomo; Trevisan, Dario
2018-06-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.
Quantum Phase Transitions in Conventional Matrix Product Systems
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Towards the experimental realization of hybrid quantum systems
International Nuclear Information System (INIS)
Koller, C.
2012-01-01
One of the main interests of quantum physics in this new millennium is the exploitation of quantum mechanical principles in technical applications. One approach here is to use entanglement and superpositions of states to realize powerful algorithms capable of solving challenging computational tasks on a much faster time scale than a classical computer ever could. To find the quantum analogue of a classical bit one needs a quantum mechanical two level system that can be used to store and process quantum information. Most of the current approaches to find such a 'qubit' have the intention to find a single system that is able to fulfill all desirable tasks. But actually most quantum systems are only favorable for very specific tasks (e.g storage, processing, data exchange,..), similar as it is in classical computing. For some qubits the main disadvantages is that their quantum state is very fragile. Those systems loose their 'quantum information' (that is the possibility to store superpositions of their states coherently) easily. They 'decohere' on a timescale that is much shorter then any more involving algorithm. Other systems can keep those superposition states for quite a while, but are so difficult to address that the number of operations that can be made is very limited. The task of a so called hybrid quantum system is now to combine the strengths of these different systems, using e.g. one for manipulation and an other system for storage. Similar to a processor/memory architecture in conventional computers these systems could use a kind of bus system to couple between them. The main task of this thesis was to make steps towards the realization of such a system using two different combinations of quantum systems. Both are planned to use superconducting qubits (transmons) as processor qubit and either atoms (ultra cold rubidium 87 ensembles) or solid state spin systems (Nitrogen Vacancies in diamonds - NV centers) as memory. (author)
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.
Quantum control with noisy fields: computational complexity versus sensitivity to noise
International Nuclear Information System (INIS)
Kallush, S; Khasin, M; Kosloff, R
2014-01-01
A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise, which has to be suppressed to retain controllability. Can one design control fields such that the effect of noise is negligible on the time-scale of the transformation? This question is intimately related to the fundamental problem of a connection between the computational complexity of the control problem and the sensitivity of the controlled system to noise. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases with the dimension of the Hilbert space representation of the algebra. We find two types of control tasks, easy and hard. Easy tasks are characterized by a small variance of the evolving state with respect to the operators of the control operators. They are relatively immune to noise and the control field is easy to find. Hard tasks have a large variance, are sensitive to noise and the control field is hard to find. The influence of noise increases with the size of the system, which is measured by the scaling factor N of the largest weight of the representation. For fixed time and control field the ability to control degrades as O(N) for easy tasks and as O(N 2 ) for hard tasks. As a consequence, even in the most favorable estimate, for large quantum systems, generic noise in the controls dominates for a typical class of target transformations, i.e. complete controllability is destroyed by noise. (paper)
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Measures of Quantum Synchronization in Continuous Variable Systems
Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
Anions, quantum particles in planar systems
International Nuclear Information System (INIS)
Monerat, Germano Amaral
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Quantum chromodynamics in few-nucleon systems
International Nuclear Information System (INIS)
Brodsky, S.J.
1983-10-01
One of the most important implications of quantum chromodynamics (QCD) is that nuclear systems and forces can be described at a fundamental level. The theory provides natural explanations for the basic features of hadronic physics: the meson and baryon spectra, quark statistics, the structure of the weak and electromagnetic currents of hadrons, the scale-invariance of hadronic interactions at short distances, and evidently, color (i.e., quark and gluon) confinement at large distances. Many different and diverse tests have confirmed the basic predictions of QCD; however, since tests of quark and gluon interactions must be done within the confines of hadrons there have been few truly quantitative checks. Nevertheless, it appears likely that QCD is the fundamental theory of hadronic and nuclear interactions in the same sense that QED gives a precise description of electrodynamic interctions. Topics discussed include exclusive processes in QCD, the deuteron in QCD, reduced nuclear amplitudes, and limitations of traditional nuclear physics. 32 references
The problems of mapping in quantum systems
International Nuclear Information System (INIS)
Xu Gongou; Wang Wenge; Yang Yadian; Fu Deji
1992-01-01
The mapping from the state of Hamiltonian H(0) to that of H(λ) = H(0) + λ(H-H(0)) is established by means of Wigner-Brillion perturbation formula. An iterative perturbation calculation can be carried out to find the stable points set and to show that under what condition the iterative calculation is divergent(non convergent). Avoided crossing point is really a singularity-point showed clearly in such procedure. The topological invariant subspace endowed by corresponding Hamiltonian H(0) is destroyed after such avoided crossing point. It is similar to the classical invariant tori destruction. A quantum KAM theorem can be established in this manner. Numerical results of certain schematic systems are given as illustration
Relativistic quantum theory of composite systems
International Nuclear Information System (INIS)
Sogami, I.
1978-01-01
A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)
Quantum Accelerators for High-Performance Computing Systems
Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.
2017-01-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...
Controlling open quantum systems: Tools, achievements, and limitations
Koch, Christiane P.
2016-01-01
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge to preserve the relevant nonclassical features at the level of device operation. A major obstacle is decoherence which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence...
Advanced-Retarded Differential Equations in Quantum Photonic Systems
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-01-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090
Relationship between quantum-mechanical systems with and without monopoles
International Nuclear Information System (INIS)
Mardoyan, Levon; Nersessian, Armen; Yeranyan, Armen
2007-01-01
It is shown that the inclusion of the monopole field in the three- and five-dimensional spherically symmetric quantum-mechanical systems, with the addition of the special centrifugal term, leads to the lift of the range of the total and azimuth quantum numbers only. Meanwhile the functional dependence of the energy spectra on quantum numbers does not undergo any changes. We also present a new integrable model of the spherical oscillator
Infinite Particle Systems: Complex Systems III
Directory of Open Access Journals (Sweden)
Editorial Board
2008-06-01
Full Text Available In the years 2002-2005, a group of German and Polish mathematicians worked under a DFG research project No 436 POL 113/98/0-1 entitled "Methods of stochastic analysis in the theory of collective phenomena: Gibbs states and statistical hydrodynamics". The results of their study were summarized at the German-Polish conference, which took place in Poland in October 2005. The venue of the conference was Kazimierz Dolny upon Vistula - a lovely town and a popular place for various cultural, scientific, and even political events of an international significance. The conference was also attended by scientists from France, Italy, Portugal, UK, Ukraine, and USA, which predetermined its international character. Since that time, the conference, entitled "Infinite Particle Systems: Complex Systems" has become an annual international event, attended by leading scientists from Germany, Poland and many other countries. The present volume of the "Condensed Matter Physics" contains proceedings of the conference "Infinite Particle Systems: Complex Systems III", which took place in June 2007.
Multilevel Complex Networks and Systems
Caldarelli, Guido
2014-03-01
Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.
Non-reversible evolution of quantum chaotic system. Kinetic description
International Nuclear Information System (INIS)
Chotorlishvili, L.; Skrinnikov, V.
2008-01-01
It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
The Geometric Phase in Quantum Systems
International Nuclear Information System (INIS)
Pascazio, S
2003-01-01
The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is
Groebner bases for finite-temperature quantum computing and their complexity
International Nuclear Information System (INIS)
Crompton, P. R.
2011-01-01
Following the recent approach of using order domains to construct Groebner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Groebner basis, the complexity class of this problem is bounded quantum polynomial.
Generation and confirmation of a (100 × 100)-dimensional entangled quantum system
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-01-01
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902
Matrix De Rham Complex and Quantum A-infinity algebras
Barannikov, S.
2014-04-01
I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.
Density matrix of strongly coupled quantum dot - microcavity system
International Nuclear Information System (INIS)
Nguyen Van Hop
2009-01-01
Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.
2015-01-01
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...
Complex numbers, quantum mechanics and the beginning of time
International Nuclear Information System (INIS)
Gibbons, G.W.; Pohle, H.J.
1993-01-01
A basic problem in quantizing a field in curved space is the decomposition of the classical modes in positive and negative frequency. The decomposition is equivalent to a choice of a complex structure in the space of classical solutions. In our construction the real tunneling geometries provide the link between this complex structure and analytic properties of the classical solutions in a riemannian section of space. This is related to the Osterwalder-Schrader approach to euclidean field theory. (orig.)
Increase of Organization in Complex Systems
Georgiev, Georgi Yordanov; Daly, Michael; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder
2013-01-01
Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system -...
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
Inequalities detecting quantum entanglement for 2 x d systems
International Nuclear Information System (INIS)
Zhao Mingjing; Wang Zhixi; Ma Teng; Fei Shaoming
2011-01-01
We present a set of inequalities for detecting quantum entanglement of 2 x d quantum states. For 2 x 2 and 2 x 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d>3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposition and even some entangled states with positive partial transposition. These inequalities are given by mean values of local observables and present an experimental way of detecting the quantum entanglement of 2 x d quantum states and even multiqubit pure states.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Anonymous voting for multi-dimensional CV quantum system
International Nuclear Information System (INIS)
Shi Rong-Hua; Xiao Yi; Shi Jin-Jing; Guo Ying; Lee, Moon-Ho
2016-01-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. (paper)
Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu
2018-03-01
In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.
The classical limit of non-integrable quantum systems, a route to quantum chaos
International Nuclear Information System (INIS)
Castagnino, Mario; Lombardi, Olimpia
2006-01-01
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state
The classical limit of non-integrable quantum systems, a route to quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)
2006-05-15
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.
The Rabi Oscillation in Subdynamic System for Quantum Computing
Directory of Open Access Journals (Sweden)
Bi Qiao
2015-01-01
Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.
Alternative Hamiltonian description for quantum systems
International Nuclear Information System (INIS)
Dubrovin, B.A.; Marno, G.; Simoni, A.
1990-01-01
The existence of time-invariant Kahler structures is analyzed in both Classical and Quantum Mechanics. In Quantum Mechanics, a family of such Kahler structures is found, in the finite-dimensional case it is proven that this family is complete
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
Complex Teichmüller Space below the Planck Length for the Interpretation of Quantum Mechanics
Winterberg, Friedwardt
2014-03-01
As Newton's mysterious action at a distance law of gravity was explained as a Riemannian geometry by Einstein, it is proposed that the likewise mysterious non-local quantum mechanics is explained by the analytic continuation below the Planck length into a complex Teichmüller space. Newton's theory worked extremely well, as does quantum mechanics, but no satisfactory explanation has been given for quantum mechanics. In one space dimension, sufficient to explain the EPR paradox, the Teichmüller space is reduced to a space of complex Riemann surfaces. Einstein's curved space-time theory of gravity was confirmed by a tiny departure from Newton's theory in the motion of the planet Mercury, and an experiment is proposed to demonstrate the possible existence of a Teichmüller space below the Planck length.
Speed limits for quantum gates in multiqubit systems
Ashhab, S.; De Groot, P.C.; Nori, F.
2012-01-01
We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Cryo-CMOS Circuits and Systems for Quantum Computing Applications
Patra, B; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, Lin; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; Charbon, E.E.E.
2018-01-01
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
Indirect control of quantum systems via an accessor: pure coherent control without system excitation
International Nuclear Information System (INIS)
Fu, H C; Dong Hui; Sun, C P; Liu, X F
2009-01-01
A pure indirect control of quantum systems via a quantum accessor is investigated. In this control scheme, we do not apply any external classical excitation fields on the controlled system and we control a quantum system via a quantum accessor and classical control fields control the accessor only. Complete controllability is investigated for arbitrary finite-dimensional quantum systems and exemplified by two- and three-dimensional systems. The scheme exhibits some advantages; it uses less qubits in the accessor and does not depend on the energy-level structure of the controlled system
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Transmission spectrum of a double quantum-dot-nanocavity system in photonic crystals
International Nuclear Information System (INIS)
Qian Jun; Jin Shiqi; Gong Shangqing; Qian Yong; Feng Xunli
2008-01-01
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
International Nuclear Information System (INIS)
Schwager, Heike
2012-01-01
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Metasynthetic computing and engineering of complex systems
Cao, Longbing
2015-01-01
Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro
Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence
Chervov, A.; Talalaev, D.
2006-01-01
The spectral curve is the key ingredient in the modern theory of classical integrable systems. We develop a construction of the ``quantum spectral curve'' and argue that it takes the analogous structural and unifying role on the quantum level also. In the simplest, but essential case the ``quantum spectral curve'' is given by the formula "det"(L(z)-dz) [Talalaev04] (hep-th/0404153). As an easy application of our constructions we obtain the following: quite a universal receipt to define quantu...
Generalization of uncertainty relation for quantum and stochastic systems
Koide, T.; Kodama, T.
2018-06-01
The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.
Multi-particle correlations in quaternionic quantum systems
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1994-01-01
The authors investigated the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. It was found that a multi particles interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components. 15 refs
Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Bohmian mechanics, open quantum systems and continuous measurements
Nassar, Antonio B
2017-01-01
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from th...
Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems
Directory of Open Access Journals (Sweden)
Maissam Barkeshli
2014-11-01
Full Text Available The idea of topological quantum computation is to build powerful and robust quantum computers with certain macroscopic quantum states of matter called topologically ordered states. These systems have degenerate ground states that can be used as robust “topological qubits” to store and process quantum information. In this paper, we propose a new experimental setup that can realize topological qubits in a simple bilayer fractional quantum Hall system with proper electric gate configurations. Our proposal is accessible with current experimental techniques, involves well-established topological states, and, moreover, can realize a large class of topological qubits, generalizing the Majorana zero modes studied in recent literature to more computationally powerful possibilities. We propose three tunneling and interferometry experiments to detect the existence and nonlocal topological properties of the topological qubits.
Quantum trajectory approach to the geometric phase: open bipartite systems
International Nuclear Information System (INIS)
Yi, X X; Liu, D P; Wang, W
2005-01-01
Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations
Photonic Quantum Information Processing
International Nuclear Information System (INIS)
Walther, P.
2012-01-01
The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Does an onlooker stop an evolving quantum system?
International Nuclear Information System (INIS)
Toschek, P E
2007-01-01
The evolution of quantum mechanics has followed the critical analysis of 'gedanken' experiments. Many of these concrete speculations can become implemented today in the laboratory - thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: 1. The microphysical measurement by a macroscopic device, 2. the system's temporal evolution, and 3. the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed.An experiment designed to demonstrate this 'quantum Zeno effect' and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individualelectrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation
Quantum Calculations of Electron Tunneling in Respiratory Complex III.
Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2015-11-19
The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.
Decoherence control in open quantum systems via classical feedback
International Nuclear Information System (INIS)
Ganesan, Narayan; Tarn, Tzyh-Jong
2007-01-01
In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations
Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Kundeti Muralidhar
2015-08-01
Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.
Reduction of Subjective and Objective System Complexity
Watson, Michael D.
2015-01-01
Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached
Nonlinear Phenomena in Complex Systems: From Nano to Macro Scale
Stanley, H
2014-01-01
Topics of complex system physics and their interdisciplinary applications to different problems in seismology, biology, economy, sociology, energy and nanotechnology are covered in this new work from renowned experts in their fields. In particular, contributed papers contain original results on network science, earthquake dynamics, econophysics, sociophysics, nanoscience and biological physics. Most of the papers use interdisciplinary approaches based on statistical physics, quantum physics and other topics of complex system physics. Papers on econophysics and sociophysics are focussed on societal aspects of physics such as, opinion dynamics, public debates and financial and economic stability. This work will be of interest to statistical physicists, economists, biologists, seismologists and all scientists working in interdisciplinary topics of complexity.
Novel optical probe for quantum Hall system
Indian Academy of Sciences (India)
to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped ... Keywords. Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. ... An optical fibre carries light from tunable diode laser.
Encyclopedia of Complexity and Systems Science
Meyers, Robert A
2009-01-01
Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...
Quantum versus classical integrability in Calogero-Moser systems
International Nuclear Information System (INIS)
Corrigan, E.; Sasaki, R.
2002-01-01
Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Δ. The quantum Calogero systems having 1/q 2 potential and a confining q 2 potential and the Sutherland systems with 1/sin 2 q potentials have 'integer' energy spectra characterized by the root system Δ. Various quantities of the corresponding classical systems, e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the classical Lax pair matrices etc, at the equilibrium point of the potential are investigated analytically as well as numerically for all root systems. To our surprise, most of these classical data are also 'integers', or they appear to be 'quantized'. To be more precise, these quantities are polynomials of the coupling constant(s) with integer coefficients. The close relationship between quantum and classical integrability in Calogero-Moser systems deserves fuller analytical treatment, which would lead to better understanding of these systems and of integrable systems in general. (author)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe
2009-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello
Closed-Loop and Robust Control of Quantum Systems
Directory of Open Access Journals (Sweden)
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.