Directory of Open Access Journals (Sweden)
Cooch, E. G.
2004-06-01
Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally
Population and coherence dynamics in light harvesting complex II (LH2).
Yeh, Shu-Hao; Zhu, Jing; Kais, Sabre
2012-08-28
The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.
Carleson, Lennart
1993-01-01
Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...
Energy Technology Data Exchange (ETDEWEB)
Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)
2015-06-07
Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.
Population and reproductive dynamics of the polychaete Pygospio elegans in a boreal estuary complex
DEFF Research Database (Denmark)
Thonig, Anne; Knott, K Emily; Kesäniemi, Jenni E
2016-01-01
Pygospio elegans is an opportunistic, wide-spread spionid polychaete that reproduces asexually via fragmentation and can produce benthic and pelagic larvae, hence combining different developmental modes in one species. We documented the density, size distribution, and reproductive activity of P....... elegans at four sites in the Danish Isefjord-Roskilde Fjord estuary complex, where all modes of reproduction were reported. We compared population dynamics of this species to environmental parameters such as salinity, temperature, and sediment characteristics (grain size, sorting, porosity, water content......, organic content, C/N). We observed that new cohorts—resulting either from sexual or asexual reproduction—appeared in spring and fall, and old ones disappeared in late summer and winter. Sexual reproduction occurred from September until May, and although their timing was variable, there were two...
Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica
Energy Technology Data Exchange (ETDEWEB)
Crone, E.E.
1995-11-08
The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.
Environmental coupling and population dynamics in the PE545 light-harvesting complex
Energy Technology Data Exchange (ETDEWEB)
Aghtar, Mortaza; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de
2016-01-15
Long-lived quantum coherences have been shown experimentally in the Fenna–Matthews–Olson (FMO) complex of green sulfur bacteria as well as in the phycoerythrin 545 (PE545) photosynthetic antenna system of marine algae. A combination of classical molecular dynamics simulations, quantum chemistry and quantum dynamical calculations is employed to determine the excitation transfer dynamics in PE545. One key property of the light-harvesting system concerning the excitation transfer and dephasing phenomena is the spectral density. This quantity is determined from time series of the vertical excitation energies of the aggregate. In the present study we focus on the quantum dynamical simulations using the earlier QM/MM calculations as input. Employing an ensemble-averaged classical path-based wave packet dynamics, the excitation transfer dynamics between the different bilins in the PE545 complex is determined and analyzed. Furthermore, the nature of the environmental fluctuations determining the transfer dynamics is discussed. - Highlights: • Modeling of excitation energy transfer in the light-harvesting system PE545. • Combination of molecular dynamics simulations, quantum chemistry and quantum dynamics. • Spectral densities for bilins in the PE545 complex.
Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh
2017-01-01
The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...
Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.
2011-01-01
Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844
Complexity and Dynamical Depth
Directory of Open Access Journals (Sweden)
Terrence Deacon
2014-07-01
Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Market Squid Population Dynamics
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...
National Research Council Canada - National Science Library
Gulland, J. A
1977-01-01
This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...
Simons, S.L.; Bartelings, H.; Hamon, K.G.; Kempf, A.J.; Doring, R.; Temming, A.
2014-01-01
There is growing interest in bioeconomic models as tools for understanding pathways of fishery behaviour in order to assess the impact of alternative policies on natural resources. A model system is presented that combines stochastic age-structured population dynamics with complex fisheries
Nonlinear Relaxation in Population Dynamics
Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo
We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.
Dynamics in Complex Coacervates
Perry, Sarah
Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Wilds, Roy; Kauffman, Stuart A.; Glass, Leon
2008-09-01
We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.
Kim, HyunJung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Doyle, Jeff J; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R
2016-12-01
Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Six wild subpopulations were identified, with 25 % of accessions classified as admixed. Three of the wild groups were genetically and geographically closely related to the O. sativa subpopulations, indica, aus and japonica, and carried O. sativa introgressions; the other three wild groups were genetically divergent, had unique chloroplast haplotypes, and were located at the geographical extremes of the species range. The genetic subpopulations were significantly correlated (r 2 = 0.562) with traditional species designations, O. rufipogon (perennial) and O. nivara (annual), differentiated based on morphology and life history. A wild diversity panel of 95 purified (inbred) accessions was developed for future genetic studies. Our results suggest that the cultivated aus subpopulation is most closely related to an annual wild relative, japonica to a perennial wild relative, and indica to an admixed population of diverse annual and perennial wild ancestors. Gene flow between ORSC and O. sativa is common in regions where rice is cultivated, threatening the identity and diversity of wild ORSC populations. The three geographically isolated ORSC populations harbor variation rarely seen in cultivated rice and provide a unique window into the genetic composition of ancient rice subpopulations.
Nonlinear dynamics of interacting populations
Bazykin, Alexander D
1998-01-01
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the
Directory of Open Access Journals (Sweden)
Eslam Kashi
2015-04-01
Full Text Available In some instances, it is inevitable that large amounts of potentially hazardous chemicals like chlorine gas are stored and used in facilities in densely populated areas. In such cases, all safety issues must be carefully considered. To reach this goal, it is important to have accurate information concerning chlorine gas behaviors and how it is dispersed in dense urban areas. Furthermore, maintaining adequate air movement and the ability to purge ambient from potential toxic and dangerous chemicals like chlorine gas could be helpful. These are among the most important actions to be taken toward the improvement of safety in a big metropolis like Tehran. This paper investigates and analyzes chlorine gas leakage scenarios, including its dispersion and natural air ventilation effects on how it might be geographically spread in a city, using computational fluid dynamic (CFD. Simulations of possible hazardous events and solutions for preventing or reducing their probability are presented to gain a better insight into the incidents. These investigations are done by considering hypothetical scenarios which consist of chlorine gas leakages from pipelines or storage tanks under different conditions. These CFD simulation results are used to investigate and analyze chlorine gas behaviors, dispersion, distribution, accumulation, and other possible hazards by means of a simplified CAD model of an urban area near a water-treatment facility. Possible hazards as well as some prevention and post incident solutions are also suggested.
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Managing Complex Dynamical Systems
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
Akinyoade, A.; Damen, J.C.M.; Dietz, A.J.; Kilama, B.B.; Omme, van, G.
2014-01-01
Africa's population has grown extremely rapidly over the last fifty years from 289 million inhabitants in 1961 to more than 1 billion today. This is a growth rate of 350% in just half a century and the number of urban residents has increased even more quickly: from 65 million in 1960 to 460 million today, or from 20% to 46% of the population as a whole. Demographers predict that soon more than 50% of all Africans will be living in cities. The average life expectancy, literacy rates and primar...
Akinyoade, A.; Damen, J.C.M.; Dietz, A.J.; Kilama, B.B.; Omme, van G.
2014-01-01
Africa's population has grown extremely rapidly over the last fifty years from 289 million inhabitants in 1961 to more than 1 billion today. This is a growth rate of 350% in just half a century and the number of urban residents has increased even more quickly: from 65 million in 1960 to 460 million
Complex networks: Dynamics and security
Indian Academy of Sciences (India)
This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. ... Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA; Institute of Mathematics and Computer Science, University of Sao Paulo, Brazil ...
Dynamical systems in population biology
Zhao, Xiao-Qiang
2017-01-01
This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...
Evolutionary dynamics of cooperation in neutral populations
Szolnoki, Attila; Perc, Matjaž
2018-01-01
Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.
Coarse-graining complex dynamics
DEFF Research Database (Denmark)
Sibani, Paolo
2013-01-01
Continuous Time Random Walks (CTRW) are widely used to coarse-grain the evolution of systems jumping from a metastable sub-set of their configuration space, or trap, to another via rare intermittent events. The multi-scaled behavior typical of complex dynamics is provided by a fat...... macroscopic variables all produce identical long time relaxation behaviors. Hence, CTRW shed no light on the link between microscopic and macroscopic dynamics. We then highlight how a more recent approach, Record Dynamics (RD) provides a viable alternative, based on a very different set of physical ideas......: while CTRW make use of a renewal process involving identical traps of infinite size, RD embodies a dynamical entrenchment into a hierarchy of traps which are finite in size and possess different degrees of meta-stability. We show in particular how RD produces the stretched exponential, power...
Combinations of complex dynamical systems
Pilgrim, Kevin M
2003-01-01
This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.
Rapid Mission Design for Dynamically Complex Environments
National Aeronautics and Space Administration — Designing trajectories in dynamically complex environments is very challenging and easily becomes an intractable problem. More complex planning implies potentially...
Population dynamics of rural Ethiopia.
Bariabagar, H
1978-01-01
2 rounds of the national sample surveys, conducted by the central statistical office of Ethiopia during 1964-1967 and 1969-1971, provide the only comprehensive demographic data for the country and are the basis for this discussion of rural Ethiopia's population dynamics. The population of Ethiopia is predominantly rural. Agglomerations of 2000 and over inhabitants constitute about 14% of the population, and this indicates that Ethiopia has a low level of urbanization. In rural Ethiopia, international migration was negligent in the 1970's and the age structure can be assumed to be the results of past trends of fertility and mortality conditions. The reported crude birthrate (38.2), crude death rate (12.3) and infant mortality rate (90) of rural Ethiopia fall short of the averages for African countries. Prospects of population growth of rural Ethiopia would be immense. At the rate of natural increase of between 2.4 and 3.0% per annum, the population would double in 24-29 years. Regarding population issues, the programs of the National Democratic Revolution of Ethiopia faces the following main challenging problems: 1) carrying out national population censuses in order to obtain basic information for socialist planning; 2) minimizing or curtailing the existing high urban growth rates; 3) reducing rapidly growing population; and 5) mobilizing Ethiopian women to participate in the social, economic and political life of the country in order to create favorable conditions for future fertility reduction.
Population dynamics in variable environments
Tuljapurkar, Shripad
1990-01-01
Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...
Markovian dynamics on complex reaction networks
Energy Technology Data Exchange (ETDEWEB)
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Markovian dynamics on complex reaction networks
International Nuclear Information System (INIS)
Goutsias, J.; Jenkinson, G.
2013-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples
Dynamic and interacting complex networks
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible
Dynamic complexities in a parasitoid-host-parasitoid ecological model
International Nuclear Information System (INIS)
Yu Hengguo; Zhao Min; Lv Songjuan; Zhu Lili
2009-01-01
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model
Dynamic complexities in a parasitoid-host-parasitoid ecological model
Energy Technology Data Exchange (ETDEWEB)
Yu Hengguo [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Zhao Min [School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325027 (China)], E-mail: zmcn@tom.com; Lv Songjuan; Zhu Lili [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China)
2009-01-15
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.
Cognitive dynamics: complexity and creativity
Energy Technology Data Exchange (ETDEWEB)
Arecchi, F Tito [Dipartimento di Fisica, Universita di Firenze (Italy); Istituto Nazionale di Ottica Applicata, Florence (Italy)
2007-05-15
A scientific problem described within a given code is mapped by a corresponding computational problem. We call (algorithmic) complexity the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical system making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses. We call creativity the action of code changing, which is guided by hints not formalized within the previous code, whence not accessible to a computer. We call semantic complexity the number of different scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the context. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path towards a model building. Since this is a report on work in progress, we skip technicalities in order to stress the gist of the question, and provide
Cognitive dynamics: complexity and creativity
International Nuclear Information System (INIS)
Arecchi, F Tito
2007-01-01
A scientific problem described within a given code is mapped by a corresponding computational problem. We call (algorithmic) complexity the bit length of the shortest instruction which solves the problem. Deterministic chaos in general affects a dynamical system making the corresponding problem experimentally and computationally heavy, since one must reset the initial conditions at a rate higher than that of information loss (Kolmogorov entropy). One can control chaos by adding to the system new degrees of freedom (information swapping: information lost by chaos is replaced by that arising from the new degrees of freedom). This implies a change of code, or a new augmented model. Within a single code, changing hypotheses is equivalent to fixing different sets of control parameters, each with a different a-priori probability, to be then confirmed and transformed to an a-posteriori probability via Bayes theorem. Sequential application of Bayes rule is nothing else than the Darwinian strategy in evolutionary biology. The sequence is a steepest ascent algorithm, which stops once maximum probability has been reached. At this point the hypothesis exploration stops. By changing code (and hence the set of relevant variables) one can start again to formulate new classes of hypotheses. We call creativity the action of code changing, which is guided by hints not formalized within the previous code, whence not accessible to a computer. We call semantic complexity the number of different scientific codes, or models, that describe a situation. It is however a fuzzy concept, in so far as this number changes due to interaction of the operator with the context. These considerations are illustrated with reference to a cognitive task, starting from synchronization of neuron arrays in a perceptual area and tracing the putative path towards a model building. Since this is a report on work in progress, we skip technicalities in order to stress the gist of the question, and provide
Symbolic dynamics and description of complexity
International Nuclear Information System (INIS)
Hao Bailin.
1992-10-01
Symbolic dynamics provides a general framework to describe complexity of dynamical behaviour. After a discussion of the state of the filed special emphasis will be made on the role of transfer matrix (the Stefan matrix) both in deriving the grammar from known symbolic dynamics and in extracting the rules from experimental data. The block structure of the Stefan matrix may serve as another indicator of complexity of the associated dynamics. (author). 33 refs, 6 figs
Evolutionary Dynamics and Diversity in Microbial Populations
Thompson, Joel; Fisher, Daniel
2013-03-01
Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Analysis of Population Dynamics in World Economy
Martin, Gress
2011-01-01
Population dynamics is an important topic in current world economy. The size and growth of population have an impact on economic growth and development of individual countries and vice versa, economic development influences demographic variables in a country. The aim of the article is to analyze historical development of world population, population stock change and relations between population stock change and economic development.
Allee effects on population dynamics with delay
International Nuclear Information System (INIS)
Celik, C.; Merdan, H.; Duman, O.; Akin, O.
2008-01-01
In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay
Nonlinear and Complex Dynamics in Economics
William Barnett; Apostolos Serletis; Demitre Serletis
2012-01-01
This paper is an up-to-date survey of the state-of-the-art in dynamical systems theory relevant to high levels of dynamical complexity, characterizing chaos and near chaos, as commonly found in the physical sciences. The paper also surveys applications in economics and �finance. This survey does not include bifurcation analyses at lower levels of dynamical complexity, such as Hopf and transcritical bifurcations, which arise closer to the stable region of the parameter space. We discuss the...
Critical dynamics in population vaccinating behavior.
Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T
2017-12-26
Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.
Team dynamics in complex projects
Oeij, P.; Vroome, E.E.M. de; Dhondt, S.; Gaspersz, J.B.R.
2012-01-01
Complexity of projects is hotly debated and a factor which affects innovativeness of team performance. Much attention in the past is paid to technical complexity and many issues are related to natural and physical sciences. A growing awareness of the importance of socioorganisational issues is
Complexity in a population of Artemia
Energy Technology Data Exchange (ETDEWEB)
Ali, A.A., E-mail: abduladem1@yahoo.co [Electrical Engineering Department, University of Basrah (Iraq); Fortuna, L., E-mail: lfortuna@diees.unict.i [DIEEI, Faculty of Engineering, University of Catania (Italy); Frasca, M., E-mail: mfrasca@diees.unict.i [DIEEI, Faculty of Engineering, University of Catania (Italy); Rashid, M.T., E-mail: mofid76@yahoo.co [Electrical Engineering Department, University of Basrah (Iraq); Xibilia, M.G., E-mail: mxibilia@ingegneria.unime.i [DiSIA, Faculty of Engineering, University of Messina (Italy)
2011-04-15
Highlights: Experiments on collective motion of populations of animals (Artemia salina). Design of low-cost experimental setup for complex systems. Control of collective motion of populations of Artemia. Models of collective motion of populations of Artemia. - Abstract: Artemia salina belongs to a genus of very primordial crustaceans, whose behavior is not widely investigated in literature. Their collective behavior is studied in this paper both experimentally and theoretically. Different experiments have been designed to control the direction of motion of an Artemia population by exploiting their sensitivity to light and to measure the response of the population to light at different wavelengths. Mathematical models have been also derived, explaining the mechanisms underlying Artemia flocking formation when a light spot is applied to the system. The results obtained allow to develop new strategies for distributed control of agents and to test them in a simple and low cost experimental setup.
Complexity in a population of Artemia
International Nuclear Information System (INIS)
Ali, A.A.; Fortuna, L.; Frasca, M.; Rashid, M.T.; Xibilia, M.G.
2011-01-01
Highlights: → Experiments on collective motion of populations of animals (Artemia salina). → Design of low-cost experimental setup for complex systems. → Control of collective motion of populations of Artemia. → Models of collective motion of populations of Artemia. - Abstract: Artemia salina belongs to a genus of very primordial crustaceans, whose behavior is not widely investigated in literature. Their collective behavior is studied in this paper both experimentally and theoretically. Different experiments have been designed to control the direction of motion of an Artemia population by exploiting their sensitivity to light and to measure the response of the population to light at different wavelengths. Mathematical models have been also derived, explaining the mechanisms underlying Artemia flocking formation when a light spot is applied to the system. The results obtained allow to develop new strategies for distributed control of agents and to test them in a simple and low cost experimental setup.
Symbolic Dynamics and Grammatical Complexity
Hao, Bai-Lin; Zheng, Wei-Mou
The following sections are included: * Formal Languages and Their Complexity * Formal Language * Chomsky Hierarchy of Grammatical Complexity * The L-System * Regular Language and Finite Automaton * Finite Automaton * Regular Language * Stefan Matrix as Transfer Function for Automaton * Beyond Regular Languages * Feigenbaum and Generalized Feigenbaum Limiting Sets * Even and Odd Fibonacci Sequences * Odd Maximal Primitive Prefixes and Kneading Map * Even Maximal Primitive Prefixes and Distinct Excluded Blocks * Summary of Results
Adaptive learning and complex dynamics
International Nuclear Information System (INIS)
Gomes, Orlando
2009-01-01
In this paper, we explore the dynamic properties of a group of simple deterministic difference equation systems in which the conventional perfect foresight assumption gives place to a mechanism of adaptive learning. These systems have a common feature: under perfect foresight (or rational expectations) they all possess a unique fixed point steady state. This long-term outcome is obtained also under learning if the quality underlying the learning process is high. Otherwise, when the degree of inefficiency of the learning process is relatively strong, nonlinear dynamics (periodic and a-periodic cycles) arise. The specific properties of each one of the proposed systems is explored both in terms of local and global dynamics. One macroeconomic model is used to illustrate how the formation of expectations through learning may eventually lead to awkward long-term outcomes.
Population dynamics at high Reynolds number
Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.
2010-01-01
We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying
Dynamic complexity: plant receptor complexes at the plasma membrane.
Burkart, Rebecca C; Stahl, Yvonne
2017-12-01
Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Traffic Dynamics on Complex Networks: A Survey
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Complex dynamic in ecological time series
Peter Turchin; Andrew D. Taylor
1992-01-01
Although the possibility of complex dynamical behaviors-limit cycles, quasiperiodic oscillations, and aperiodic chaos-has been recognized theoretically, most ecologists are skeptical of their importance in nature. In this paper we develop a methodology for reconstructing endogenous (or deterministic) dynamics from ecological time series. Our method consists of fitting...
The Self as a Complex Dynamic System
Mercer, Sarah
2011-01-01
This article explores the potential offered by complexity theories for understanding language learners' sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual…
Product development projects dynamics and emergent complexity
Schlick, Christopher
2016-01-01
This book primarily explores two topics: the representation of simultaneous, cooperative work processes in product development projects with the help of statistical models, and the assessment of their emergent complexity using a metric from theoretical physics (Effective Measure Complexity, EMC). It is intended to promote more effective management of development projects by shifting the focus from the structural complexity of the product being developed to the dynamic complexity of the development processes involved. The book is divided into four main parts, the first of which provides an introduction to vector autoregression models, periodic vector autoregression models and linear dynamical systems for modeling cooperative work in product development projects. The second part presents theoretical approaches for assessing complexity in the product development environment, while the third highlights and explains closed-form solutions for the complexity metric EMC for vector autoregression models and linear dyn...
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Dynamics in electron transfer protein complexes
Bashir, Qamar
2010-01-01
Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...
Population dynamics and population control of Galium aparine L.
Weide, van der R.Y.
1993-01-01
The population biology of Galium aparine L. needs to be better understood, in order to be able to rationalize decisions about the short- and long-term control of this weed species for different cropping practices.
A population dynamics model was developed to
provisional analysis of population dynamics
Indian Academy of Sciences (India)
Nicholas Mitchison
2018-01-11
Jan 11, 2018 ... Western populations covered by OMIM, or are so mediated to a lesser extent. This we attribute ... tlenecks affected southern Asia: a coalescence analysis of ... included comprehensive survey of previous work (Atkin- son et al.
Competitive Dynamics on Complex Networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan
2014-07-01
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
Complexity and simplification in understanding recruitment in benthic populations
Pineda, Jesús
2008-11-13
Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom-dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model-oriented. Simplified approaches identify "macroecological" patterns or attempt to identify and model the essential, "first-order" elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, and larval production. Moreover, these processes are non-linear, some interact, and they may operate on disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom-dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post-settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and "broad-brush first-order approaches" may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
International Nuclear Information System (INIS)
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Population dynamics and rural poverty.
Fong, M S
1985-01-01
An overview of the relationship between demographic factors and rural poverty in developing countries is presented. The author examines both the micro- and macro-level perspectives of this relationship and the determinants and consequences of population growth. The author notes the prospects for a rapid increase in the rural labor force and considers its implications for the agricultural production structure and the need for institutional change. Consideration is also given to the continuing demand for high fertility at the family level and the role of infant and child mortality in the poverty cycle. "The paper concludes by drawing attention to the need for developing the mechanism for reconciliation of social and individual optima with respect to family size and population growth." The need for rural development projects that take demographic factors into account is stressed as is the need for effective population programs. (summary in FRE, ITA) excerpt
POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...
African Journals Online (AJOL)
nb
current study aimed at assessing the population dynamics of Pseudo-nitzschia ... and to the developing aquaculture industry ... B. Hotel. Pangani Island. Bongoyo Island. Mbudya Island. Msasani Bay ... Salinity values did not show clear trends.
Directory of Open Access Journals (Sweden)
Jeiczon Jaimes-Dueñez
2015-04-01
Full Text Available Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4, Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.Mitochondrial cytochrome oxidase C subunit 1 (COI--NADH dehydrogenase subunit 4 (ND4 genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations was found in all the cities throughout the sampling while the second group (associated with East African populations was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West
Lattice dynamics and molecular dynamics simulation of complex materials
International Nuclear Information System (INIS)
Chaplot, S.L.
1997-01-01
In this article we briefly review the lattice dynamics and molecular dynamics simulation techniques, as used for complex ionic and molecular solids, and demonstrate a number of applications through examples of our work. These computational studies, along with experiments, have provided microscopic insight into the structure and dynamics, phase transitions and thermodynamical properties of a variety of materials including fullerene, high temperature superconducting oxides and geological minerals as a function of pressure and temperature. The computational techniques also allow the study of the structures and dynamics associated with disorder, defects, surfaces, interfaces etc. (author)
[The dynamics of heath indicators of population of industrial town].
Kalinkin, D E; Karpov, A B; Takhauov, R M; Samoĭlova, Iu A
2013-01-01
The article presents the results of analysis of dynamics of health indicators of population of industrial town (medical demographic indicators, disability, morbidity of social hygienically important diseases) during 1970-2010. The classified administrative territorial municipality of Seversk constructed near the Siberian chemical industrial center, the internationally first-rate complex of nuclear industry enterprises was used as a research base. It is demonstrated that dynamics of health indicators of studied population had such negative tendencies as rapid population ageing, population loss due to decrease of natality and increase of mortality (population of able-bodied age included), prevalence of cardio-vascular diseases, malignant neoplasms and external causes, chronization of diseases. The established tendencies are to be considered in management decision making targeted to support and promote population health in industrial towns.
Controlling Complex Systems and Developing Dynamic Technology
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit
Stochastic population dynamic models as probability networks
M.E. and D.C. Lee. Borsuk
2009-01-01
The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...
Modeling the population dynamics of Pacific yew.
Richard T. Busing; Thomas A. Spies
1995-01-01
A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...
Dynamical community structure of populations evolving on genotype networks
International Nuclear Information System (INIS)
Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna
2015-01-01
Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics
Population dynamical responses to climate change
DEFF Research Database (Denmark)
Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas
2008-01-01
approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...
Population dynamics on heterogeneous bacterial substrates
Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.
2012-02-01
How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.
Population size does not explain past changes in cultural complexity.
Vaesen, Krist; Collard, Mark; Cosgrove, Richard; Roebroeks, Wil
2016-04-19
Demography is increasingly being invoked to account for features of the archaeological record, such as the technological conservatism of the Lower and Middle Pleistocene, the Middle to Upper Paleolithic transition, and cultural loss in Holocene Tasmania. Such explanations are commonly justified in relation to population dynamic models developed by Henrich [Henrich J (2004)Am Antiq69:197-214] and Powell et al. [Powell A, et al. (2009)Science324(5932):1298-1301], which appear to demonstrate that population size is the crucial determinant of cultural complexity. Here, we show that these models fail in two important respects. First, they only support a relationship between demography and culture in implausible conditions. Second, their predictions conflict with the available archaeological and ethnographic evidence. We conclude that new theoretical and empirical research is required to identify the factors that drove the changes in cultural complexity that are documented by the archaeological record.
Imura, Jun-ichi; Ueta, Tetsushi
2015-01-01
This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.
Inferring network topology from complex dynamics
International Nuclear Information System (INIS)
Shandilya, Srinivas Gorur; Timme, Marc
2011-01-01
Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.
How Resource Phenology Affects Consumer Population Dynamics.
Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F
2016-02-01
Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.
The self as a complex dynamic system
Directory of Open Access Journals (Sweden)
Sarah Mercer
2011-04-01
Full Text Available This article explores the potential offered by complexity theories for understanding language learners’ sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual perspective that may inform future studies into the self and possibly other individual learner differences. The article concludes by critically considering the merits of a complexity perspective but also reflecting on the challenges it poses for research.
Population Dynamics and Air Pollution
DEFF Research Database (Denmark)
Flachs, Esben Meulengracht; Sørensen, Jan; Bønløkke, Jacob
2013-01-01
Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed......) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.......4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution....
Population dynamics in vasopressin cells.
Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria
2008-01-01
Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.
Transparency in complex dynamic food supply chains
Trienekens, J.H.; Wognum, P.M.; Beulens, A.J.M.; Vorst, van der J.G.A.J.
2012-01-01
Food supply chains are increasingly complex and dynamic due to (i) increasing product proliferation to serve ever diversifying and globalising markets as a form of mass customisation with resulting global flows of raw materials, ingredients and products, and (ii) the need to satisfy changing and
Improving the Complexity of the Lorenz Dynamics
Directory of Open Access Journals (Sweden)
María Pilar Mareca
2017-01-01
Full Text Available A new four-dimensional, hyperchaotic dynamic system, based on Lorenz dynamics, is presented. Besides, the most representative dynamics which may be found in this new system are located in the phase space and are analyzed here. The new system is especially designed to improve the complexity of Lorenz dynamics, which, despite being a paradigm to understand the chaotic dissipative flows, is a very simple example and shows great vulnerability when used in secure communications. Here, we demonstrate the vulnerability of the Lorenz system in a general way. The proposed 4D system increases the complexity of the Lorenz dynamics. The trajectories of the novel system include structures going from chaos to hyperchaos and chaotic-transient solutions. The symmetry and the stability of the proposed system are also studied. First return maps, Poincaré sections, and bifurcation diagrams allow characterizing the global system behavior and locating some coexisting structures. Numerical results about the first return maps, Poincaré cross sections, Lyapunov spectrum, and Kaplan-Yorke dimension demonstrate the complexity of the proposed equations.
An age-structured population balance model for microbial dynamics
Directory of Open Access Journals (Sweden)
Duarte M.V.E.
2003-01-01
Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.
Complex and unexpected dynamics in simple genetic regulatory networks
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
Design tools for complex dynamic security systems.
Energy Technology Data Exchange (ETDEWEB)
Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.
2007-01-01
The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.
Complex and adaptive dynamical systems a primer
Gros, Claudius
2007-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
Complex and Adaptive Dynamical Systems A Primer
Gros, Claudius
2011-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Coupled disease-behavior dynamics on complex networks: A review
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Particle algorithms for population dynamics in flows
International Nuclear Information System (INIS)
Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone
2011-01-01
We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.
Complex Human Dynamics From Mind to Societies
Winkowska-Nowak, Katarzyna; Brée, David
2013-01-01
This book, edited and authored by a closely collaborating network of social scientists and psychologists, recasts typical research topics in these fields into the language of nonlinear, dynamic and complex systems. The aim is to provide scientists with different backgrounds - physics, applied mathematics and computer sciences - with the opportunity to apply the tools of their trade to an altogether new range of possible applications. At the same time, this book will serve as a first reference for a new generation of social scientists and psychologists wishing to familiarize themselves with the new methodology and the "thinking in complexity".
Dynamics of a complex quantum magnet
International Nuclear Information System (INIS)
Landry, James W.; Coppersmith, S. N.
2003-01-01
We have computed the low energy quantum states and low frequency dynamical susceptibility of complex quantum spin systems in the limit of strong interactions, obtaining exact results for system sizes enormously larger than accessible previously. The ground state is a complex superposition of a substantial fraction of all the classical ground states, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the behavior of single spins. These results show that strongly interacting quantum systems can organize to generate coherent excitations and shed light on recent experiments demonstrating that coherent excitations are present in a disordered spin liquid. The dependence of the energy spectra on system size differs qualitatively from that of the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interactions are giving rise to these unusual spectral properties
How complex a dynamical network can be?
International Nuclear Information System (INIS)
Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.
2011-01-01
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.
Nonlinear dynamics, chaos and complex cardiac arrhythmias
Glass, L.; Courtemanche, M.; Shrier, A.; Goldberger, A. L.
1987-01-01
Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase-locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analyzed, which show some correspondence to clinical observations.
Conceptualising population health: from mechanistic thinking to complexity science
Directory of Open Access Journals (Sweden)
Jayasinghe Saroj
2011-01-01
Full Text Available Abstract The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS. The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections.
Conceptualising population health: from mechanistic thinking to complexity science.
Jayasinghe, Saroj
2011-01-20
The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS). The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections.
Ma, Zhanshan (Sam)
In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Population dynamics of Pseudo-nitzschia species ...
African Journals Online (AJOL)
The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...
Complex and adaptive dynamical systems a primer
Gros, Claudius
2013-01-01
Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...
Metrical and dynamical aspects in complex analysis
2017-01-01
The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.
Random complex dynamics and devil's coliseums
Sumi, Hiroki
2015-04-01
We investigate the random dynamics of polynomial maps on the Riemann sphere \\hat{\\Bbb{C}} and the dynamics of semigroups of polynomial maps on \\hat{\\Bbb{C}} . In particular, the dynamics of a semigroup G of polynomials whose planar postcritical set is bounded and the associated random dynamics are studied. In general, the Julia set of such a G may be disconnected. We show that if G is such a semigroup, then regarding the associated random dynamics, the chaos of the averaged system disappears in the C0 sense, and the function T∞ of probability of tending to ∞ \\in \\hat{\\Bbb{C}} is Hölder continuous on \\hat{\\Bbb{C}} and varies only on the Julia set of G. Moreover, the function T∞ has a kind of monotonicity. It turns out that T∞ is a complex analogue of the devil's staircase, and we call T∞ a ‘devil’s coliseum'. We investigate the details of T∞ when G is generated by two polynomials. In this case, T∞ varies precisely on the Julia set of G, which is a thin fractal set. Moreover, under this condition, we investigate the pointwise Hölder exponents of T∞.
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
Automated design of complex dynamic systems.
Directory of Open Access Journals (Sweden)
Michiel Hermans
Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.
Application of System Dynamics Methodology in Population Analysis
Directory of Open Access Journals (Sweden)
August Turina
2009-09-01
Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
Structure and dynamics of weakly bound complexes
International Nuclear Information System (INIS)
Skouteris, D.
1998-01-01
The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of
The failure rate dynamics in heterogeneous populations
International Nuclear Information System (INIS)
Cha, Ji Hwan; Finkelstein, Maxim
2013-01-01
Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Dynamics of Fos-Jun-NFAT1 complexes.
Ramirez-Carrozzi, V R; Kerppola, T K
2001-04-24
Transcription initiation in eukaryotes is controlled by nucleoprotein complexes formed through cooperative interactions among multiple transcription regulatory proteins. These complexes may be assembled via stochastic collisions or defined pathways. We investigated the dynamics of Fos-Jun-NFAT1 complexes by using a multicolor fluorescence resonance energy transfer assay. Fos-Jun heterodimers can bind to AP-1 sites in two opposite orientations, only one of which is populated in mature Fos-Jun-NFAT1 complexes. We studied the reversal of Fos-Jun binding orientation in response to NFAT1 by measuring the efficiencies of energy transfer from donor fluorophores linked to opposite ends of an oligonucleotide to an acceptor fluorophore linked to one subunit of the heterodimer. The reorientation of Fos-Jun by NFAT1 was not inhibited by competitor oligonucleotides or heterodimers. The rate of Fos-Jun reorientation was faster than the rate of heterodimer dissociation at some binding sites. The facilitated reorientation of Fos-Jun heterodimers therefore can enhance the efficiency of Fos-Jun-NFAT1 complex formation. We also examined the influence of the preferred orientation of Fos-Jun binding on the stability and transcriptional activity of Fos-Jun-NFAT1 complexes. Complexes formed at sites where Fos-Jun favored the same binding orientation in the presence and absence of NFAT1 exhibited an 8-fold slower dissociation rate than complexes formed at sites where Fos-Jun favored the opposite binding orientation. Fos-Jun-NFAT1 complexes also exhibited greater transcription activation at promoter elements that favored the same orientation of Fos-Jun binding in the presence and absence of NFAT1. Thus, the orientation of heterodimer binding can influence both the dynamics and promoter selectivity of multiprotein transcription regulatory complexes.
Evolutionary dynamics of complex communications networks
Karyotis, Vasileios; Papavassiliou, Symeon
2013-01-01
Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to
Complex and adaptive dynamical systems a primer
Gros, Claudius
2015-01-01
This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...
Population and evolutionary dynamics in spatially structured seasonally varying environments.
Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin
2018-03-25
be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within-individual and among-individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco-evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta-populations given diverse forms of seasonal environmental variation and change, and to forecast system-specific dynamics. To demonstrate one such approach, we use an evolutionary individual-based model to illustrate that multiple forms of partial migration can readily co-exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco-evolutionary responses to spatio-temporal seasonal environmental variation and change. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Delay differential systems for tick population dynamics.
Fan, Guihong; Thieme, Horst R; Zhu, Huaiping
2015-11-01
Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.
Calculating evolutionary dynamics in structured populations.
Directory of Open Access Journals (Sweden)
Charles G Nathanson
2009-12-01
Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.
Central-marginal population dynamics in species invasions
Directory of Open Access Journals (Sweden)
Qinfeng eGuo
2014-06-01
Full Text Available The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasive species partly due to their relatively short history, highly dynamic populations, and management implications. Here I examine recent findings and information gaps related to (1 the C-M population dynamics linked to species invasions, and (2 the possible effects of climate change and land use on the C-M patterns and processes. Unlike most native species that are relatively stable (some even having contracting populations or ranges, many invasive species are still spreading fast and form new distribution or abundance centers. Because of the strong nonlinearity of population demographic or vital rates (i.e. birth, death, immigration and emigration across the C-M gradients and the increased complexity of species ranges due to habitat fragmentation, multiple introductions, range-wide C-M comparisons and simulation involving multiple vital rates are needed in the future.
Rethinking the logistic approach for population dynamics of mutualistic interactions.
García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J
2014-12-21
Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dey, Snigdhadip; Joshi, Amitabh
2013-01-01
Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546
The heterogeneous dynamics of economic complexity.
Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano
2015-01-01
What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch--Economic Complexity--have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method--the selective predictability scheme--in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries.
Complex Dynamic Development of Poliovirus Membranous Replication Complexes
Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie
2012-01-01
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780
Complex Dynamics in Nonequilibrium Economics and Chemistry
Wen, Kehong
Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator
Population Model with a Dynamic Food Supply
Dickman, Ronald; da Silva Nascimento, Jonas
2009-09-01
We propose a simple population model including the food supply as a dynamic variable. In the model, survival of an organism depends on a certain minimum rate of food consumption; a higher rate of consumption is required for reproduction. We investigate the stationary behavior under steady food input, and the transient behavior of growth and decay when food is present initially but is not replenished. Under a periodic food supply, the system exhibits period-doubling bifurcations and chaos in certain ranges of the reproduction rate. Bifurcations and chaos are favored by a slow reproduction rate and a long period of food-supply oscillation.
Noise-induced effects in population dynamics
Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando
2002-03-01
We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.
Chaperone-client complexes: A dynamic liaison
Hiller, Sebastian; Burmann, Björn M.
2018-04-01
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
The Complexity of Dynamics in Small Neural Circuits.
Directory of Open Access Journals (Sweden)
Diego Fasoli
2016-08-01
Full Text Available Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.
Dynamic analysis of a parasite population model
Sibona, G. J.; Condat, C. A.
2002-03-01
We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.
[Population dynamics and development in the Caribbean].
Boland, B
1995-12-01
The impact is examined of socioeconomic factors on Caribbean population dynamics. This work begins by describing the socioeconomic context of the late 1980s and early 1990s, under the influence of the economic changes and crises of the 1980s. The small size, openness, dependency, and lack of diversification of the Caribbean economies have made them vulnerable to external pressures. The Bahamas and Belize had economic growth rates exceeding 5% annually during 1981-90, but most of the countries had low or negative growth. Unemployment, poverty, the structural adjustment measures adopted in the mid-1980s, and declines in social spending exacerbated general economic conditions. In broad terms, the population situation of the Caribbean is marked by diversity of sizes and growth rates. A few countries oriented toward services and tourism had demographic growth rates exceeding 3%, while at least 7 had almost no growth or negative growth. Population growth rates reflected different combinations of natural increase and migration. Crude death rates ranged from around 5/1000 to 11/1000, except in Haiti, and all countries of the region except Haiti had life expectancies of 70 years or higher. Despite fertility decline, the average crude birth rate was still relatively high at 26/1000, and the rate of natural increase was 1.8% annually for the region. Nearly half of the regional population was under 15 or over 65 years old. The body of this work provides greater detail on mortality patterns, variations by sex, infant mortality, causes of death, and implications for policy. The discussion of fertility includes general patterns and trends, age specific fertility rates, contraceptive prevalence, levels of adolescent fertility and age factors in adolescent sexual behavior, characteristics of adolescent unions, contraceptive usage, health and social consequences of adolescent childbearing, and the search for solutions. The final section describes the magnitude and causes of
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
System dynamics in complex psychiatric treatment organizations.
Rosenheck, R
1988-05-01
One of the major challenges facing contemporary psychiatry is the coordination of diverse services through organizational integration. With increasing frequency, psychiatric treatment takes place in complex treatment systems composed of multiple inpatient and outpatient programs. Particularly in public health care systems serving the chronically ill, contemporary practice demands a broad spectrum of programs, often geographically dispersed, that include crisis intervention teams, day treatment programs, substance abuse units, social rehabilitation programs and halfway houses (Bachrach 1983; Turner and TenHoor 1978). Individualized treatment planning often requires that a particular patient participate in two or more specialized programs either simultaneously or in a specified sequence. As a consequence of this specialization, treatment fragmentation has emerged as a significant clinical problem, and continuity of care has been highlighted as a valuable but elusive ingredient of optimal treatment. This paper will describe the dynamic interactions that result when several such programs are united under a common organizational roof. Using a large VA Psychiatry Service as an example, I will outline the hierarchical structure characteristic of such an organization, as well as the persistent pulls toward both integration and fragmentation that influence its operation.
The Complex Dynamics of Sponsored Search Markets
Robu, Valentin; La Poutré, Han; Bohte, Sander
This paper provides a comprehensive study of the structure and dynamics of online advertising markets, mostly based on techniques from the emergent discipline of complex systems analysis. First, we look at how the display rank of a URL link influences its click frequency, for both sponsored search and organic search. Second, we study the market structure that emerges from these queries, especially the market share distribution of different advertisers. We show that the sponsored search market is highly concentrated, with less than 5% of all advertisers receiving over 2/3 of the clicks in the market. Furthermore, we show that both the number of ad impressions and the number of clicks follow power law distributions of approximately the same coefficient. However, we find this result does not hold when studying the same distribution of clicks per rank position, which shows considerable variance, most likely due to the way advertisers divide their budget on different keywords. Finally, we turn our attention to how such sponsored search data could be used to provide decision support tools for bidding for combinations of keywords. We provide a method to visualize keywords of interest in graphical form, as well as a method to partition these graphs to obtain desirable subsets of search terms.
Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge
Energy Technology Data Exchange (ETDEWEB)
Schmieder, R.W.
1995-07-01
The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.
Stochastic population dynamics in spatially extended predator-prey systems
Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.
2018-02-01
Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex
Allee effects on population dynamics in continuous (overlapping) case
International Nuclear Information System (INIS)
Merdan, H.; Duman, O.; Akin, O.; Celik, C.
2009-01-01
This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.
Dynamics in electron transfer protein complexes
Bashir, Qamar
2010-01-01
Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize
Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg
2016-11-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.
Hamiltonian dynamics for complex food webs
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Population Dynamics of Early Human Migration in Britain.
Directory of Open Access Journals (Sweden)
Mayank N Vahia
Full Text Available Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction.We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples' movement over ~2000 years before the present era.We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available.
Sinks without borders: Snowshoe hare dynamics in a complex landscape
Griffin, Paul C.; Mills, L. Scott
2009-01-01
A full understanding of population dynamics of wide-ranging animals should account for the effects that movement and habitat use have on individual contributions to population growth or decline. Quantifying the per-capita, habitat-specific contribution to population growth can clarify the value of different patch types, and help to differentiate population sources from population sinks. Snowshoe hares, Lepus americanus, routinely use various habitat types in the landscapes they inhabit in the contiguous US, where managing forests for high snowshoe hare density is a priority for conservation of Canada lynx, Lynx canadensis. We estimated density and demographic rates via mark–recapture live trapping and radio-telemetry within four forest stand structure (FSS) types at three study areas within heterogeneous managed forests in western Montana. We found support for known fate survival models with time-varying individual covariates representing the proportion of locations in each of the FSS types, with survival rates decreasing as use of open young and open mature FSS types increased. The per-capita contribution to overall population growth increased with use of the dense mature or dense young FSS types and decreased with use of the open young or open mature FSS types, and relatively high levels of immigration appear to be necessary to sustain hares in the open FSS types. Our results support a conceptual model for snowshoe hares in the southern range in which sink habitats (open areas) prevent the buildup of high hare densities. More broadly, we use this system to develop a novel approach to quantify demographic sources and sinks for animals making routine movements through complex fragmented landscapes.
Dynamics of genome rearrangement in bacterial populations.
Directory of Open Access Journals (Sweden)
Aaron E Darling
2008-07-01
represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.
Perturbation analysis of transient population dynamics using matrix projection models
DEFF Research Database (Denmark)
Stott, Iain
2016-01-01
Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....
Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar
2012-12-01
The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.
Imaging complex nutrient dynamics in mycelial networks.
Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L
2008-08-01
Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier
Exploiting Fast-Variables to Understand Population Dynamics and Evolution
Constable, George W. A.; McKane, Alan J.
2017-11-01
We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.
Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
Li, Xiang
2005-01-01
In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...
Passivity analysis of higher order evolutionary dynamics and population games
Mabrok, Mohamed; Shamma, Jeff S.
2017-01-01
Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population
DYNAMICS OF Cercospora zeina POPULATIONS IN MAIZE-BASED ...
African Journals Online (AJOL)
ACSS
DYNAMICS OFCercospora zeina POPULATIONS IN MAIZE-BASED AGRO- ..... Population differentiation of Cercospora zeina in three districts of Uganda based on analysis of molecular variance ..... interactions: The example of the Erysiphe.
Dynamical systems examples of complex behaviour
Jost, Jürgen
2005-01-01
Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...
Dynamical baryogenesis through complex hybrid inflation
International Nuclear Information System (INIS)
Delepine, D; MartInez, C; Urena-Lopez, L A
2008-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry [1
Dynamical baryogenesis through complex hybrid inflation
Energy Technology Data Exchange (ETDEWEB)
Delepine, D; MartInez, C; Urena-Lopez, L A [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon, Guanajuato (Mexico)], E-mail: delepine@fisica.ugto.mx, E-mail: crmtz@fisica.ugto.mx, E-mail: lurena@fisica.ugto.mx
2008-06-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry [1].
Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy
Directory of Open Access Journals (Sweden)
Jurriaan Huskens
2013-03-01
Full Text Available In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.
Nonlinear and Complex Dynamics in Real Systems
William Barnett; Apostolos Serletis; Demitre Serletis
2005-01-01
This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...
Complex dynamics in double-diffusive convection
Energy Technology Data Exchange (ETDEWEB)
Meca, Esteban; Ramirez-Piscina, Laureano [Universitat Politecnica de Catalunya, Departament de Fisica Aplicada, Barcelona (Spain); Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Departament de Fisica Aplicada, Barcelona (Spain)
2004-11-01
The dynamics of a small Prandtl number binary mixture in a laterally heated cavity is studied numerically. By combining temporal integration, steady state solving and linear stability analysis of the full PDE equations, we have been able to locate and characterize a codimension-three degenerate Takens-Bogdanov point whose unfolding describes the dynamics of the system for a certain range of Rayleigh numbers and separation ratios near S=-1. (orig.)
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
The Hidden Complexity of Mendelian Traits across Natural Yeast Populations
Directory of Open Access Journals (Sweden)
Jing Hou
2016-07-01
Full Text Available Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel’s law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, confounding phenotypic predictability even for simple Mendelian traits.
Dynamical Baryogenesis in Complex Hybrid Inflation
International Nuclear Information System (INIS)
Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo
2008-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U (1) global symmetry associated to the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vev of the waterfall field, which is well constrained by diverse cosmological observations
Dynamical complexity changes during two forms of meditation
Li, Jin; Hu, Jing; Zhang, Yinhong; Zhang, Xiaofeng
2011-06-01
Detection of dynamical complexity changes in natural and man-made systems has deep scientific and practical meaning. We use the base-scale entropy method to analyze dynamical complexity changes for heart rate variability (HRV) series during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. The results show that dynamical complexity decreases in meditation states for two forms of meditation. Meanwhile, we detected changes in probability distribution of m-words during meditation and explained this changes using probability distribution of sine function. The base-scale entropy method may be used on a wider range of physiologic signals.
Hansson, Bengt; Ljungqvist, Marcus; Illera, Juan-Carlos; Kvist, Laura
2014-01-01
Evolutionary molecular studies of island radiations may lead to insights in the role of vicariance, founder events, population size and drift in the processes of population differentiation. We evaluate the degree of population genetic differentiation and fixation of the Canary Islands blue tit subspecies complex using microsatellite markers and aim to get insights in the population history using coalescence based methods. The Canary Island populations were strongly genetically differentiated and had reduced diversity with pronounced fixation including many private alleles. In population structure models, the relationship between the central island populations (La Gomera, Tenerife and Gran Canaria) and El Hierro was difficult to disentangle whereas the two European populations showed consistent clustering, the two eastern islands (Fuerteventura and Lanzarote) and Morocco weak clustering, and La Palma a consistent unique lineage. Coalescence based models suggested that the European mainland forms an outgroup to the Afrocanarian population, a split between the western island group (La Palma and El Hierro) and the central island group, and recent splits between the three central islands, and between the two eastern islands and Morocco, respectively. It is clear that strong genetic drift and low level of concurrent gene flow among populations have shaped complex allelic patterns of fixation and skewed frequencies over the archipelago. However, understanding the population history remains challenging; in particular, the pattern of extreme divergence with low genetic diversity and yet unique genetic material in the Canary Island system requires an explanation. A potential scenario is population contractions of a historically large and genetically variable Afrocanarian population, with vicariance and drift following in the wake. The suggestion from sequence-based analyses of a Pleistocene extinction of a substantial part of North Africa and a Pleistocene/Holocene eastward
Directory of Open Access Journals (Sweden)
Bengt Hansson
Full Text Available Evolutionary molecular studies of island radiations may lead to insights in the role of vicariance, founder events, population size and drift in the processes of population differentiation. We evaluate the degree of population genetic differentiation and fixation of the Canary Islands blue tit subspecies complex using microsatellite markers and aim to get insights in the population history using coalescence based methods. The Canary Island populations were strongly genetically differentiated and had reduced diversity with pronounced fixation including many private alleles. In population structure models, the relationship between the central island populations (La Gomera, Tenerife and Gran Canaria and El Hierro was difficult to disentangle whereas the two European populations showed consistent clustering, the two eastern islands (Fuerteventura and Lanzarote and Morocco weak clustering, and La Palma a consistent unique lineage. Coalescence based models suggested that the European mainland forms an outgroup to the Afrocanarian population, a split between the western island group (La Palma and El Hierro and the central island group, and recent splits between the three central islands, and between the two eastern islands and Morocco, respectively. It is clear that strong genetic drift and low level of concurrent gene flow among populations have shaped complex allelic patterns of fixation and skewed frequencies over the archipelago. However, understanding the population history remains challenging; in particular, the pattern of extreme divergence with low genetic diversity and yet unique genetic material in the Canary Island system requires an explanation. A potential scenario is population contractions of a historically large and genetically variable Afrocanarian population, with vicariance and drift following in the wake. The suggestion from sequence-based analyses of a Pleistocene extinction of a substantial part of North Africa and a Pleistocene
Effects of an invasive plant on population dynamics in toads.
Greenberg, Daniel A; Green, David M
2013-10-01
When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.
Holism and Emergence: Dynamical Complexity Defeats Laplace's ...
African Journals Online (AJOL)
ideal for scientific theories whose cogency is often not questioned. Laplace's demon is an idealization of mechanistic scientific method. Its principles together imply reducibility, and rule out holism and emergence. I will argue that Laplacean determinism fails even in the realm of planetary dynamics, and that it does not give ...
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Evolutionary dynamics with fluctuating population sizes and strong mutualism
Chotibut, Thiparat; Nelson, David R.
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Evolutionary dynamics with fluctuating population sizes and strong mutualism.
Chotibut, Thiparat; Nelson, David R
2015-08-01
Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.
Experts' Perspectives Toward a Population Health Approach for Children With Medical Complexity.
Barnert, Elizabeth S; Coller, Ryan J; Nelson, Bergen B; Thompson, Lindsey R; Chan, Vincent; Padilla, Cesar; Klitzner, Thomas S; Szilagyi, Moira; Chung, Paul J
2017-08-01
Because children with medical complexity (CMC) display very different health trajectories, needs, and resource utilization than other children, it is unclear how well traditional conceptions of population health apply to CMC. We sought to identify key health outcome domains for CMC as a step toward determining core health metrics for this distinct population of children. We conducted and analyzed interviews with 23 diverse national experts on CMC to better understand population health for CMC. Interviewees included child and family advocates, health and social service providers, and research, health systems, and policy leaders. We performed thematic content analyses to identify emergent themes regarding population health for CMC. Overall, interviewees conveyed that defining and measuring population health for CMC is an achievable, worthwhile goal. Qualitative themes from interviews included: 1) CMC share unifying characteristics that could serve as the basis for population health outcomes; 2) optimal health for CMC is child specific and dynamic; 3) health of CMC is intertwined with health of families; 4) social determinants of health are especially important for CMC; and 5) measuring population health for CMC faces serious conceptual and logistical challenges. Experts have taken initial steps in defining the population health of CMC. Population health for CMC involves a dynamic concept of health that is attuned to individual, health-related goals for each child. We propose a framework that can guide the identification and development of population health metrics for CMC. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Ab initio lattice dynamics of complex structures
DEFF Research Database (Denmark)
Voss, Johannes
2008-01-01
In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent ato...
Complex phase dynamics in coupled bursters
DEFF Research Database (Denmark)
Postnov, D E; Sosnovtseva, Olga; Malova, S Y
2003-01-01
The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...... the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes....
High population variability and source-sink dynamics in a solitary bee species.
Franzén, Markus; Nilsson, Sven G
2013-06-01
Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.
Complex dynamics in supervised work groups
Dal Forno, Arianna; Merlone, Ugo
2013-07-01
In supervised work groups many factors concur to determine productivity. Some of them may be economical and some psychological. According to the literature, the heterogeneity in terms of individual capacity seems to be one of the principal causes for chaotic dynamics in a work group. May sorting groups of people with same capacity for effort be a solution? In the organizational psychology literature an important factor is the engagement in the task, while expectations are central in the economics literature. Therefore, we propose a dynamical model which takes into account both engagement in the task and expectations. An important lesson emerges. The intolerance deriving from the exposure to inequity may not be only caused by differences in individual capacities, but also by these factors combined. Consequently, solutions have to be found in this new direction.
The Heterogeneous Dynamics of Economic Complexity
Cristelli, Matthieu; Tacchella, Andrea; Pietronero, Luciano
2015-01-01
What will be the growth of the Gross Domestic Product (GDP) or the competitiveness of China, United States, and Vietnam in the next 3, 5 or 10 years? Despite this kind of questions has a large societal impact and an extreme value for economic policy making, providing a scientific basis for economic predictability is still a very challenging problem. Recent results of a new branch—Economic Complexity—have set the basis for a framework to approach such a challenge and to provide new perspectives to cast economic prediction into the conceptual scheme of forecasting the evolution of a dynamical system as in the case of weather dynamics. We argue that a recently introduced non-monetary metrics for country competitiveness (fitness) allows for quantifying the hidden growth potential of countries by the means of the comparison of this measure for intangible assets with monetary figures, such as GDP per capita. This comparison defines the fitness-income plane where we observe that country dynamics presents strongly heterogeneous patterns of evolution. The flow in some zones is found to be laminar while in others a chaotic behavior is instead observed. These two regimes correspond to very different predictability features for the evolution of countries: in the former regime, we find strong predictable pattern while the latter scenario exhibits a very low predictability. In such a framework, regressions, the usual tool used in economics, are no more the appropriate strategy to deal with such a heterogeneous scenario and new concepts, borrowed from dynamical systems theory, are mandatory. We therefore propose a data-driven method—the selective predictability scheme—in which we adopt a strategy similar to the methods of analogues, firstly introduced by Lorenz, to assess future evolution of countries. PMID:25671312
Complex systems and networks dynamics, controls and applications
Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu
2016-01-01
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...
Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia
Abdullah, Noor Rain; Barber, Bridget E.; William, Timothy; Norahmad, Nor Azrina; Satsu, Umi Rubiah; Muniandy, Prem Kumar; Ismail, Zakiah; Grigg, Matthew J.; Jelip, Jenarun; Piera, Kim; von Seidlein, Lorenz; Yeo, Tsin W.; Anstey, Nicholas M.; Price, Ric N.; Auburn, Sarah
2013-01-01
Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI = 1.38) and KK (mean MOI = 1.19). However, population diversity remained moderate (H E = 0.583 in KM and H E = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A S >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A S = 0.07 [P = 0.0076] in KM, and I A S = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria
From complex spatial dynamics to simple Markov chain models: do predators and prey leave footprints?
DEFF Research Database (Denmark)
Nachman, Gøsta Støger; Borregaard, Michael Krabbe
2010-01-01
to another, are then depicted in a state transition diagram, constituting the "footprints" of the underlying population dynamics. We investigate to what extent changes in the population processes modeled in the complex simulation (i.e. the predator's functional response and the dispersal rates of both......In this paper we present a concept for using presence-absence data to recover information on the population dynamics of predator-prey systems. We use a highly complex and spatially explicit simulation model of a predator-prey mite system to generate simple presence-absence data: the number...... of transition probabilities on state variables, and combine this information in a Markov chain transition matrix model. Finally, we use this extended model to predict the long-term dynamics of the system and to reveal its asymptotic steady state properties....
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Population dynamics model for plasmid bearing and plasmid lacking ...
African Journals Online (AJOL)
Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...
Emergence of dynamical order synchronization phenomena in complex systems
Manrubia, Susanna C; Zanette, Damián H
2004-01-01
Synchronization processes bring about dynamical order and lead tospontaneous development of structural organization in complex systemsof various origins, from chemical oscillators and biological cells tohuman societies and the brain. This book provides a review and adetailed theoretical analysis of synchronization phenomena in complexsystems with different architectures, composed of elements withperiodic or chaotic individual dynamics. Special attention is paid tostatistical concepts, such as nonequilibrium phase transitions, orderparameters and dynamical glasses.
The population dynamical implications of male-biased parasitism in different mating systems.
Directory of Open Access Journals (Sweden)
Martin R Miller
2007-07-01
Full Text Available Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established 'two-sex' model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence.
Understanding Learner Agency as a Complex Dynamic System
Mercer, Sarah
2011-01-01
This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…
Note on transmitted complexity for quantum dynamical systems
Watanabe, Noboru; Muto, Masahiro
2017-10-01
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.
The Leadership Game : Experiencing Dynamic Complexity under Deep Uncertainty
Pruyt, E.; Segers, J.; Oruc, S.
2011-01-01
In this ever more complex, interconnected, and uncertain world, leadership is needed more than ever. But the literature and most leaders largely ignore dynamic complexity and deep uncertainty: only futures characterized by ever faster change, ever more (required) flexibility, and ever more scarcity
Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?
Larsen-Freeman, Diane
2012-01-01
In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…
Spatial price dynamics: From complex network perspective
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
Stochastic population dynamics under resource constraints
Energy Technology Data Exchange (ETDEWEB)
Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in [BITS Pilani Hyderabad Campus, Shameerpet, Hyd - 500078 (India)
2016-06-02
This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.
Chaotic, fractional, and complex dynamics new insights and perspectives
Macau, Elbert; Sanjuan, Miguel
2018-01-01
The book presents nonlinear, chaotic and fractional dynamics, complex systems and networks, together with cutting-edge research on related topics. The fifteen chapters – written by leading scientists working in the areas of nonlinear, chaotic and fractional dynamics, as well as complex systems and networks – offer an extensive overview of cutting-edge research on a range of topics, including fundamental and applied research. These include but are not limited to aspects of synchronization in complex dynamical systems, universality features in systems with specific fractional dynamics, and chaotic scattering. As such, the book provides an excellent and timely snapshot of the current state of research, blending the insights and experiences of many prominent researchers.
Stochastic dynamics and logistic population growth
Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner
2015-06-01
The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.
Early signatures of regime shifts in complex dynamical systems
Indian Academy of Sciences (India)
2015-02-05
Feb 5, 2015 ... journal of. February 2015 ... populations, financial markets, complex diseases and gene circuits. ... A recent exhaustive analysis of recorded ecosystem shifts points to an approach- .... The quantitative estimation of these.
Seasonal population dynamics and energy consumption by ...
African Journals Online (AJOL)
Dynamiques saisonnières de population et consommation énergétique par les oiseaux aquatiques d'un petit estuaire tempéré De simples mesures des dynamiques de population et de consommation énergétique peuvent fournir des informations de base sur le rôle des consommateurs au sein des réseaux trophiques, ...
Advances in dynamics, patterns, cognition challenges in complexity
Pikovsky, Arkady; Rulkov, Nikolai; Tsimring, Lev
2017-01-01
This book focuses on recent progress in complexity research based on the fundamental nonlinear dynamical and statistical theory of oscillations, waves, chaos, and structures far from equilibrium. Celebrating seminal contributions to the field by Prof. M. I. Rabinovich of the University of California at San Diego, this volume brings together perspectives on both the fundamental aspects of complexity studies, as well as in applications in different fields ranging from granular patterns to understanding of the cognitive brain and mind dynamics. The slate of world-class authors review recent achievements that together present a broad and coherent coverage of modern research in complexity greater than the sum of its parts. Presents the most up-to-date developments in the studies of complexity Combines basic and applied aspects Links background nonlinear theory of oscillations and waves with modern approaches Allows readers to recognize general dynamical principles across the applications fields.
Statistical dynamics of regional populations and economies
Huo, Jie; Wang, Xu-Ming; Hao, Rui; Wang, Peng
Quantitative analysis of human behavior and social development is becoming a hot spot of some interdisciplinary studies. A statistical analysis on the population and GDP of 150 cities in China from 1990 to 2013 is conducted. The result indicates the cumulative probability distribution of the populations and that of the GDPs obeying the shifted power law, respectively. In order to understand these characteristics, a generalized Langevin equation describing variation of population is proposed, which is based on the correlations between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation to express the evolution of population distribution. The general solution demonstrates a transition of the distribution from the normal Gaussian distribution to a shifted power law, which suggests a critical point of time at which the transition takes place. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived from the well-known Cobb-Douglas production function. The result presents a change, in supercritical situation, from a shifted power law to the Gaussian distribution. This is a surprising result-the regional GDP distribution of our world will be the Gaussian distribution one day in the future. The discussions based on the changing trend of economic growth suggest it will be true. Therefore, these theoretical attempts may draw a historical picture of our society in the aspects of population and economy.
The topology and dynamics of complex networks
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
Micro-Level Affect Dynamics in Psychopathology Viewed From Complex Dynamical System Theory
Wichers, M.; Wigman, J. T. W.; Myin-Germeys, I.
2015-01-01
This article discusses the role of moment-to-moment affect dynamics in mental disorder and aims to integrate recent literature on this topic in the context of complex dynamical system theory. First, we will review the relevance of temporal and contextual aspects of affect dynamics in relation to
Henry, Alastair
2016-01-01
Currently, the inner dynamics of teacher identity transformations remain a "black box." Conceptualizing preservice teacher identity as a complex dynamic system, and the notion of "being someone who teaches" in dialogical terms as involving shifts between different teacher voices, the study investigates the dynamical processes…
Missing cycles: Effect of climate change on population dynamics
Indian Academy of Sciences (India)
population dynamics of the larch budmoth – an insect pest which causes massive defoliation of entire larch forests ... hypothesized that global warming has led to the collapse of the cycles ... When temperatures increase after winter, and the.
A linear model of population dynamics
Lushnikov, A. A.; Kagan, A. I.
2016-08-01
The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).
Early days in complex dynamics a history of complex dynamics in one variable during 1906-1942
Alexander, Daniel S; Rosa, Alessandro
2011-01-01
The theory of complex dynamics, whose roots lie in 19th-century studies of the iteration of complex function conducted by Kœnigs, Schröder, and others, flourished remarkably during the first half of the 20th century, when many of the central ideas and techniques of the subject developed. This book by Alexander, Iavernaro, and Rosa paints a robust picture of the field of complex dynamics between 1906 and 1942 through detailed discussions of the work of Fatou, Julia, Siegel, and several others. A recurrent theme of the authors' treatment is the center problem in complex dynamics. They present its complete history during this period and, in so doing, bring out analogies between complex dynamics and the study of differential equations, in particular, the problem of stability in Hamiltonian systems. Among these analogies are the use of iteration and problems involving small divisors which the authors examine in the work of Poincaré and others, linking them to complex dynamics, principally via the work of Samuel...
Dynamics of a structured neuron population
International Nuclear Information System (INIS)
Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît
2010-01-01
We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing
POPULATION DYNAMICS OF THE WANDERING ALBATROSS ...
African Journals Online (AJOL)
Changes in several demographic parameters that appear to be influenced by both environmental and anthropogenic effects are described. From 1994–2001, the proportion of first-time breeders in the population was positively correlated with the maximum ENSO (Niño 3) index, whereas from 1984–2000 the annual survival ...
Stochastic population dynamics of a montane ground-dwelling squirrel.
Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K
2012-01-01
Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λbounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.
Passivity analysis of higher order evolutionary dynamics and population games
Mabrok, Mohamed
2017-01-05
Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.
Complexity: Outline of the NWO strategic theme Dynamics of complex systems
Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; van der Maas, H.; Mulder, B.; Stam, K.; van Steen, M.; Zandee, L.
2008-01-01
Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide
Complexity : outline of the NWO strategic theme dynamics of complex systems
Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; Maas, van der H.; Mulder, B.; Stam, K.; Steen, van M.; Zandee, L.
2008-01-01
Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide
Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter
2012-09-07
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Population dynamics and distribution of the coffee berry borer ...
African Journals Online (AJOL)
Population dynamics and distribution of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) were studied on Coffea arabica L. in southwestern region of Ethiopia. Thirty coffee trees were sampled at weekly intervals from 2000 to 2001. Findings of this study showed that coffee berry borer population ...
Ruffed grouse population dynamics in the central and southern Appalachians
John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer
2006-01-01
Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...
Modelling multi-pulse population dynamics from ultrafast spectroscopy.
Directory of Open Access Journals (Sweden)
Luuk J G W van Wilderen
2011-03-01
Full Text Available Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio- physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox that describes the finite bleach (orientation effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective excitation (photoselection and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical
Modelling multi-pulse population dynamics from ultrafast spectroscopy.
van Wilderen, Luuk J G W; Lincoln, Craig N; van Thor, Jasper J
2011-03-21
Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is
Complex-Dynamic Cosmology and Emergent World Structure
Kirilyuk, Andrei P.
2004-01-01
Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...
Stage-Structured Population Dynamics of AEDES AEGYPTI
Yusoff, Nuraini; Budin, Harun; Ismail, Salemah
Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.
Complex economic dynamics: Chaotic saddle, crisis and intermittency
International Nuclear Information System (INIS)
Chian, Abraham C.-L.; Rempel, Erico L.; Rogers, Colin
2006-01-01
Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology
Dynamics of Population on the Verge of Extinction
Oborny, B.; Meszena, G.; Szabo, G.
2005-01-01
Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, ...
Geography, European colonization, and past population dynamics in Africa
Vaz Silva, Luis
2005-01-01
Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...
Modelling the Dynamics of an Aedes albopictus Population
Directory of Open Access Journals (Sweden)
Thomas Anung Basuki
2010-08-01
Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.
Austerlitz, Frédéric; Heyer, Evelyne
2018-06-01
Here, we present a synthetic view on how Kimura's Neutral theory has helped us gaining insight on the different evolutionary forces that shape human evolution. We put this perspective in the frame of recent emerging challenges: the use of whole genome data for reconstructing population histories, natural selection on complex polygenic traits, and integrating cultural processes in human evolution.
Investigating dynamical complexity in the magnetosphere using various entropy measures
Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos
2009-09-01
The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather
Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling
International Nuclear Information System (INIS)
Wang Lifu; Kong Zhi; Jing Yuanwei
2010-01-01
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)
Coupling population dynamics with earth system models: the POPEM model.
Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J
2017-09-16
Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.
Dynamic complexities in a seasonal prevention epidemic model with birth pulses
International Nuclear Information System (INIS)
Gao Shujing; Chen Lansun; Sun Lihua
2005-01-01
In most of population dynamics, increases in population due to birth are assumed to be time-dependent, but many species reproduce only during a single period of the year. In this paper, we propose an epidemic model with density-dependent birth pulses and seasonal prevention. Using the discrete dynamical system determined by stroboscopic map, we obtain the local or global stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that the dynamical behaviors of the epidemic model with birth pulses and seasonal prevention are very complex, including small amplitude oscillations, large-amplitude multi-annual cycles and chaos. This suggests that birth pulse, in effect, provides a natural period or cyclicity that may lead a period-doubling route to chaos
Comparison of association mapping methods in a complex pedigreed population
DEFF Research Database (Denmark)
Sahana, Goutam; Guldbrandtsen, Bernt; Janss, Luc
2010-01-01
to collect SNP signals in intervals, to avoid the scattering of a QTL signal over multiple neighboring SNPs. Methods not accounting for genetic background (full pedigree information) performed worse, and methods using haplotypes were considerably worse with a high false-positive rate, probably due...... to the presence of low-frequency haplotypes. It was necessary to account for full relationships among individuals to avoid excess false discovery. Although the methods were tested on a cattle pedigree, the results are applicable to any population with a complex pedigree structure...
Dynamics of epidemics outbreaks in heterogeneous populations
Brockmann, Dirk; Morales-Gallardo, Alejandro; Geisel, Theo
2007-03-01
The dynamics of epidemic outbreaks have been investigated in recent years within two alternative theoretical paradigms. The key parameter of mean field type of models such as the SIR model is the basic reproduction number R0, the average number of secondary infections caused by one infected individual. Recently, scale free network models have received much attention as they account for the high variability in the number of social contacts involved. These models predict an infinite basic reproduction number in some cases. We investigate the impact of heterogeneities of contact rates in a generic model for epidemic outbreaks. We present a system in which both the time periods of being infectious and the time periods between transmissions are Poissonian processes. The heterogeneities are introduced by means of strongly variable contact rates. In contrast to scale free network models we observe a finite basic reproduction number and, counterintuitively a smaller overall epidemic outbreak as compared to the homogeneous system. Our study thus reveals that heterogeneities in contact rates do not necessarily facilitate the spread to infectious disease but may well attenuate it.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Mehner, Thomas; Pohlmann, Kirsten; Elkin, Che; Monaghan, Michael T; Nitz, Barbara; Freyhof, Jörg
2010-03-29
Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex), examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae). AFLP demonstrated a significant population structure (Bayesian thetaB = 0.22). Lower differentiation between allopatric (thetaB = 0.028) than sympatric (0.063-0.083) populations contradicts the hypothesis of a sympatric origin of taxa, and there was little evidence for stocking or ongoing hybridization. Genome scans found only three loci that appeared to be under selection in both sympatric population pairs, suggesting a low probability of similar mechanisms of ecological segregation. However, removal of all non-neutral loci decreased the genetic distance between sympatric pairs, suggesting recent adaptive divergence at a few loci. Sympatric pairs in the two lakes were genetically distinct from the six other C. albula populations, suggesting introgression from another lineage may have influenced these two lakes. This was supported by an analysis of isolation-by-distance, where the drift-gene flow equilibrium observed among allopatric populations was disrupted when the sympatric pairs were included. While the population genetic data alone can not unambiguously uncover the mode of speciation, our data indicate that multiple lineages may be responsible for the complex patterns typically observed in Coregonus. Relative differences within and among lakes raises the possibility that multiple lineages may be
Computer simulation of population dynamics inside the urban environment
Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.
2017-12-01
In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.
Bounds on the dynamics of sink populations with noisy immigration.
Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart
2014-03-01
Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.
The dynamic complexity of a three species food chain model
International Nuclear Information System (INIS)
Lv Songjuan; Zhao Min
2008-01-01
In this paper, a three-species food chain model is analytically investigated on theories of ecology and using numerical simulation. Bifurcation diagrams are obtained for biologically feasible parameters. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics
Effective control of complex turbulent dynamical systems through statistical functionals.
Majda, Andrew J; Qi, Di
2017-05-30
Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.
Entropy for the Complexity of Physiological Signal Dynamics.
Zhang, Xiaohua Douglas
2017-01-01
Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.
Strongly Deterministic Population Dynamics in Closed Microbial Communities
Directory of Open Access Journals (Sweden)
Zak Frentz
2015-10-01
Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.
Dynamic properties of epidemic spreading on finite size complex networks
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Sanchez, Alvaro; Gore, Jeff
2013-01-01
The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate
Directory of Open Access Journals (Sweden)
Alvaro Sanchez
Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the
Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc
2018-01-01
There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.
Polyacrylic acids–bovine serum albumin complexation: Structure and dynamics
International Nuclear Information System (INIS)
Othman, Mohamed; Aschi, Adel; Gharbi, Abdelhafidh
2016-01-01
The study of the mixture of BSA with polyacrylic acids at different masses versus pH allowed highlighting the existence of two regimes of weak and strong complexation. These complexes were studied in diluted regime concentration, by turbidimetry, dynamic light scattering (DLS), zeta-potential measurements and nuclear magnetic resonance (NMR). We have followed the pH effect on the structure and properties of the complex. This allowed refining the interpretation of the phase diagram and understanding the observed phenomena. The NMR measurements allowed probing the dynamics of the constituents versus the pH. The computational method was used to precisely determine the electrostatic potential of BSA and how the polyelectrolyte binds to it at different pH. - Highlights: • Influence of physico-chemical parameters on the electrostatic interactions in the complex system (polyelectrolyte/protein). • Stabilization and encapsulation of biological macromolecules solution by mean of polyelectrolyte. • Properties and structure of mixture obtained by screening the charges of globular protein and at different masses of polyacrylic acids. • Dynamic of the constituents formed by complexes particles. • Evaluation of the electrostatic properties of bovine serum albumin versus pH through solution of the Poisson-Boltzmann equation.
Complex systems dynamics in aging: new evidence, continuing questions.
Cohen, Alan A
2016-02-01
There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.
Lyapunov exponents a tool to explore complex dynamics
Pikovsky, Arkady
2016-01-01
Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers...
Robustness of pinning a general complex dynamical network
International Nuclear Information System (INIS)
Wang Lei; Sun Youxian
2010-01-01
This Letter studies the robustness problem of pinning a general complex dynamical network toward an assigned synchronous evolution. Several synchronization criteria are presented to guarantee the convergence of the pinning process locally and globally by construction of Lyapunov functions. In particular, if a pinning strategy has been designed for synchronization of a given complex dynamical network, then no matter what uncertainties occur among the pinned nodes, synchronization can still be guaranteed through the pinning. The analytical results show that pinning control has a certain robustness against perturbations on network architecture: adding, deleting and changing the weights of edges. Numerical simulations illustrated by scale-free complex networks verify the theoretical results above-acquired.
Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady
2016-08-01
As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.
International Nuclear Information System (INIS)
Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady
2016-01-01
As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations. (letter)
Estimating spatio-temporal dynamics of size-structured populations
DEFF Research Database (Denmark)
Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste
2014-01-01
with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...
Dynamic coherence in excitonic molecular complexes under various excitation conditions
Energy Technology Data Exchange (ETDEWEB)
Chenu, Aurélia; Malý, Pavel; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz
2014-08-17
Highlights: • Dynamic coherence does not improve energy transfer efficiency in natural conditions. • Photo-induced quantum jumps are discussed in classical context. • Natural time scale of a light excitation event is identified. • Coherence in FMO complex averages out under excitation by neighboring antenna. • This result is valid even in absence of dissipation. - Abstract: We investigate the relevance of dynamic quantum coherence in the energy transfer efficiency of molecular aggregates. We derive the time evolution of the density matrix for an open quantum system excited by light or by a neighboring antenna. Unlike in the classical case, the quantum description does not allow for a formal decomposition of the dynamics into sudden jumps in an observable quantity – an expectation value. Rather, there is a natural finite time-scale associated with the excitation process. We propose a simple experiment to test the influence of this time scale on the yield of photosynthesis. We demonstrate, using typical parameters of the Fenna–Matthews–Olson (FMO) complex and a typical energy transfer rate from the chlorosome baseplate, that dynamic coherences are averaged out in the complex even when the FMO model is completely free of all dissipation and dephasing.
Network evolution induced by the dynamical rules of two populations
International Nuclear Information System (INIS)
Platini, Thierry; Zia, R K P
2010-01-01
We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (N a and N b ) and preferred degree (κ a and κ b a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (k bb ) and (k ab ) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal N a = N b , the ratio of the restricted degree θ 0 = (k ab )/(k bb ) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κ b ) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ 0 = 1. Interestingly, in the intermediate time regime (defined for t 1 2 ∝κ a and for which θ 0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ 0 = 3
Social Information Links Individual Behavior to Population and Community Dynamics.
Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew
2018-05-07
When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy
Scanu, Sandra
2013-01-01
This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational
Population dynamics of active and total ciliate populations in arable soil amended with wheat
DEFF Research Database (Denmark)
Ekelund, F.; Frederiksen, Helle B.; Ronn, R.
2002-01-01
of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance
Stochastic population dynamics of a montane ground-dwelling squirrel.
Directory of Open Access Journals (Sweden)
Jeffrey A Hostetler
Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.
SIR dynamics in structured populations with heterogeneous connectivity
Volz, Erik
2005-01-01
Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...
Energy Technology Data Exchange (ETDEWEB)
Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL
2013-01-01
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M
2011-08-01
Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of
Population dynamics of light-limited phytoplankton : Microcosm experiments
Huisman, Jef
This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient
Distribution and population dynamics of Rhizobium sp. introduced into soil
Postma, J.
1989-01-01
In this thesis the population dynamics of bacteria introduced into soil was studied. In the introduction, the existence of microhabitats favourable for the survival of indigenous bacteria is discussed. Knowledge about the distribution of introduced bacteria over
seasonal population dynamics of rodents of mount chilalo, arsi ...
African Journals Online (AJOL)
Preferred Customer
ABSTRACT: A study on seasonal population dynamics of rodents was carried out on Mount. Chilalo from .... vegetation growth, availability of food and water, and ... vegetation (3,300–4,200 masl) (Alemayehu. Mengistu, 1975; APEDO and ABRDP, 2004). The mountain is one of the Afrotropical biodiversity hotspots areas.
Population dynamics of soil microbes and diversity of Bacillus ...
African Journals Online (AJOL)
ONOS
2010-01-25
Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.
Population dynamics of the invasive fish, Gambusia affinis , in ...
African Journals Online (AJOL)
Repeated-measures ANOVA analyses on the catch per unit effort (CPUE) of G. affinis between sampling events and dams revealed significant differences in population dynamics among dams, although an overall trend of rapid increase followed by plateau in summer, with a rapid decline in winter was seen in most dams.
Individual based model of slug population and spatial dynamics
Choi, Y.H.; Bohan, D.A.; Potting, R.P.J.; Semenov, M.A.; Glen, D.M.
2006-01-01
The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field
Network evolution induced by the dynamical rules of two populations
Platini, Thierry; Zia, R. K. P.
2010-10-01
We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.
An individual-based model of Zebrafish population dynamics accounting for energy dynamics
DEFF Research Database (Denmark)
Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin
2015-01-01
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...
The dynamic behavior of the exohedral transition metal complexes ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. The dynamic behavior of the exohedral transition metal complexes of B₄₀ : η⁶- and η⁷-B₄₀Cr(CO) ₃ and Cr(CO) ₃η⁷-B₄η₀-Cr(CO) ₃. NAIWRIT KARMODAK ELUVATHINGAL D JEMMIS. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp ...
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below which the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are pron...
Complexity and network dynamics in physiological adaptation: An integrated view
Baffy, Gyorgy; Loscalzo, Joseph
2014-01-01
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of t...
[Population dynamics and armed violence in Colombia, 1985-2010].
Salaya, Hernán Eduardo; Rodríguez, Jesús
2014-09-01
Describe changes in the population structure of Colombia's municipalities in relation to internal displacement in response to armed violence. A descriptive ecological study was carried out. Secondary sources were consulted, taken from the Consolidated Registry of Displaced Population and from the National Administrative Department of Statistics, to calculate expulsion and reception rates for population displaced by violence from 2002 to 2010. Based on these rates, four groups were created of municipalities in the extreme quartile for each rate during the entire period, which were classified as high expulsion, low expulsion, high reception, and low reception. Subsequently, population pyramids and structure indicators were constructed for each group of municipalities for two comparative reference years (1985 and 2010). Municipalities with high expulsion or reception rates experienced a slower epidemiological transition, with lower mean ages and aging indices. The high expulsion group had the least regression, based on the Sundbärg index. In the high reception group, the masculinity ratio decreased the most, especially among the economically active population, and it had the highest population growth. Population dynamics in Colombia have been affected by armed violence and changes in these dynamics are not uniform across the country, leading to important social, economic, and cultural consequences. This study is useful for decision-making and public policy making.
Bridging the Timescales of Single-Cell and Population Dynamics
Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya
2018-04-01
How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.
Nonequilibrium population dynamics of phenotype conversion of cancer cells.
Directory of Open Access Journals (Sweden)
Joseph Xu Zhou
Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.
Topics in Complexity: Dynamical Patterns in the Cyberworld
Qi, Hong
Quantitative understanding of mechanism in complex systems is a common "difficult" problem across many fields such as physical, biological, social and economic sciences. Investigation on underlying dynamics of complex systems and building individual-based models have recently been fueled by big data resulted from advancing information technology. This thesis investigates complex systems in social science, focusing on civil unrests on streets and relevant activities online. Investigation consists of collecting data of unrests from open digital source, featuring dynamical patterns underlying, making predictions and constructing models. A simple law governing the progress of two-sided confrontations is proposed with data of activities at micro-level. Unraveling the connections between activity of organizing online and outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, through which adversarial groups evolve online and hyper-escalate ahead of real-world uprisings. Based on the patterns found, noticeable improvement of prediction of civil unrests is achieved. Meanwhile, novel model created from combination of mobility dynamics in the cyberworld and a traditional contagion model can better capture the characteristics of modern civil unrests and other contagion-like phenomena than the original one.
Aspiration dynamics of multi-player games in finite populations.
Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long
2014-05-06
On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.
An introduction to complex systems society, ecology, and nonlinear dynamics
Fieguth, Paul
2017-01-01
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
An age structured model for obesity prevalence dynamics in populations
Directory of Open Access Journals (Sweden)
Gilberto González Parra
2010-08-01
Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.
Modeling structured population dynamics using data from unmarked individuals
Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew
2014-01-01
The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.
Modularity and the spread of perturbations in complex dynamical systems.
Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Recovery time after localized perturbations in complex dynamical networks
Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Recovery time after localized perturbations in complex dynamical networks
International Nuclear Information System (INIS)
Mitra, Chiranjit; Kittel, Tim; Kurths, Jürgen; Donner, Reik V; Choudhary, Anshul
2017-01-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Thinking in complexity the complex dynamics of matter, mind, and mankind
Mainzer, Klaus
1994-01-01
The theory of nonlinear complex systems has become a successful and widely used problem-solving approach in the natural sciences - from laser physics, quantum chaos and meteorology to molecular modeling in chemistry and computer simulations of cell growth in biology In recent times it has been recognized that many of the social, ecological and political problems of mankind are also of a global, complex and nonlinear nature And one of the most exciting topics of present scientific and public interest is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems In this wide-ranging but concise treatment Prof Mainzer discusses, in nontechnical language, the common framework behind these endeavours Special emphasis is given to the evolution of new structures in natural and cultural systems and it is seen clearly how the new integrative approach of complexity theory can give new insights that were not available using traditional reductionistic methods
Tomaskova, Hana; Kuhnova, Jitka; Cimler, Richard; Dolezal, Ondrej; Kuca, Kamil
2016-01-01
Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.
Efficient characterisation of large deviations using population dynamics
Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.
2018-05-01
We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.
Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses
Directory of Open Access Journals (Sweden)
Marilyn J. Roossinck
2011-01-01
Full Text Available Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.
Outlier-resilient complexity analysis of heartbeat dynamics
Lo, Men-Tzung; Chang, Yi-Chung; Lin, Chen; Young, Hsu-Wen Vincent; Lin, Yen-Hung; Ho, Yi-Lwun; Peng, Chung-Kang; Hu, Kun
2015-03-01
Complexity in physiological outputs is believed to be a hallmark of healthy physiological control. How to accurately quantify the degree of complexity in physiological signals with outliers remains a major barrier for translating this novel concept of nonlinear dynamic theory to clinical practice. Here we propose a new approach to estimate the complexity in a signal by analyzing the irregularity of the sign time series of its coarse-grained time series at different time scales. Using surrogate data, we show that the method can reliably assess the complexity in noisy data while being highly resilient to outliers. We further apply this method to the analysis of human heartbeat recordings. Without removing any outliers due to ectopic beats, the method is able to detect a degradation of cardiac control in patients with congestive heart failure and a more degradation in critically ill patients whose life continuation relies on extracorporeal membrane oxygenator (ECMO). Moreover, the derived complexity measures can predict the mortality of ECMO patients. These results indicate that the proposed method may serve as a promising tool for monitoring cardiac function of patients in clinical settings.
Precise regulation of gene expression dynamics favors complex promoter architectures.
Directory of Open Access Journals (Sweden)
Dirk Müller
2009-01-01
Full Text Available Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure.
Young Children's Knowledge About the Moon: A Complex Dynamic System
Venville, Grady J.; Louisell, Robert D.; Wilhelm, Jennifer A.
2012-08-01
The purpose of this research was to use a multidimensional theoretical framework to examine young children's knowledge about the Moon. The research was conducted in the interpretive paradigm and the design was a multiple case study of ten children between the ages of three and eight from the USA and Australia. A detailed, semi-structured interview was conducted with each child. In addition, each child's parents were interviewed to determine possible social and cultural influences on the child's knowledge. We sought evidence about how the social and cultural experiences of the children might have influenced the development of their ideas. From a cognitive perspective we were interested in whether the children's ideas were constructed in a theory like form or whether the knowledge was the result of gradual accumulation of fragments of isolated cultural information. Findings reflected the strong and complex relationship between individual children, their social and cultural milieu, and the way they construct ideas about the Moon and astronomy. Findings are presented around four themes including ontology, creatures and artefacts, animism, and permanence. The findings support a complex dynamic system view of students' knowledge that integrates the framework theory perspective and the knowledge in fragments perspective. An initial model of a complex dynamic system of young children's knowledge about the Moon is presented.
Dynamics of a population of oscillatory and excitable elements.
O'Keeffe, Kevin P; Strogatz, Steven H
2016-06-01
We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Biology as population dynamics: heuristics for transmission risk.
Keebler, Daniel; Walwyn, David; Welte, Alex
2013-02-01
Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.
Effect of temperature on the population dynamics of Aedes aegypti
Yusoff, Nuraini; Tokachil, Mohd Najir
2015-10-01
Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.
Interacting trophic forcing and the population dynamics of herring
DEFF Research Database (Denmark)
Lindegren, Martin; Ostman, Orjan; Gardmark, Anna
2011-01-01
-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...... cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua...
Absorption dynamics and delay time in complex potentials
Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto
2018-05-01
The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.
Integrating population dynamics into mapping human exposure to seismic hazard
Directory of Open Access Journals (Sweden)
S. Freire
2012-11-01
Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.
Without bounds a scientific canvas of nonlinearity and complex dynamics
Ryazantsev, Yuri; Starov, Victor; Huang, Guo-Xiang; Chetverikov, Alexander; Arena, Paolo; Nepomnyashchy, Alex; Ferrus, Alberto; Morozov, Eugene
2013-01-01
Bringing together over fifty contributions on all aspects of nonlinear and complex dynamics, this impressive topical collection is both a scientific and personal tribute, on the occasion of his 70th birthday, by many outstanding colleagues in the broad fields of research pursued by Prof. Manuel G Velarde. The topics selected reflect the research areas covered by the famous Instituto Pluridisciplinar at the Universidad Complutense of Madrid, which he co-founded over two decades ago, and include: fluid physics and related nonlinear phenomena at interfaces and in other geometries, wetting and spreading dynamics, geophysical and astrophysical flows, and novel aspects of electronic transport in anharmonic lattices, as well as topics in neurodynamics and robotics.
Kinetics of the Dynamical Information Shannon Entropy for Complex Systems
International Nuclear Information System (INIS)
Yulmetyev, R.M.; Yulmetyeva, D.G.
1999-01-01
Kinetic behaviour of dynamical information Shannon entropy is discussed for complex systems: physical systems with non-Markovian property and memory in correlation approximation, and biological and physiological systems with sequences of the Markovian and non-Markovian random noises. For the stochastic processes, a description of the information entropy in terms of normalized time correlation functions is given. The influence and important role of two mutually dependent channels of the entropy change, correlation (creation or generation of correlations) and anti-correlation (decay or annihilation of correlation) is discussed. The method developed here is also used in analysis of the density fluctuations in liquid cesium obtained from slow neutron scattering data, fractal kinetics of the long-range fluctuation in the short-time human memory and chaotic dynamics of R-R intervals of human ECG. (author)
Hash function construction using weighted complex dynamical networks
International Nuclear Information System (INIS)
Song Yu-Rong; Jiang Guo-Ping
2013-01-01
A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency. (general)
The dynamical complexity of optically injected semiconductor lasers
International Nuclear Information System (INIS)
Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D.
2005-01-01
This report presents a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator. We show that the careful bifurcation analysis of a rate equation model yields (i) a deeper understanding of already studied physical phenomena, and (ii) the discovery of new dynamical effects, such as multipulse excitability. Different instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions, which are often viewed as independent, are in fact logically connected into a consistent web of bifurcations via special points called organizing centers. This theoretical bifurcation analysis has predictive power, which manifests itself in good agreement with experimental measurements over a wide range of parameters and diversity of dynamics. While it is dealing with the specific system of an optically injected laser, our work constitutes the state-of-the-art in the understanding and modeling of a nonlinear physical system in general
Dynamic polarizability of a complex atom in strong laser fields
International Nuclear Information System (INIS)
Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.
1997-01-01
An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field
Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes
International Nuclear Information System (INIS)
Liu Tao; Zhao Jun; Hill, David J.
2009-01-01
In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.
[Population dynamics of oligosporous actinomycetes in Chernozem soil].
Zenova, G M; Mikhaĭlova, N V; Zviagintsev, D G
2000-01-01
Investigation of the dynamics of an oligosporous actinomycete population in chernozem soil in the course of succession induced by soil wetting allowed us to reveal the time intervals and conditions optimal for the isolation of particular oligosporous actinomycetes. Saccharopolysporas and microbisporas proved to be best isolated in the early and late stages of succession, whereas actinomycetes of the subgroup Actinomadura and saccharomonosporas could be best isolated in the early and intermediate stages of succession.
Scaling up population dynamic processes in a ladybird–aphid
Czech Academy of Sciences Publication Activity Database
Houdková, Kateřina; Kindlmann, Pavel
2006-01-01
Roč. 48, - (2006), s. 323-332 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GEDIV/06/E013; GA MŠk(CZ) LC06073; GA AV ČR(CZ) IAA6087301; GA ČR(CZ) GD206/03/H034 Keywords : Aphids * Egg window * Ladybirds * Metapopulation * Model * Population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.534, year: 2006
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Directory of Open Access Journals (Sweden)
Joseph G Makin
2015-11-01
Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Epidemic dynamics and endemic states in complex networks
International Nuclear Information System (INIS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks
Complex scattering dynamics and the quantum Hall effects
International Nuclear Information System (INIS)
Trugman, S.A.
1994-01-01
We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects
Complex Dynamics of an Adnascent-Type Game Model
Directory of Open Access Journals (Sweden)
Baogui Xin
2008-01-01
Full Text Available The paper presents a nonlinear discrete game model for two oligopolistic firms whose products are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something else,” e.g., “moss is an adnascent plant.” See Webster's Revised Unabridged Dictionary published in 1913 by C. & G. Merriam Co., edited by Noah Porter. The bifurcation of its Nash equilibrium is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.
Dynamics of a Simple Quantum System in a Complex Environment
Bulgac, A; Kusnezov, D; Bulgac, Aurel; Dang, Gui Do; Kusnezov, Dimitri
1998-01-01
We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body intrinsic system/environment. By modelling the intrinsic many-body system with parametric random matrices, we study the types of effective stochastic models which emerge from random matrix theory. Using the Feynman-Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the solutions for some representative cases and make connections to well known limiting results, particularly to Brownian motion, Kramers classical limit and the Caldeira-Leggett approach.
Complex analysis and dynamical systems new trends and open problems
Golberg, Anatoly; Jacobzon, Fiana; Shoikhet, David; Zalcman, Lawrence
2018-01-01
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
Nonlinear complex dynamics and Keynesian rigidity: A short introduction
Jovero, Edgardo
2005-09-01
The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.
A paradox for traffic dynamics in complex networks with ATIS
International Nuclear Information System (INIS)
Zheng Jianfeng; Gao Ziyou
2008-01-01
In this work, we study the statistical properties of traffic (e.g., vehicles) dynamics in complex networks, by introducing advanced transportation information systems (ATIS). The ATIS can provide the information of traffic flow pattern throughout the network and have an obvious effect on path routing strategy for such vehicles equipped with ATIS. The ATIS can be described by the understanding of link cost functions. Different indices such as efficiency and system total cost are discussed in depth. It is found that, for random networks (scale-free networks), the efficiency is effectively improved (decreased) if ATIS is properly equipped; however the system total cost is largely increased (decreased). It indicates that there exists a paradox between the efficiency and system total cost in complex networks. Furthermore, we report the simulation results by considering different kinds of link cost functions, and the paradox is recovered. Finally, we extend our traffic model, and also find the existence of the paradox
Control of complex dynamics and chaos in distributed parameter systems
Energy Technology Data Exchange (ETDEWEB)
Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)
1995-12-31
This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.
Building the bridge between animal movement and population dynamics.
Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T
2010-07-27
While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.
Border Collision Bifurcations in a Generalized Model of Population Dynamics
Directory of Open Access Journals (Sweden)
Lilia M. Ladino
2016-01-01
Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.
Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J
2014-03-20
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Directory of Open Access Journals (Sweden)
Anna M. Calvert
2009-12-01
Full Text Available For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i non-breeding survivorship tends to be a strong driver of population growth; (ii non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1 more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2 an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3 the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.
Homogenization techniques for population dynamics in strongly heterogeneous landscapes.
Yurk, Brian P; Cobbold, Christina A
2018-12-01
An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.
Drivers of waterfowl population dynamics: from teal to swans
Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.
2014-01-01
Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.
On the population dynamics of the malaria vector
International Nuclear Information System (INIS)
Ngwa, G.A.
2005-10-01
A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)
A complex-valued firing-rate model that approximates the dynamics of spiking networks.
Directory of Open Access Journals (Sweden)
Evan S Schaffer
2013-10-01
Full Text Available Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.
A complex-valued firing-rate model that approximates the dynamics of spiking networks.
Schaffer, Evan S; Ostojic, Srdjan; Abbott, L F
2013-10-01
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.
Linking animal population dynamics to alterations in foraging behaviour
DEFF Research Database (Denmark)
Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob
Background/Question/Methods The survival of animal populations is strongly influenced by the individuals’ ability to forage efficiently, yet there are few studies of how populations respond when disturbances cause animals to deviate from their natural foraging behavior. Animals that respond...... that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...... the animals’ ability to forage efficiently and to sustain their energy intake, is influenced by noise emitted from wind turbines and ships. The energy levels in turn affect their survival. The fine-scale movements of the simulated animals was governed by a spatial memory, which allowed the model to produce...
Studies on population dynamic of diamondback moth in the field
International Nuclear Information System (INIS)
Malakrong, A.; Limohpasmanee, W.; Keawchoung, P.; Kodcharint, P.
1994-01-01
The population dynamic of diamondback moth larva in the field was studied at Khao Khor High-land Agricultural Research Station during August-October 1993 and February-April 1994. The distribution patterns of diamondback moth larva was clumped when population was low and would change to be random when population was high. The maximun and minimum number of diamondback moth in the field were 71,203 and 2,732 larva/rai during March and September. Temperature, rainfall and age of cabbage were slightly relative with number of larva (r=-0.2891, p=0.30; r=-0.2816, p=0.31 and r=0.2931, p=0.29 respectively) but relative humidity has no effect on number of larva
Complexity, Sustainability, Justice, and Meaning: Chronological Versus Dynamical Time
Directory of Open Access Journals (Sweden)
Horacio Velasco
2009-11-01
="font-size: small; font-family: Times New Roman;">
When nonlinear dynamics came to be complemented with semiotic modulation through the implement of symbol-mediated language (a complementation subsequently termed semantic closure as first instantiated through the communicating (as opposed to merely dynamically interacting molecular complexes of the cell, what can be termed semiotic hysteresis was born. The paper attempts to show that indefinitely evolving complexity, sustainability, justice, and meaning are indissolubly bound with chronological time in the sense of semiotic hysteresis (as afforded initially by non-cognitive semantic closure and subsequently, at least one hopes, by cognitive semantic closure: This semiotic hysteresis yields the indefinite evolutionary time of the living condition—including culture.
Complex dynamics and multistability with increasing rationality in market games
International Nuclear Information System (INIS)
Cavalli, Fausto; Naimzada, Ahmad
2016-01-01
In this work we study oligopoly models in which firms adopt decision mechanisms based on best response techniques with different rationality degrees. Firms are also assumed to face resource or financial constraints in adjusting their production levels, so that, from time to time, they can only increase or decrease their strategy by a bounded quantity. We consider different families of oligopolies of generic sizes, characterized by heterogeneous compositions with respect to the rationality degrees of firms. We analytically study the local stability of the equilibrium depending on the oligopoly size and composition and through numerical simulations we investigate the possible dynamics arising when trajectories do not converge toward the equilibrium. We show that in this case complex dynamics can arise, and this is due to both the loss of stability of the equilibrium and to the emergence of multiple attractors, with the stable steady state coexisting with a different, periodic or chaotic, attractor. In particular, we show that multistability phenomena occur when the overall degree of rationality of the oligopoly is increased. Finally, we investigate the effect of non-convergent dynamics on the realized profits.
Complex dynamics in Duffing system with two external forcings
International Nuclear Information System (INIS)
Jing Zhujun; Wang Ruiqi
2005-01-01
Duffing's equation with two external forcing terms have been discussed. The threshold values of chaotic motion under the periodic and quasi-periodic perturbations are obtained by using second-order averaging method and Melnikov's method. Numerical simulations not only show the consistence with the theoretical analysis but also exhibit the interesting bifurcation diagrams and the more new complex dynamical behaviors, including period-n (n=2,3,6,8) orbits, cascades of period-doubling and reverse period doubling bifurcations, quasi-periodic orbit, period windows, bubble from period-one to period-two, onset of chaos, hopping behavior of chaos, transient chaos, chaotic attractors and strange non-chaotic attractor, crisis which depends on the frequencies, amplitudes and damping. In particular, the second frequency plays a very important role for dynamics of the system, and the system can leave chaotic region to periodic motions by adjusting some parameter which can be considered as an control strategy of chaos. The computation of Lyapunov exponents confirm the dynamical behaviors
Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana
Corte, Guilherme Nascimento; Coleman, Ross A.; Amaral, A. Cecília Z.
2017-03-01
Understanding how species respond to the environment in terms of population attributes (e.g. abundance, growth, mortality, fecundity, and productivity) is essential to protect ecologically and economically important species. Nevertheless, responses of macrobenthic populations to environmental features are overlooked due to the need of consecutive samplings and time-consuming measurements. We examined the population dynamics of the filter-feeding bivalve Anomalocardia brasiliana on a tidal flat over the course of one year to investigate the hypothesis that, as accepted for macrobenthic communities, populations inhabiting environments with low hydrodynamic conditions such as tidal flat should have higher attributes than populations inhabiting more energetic habitats (i.e. areas more influenced by wave energy such as reflective and intermediate beaches). This would be expected because the harsh conditions of more energetic habitats force organisms to divert more energy towards maintenance, resulting in lower population attributes. We found that A. brasiliana showed moderate growth and secondary production at the study area. Moreover the recruitment period was restricted to a few months. A comparison with previous studies showed that, contrary to expected, A. brasiliana populations from areas with low hydrodynamic conditions have lower abundance, growth, recruitment and turnover rate. It is likely that morphodynamic characteristics recorded in these environments, such as larger periods of air exposure and lower water circulation, may affect food conditions for filter-feeding species and increase competition. In addition, these characteristics may negatively affect macrobenthic species by enhancing eutrophication processes and anoxia. Overall, our results suggest that models accepted and applied at the macrobenthic community level might not be directly extended to A. brasiliana populations.
Nonlinear dynamics in a business-cycle model with logistic population growth
International Nuclear Information System (INIS)
Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta
2009-01-01
We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).
Yang, Hyun Mo
2015-12-01
Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.
Alternating event processes during lifetimes: population dynamics and statistical inference.
Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng
2018-01-01
In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.
Population Dynamics of the Mediterranean Fruit Fly in Montenegro
Directory of Open Access Journals (Sweden)
Sanja Radonjić
2013-01-01
Full Text Available Population dynamics of the Mediterranean fruit fly was studied along Montenegro seacoast. Tephri traps baited with 3 component female-biased attractants were used in 11 different localities to monitor the fruit fly population in commercial citrus orchards, mixed-fruit orchards, and in backyards. From 2008–2010, the earliest captures were recorded no earlier than July. In 2011, the first adult fly was detected in mid-June. Low captures rates were recorded in July and August (below 0.5 flies per trap per day; FTD and peaked from mid-September to the end of October of each year. Our results indicate fluctuation of fly per trap per day depending on dates of inspection and locality, with significant differences in the adult population density. A maximum population was always reached in the area of Budva-Herceg Novi with an FTD of 66.5, 89.5, 71.63, and 24.64 (from 2008–2011 respectively. Fly activity lasts from mid-June/early-July to end December, with distinct seasonal variation in the population.
Population dynamics of Ascaris suum in trickle-infected pigs.
Nejsum, Peter; Thamsborg, Stig M; Petersen, Heidi H; Kringel, Helene; Fredholm, Merete; Roepstorff, Allan
2009-10-01
The population dynamics of Ascaris suum was studied by long-term exposure of pigs to infective eggs. The pigs were experimentally inoculated with 25 A. suum eggs/kg/day, and 7, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 postinoculation (PI), respectively. Despite the fact that the pigs were continuously reinfected, dramatic reductions in numbers of liver lesions (white spots) and migrating lung larvae were observed as a function of time. However, even at the end of the study, a few larvae were able to complete migration, but these larvae seemed unable to mature in the small intestine. Thus, the adult worm population seemed to consist of worms from the first part of the exposure period. The noticeable decrease in number of white spots suggests that the level of exposure is not reflected in the number of white spots in the late phase of a continuous infection. The serum levels of A. suum L3-specific IgG1 and IgA were significantly elevated by week 4 PI, after which the antibody levels declined. The population dynamics and parasite regulating mechanisms are discussed for A. suum in pigs as well as for the closely related species A. lumbricoides in humans.
Cushing, J M; Henson, Shandelle M
2018-02-03
For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.
Hirunsalee, Anan; Barker, K. R.; Beute, M. K.
1995-01-01
A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduc...
Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long
2017-02-01
In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.
Population Dynamics of Patients with Bacterial Resistance in Hospital Environment
Directory of Open Access Journals (Sweden)
Leilei Qu
2016-01-01
Full Text Available During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1 have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.
Dynamic population gratings in rare-earth-doped optical fibres
Energy Technology Data Exchange (ETDEWEB)
Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx
2008-11-21
Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.
Dynamic population gratings in rare-earth-doped optical fibres
International Nuclear Information System (INIS)
Stepanov, Serguei
2008-01-01
Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.
A dissipative particle dynamics method for arbitrarily complex geometries
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its
Complexities, Catastrophes and Cities: Emergency Dynamics in Varying Scenarios and Urban Topologies
Narzisi, Giuseppe; Mysore, Venkatesh; Byeon, Jeewoong; Mishra, Bud
Complex Systems are often characterized by agents capable of interacting with each other dynamically, often in non-linear and non-intuitive ways. Trying to characterize their dynamics often results in partial differential equations that are difficult, if not impossible, to solve. A large city or a city-state is an example of such an evolving and self-organizing complex environment that efficiently adapts to different and numerous incremental changes to its social, cultural and technological infrastructure [1]. One powerful technique for analyzing such complex systems is Agent-Based Modeling (ABM) [9], which has seen an increasing number of applications in social science, economics and also biology. The agent-based paradigm facilitates easier transfer of domain specific knowledge into a model. ABM provides a natural way to describe systems in which the overall dynamics can be described as the result of the behavior of populations of autonomous components: agents, with a fixed set of rules based on local information and possible central control. As part of the NYU Center for Catastrophe Preparedness and Response (CCPR1), we have been exploring how ABM can serve as a powerful simulation technique for analyzing large-scale urban disasters. The central problem in Disaster Management is that it is not immediately apparent whether the current emergency plans are robust against such sudden, rare and punctuated catastrophic events.
Do farming practices influence population dynamics of rodents?
DEFF Research Database (Denmark)
Massawe, A W; Rwamugira, W; Leirs, Herwig
2007-01-01
A capture-mark-recapture study was conducted in crop fields in Morogoro, Tanzania, to investigate how the population dynamics of multimammate field rats, Mastomys natalensis, was influenced by the commonly practised land preparation methods and cropping systems. Two land preparation methods (trac...... practices. In maize fields in Tanzania, the crop is most susceptible to damage by M. natalensis in the first 2 weeks after planting, and therefore, lower densities of rodents will result into lower crop damage in tractor ploughed fields....
Gao, Zilin; Wang, Yinhe; Zhang, Lili
2018-02-01
In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.
Optimal growth entails risky localization in population dynamics
Gueudré, Thomas; Martin, David G.
2018-03-01
Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.
Fast stochastic algorithm for simulating evolutionary population dynamics
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
Outward migration may alter population dynamics and income inequality
Shayegh, Soheil
2017-11-01
Climate change impacts may drive affected populations to migrate. However, migration decisions in response to climate change could have broader effects on population dynamics in affected regions. Here, I model the effect of climate change on fertility rates, income inequality, and human capital accumulation in developing countries, focusing on the instrumental role of migration as a key adaptation mechanism. In particular, I investigate how climate-induced migration in developing countries will affect those who do not migrate. I find that holding all else constant, climate change raises the return on acquiring skills, because skilled individuals have greater migration opportunities than unskilled individuals. In response to this change in incentives, parents may choose to invest more in education and have fewer children. This may ultimately reduce local income inequality, partially offsetting some of the damages of climate change for low-income individuals who do not migrate.
State-dependent neutral delay equations from population dynamics.
Barbarossa, M V; Hadeler, K P; Kuttler, C
2014-10-01
A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.
Neonatal Feeding Behavior as a Complex Dynamical System.
Goldfield, Eugene C; Perez, Jennifer; Engstler, Katherine
2017-04-01
The requirements of evidence-based practice in 2017 are motivating new theoretical foundations and methodological tools for characterizing neonatal feeding behavior. Toward that end, this article offers a complex dynamical systems perspective. A set of critical concepts from this perspective frames challenges faced by speech-language pathologists and allied professionals: when to initiate oral feeds, how to determine the robustness of neonatal breathing during feeding and appropriate levels of respiratory support, what instrumental assessments of swallow function to use with preterm neonates, and whether or not to introduce thickened liquids. In the near future, we can expect vast amounts of new data to guide evidence-based practice. But unless practitioners are able to frame these issues in a systems context larger than the individual child, the availability of "big data" will not be effectively translated to clinical practice. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Dynamics of functional failures and recovery in complex road networks
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Computational complexity of symbolic dynamics at the onset of chaos
Lakdawala, Porus
1996-05-01
In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the computational basis for modeling this region is the universal Turing machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.
Complex dynamics in Josephson system with two external forcing terms
International Nuclear Information System (INIS)
Yang Jianping; Feng Wei; Jing Zhujun
2006-01-01
Josephson system with two external forcing terms is investigated. By applying Melnikov method, we prove that criterion of existence of chaos under periodic perturbation. By second-order averaging method and Melnikov method, we obtain the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 =ω 1 +εν, and cannot prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 =nω 1 +εν (n>=2 and n-bar N), where ν is not rational to ω 1 . We also study the effects of the parameters of system on dynamical behaviors by using numerical simulation. The numerical simulations, including bifurcation diagram of fixed points, bifurcation diagram of system in three- and two-dimensional space, homoclinic and heteroclinic bifurcation surface, Maximum Lyapunov exponent, phase portraits, Poincare map, are also plotted to illustrate theoretical analysis, and to expose the complex dynamical behaviors, including the period-n (n=1,2,5,7) orbits in different chaotic regions, cascades of period-doubling bifurcation from period-1, 2 and 5 orbits, reverse period-doubling bifurcation, onset of chaos which occurs more than once for two given external frequencies and chaos suddenly converting to periodic orbits, transient chaos with complex periodic windows and crisis, reverse period-5 bubble, non-attracting chaotic set and nice attracting chaotic set. In particular, we observe that the system can leave chaotic region to periodic motion by adjusting damping α, amplitude f 1 and frequency ω 2 of external forcing which can be considered as a control strategy
Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent
2011-06-01
Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized
More or less-On the influence of labelling strategies to infer cell population dynamics.
Gabel, Michael; Regoes, Roland R; Graw, Frederik
2017-01-01
The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.
More or less-On the influence of labelling strategies to infer cell population dynamics.
Directory of Open Access Journals (Sweden)
Michael Gabel
Full Text Available The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.
Equation-free model reduction for complex dynamical systems
International Nuclear Information System (INIS)
Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.
2010-01-01
This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)
The geometry of chaotic dynamics — a complex network perspective
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Complex dynamics of semantic memory access in reading.
Baggio, Giosué; Fonseca, André
2012-02-07
Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as 'cold' in 'In July it is very cold outside'. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing.
Directory of Open Access Journals (Sweden)
Jan Peters-Anders
2017-05-01
Full Text Available This paper investigates the extent to which a mobile data source can be utilised to generate new information intelligence for decision-making in smart city planning processes. In this regard, the Mobility Explorer framework is introduced and applied to the City of Vienna (Austria by using anonymised mobile phone data from a mobile phone service provider. This framework identifies five necessary elements that are needed to develop complex planning applications. As part of the investigation and experiments a new dynamic software tool, called Mobility Explorer, has been designed and developed based on the requirements of the planning department of the City of Vienna. As a result, the Mobility Explorer enables city stakeholders to interactively visualise the dynamic diurnal population distribution, mobility patterns and various other complex outputs for planning needs. Based on the experiences during the development phase, this paper discusses mobile data issues, presents the visual interface, performs various user-defined analyses, demonstrates the application’s usefulness and critically reflects on the evaluation results of the citizens’ motion exploration that reveal the great potential of mobile phone data in smart city planning but also depict its limitations. These experiences and lessons learned from the Mobility Explorer application development provide useful insights for other cities and planners who want to make informed decisions using mobile phone data in their city planning processes through dynamic visualisation of Call Data Record (CDR data.
Proceedings of "Optical Probes of Dynamics in Complex Environments"
Energy Technology Data Exchange (ETDEWEB)
Sension, R; Tokmakoff, A
2008-04-01
This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches.
Directory of Open Access Journals (Sweden)
Dominik Wodarz
Full Text Available Oncolytic viruses replicate selectively in tumor cells and can serve as targeted treatment agents. While promising results have been observed in clinical trials, consistent success of therapy remains elusive. The dynamics of virus spread through tumor cell populations has been studied both experimentally and computationally. However, a basic understanding of the principles underlying virus spread in spatially structured target cell populations has yet to be obtained. This paper studies such dynamics, using a newly constructed recombinant adenovirus type-5 (Ad5 that expresses enhanced jellyfish green fluorescent protein (EGFP, AdEGFPuci, and grows on human 293 embryonic kidney epithelial cells, allowing us to track cell numbers and spatial patterns over time. The cells are arranged in a two-dimensional setting and allow virus spread to occur only to target cells within the local neighborhood. Despite the simplicity of the setup, complex dynamics are observed. Experiments gave rise to three spatial patterns that we call "hollow ring structure", "filled ring structure", and "disperse pattern". An agent-based, stochastic computational model is used to simulate and interpret the experiments. The model can reproduce the experimentally observed patterns, and identifies key parameters that determine which pattern of virus growth arises. The model is further used to study the long-term outcome of the dynamics for the different growth patterns, and to investigate conditions under which the virus population eliminates the target cells. We find that both the filled ring structure and disperse pattern of initial expansion are indicative of treatment failure, where target cells persist in the long run. The hollow ring structure is associated with either target cell extinction or low-level persistence, both of which can be viewed as treatment success. Interestingly, it is found that equilibrium properties of ordinary differential equations describing the
Hirunsalee, A; Barker, K R; Beute, M K
1995-06-01
A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduction, and root-damage potentials on susceptible tobacco were similar for Ma1 and Ma2. In the mixed (1:1) population, Ma1 was dominant on peanut and Ma2 was dominant on both tobacco cultivars. Crop rotation affected the population dynamics of different nematode races. For years 2 and 3, the low numbers of Ma1 and Ma2 from a previous-year poor host increased rapidly on suitable hosts. Ma1 had greater reproduction factors ([RF] = population density at harvest/population density at preplandng) than did Ma2 and Ma1 + Ma2 in second-year peanut plots following first-year resistant tobacco, and in third-year peanut plots following second-year tobacco. In mixed infestations, Ma1 predominated over Ma2 in previous-year peanut plots, whereas Ma2 predominated over Ma1 in previous-year tobacco plots. Moderate damage on resistant tobacco was induced by Ma1 in the second year. In the third year, moderate damage on peanut was associated with 'Ma2' from previous-year peanut plots. The resistant tobacco supported sufficient reproduction of Ma1 over 2 years to effect moderate damage and yield suppression to peanut in year 3.
Representation of dynamical stimuli in populations of threshold neurons.
Directory of Open Access Journals (Sweden)
Tatjana Tchumatchenko
2011-10-01
Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.
Population dynamics of Trichuris suis in trickle-infected pigs.
Nejsum, P; Thamsborg, S M; Petersen, H H; Kringel, H; Fredholm, M; Roepstorff, A
2009-05-01
The population dynamics of Trichuris suis in pigs was studied during long-term experimental infections. Twenty-three 10-week-old pigs were inoculated with 5 T. suis eggs/kg/day. Seven, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 post-start of infection (p.i.), respectively. The median numbers of worms in the colon were 538 (min-max: 277-618), 332 (14-1140) and 0 (0-4) at 4, 8, and 14 weeks p.i. respectively, suggesting an increased aggregation of the worms with time and acquisition of nearly sterile immunity. The serum levels of T. suis specific antibodies (IgG1, IgG2 and IgA) peaked at week 8 p.i. By week 14 p.i. the IgG2 and IgA antibody levels remained significantly elevated above the level of week 0. The population dynamics of T. suis trickle infections in pigs is discussed with focus on interpretation of diagnostic and epidemiological data of pigs, the use of pigs as a model for human Trichuris trichiura infections and the novel approach of using T. suis eggs in the treatment of patients with inflammatory bowel disease.
International Nuclear Information System (INIS)
Hui Jing; Zhu Deming
2006-01-01
In this paper, we consider the prey-dependent consumption predator-prey (natural enemy-pest) models with age structure for the predator, immature and mature natural enemies are released and pesticide is applied impulsively. We prove that, when the impulsive period is no longer than some threshold, the pest-eradication solution is globally asymptotically stable, or say, the pest population can be eradicated totally. But from the point of ecological balance and saving resources, we only need to control the pest population under the economic threshold level instead of eradicating it totally, so we further prove that, when the impulsive period is longer than the threshold, pest population and natural enemy population can coexist, i.e., the system is uniformly permanent. Considering population communities always are imbedded in periodically varying environments, and the parameters in ecosystem models may oscillate simultaneously with the periodically varying environments, we add a forcing term into the prey population's intrinsic growth rate. From two aspects, i.e., when the period of forcing term is same as the impulsive period and when the two periods are different, we illustrate that, the dynamical behaviors of corresponding impulsive system are very complex
Dynamics of vortices in complex wakes: Modeling, analysis, and experiments
Basu, Saikat
The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the
Complex systems approach to fire dynamics and climate change impacts
Pueyo, S.
2012-04-01
I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire
The dynamic behavior of the exohedral transition metal complexes ...
Indian Academy of Sciences (India)
NAIWRIT KARMODAK
Special Issue on THEORETICAL CHEMISTRY/CHEMICAL DYNAMICS. The dynamic behavior ... The ab initio molecular dynamic simulations were performed at. 1200 K to ... boron clusters and the nature of polyhedral boranes suggested that ...
Harel, Elad; Engel, Gregory S
2012-01-17
Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.
Dynamic complexity of a two-prey one-predator system with impulsive effect
International Nuclear Information System (INIS)
Zhang Yujuan; Xiu Zhilong; Chen Lansun
2005-01-01
In this paper, we investigate the dynamic complexity of a two-prey one-predator system with impulsive perturbation on predator at fixed moments. With the increase of the predation rate for the super competitor, the system displays complicated phenomena including a sequence of direct and inverse cascade of periodic-doubling, chaos, and symmetry breaking bifurcation. Moreover, we discuss the effect of the period of releasing predator on the dynamical behaviors of the unforced continuous system, and find that periodically releasing predator at fixed moments change the properties of the unforced continuous system. We suggest a highly effective method in pest control. The target pest population can be driven to extinction and the non-target pest (or harmless insect) can be permanent by choosing impulsive period, while classical method cannot emulate
The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis
di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.
2014-09-01
In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.
Modeling population dynamics of mitochondria in mammalian cells
Kornick, Kellianne; Das, Moumita
Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.
Spaiser, Viktoria; Hedström, Peter; Ranganathan, Shyam; Jansson, Kim; Nordvik, Monica K.; Sumpter, David J. T.
2018-01-01
It is widely recognized that segregation processes are often the result of complex nonlinear dynamics. Empirical analyses of complex dynamics are however rare, because there is a lack of appropriate empirical modeling techniques that are capable of capturing complex patterns and nonlinearities. At the same time, we know that many social phenomena…
Climate, invasive species and land use drive population dynamics of a cold-water specialist
Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.
2017-01-01
Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation
Complex dynamics and switching transients in periodically forced Filippov prey–predator system
International Nuclear Information System (INIS)
Tang, Guangyao; Qin, Wenjie; Tang, Sanyi
2014-01-01
Highlights: •We develop a Filippov prey–predator model with periodic forcing. •The sliding mode dynamics and its domain have been investigated. •The existence and stability of sliding periodic solution have been discussed. •The complex dynamics are addressed through bifurcation analyses. •Switching transients and their biological implications have been discussed. - Abstract: By employing threshold policy control (TPC) in combination with the definition of integrated pest management (IPM), a Filippov prey–predator model with periodic forcing has been proposed and studied, and the periodic forcing is affected by assuming a periodic variation in the intrinsic growth rate of the prey. This study aims to address how the periodic forcing and TPC affect the pest control. To do this, the sliding mode dynamics and sliding mode domain have been addressed firstly by using Utkin’s equivalent control method, and then the existence and stability of sliding periodic solution are investigated. Furthermore, the complex dynamics including multiple attractors coexistence, period adding sequences and chaotic solutions with respect to bifurcation parameters of forcing amplitude and economic threshold (ET) have been investigated numerically in more detail. Finally the switching transients associated with pest outbreaks and their biological implications have been discussed. Our results indicate that the sliding periodic solution could be globally stable, and consequently the prey or pest population can be controlled such that its density falls below the economic injury level (EIL). Moreover, the switching transients have both advantages and disadvantages concerning pest control, and the magnitude and frequency of switching transients depend on the initial values of both populations, forcing amplitude and ET
Complex genetic origin of Indian populations and its implications
Indian Academy of Sciences (India)
2012-10-15
Oct 15, 2012 ... statistical analyses, we predicted that the present-day. Indian populations .... of type 2 diabetes only amongst Indians (Metspalu et al. 2011). Our other ... A new variety of spondyloepi(meta)physeal dysplasia of the autosomal ...
Červenková, Zita
2016-01-01
The population dynamics of plants with regard to plant-animal interactions is a remarkably complex topic. To look into how individual life stages are influenced in different directions by various animals is beyond the scope of a single paper. For each of the studies described below, I and my co-authors attempted to collect data that would cover as much of the plant life cycle as possible, focusing on interactions between plants and different animals during the flowering period and their conse...
Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.
Anderson, Jill T; Sparks, Jed P; Geber, Monica A
2010-11-01
• Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Energy Technology Data Exchange (ETDEWEB)
Ananth, Nandini [Univ. of California, Berkeley, CA (United States)
2008-01-01
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex
Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K
2015-04-01
The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.
Integrated health management and control of complex dynamical systems
Tolani, Devendra K.
2005-11-01
A comprehensive control and health management strategy for human-engineered complex dynamical systems is formulated for achieving high performance and reliability over a wide range of operation. Results from diverse research areas such as Probabilistic Robust Control (PRC), Damage Mitigating/Life Extending Control (DMC), Discrete Event Supervisory (DES) Control, Symbolic Time Series Analysis (STSA) and Health and Usage Monitoring System (HUMS) have been employed to achieve this goal. Continuous-domain control modules at the lower level are synthesized by PRC and DMC theories, whereas the upper-level supervision is based on DES control theory. In the PRC approach, by allowing different levels of risk under different flight conditions, the control system can achieve the desired trade off between stability robustness and nominal performance. In the DMC approach, component damage is incorporated in the control law to reduce the damage rate for enhanced structural durability. The DES controller monitors the system performance and, based on the mission requirements (e.g., performance metrics and level of damage mitigation), switches among various lower-level controllers. The core idea is to design a framework where the DES controller at the upper-level, mimics human intelligence and makes appropriate decisions to satisfy mission requirements, enhance system performance and structural durability. Recently developed tools in STSA have been used for anomaly detection and failure prognosis. The DMC deals with the usage monitoring or operational control part of health management, where as the issue of health monitoring is addressed by the anomaly detection tools. The proposed decision and control architecture has been validated on two test-beds, simulating the operations of rotorcraft dynamics and aircraft propulsion.
Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks
Institute of Scientific and Technical Information of China (English)
HUA Da-Yin
2009-01-01
We investigate the dynamical behaviour of the aggregation process in the symmetric conserved mass aggregation model under three different topological structures. The dispersion σ(t, L) = (∑i(mi - ρ0)2/L)1/2 is defined to describe the dynamical behaviour where ρ0 is the density of particle and mi is the particle number on a site. It is found numerically that for a regular lattice and a scale-free network, σ(t, L) follows a power-law scaling σ(t, L) ～ tδ1 and σ(t, L) ～ tδ4 from a random initial condition to the stationary states, respectively. However, for a small-world network, there are two power-law scaling regimes, σ(t, L) ～ tδ2 when t＜T and a(t, L) ～ tδ3 when tT. Moreover, it is found numerically that δ2 is near to δ1 for small rewiring probability q, and δ3 hardly changes with varying q and it is almost the same as δ4. We speculate that the aggregation of the connection degree accelerates the mass aggregation in the initial relaxation stage and the existence of the long-distance interactions in the complex networks results in the acceleration of the mass aggregation when tT for the small-world networks. We also show that the relaxation time T follows a power-law scaling τ Lz and σ(t, L) in the stationary state follows a power-law σs(L) ～ Lσ for three different structures.
Complex dynamics in Duffing-Van der Pol equation
International Nuclear Information System (INIS)
Jing Zhujun; Yang, Zhiyan; Jiang Tao
2006-01-01
Duffing-Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 nω 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω 2 = nω 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω 1 , but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincare map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing-Van der Pol equation with a cubic nonlinear-restoring force and one external forcing
Dynamical versus diffraction spectrum for structures with finite local complexity
Baake, Michael; Lenz, Daniel; van Enter, Aernout
2015-01-01
It is well known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings.
Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.
Szefler, Beata; Diudea, Mircea V; Putz, Mihai V; Grudzinski, Ireneusz P
2016-10-27
Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H₂O₂). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.
Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase
Directory of Open Access Journals (Sweden)
Beata Szefler
2016-10-01
Full Text Available Glucose oxidase (GOx is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of β-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2. GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI. The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD study of the PEI ligand (C14N8_07_B22 and the GOx enzyme (3QVR was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1 of −5.8 kcal/mol and (LIG2 of −4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1 and on its surface (LIG2 were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.
Dynamic complexities in a pest control model with birth pulse and harvesting
Energy Technology Data Exchange (ETDEWEB)
Goel, A., E-mail: goelanju23@gmail.com; Gakkhar, S., E-mail: sungkfma@iitr.ernet.in [Department of Mathematics, Indian Institute of Technology, Roorkee, Uttarakhand 247667 (India)
2016-04-06
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.
Dynamic complexities in a pest control model with birth pulse and harvesting
International Nuclear Information System (INIS)
Goel, A.; Gakkhar, S.
2016-01-01
In this paper, an impulsive model is discussed for an integrated pest management approach comprising of chemical and mechanical controls. The pesticides and harvesting are used to control the stage-structured pest population. The mature pest give birth to immature pest in pulses at regular intervals. The pest is controlled by spraying chemical pesticides affecting immature as well as mature pest. The harvesting of both immature and mature pest further reduce the pest population. The discrete dynamical system obtained from stroboscopic map is analyzed. The threshold conditions for stability of pest-free state as well as non-trivial period-1 solution is obtained. The effect of pesticide spray timing and harvesting on immature as well as mature pest are shown. Finally, by numerical simulation with MATLAB, the dynamical behaviors of the model is found to be complex. Above the threshold level there is a characteristic sequence of bifurcations leading to chaotic dynamics. Route to chaos is found to be period-doubling. Period halving bifurcations are also observed.
Mean-field games with logistic population dynamics
Gomes, Diogo A.
2013-12-01
In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.
Mean-field games with logistic population dynamics
Gomes, Diogo A.; De Lima Ribeiro, Ricardo
2013-01-01
In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.
Richards-like two species population dynamics model.
Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto
2014-12-01
The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.
Artificial bee colony algorithm with dynamic multi-population
Zhang, Ming; Ji, Zhicheng; Wang, Yan
2017-07-01
To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.
Stochastic dynamics of complex systems: from glasses to evolution (series on complexity science)
Sibani, Paolo
2013-01-01
Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex - for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways. The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the desc...
Searching for Appropriate Ways to Face the Challenges of Complexity and Dynamics
Sommerfeld, Peter; Hollenstein, Lea
2017-01-01
People, as bio-psychological systems, are just as dynamic and complex as the social systems that they create. Social work intervenes in the interplay of these two complex, dynamic systems. How can we capture these complexities and dynamics in social work research and practice? The paper introduces the theoretical grounds on which a mixed-methods design has been developed combining a longitudinal quantitative method called Real Time Monitoring that produces dense time series data with qualitat...
MOLECULAR DYNAMICS STUDY OF CYTOCHROME C – LIPID COMPLEXES
Directory of Open Access Journals (Sweden)
V. Trusova
2017-10-01
Full Text Available The interactions between a mitochondrial hemoprotein cytochrome c (cyt c and the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC and anionic lipids phosphatidylglycerol (PG, phosphatidylserine (PS or cardiolipin (CL were studied using the method of molecular dynamics. It was found that cyt c structure remains virtually unchanged in the protein complexes with PC/PG or PC/PS bilayers. In turn, protein binding to PC/CL bilayer is followed by the rise in cyt c radius of gyration and root-mean-square fluctuations. The magnitude of these changes was demonstrated to increase with the anionic lipid content. The revealed effect was interpreted in terms of the partial unfolding of polypeptide chain in the region Ala15-Leu32, widening of the heme crevice and enhancement of the conformational fluctuations in the region Pro76-Asp93 upon increasing the CL molar fraction from 5 to 25%. The results obtained seem to be of utmost importance in the context of amyloidogenic propensity of cyt c.
Memory and obesity affect the population dynamics of asexual freshwater planarians
International Nuclear Information System (INIS)
Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria
2011-01-01
Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms
On the stochastic approach to marine population dynamics
Directory of Open Access Journals (Sweden)
Eduardo Ferrandis
2007-03-01
Full Text Available The purpose of this article is to deepen and structure the statistical basis of marine population dynamics. The starting point is the correspondence between the concepts of mortality, survival and lifetime distribution. This is the kernel of the possibilities that survival analysis techniques offer to marine population dynamics. A rigorous definition of survival and mortality based on their properties and their probabilistic versions is briefly presented. Some well established models for lifetime distribution, which generalise the usual simple exponential distribution, might be used with their corresponding survivals and mortalities. A critical review of some published models is also made, including original models proposed in the way opened by Caddy (1991 and Sparholt (1990, which allow for a continuously decreasing natural mortality. Considering these elements, the pure death process dealt with in the literature is used as a theoretical basis for the evolution of a marine cohort. The elaboration of this process is based on Chiang´s study of the probability distribution of the life table (Chiang, 1960 and provides specific structured models for stock evolution as a Markovian process. These models may introduce new ideas in the line of thinking developed by Gudmundsson (1987 and Sampson (1990 in order to model the evolution of a marine cohort by stochastic processes. The suitable approximation of these processes by means of Gaussian processes may allow theoretical and computational multivariate Gaussian analysis to be applied to the probabilistic treatment of fisheries issues. As a consequence, the necessary catch equation appears as a stochastic integral with respect to the mentioned Markovian process of the stock. The solution of this equation is available when the mortalities are proportional, hence the use of the proportional hazards model (Cox, 1959. The assumption of these proportional mortalities leads naturally to the construction of a
Dynamical evolution of a fictitious population of binary Neptune Trojans
Brunini, Adrián
2018-03-01
We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.
Evolutionary game dynamics in a growing structured population
Energy Technology Data Exchange (ETDEWEB)
Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de
2009-08-15
We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.
Evolutionary game dynamics in a growing structured population
International Nuclear Information System (INIS)
Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne
2009-01-01
We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.
An individual-based probabilistic model for simulating fisheries population dynamics
Directory of Open Access Journals (Sweden)
Jie Cao
2016-12-01
Full Text Available The purpose of stock assessment is to support managers to provide intelligent decisions regarding removal from fish populations. Errors in assessment models may have devastating impacts on the population fitness and negative impacts on the economy of the resource users. Thus, accuracte estimations of population size, growth rates are critical for success. Evaluating and testing the behavior and performance of stock assessment models and assessing the consequences of model mis-specification and the impact of management strategies requires an operating model that accurately describe the dynamics of the target species, and can resolve spatial and seasonal changes. In addition, the most thorough evaluations of assessment models use an operating model that takes a different form than the assessment model. This paper presents an individual-based probabilistic model used to simulate the complex dynamics of populations and their associated fisheries. Various components of population dynamics are expressed as random Bernoulli trials in the model and detailed life and fishery histories of each individual are tracked over their life span. The simulation model is designed to be flexible so it can be used for different species and fisheries. It can simulate mixing among multiple stocks and link stock-recruit relationships to environmental factors. Furthermore, the model allows for flexibility in sub-models (e.g., growth and recruitment and model assumptions (e.g., age- or size-dependent selectivity. This model enables the user to conduct various simulation studies, including testing the performance of assessment models under different assumptions, assessing the impacts of model mis-specification and evaluating management strategies.
Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.
Weber, Bruce H
2011-03-01
Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.
Evolutionary Dynamics of Collective Action in Structured Populations
Santos, Marta Daniela de Almeida
The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None
Population dynamics of Vibrio fischeri during infection of Euprymna scolopes.
McCann, Jessica; Stabb, Eric V; Millikan, Deborah S; Ruby, Edward G
2003-10-01
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.
The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach
Directory of Open Access Journals (Sweden)
Amr T. M. Saeb
2016-01-01
Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.
Directory of Open Access Journals (Sweden)
G. M. Rumyantseva
2013-01-01
Full Text Available The problem of damage to mental health of individuals born after theChernobylaccident remains of high interest, especially in the regions which have been subjected to significant contamination as a result of the accident. The article analyzes the dynamics of psychiatric morbidity in population of contaminated and non-contaminated areas of theBryanskregion according to state statistics and to files of neuropsychiatric ambulatory institutions. The incidence rates in the contaminated areas are found to be significantly different from those in the non-contaminated areas. Dynamics of mentally handicapped contingents after the radiation accident depends, at different stages of postaccidental situation, on a complex of factors: social, economic, radiation, and general toxic ones, which once again underlines the general social character of such disasters.
Population dynamics of caribou herds in southwestern Alaska
Directory of Open Access Journals (Sweden)
Patrick Valkenburg
2003-04-01
Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.
Theorizing the complexity of HIV disclosure in vulnerable populations
DEFF Research Database (Denmark)
Thapa, Subash; Hannes, Karin; Buve, Anne
2018-01-01
BACKGROUND: HIV disclosure is an important step in delivering the right care to people. However, many people with an HIV positive status choose not to disclose. This considerably complicates the delivery of adequate health care. METHODS: We conducted a grounded theory study to develop a theoretical...... in Achham, Nepal. Data were analysed using constant-comparative method, performing three levels of open, axial, and selective coding. RESULTS: Our theoretical model illustrates how two dominant systems to control HIV, namely a community self-coping and a public health system, independently or jointly, shape...... contexts, mechanisms and outcomes for HIV disclosure. CONCLUSION: This theoretical model can be used in understanding processes of HIV disclosure in a community where HIV is concentrated in vulnerable populations and is highly stigmatized, and in determining how public health approaches would lead...
International Nuclear Information System (INIS)
Yuan Shi; Wu Jinhui; Gao Jinyue; Pan Chunliu
2002-01-01
We use the relative phase of two coherent fields for the control of light amplification with dynamically irreversible pathways of population transfer in a Λ system. The population inversion and gain with dynamically irreversible pathways of population transfer are shown as the relative phase is varied. We support our results by numerical calculation and analytical explanation
The population dynamics of cancer: a Darwinian perspective.
Vineis, Paolo; Berwick, Marianne
2006-10-01
Carcinogenesis, at least for some types of cancer, can be interpreted as the consequence of selection of mutated cells similar to what, in the theory of evolution, occurs at the population level. Instead of considering a population of organisms, we can refer to a population of cells belonging to multicellular organisms. Many carcinogens are mutagens, and the observed geographic distribution of cancer is, at least in part, attributable to environmental mutagens. However, the rapid change in risk for some cancers after migration suggests that carcinogenesis involves--in addition to mutations--some late event that most probably consists of the selection of cells already carrying mutations. We review a few examples of such selective pressures: finasteride in prostate cancer, vitamin supplementation in smokers, acquired resistance to chemotherapy, peripheral resistance to insulin, and sunlight and mutations in melanoma. A disease model for such a hypothesis is represented by Paroxysmal Nocturnal Hemoglobinuria (PNH). Mutations can be present at birth, as in the case of PNH, and can have a frequency much higher than the occurrence of the corresponding disease (PNH or lymphocytic leukaemia in children). However, PNH does not require a mutator phenotype, only a mutant phenotype followed by selection. A characteristic feature of cancer, instead, is likely to be the development of the mutator phenotype. We propose a 'Darwinian' model of carcinogenesis. If the model is correct, it suggests that prevention is more complex than avoiding exposure to mutagens. Mutations and genetic instability can be already present at birth. Mutations can be selected in the course of life if they increase survival advantage of the cell under certain environmental circumstances. In addition, gene-environment interactions cannot be interpreted according to a simplified linear model (based on the 'analysis of variance' concept); experimental work suggests that a more comprehensive non
Molecular characterization of microbial population dynamics during sildenafil citrate degradation.
De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda
2009-02-01
Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to
Classification of time series patterns from complex dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.
Investigation of Plasmas Having Complex, Dynamic Evolving Morphology
International Nuclear Information System (INIS)
Bellan, Paul M.
2017-01-01
Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.
Investigation of Plasmas Having Complex, Dynamic Evolving Morphology
Energy Technology Data Exchange (ETDEWEB)
Bellan, Paul M. [California Inst. of Technology (CalTech), Pasadena, CA (United States)
2017-01-03
Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing in the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.
Modelling the complex dynamics of vegetation, livestock and rainfall ...
African Journals Online (AJOL)
Open Access DOWNLOAD FULL TEXT ... In this paper, we present mathematical models that incorporate ideas from complex systems theory to integrate several strands of rangeland theory in a hierarchical framework. ... Keywords: catastrophe theory; complexity theory; disequilibrium; hysteresis; moving attractors
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Population dynamics in the high Arctic: Climate variations in time and space
DEFF Research Database (Denmark)
Hendrichsen, Ditte Katrine
Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...
Population dynamics of Borrelia burgdorferi in Lyme disease
Directory of Open Access Journals (Sweden)
Sebastian Christoph Binder
2012-03-01
Full Text Available Many chronic inflammatory diseases are known to be caused by persistent bacterial or viral infections. A well-studied example is the tick-borne infection by the gram-negative Spirochaetes of the genus Borrelia in humans and other mammals, causing severe symptoms of chronic inflammation and subsequent tissue damage (Lyme Disease, particularly in large joints and the central nervous system, but also in the heart and other tissues of untreated patients. Although killed efficiently by human phagocytic cells in vitro, Borrelia exhibits a remarkably high infectivity in mice and men. In experimentally infected mice, the first immune response almost clears the infection. However, approximately one week post infection, the bacterial population recovers and reaches an even larger size before entering the chronic phase. We developed a mathematical model describing the bacterial growth and the immune response against Borrelia burgdorferi in the C3H mouse strain that has been established as an experimental model for Lyme disease. The peculiar dynamics of the infection exclude two possible mechanistic explanations for the regrowth of the almost cleared bacteria. Neither the hypothesis of bacterial dissemination to different tissue nor a limitation of phagocytic capacity were compatible with experiment. The mathematical model predicts that Borrelia recovers from the strong initial immune response by the regrowth of an immune-resistant sub-population of the bacteria. The chronic phase appears as an equilibration of bacterial growth and adaptive immunity. This result has major implications for the development of the chronic phase of Borrelia infections as well as on potential protective clinical interventions.
Mathis, Roland; Ackermann, Martin
2016-01-01
Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998
DEFF Research Database (Denmark)
Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin
2012-01-01
Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics...... and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated...... to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass...
Population dynamics and monitoring applied to decision-making
Directory of Open Access Journals (Sweden)
Conroy, M. J.
2004-06-01
influence diagrams to capture the stochastic, temporal processes of managing cheetah population in Kenya. The model predicts likely anagement decisions made by various actors within these countries, (e.g., the President, the Environmental Protection Agency, and rural residents and the resulting probability of cheetah extinction following these decisions. By approaching the problem in both its political and ecological contexts one avoids consideration of decisions that, while beneficial from a purely conservation point of view, are unlikely to be implemented because of conflicting political objectives. Haas’s analysis demonstrates both the promise and challenges of this type of modeling, and he offers suggestions for overcoming inherent technical difficulties such as model calibration. The second paper, by Simon Hoyle and Mark Maunder (Hoyle & Maunder, 2004, uses a Bayesian approach to model population dynamics and the effects of commercial fishing bycatch for the eastern Pacific Ocean spotted dolphin (Stenella attenuata. Their paper provides a good example of why Bayesian analysis is particularly suited to many management problems. Namely, because it allows the integration of disparate pieces of monitoring data in the simultaneous estimation of population parameters; allows forincorporation of expert judgment and data from other systems and species; and provides for explicit consideration of uncertainty in decision–making. Alternative management scenarios can then be explored via forward simulations. In the third paper, Chris Fonnesbeck and Mike Conroy (Fonnesbeck & Conroy, 2004 present an integrated approach for estimating parameters and predicting abundance of American black duck (Anas rubripes populations. They also employ a ayesian approach and overcome some of the computational challenges by using Markov chain–Monte Carlo methods. Ring–recovery and harvest data are used to estimate fall age ratios under alternative reproductive models. These in turn are used to
Complex dynamics and bifurcation analysis of host–parasitoid models with impulsive control strategy
International Nuclear Information System (INIS)
Yang, Jin; Tang, Sanyi; Tan, Yuanshun
2016-01-01
Highlights: • We develop novel host-parasitoid models with impulsive control strategy. • The effects of key parameters on the successful control have been addressed. • The complex dynamics and related biological significance are investigated. • The results between two types of host-parasitoid models have been discussed. - Abstract: In this paper, we propose and analyse two type host–parasitoid models with integrated pest management (IPM) interventions as impulsive control strategies. For fixed pulsed model, the threshold condition for the global stability of the host-eradication periodic solution is provided, and the effects of key parameters including the impulsive period, proportionate killing rate, instantaneous search rate, releasing constant, survival rate and the proportionate release rate on the threshold condition are discussed. Then latin hypercube sampling /partial rank correlation coefficients are used to carry out sensitivity analyses to determine the significance of each parameters. Further, bifurcation analyses are presented and the results show that coexistence of attractors existed for a wide range of parameters, and the switch-like transitions among these attractors indicate that varying dosages and frequencies of insecticide applications and numbers of parasitoid released are crucial for IPM strategy. For unfixed pulsed model, the results show that this model exists very complex dynamics and the host population can be controlled below ET, and it implies that the modelling methods are helpful for improving optimal strategies to design appropriate IPM.
Directory of Open Access Journals (Sweden)
Jianhua Xu
2013-01-01
Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.
Intertidal population genetic dynamics at a microgeographic seascape scale.
Hu, Zi-Min
2013-06-01
The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms. © 2013 John Wiley & Sons Ltd.
On Impact Dynamics under Complex or Extreme Conditions
Kouraytem, Nadia
2016-11-01
The impact of a spherical object onto a surface of a liquid, solid or granular material, is a configuration which occurs in numerous industrial and natural phenomena. The resulting dynamics can produce complex outcomes and often occur on very short time-scales. Their study thereby requires high-speed video imaging, as is done herein. This three-part dissertation investigates widely disparate but kindred impact configurations, where the impacting object is a solid steel sphere, or a molten metal droplet. The substrate, on the other hand, is either granular material, a liquid, or solid ice. Therefore both fluid mechanics and thermodynamics play a key role in some of these dynamics. Part I, investigates the penetration depth of a steel sphere which impacts onto a granular bed containing a mixture of grains of two different sizes. The addition of smaller grains within a bed of larger grains can promote a “lubrication” effect and deeper penetration of the sphere. However, there needs to be enough mass fraction of the smaller grains so that they get lodged between the larger grains and are not simply like isolated rattlers inside the voids between the larger grains. This lubrication occurs even though the addition of the small grains increases the overall packing fraction of the bed. We compare the enhanced penetration for the mixtures to a simple interpolative model based on the results for monodispersed media of the constitutive sizes. The strongest lubrication is observed for large irregular shaped Ottawa sand grains, which are seeded with small spherical glass beads. Part II, tackles the topic of a molten metal drop impacting onto a pool of water. When the drop temperature is far above the boiling temperature of water, a continuous vapor layer can form at the interface between the metal and water, in what is called the Leidenfrost phenomenon. This vapor layer can become unstable forming what is called a vapor explosion, which can break up the molten metal drop
Population dynamics of potato cyst nematodes and associated damage to potato
Schans, J.
1993-01-01
Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population
Complex dynamics in planar two-electron quantum dots
International Nuclear Information System (INIS)
Schroeter, Sebastian Josef Arthur
2013-01-01
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an
Complex dynamics in diatomic molecules. Part II: Quantum trajectories
International Nuclear Information System (INIS)
Yang, C.-D.; Weng, H.-J.
2008-01-01
The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166-179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. E-Infinity theory - some recent results and new interpretations. Chaos, Solitons and Fractals 2006;29:845-853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons and Fractals 2004;22:495-511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons and Fractals 2007;32:370-374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons and Fractals 1996;7:821-843] approach to quantum
Complex dynamics in planar two-electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schroeter, Sebastian Josef Arthur
2013-06-25
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two
Architecture and dynamics of proteins and aqueous solvation complexes
Lotze, S.M.
2015-01-01
For this thesis, the molecular dynamics of water and biological (model) systems have been studied with advanced nonlinear optical techniques. In chapters 4-5, the technique of femtosecond mid-infrared pump probe spectroscopy has been used to study the energy transfer and the reorientational dynamics
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu
2008-09-01
An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization
Optimal interdependence enhances the dynamical robustness of complex systems
Singh, Rishu Kumar; Sinha, Sitabhra
2017-08-01
Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.
Cellular population dynamics control the robustness of the stem cell niche
Directory of Open Access Journals (Sweden)
Adam L. MacLean
2015-11-01
Full Text Available Within populations of cells, fate decisions are controlled by an indeterminate combination of cell-intrinsic and cell-extrinsic factors. In the case of stem cells, the stem cell niche is believed to maintain ‘stemness’ through communication and interactions between the stem cells and one or more other cell-types that contribute to the niche conditions. To investigate the robustness of cell fate decisions in the stem cell hierarchy and the role that the niche plays, we introduce simple mathematical models of stem and progenitor cells, their progeny and their interplay in the niche. These models capture the fundamental processes of proliferation and differentiation and allow us to consider alternative possibilities regarding how niche-mediated signalling feedback regulates the niche dynamics. Generalised stability analysis of these stem cell niche systems enables us to describe the stability properties of each model. We find that although the number of feasible states depends on the model, their probabilities of stability in general do not: stem cell–niche models are stable across a wide range of parameters. We demonstrate that niche-mediated feedback increases the number of stable steady states, and show how distinct cell states have distinct branching characteristics. The ecological feedback and interactions mediated by the stem cell niche thus lend (surprisingly high levels of robustness to the stem and progenitor cell population dynamics. Furthermore, cell–cell interactions are sufficient for populations of stem cells and their progeny to achieve stability and maintain homeostasis. We show that the robustness of the niche – and hence of the stem cell pool in the niche – depends only weakly, if at all, on the complexity of the niche make-up: simple as well as complicated niche systems are capable of supporting robust and stable stem cell dynamics.
Complexity, Chaos, and Nonlinear Dynamics: A New Perspective on Career Development Theory
Bloch, Deborah P.
2005-01-01
The author presents a theory of career development drawing on nonlinear dynamics and chaos and complexity theories. Career is presented as a complex adaptive entity, a fractal of the human entity. Characteristics of complex adaptive entities, including (a) autopiesis, or self-regeneration; (b) open exchange; (c) participation in networks; (d)…
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Complex approach of beam dynamic investigation in SC LINAC
International Nuclear Information System (INIS)
Samoshin, A.V.
2012-01-01
Beam dynamic investigation is difficult for superconducting linac consisting from periodic sequences of independently phased accelerating cavities and focusing solenoids. The matrix calculation was preferably used for previous estimate of accelerating structure parameters. The matrix calculation does not allow properly investigate the longitudinal motion. The smooth approximation can be used to investigate the nonlinear ion beam dynamics in such accelerating structure and to calculate the longitudinal and transverse acceptances. The potential function and equation of motion in the Hamiltonian form are devised by the smooth approximation. The advantages and disadvantages of each method will describe, the results of investigation will compare. Application package for ion beam dynamic analysis will create. A numerical simulation of beam dynamics in the full field will carry out for the different variants of the accelerator structure based on analytically obtained results.
Complex Price Dynamics in the Modified Kaldorian Model
Czech Academy of Sciences Publication Activity Database
Kodera, Jan; Van Tran, Q.; Vošvrda, Miloslav
2013-01-01
Roč. 22, č. 3 (2013), s. 358-384 ISSN 1210-0455 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Priice dynamics, * numerical examples * two-equation model * four-equation model * nonlinear time series analysis Subject RIV: AH - Economics Impact factor: 0.208, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kodera-model of price dynamics and chaos.pdf
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Directory of Open Access Journals (Sweden)
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Tinbergen, J.M.; Balen, J.H. van; Drent, P.J.; Cavé, A.J.; Mertens, J.A.L.; Boer-Hazewinkel, J. den
1987-01-01
1. The aim of this article is to explore whether cost-benefit analysis of behaviour may help to understand the population dynamics of a species. The Great Tit is taken as an example. 2. The lifetime reproductive success in different populations of Great Tits amounts from 0.7 (Hoge Veluwe, Wytham) to
Directory of Open Access Journals (Sweden)
Jian Liu
Full Text Available In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic systems (CVCSs in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.
Liu, Jian; Liu, Kexin; Liu, Shutang
2017-01-01
In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.
Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction
Nicolis, Gregoire
2007-01-01
Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h
A system dynamics optimization framework to achieve population desired of average weight target
Abidin, Norhaslinda Zainal; Zulkepli, Jafri Haji; Zaibidi, Nerda Zura
2017-11-01
Obesity is becoming a serious problem in Malaysia as it has been rated as the highest among Asian countries. The aim of the paper is to propose a system dynamics (SD) optimization framework to achieve population desired weight target based on the changes in physical activity behavior and its association to weight and obesity. The system dynamics approach of stocks and flows diagram was used to quantitatively model the impact of both behavior on the population's weight and obesity trends. This work seems to bring this idea together and highlighting the interdependence of the various aspects of eating and physical activity behavior on the complex of human weight regulation system. The model was used as an experimentation vehicle to investigate the impacts of changes in physical activity on weight and prevalence of obesity implications. This framework paper provides evidence on the usefulness of SD optimization as a strategic decision making approach to assist in decision making related to obesity prevention. SD applied in this research is relatively new in Malaysia and has a high potential to apply to any feedback models that address the behavior cause to obesity.
Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics
Bressloff, Paul C.
2010-01-01
We analyze a stochastic model of neuronal population dynamics with intrinsic noise. In the thermodynamic limit N→∞, where N determines the size of each population, the dynamics is described by deterministic Wilson-Cowan equations. On the other hand
Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.
2013-01-01
Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived
Effective population size and evolutionary dynamics in outbred ...
Indian Academy of Sciences (India)
populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of ..... Drift simulation: The sex ratio, total population size and ...... Gillespie J. H. 1994a Substitution processes in molecular evolution. II.
Directory of Open Access Journals (Sweden)
Valerio Bartolino
Full Text Available Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes.
Impulsive generalized function synchronization of complex dynamical networks
International Nuclear Information System (INIS)
Zhang, Qunjiao; Chen, Juan; Wan, Li
2013-01-01
This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results
On the apllication of single specie dynamic population model | Iguda ...
African Journals Online (AJOL)
The Method of mathematical models of Malthus and Verhults were applied on ten years data collected from Magaram Poultry Farm to determine the nature of population growth, population decay or constant ... Keywords: Birth rate, sustainable population, overcrowding, harvesting, independent t-test and one way Anova.
Introduction to turbulent dynamical systems in complex systems
Majda, Andrew J
2016-01-01
This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...
Optimizing Technology-Oriented Constructional Paramour's of complex dynamic systems
International Nuclear Information System (INIS)
Novak, S.M.
1998-01-01
Creating optimal vibro systems requires sequential solving of a few problems: selecting the basic pattern of dynamic actions, synthesizing the dynamic active systems, optimizing technological, technical, economic and design parameters. This approach is illustrated by an example of a high-efficiency vibro system synthesized for forming building structure components. When using only one single source to excite oscillations, resonance oscillations are imparted to the product to be formed in the horizontal and vertical planes. In order to obtain versatile and dynamically optimized parameters, a factor is introduced into the differential equations of the motion, accounting for the relationship between the parameters, which determine the frequency characteristics of the system and the parameter variation range. This results in obtaining non-sophisticated mathematical models of the system under investigation, convenient for optimization and for engineering design and calculations as well
Asymmetrically interacting spreading dynamics on complex layered networks.
Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon
2014-05-29
The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.
Directory of Open Access Journals (Sweden)
Xinwei Wang
2017-01-01
Full Text Available Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme.
Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof
2018-01-01
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.
The Influence of Information Acquisition on the Complex Dynamics of Market Competition
Guo, Zhanbing; Ma, Junhai
In this paper, we build a dynamical game model with three bounded rational players (firms) to study the influence of information on the complex dynamics of market competition, where useful information is about rival’s real decision. In this dynamical game model, one information-sharing team is composed of two firms, they acquire and share the information about their common competitor, however, they make their own decisions separately, where the amount of information acquired by this information-sharing team will determine the estimation accuracy about the rival’s real decision. Based on this dynamical game model and some creative 3D diagrams, the influence of the amount of information on the complex dynamics of market competition such as local dynamics, global dynamics and profits is studied. These results have significant theoretical and practical values to realize the influence of information.
A Tractable Method for Describing Complex Couplings between Neurons and Population Rate.
Gardella, Christophe; Marre, Olivier; Mora, Thierry
2016-01-01
Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these nonlinear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate.
Directory of Open Access Journals (Sweden)
T. K. Misra
1993-09-01
Full Text Available The life-cycle parameters of the snail Lymnaea (Radix luteola and the factors influencing the same have been studied under laboratory conditions. Ins each month, from July 1990 to June 1991, a batch of 100 zero-day old individual were considered for studies. The snails of April batch survived for 19.42 days while those in December batch survived for 87.45 days. The May batch individual though survived for 65.67 days gained maximum shell size (15.84 mm in length and body weight (419.87 mg. All individuals of April batch died prior to attainment of sexual maturity. In the remaining 11 batches the snails became sexually mature between 32 and 53 days. At this stage, they were with varying shell lengths, 9.3 mm to 13,11 mm in respect to batches. The reproduction period varied from 1-67 days. An individual laid, on an average, 0,25 (March batch to 443.67 (May batch eggs in its life-span. A batch of such snails would leave 24312, 22520, 720268, 80408, 76067, 418165, 214, 9202, 0, 0, 2459386 and 127894 individuals at the end of 352nd day. Since the environmental conditions were almost similar the 'dynamic' of population dynamics seems to be involved with the 'strain' of the snail individuals of the batches concerned.
DEFF Research Database (Denmark)
Thonig, Anne
by the short life span of P. elegans and sweepstakes reproductive success. Additionally, stochastic events, such as rain storms, can lead to abrupt drops in salinity which can be detrimental for P. elegans and hence introduce further changes in population structure. Seasonal dynamics, including sexual...... of poecilogonous species that show a polymorphism in developmental mode might be more useful than are comparisons between species, since no confounding effects due to speciation arise. In this study, I documented the population ecology and genetics of the poecilogonous polychaete P. elegans and investigated...... the impact of abiotic and biotic variables on population dynamics. Four focal populations from the Isefjord-RoskildeFjord estuary complex, Denmark were sampled over one year. I observed highly dynamic population structure in both size cohort data and population genetic data that is possibly explained...
Dynamics of a physiologically structured population in a time-varying environment
DEFF Research Database (Denmark)
Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste
2016-01-01
Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...
Planning using dynamic epistemic logic: Correspondence and complexity
DEFF Research Database (Denmark)
Jensen, Martin Holm
2013-01-01
A growing community investigates planning using dynamic epistemic logic. Another framework based on similar ideas is knowledge-based programs as plans. Here we show how actions correspond in the two frameworks. We finally discuss fragments of DEL planning obtained by the restriction of event models...
Holomorphic Dynamical Systems in the Complex Plane: An Introduction
DEFF Research Database (Denmark)
Branner, Bodil
1995-01-01
The paper reviews some basic properties of Julia sets of polynomials and the Mandelbrot set. In particular we emphasize the concept of normal families, the importance of repelling periodic points. The paper is the first one in a series of three papers about Holomorphic Dynamics in the Proceedings...
Positive Affect and the Complex Dynamics of Human Flourishing
Fredrickson, Barbara L.; Losada, Marcial F.
2005-01-01
Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N=188) completed an initial survey to…
Borrowing constraints and complex dynamics in an OLG framework
DEFF Research Database (Denmark)
Assenza, Tiziana; Agliari, Anna; Delli Gatti, Domenico
2009-01-01
In this paper we model an OLG economy à la Kiyotaki and Moore whose novel feature is the role of money as a store of value and of bequest as a source of funds to be "invested" in landholding. The dynamics generated by the model are generally characterized by irregular cyclical trajectories and...
Complexity of gold nanoparticle formation disclosed by dynamics study
DEFF Research Database (Denmark)
Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten
2013-01-01
from redox potential, pH, conductivity, and turbidity of the solution enables distinct observation of reduction and nucleation/growth of AuNPs phases. The dynamics of the electrochemical potential shows that reduction of gold salt (HAuCl 4 and its hydrolyzed forms) occurs via intermediate [AuCl 2...
Directory of Open Access Journals (Sweden)
Xianjun Shen
Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.
Dynamic characterization of oil fields, complex stratigraphically using genetic algorithms
International Nuclear Information System (INIS)
Gonzalez, Santiago; Hidrobo, Eduardo A
2004-01-01
A novel methodology is presented in this paper for the characterization of highly heterogeneous oil fields by integration of the oil fields dynamic information to the static updated model. The objective of the oil field's characterization process is to build an oil field model, as realistic as possible, through the incorporation of all the available information. The classical approach consists in producing a model based in the oil field's static information, having as the process final stage the validation model with the dynamic information available. It is important to clarify that the term validation implies a punctual process by nature, generally intended to secure the required coherence between productive zones and petrophysical properties. The objective of the proposed methodology is to enhance the prediction capacity of the oil field's model by previously integrating, parameters inherent to the oil field's fluid dynamics by a process of dynamic data inversion through an optimization procedure based on evolutionary computation. The proposed methodology relies on the construction of the oil field's high-resolution static model, escalated by means of hybrid techniques while aiming to preserve the oil field's heterogeneity. Afterwards, using an analytic simulator as reference, the scaled model is methodically modified by means of an optimization process that uses genetic algorithms and production data as conditional information. The process's final product is a model that observes the static and dynamic conditions of the oil field with the capacity to minimize the economic impact that generates production historical adjustments to the simulation tasks. This final model features some petrophysical properties (porosity, permeability and water saturation), as modified to achieve a better adjustment of the simulated production's history versus the real one history matching. Additionally, the process involves a slight modification of relative permeability, which has
An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning
Yang, Yaodong; Yu, Lantao; Bai, Yiwei; Wang, Jun; Zhang, Weinan; Wen, Ying; Yu, Yong
2017-01-01
In this paper, we conduct an empirical study on discovering the ordered collective dynamics obtained by a population of artificial intelligence (AI) agents. Our intention is to put AI agents into a simulated natural context, and then to understand their induced dynamics at the population level. In particular, we aim to verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-sc...
A new ODE tumor growth modeling based on tumor population dynamics
International Nuclear Information System (INIS)
Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia
2015-01-01
In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan
A new ODE tumor growth modeling based on tumor population dynamics
Energy Technology Data Exchange (ETDEWEB)
Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)
2015-10-22
In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.
Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling
Directory of Open Access Journals (Sweden)
Selvarajoo Kumar
2011-04-01
Full Text Available Abstract Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and crowding. At population level, however, cells are able to execute well-defined deterministic biological processes such as growth, division, differentiation and immune response. These data reflect biology as a system possessing microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-like receptor (TLR 3 and 4 signaling. Without requiring detailed experimental data, linear response equations together with the fundamental law of information conservation have been used to decipher novel network features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however, such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell outcomes.
Kim, Sang-Yoon; Lim, Woochang
2017-10-01
For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).
Intraspecific Competition and Population Dynamics of Aedes aegypti
Paixão, C. A.; Charret, I. C.; Lima, R. R.
2012-04-01
We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.
Ultrafast Dynamics of Dansylated POPAM Dendrimers and Energy Transfer in their Dye Complexes
Aumanen, J.; Kesti, T.; Sundström, V.; Vögtle, F.; Korppi-Tommola, J.
We have studied internal dynamics of dansylated poly(propyleneamine) dendrimers of different generations in solution and excitation energy transfer from dansyl chromophores to xanthene dyes that form van der Waals complexes with the dendrimers
Replication, refinement & reachability: complexity in dynamic condition-response graphs
DEFF Research Database (Denmark)
Debois, Søren; Hildebrandt, Thomas T.; Slaats, Tijs
2017-01-01
We explore the complexity of reachability and run-time refinement under safety and liveness constraints in event-based process models. Our study is framed in the DCR? process language, which supports modular specification through a compositional operational semantics. DCR? encompasses the “Dynami...
Construction of exact complex dynamical invariant of a two ...
Indian Academy of Sciences (India)
system possesses a complex invariant, namely u = ln(p + imωx) − iωt [6]. ... gaining importance for explaining several phenomena [10] such as the resonance .... then H1 and H2 satisfy the Cauchy–Riemann conditions [18] and after employing.
Microbial bebop: creating music from complex dynamics in microbial ecology.
Directory of Open Access Journals (Sweden)
Peter Larsen
Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.
Microbial bebop: creating music from complex dynamics in microbial ecology.
Larsen, Peter; Gilbert, Jack
2013-01-01
In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.
Managing complexity in process digitalisation with dynamic condition response graphs
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Debois, Søren; Slaats, Tijs
2017-01-01
. Sadly, it is also witnessed by a number of expensive failed digitalisation projects. In this paper we point to two key problems in state-of-The art BPM technologies: 1) the use of rigid flow diagrams as the "source code" of process digitalisation is not suitable for managing the complexity of knowledge...
Data Driven Approach for High Resolution Population Distribution and Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL
2014-01-01
High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.
Complex Dynamics in Physiological Systems: From Heart to Brain
Dana, Syamal K; Kurths, Jürgen
2009-01-01
Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas...
Complex networks: when random walk dynamics equals synchronization
International Nuclear Information System (INIS)
Kriener, Birgit; Anand, Lishma; Timme, Marc
2012-01-01
Synchrony prevalently emerges from the interactions of coupled dynamical units. For simple systems such as networks of phase oscillators, the asymptotic synchronization process is assumed to be equivalent to a Markov process that models standard diffusion or random walks on the same network topology. In this paper, we analytically derive the conditions for such equivalence for networks of pulse-coupled oscillators, which serve as models for neurons and pacemaker cells interacting by exchanging electric pulses or fireflies interacting via light flashes. We find that the pulse synchronization process is less simple, but there are classes of, e.g., network topologies that ensure equivalence. In particular, local dynamical operators are required to be doubly stochastic. These results provide a natural link between stochastic processes and deterministic synchronization on networks. Tools for analyzing diffusion (or, more generally, Markov processes) may now be transferred to pin down features of synchronization in networks of pulse-coupled units such as neural circuits. (paper)
The complex dynamics of wishful thinking: the critical positivity ratio.
Brown, Nicholas J L; Sokal, Alan D; Friedman, Harris L
2013-12-01
We examine critically the claims made by Fredrickson and Losada (2005) concerning the construct known as the "positivity ratio." We find no theoretical or empirical justification for the use of differential equations drawn from fluid dynamics, a subfield of physics, to describe changes in human emotions over time; furthermore, we demonstrate that the purported application of these equations contains numerous fundamental conceptual and mathematical errors. The lack of relevance of these equations and their incorrect application lead us to conclude that Fredrickson and Losada's claim to have demonstrated the existence of a critical minimum positivity ratio of 2.9013 is entirely unfounded. More generally, we urge future researchers to exercise caution in the use of advanced mathematical tools, such as nonlinear dynamics, and in particular to verify that the elementary conditions for their valid application have been met. PsycINFO Database Record (c) 2013 APA, all rights reserved.
RG-Whitham dynamics and complex Hamiltonian systems
Directory of Open Access Journals (Sweden)
A. Gorsky
2015-06-01
Full Text Available Inspired by the Seiberg–Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG-like Whitham behavior. We show that at the Argyres–Douglas (AD point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne–Ünsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the Ω-deformed theory.
Kant, Rik Henricus Nicolaas van der
2013-01-01
Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the
Positive Affect and the Complex Dynamics of Human Flourishing
Fredrickson, Barbara L.; Losada, Marcial F.
2005-01-01
Extending B. L. Fredrickson’s (1998) broaden-and-build theory of positive emotions and M. Losada’s (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N = 188) completed an initial survey to identify flourishing mental health and then provided daily reports of experienced positive and negative emotions over 28 days. Results showed that the ...
Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics
Directory of Open Access Journals (Sweden)
Tao Wang
2016-01-01
Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.
Dynamic energy budgets in population ecotoxicology: applications and outlook.
Jager, T.; Barsi, A.; Hamda, N.T.; Martin, B.; Zimmer, E.I.; Ducrot, V.
2014-01-01
Most of the experimental testing in ecotoxicology takes place at the individual level, but the protection goals for environmental risk assessment are at the population level (or higher). Population modelling can fill this gap, but only models on a mechanistic basis allow for extrapolation beyond the
Demographic processes in a local population: seasonal dynamics of ...
African Journals Online (AJOL)
... differences in daily recruitment and within-patch survival rates. Males were most abundant relative to females early in the season, indicating protandry. Total adult population size was small and showed dramatic variation between the two years, indicating how vulnerable the local population is to demographic extinction.
Dynamics of buckbrush populations under simulated forest restoration alternatives
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Population Dynamics and Natural Resources in the Volta in the ...
African Journals Online (AJOL)
Also, population growth is causing shortfalls in agricultural land, deforestation and high demand on water resources in some of the sub-basins of the Volta River Keywords: Population, Natural resources, Volta River Basin, Human Settlement Land Use/Coverage Change Ghana Journal of Development Studies Vol.
Termite Population Dynamics in Arenic Kandiudults as Influenced by ...
African Journals Online (AJOL)
Result shows that carbofuran significantly (P=<0.0001) recorded least termite population per square meter after tuber harvest, whereas A. indica leaves and municipal waste increased termite population per square meter. Also, cassava tuber yield was significantly influenced with application of A. indica leaves and ...
International Nuclear Information System (INIS)
Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang
2014-01-01
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)
Complex dynamics and morphogenesis an introduction to nonlinear science
Misbah, Chaouqi
2017-01-01
This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathema...
Modelling the dynamics of the health-production complex in livestock herds
DEFF Research Database (Denmark)
Sørensen, J.T.; Enevoldsen, Carsten
1992-01-01
This paper reviews how the dynamics of the health-production complex in livestock herds is mimicked by livestock herd simulation models. Twelve models simulating the dynamics of dairy, beef, sheep and sow herds were examined. All models basically included options to alter input and output...
DEFF Research Database (Denmark)
Longo Martins, Murillo; Eckert, Juergen; Jacobsen, Henrik
2017-01-01
Since potential changes in the dynamics and mobility of drugs upon complexation for delivery may affect their ultimate efficacy, we have investigated the dynamics of two local anesthetic molecules, bupivacaine (BVC, C18H28N2O) and ropivacaine (RVC, C17H26N2O), in both their crystalline forms...
DEFF Research Database (Denmark)
Rodrigues, Vinicius Picanco; Morioka, S.; Pigosso, Daniela Cristina Antelmi
2016-01-01
In order to deal with the complex and dynamic nature of sustainability integration into the product development process, this research explore the use of a qualitative System Dynamics approach by using the causal loop diagram (CLD) tool. A literature analysis was followed by a case study, aiming ...
Small System dynamics models for big issues : Triple jump towards real-world complexity
Pruyt, E.
2013-01-01
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or systems in terms of the processes, information, organizational boundaries and strategies. Quantitative SD modeling, simulation and analysis facilitates the (re)design of systems and design of
Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon
2012-01-01
Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.
Complex projection of unitary dynamics of quaternionic pure states
International Nuclear Information System (INIS)
Asorey, M.; Scolarici, G.; Solombrino, L.
2007-01-01
Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out
Nonlinear dynamics of the complex multi-scale network
Makarov, Vladimir V.; Kirsanov, Daniil; Goremyko, Mikhail; Andreev, Andrey; Hramov, Alexander E.
2018-04-01
In this paper, we study the complex multi-scale network of nonlocally coupled oscillators for the appearance of chimera states. Chimera is a special state in which, in addition to the asynchronous cluster, there are also completely synchronous parts in the system. We show that the increase of nodes in subgroups leads to the destruction of the synchronous interaction within the common ring and to the narrowing of the chimera region.
Fundamentals of complex networks models, structures and dynamics
Chen, Guanrong; Li, Xiang
2014-01-01
Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F
International Nuclear Information System (INIS)
Layer, Patrick; Feurer, Sven; Jochem, Patrick
2017-01-01
Dynamic tariffs have the potential to contribute to a successful shift from conventional to renewable energies, but tapping this potential in Europe ultimately depends on residential consumers selecting them. This study proposes and finds that consumer reactions to dynamic tariffs depend on the level of perceived price complexity that represents the cognitive effort consumers must engage in to compute the overall bill amount. An online experiment conducted with a representative sample of 664 German residential energy consumers examines how salient characteristics of dynamic tariffs contribute to perceived price complexity. Subsequently, a structural equation model (SEM) reveals that the depth of information processing is central to understand how price complexity relates to consumers’ behavioral intentions. The results suggest that it will be challenging to convince European consumers to select complex dynamic tariffs under the current legal framework. Policymakers will need to find ways to make these tariffs more attractive. - Highlights: • Little is known about the processes by which consumers evaluate dynamic tariffs. • In this evaluation process perceived price complexity plays a central role. • Tariff type, price endings, and discount presentation format drive price complexity. • Perceived price complexity decreases the depth of information processing. • A decreased depth of information processing ultimately leads to lower behavioral intentions.