WorldWideScience

Sample records for complex oxide phase

  1. Cooperative properties of single phases of complex oxide catalyst for oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Orel, L.I.; Udalova, O.V.; Korchak, V.N.; Isaev, O.V.; Krylov, O.V.; Gershenzon, Yu.M.; Aptekar', E.L.

    1992-01-01

    Synergetic effect of increase of acrolein yield during propylene oxidation on mechanical mixture of (α + β)CoMoO 4 and MoO 3 , as well as CO and CO 2 yield on mixture of CoMoO 4 and Bi 2 O 3 ·2MoO 3 was revealed. It is shown that CoMoO 4 generates allyl radicals, desorption of these radicals to gaseous phase is not practically observed with MoO 3 , bismuth molybdates and Fe 2 O 3 · Fe 2 O 3 ·3MoO 3

  2. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme.

    Science.gov (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir

    2010-07-01

    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  3. Gas-phase fragmentation of coordination compounds: loss of CO(2) from inorganic carbonato complexes to give metal oxide ions

    Science.gov (United States)

    Dalgaard; McKenzie

    1999-10-01

    Using electrospray ionization mass spectrometry, novel transition metal oxide coordination complex ions are proposed as the products of the collision-induced dissociation (CID) of some carbonato complex ions through the loss of a mass equivalent to CO(2). CID spectra of [(tpa)CoCO(3)](+) (tpa = tris(2-pyridylmethyl)methylamine), [(bispicMe(2)en)Fe(&mgr;-O)(&mgr;-CO(3))Fe(bispicMe(2)en)]2+ (bispicMe(2)en = N,N'-dimethyl-N,N'-bis(2-pyridylmethy)eth- ane-1, 2-diamine) and [(bpbp)Cu(2)CO(3)](+) (bpbp(-) = bis[(bis-(2-pyridylmethyl)amino)methyl]-4-tertbutylpheno-lato(1-)), show peaks assigned to the mono- and dinuclear oxide cations, [(tpa)CoO](+), [(bispicMe(2)en)(2)Fe(2)(O)(2)]2+ and [(bpbp)Cu(2)O](+), as the dominant species. These results can be likened to the reverse of typical synthetic reactions in which metal hydroxide compounds react with CO(2) to give metal carbonato compounds. Because of the lack of available protons in the gas phase, novel oxide species rather than the more common hydroxide ions are generated. These oxide ions are relevant to the highly oxidizing species proposed in oxygenation reactions catalysed by metal oxides and metalloenzymes. Copyright 1999 John Wiley & Sons, Ltd.

  4. Is Solid Phase Microextraction (SPME) an appropriate method for extraction of volatile oxidation products from complex food systems

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  5. Solid phase microextraction (SPME) for extraction of volatile oxidation products from complex food systems – Pros and cons

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Horn, Anna Frisenfeldt; Lu, Henna Fung Sieng

    Volatile secondary lipid oxidation products can be identified and quantified by GC-FID or GC-MS. An extraction step is, however, needed before GC analysis. A range of different extraction methods are available such as static headspace, dynamic headspace and SPME. Each of these methods has its...... advantages and drawbacks. Among the advantages of the SPME method are its high sensitivity compared to static headspace and that it is less laborious than the dynamic headspace method. For these reasons, the use of SPME has increased in both academia and industry during the last decade. The extraction...... for analysis of lipid oxidation during storage of complex food matrices. Examples on how uncontrollable factors have affected results obtained with the SPME method in the authors’ lab will be given and the appropriateness of the SPME method for the analysis of volatile oxidation products in selected food...

  6. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    Science.gov (United States)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  7. Engineering complex oxide interfaces for oxide electronics

    NARCIS (Netherlands)

    Roy, Saurabh

    2015-01-01

    A complex interplay of physics and chemistry in transition metal oxides determines their electronic, magnetic, and ferroic properties enabling a wide range of applications of these materials. BiFeO_3, a canonical multiferroic system exhibits the interesting feature of enhanced conductivity on

  8. Heterogeneity in magnetic complex oxides

    Science.gov (United States)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by

  9. Phthalocyanines with eight oligo(ethylene oxide) alkoxy units: thermotropic phase behavior, aggregate formation and ion complexation with redox-active ions

    NARCIS (Netherlands)

    Piet, D.P.; Verheij, H.J.; Zuilhof, H.

    2003-01-01

    The thermotropic phase behavior of phthalocyanines (Pc's) with eight oligo(ethylene oxide) alkoxy side chains has been investigated. An increase in the number of ethylene oxide units results in a decrease in the solid-to-mesophase and isotropization temperatures. The investigated compounds display a

  10. Phase transitions in complex oxide systems based on Al2O3 and ZrO2

    International Nuclear Information System (INIS)

    Gorski, L.

    1999-01-01

    Different compositions of materials based on Al 2 O 3 and ZrO 2 and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al 2 O 3 containing aluminium titanate and coatings based on ZrO 2 stabilised by 7-8% of Y 2 O 3 . (author)

  11. Low Dimensionality Effects in Complex Magnetic Oxides

    Science.gov (United States)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr

  12. In between matters, interfaces in complex oxides

    NARCIS (Netherlands)

    van Zalk, M.

    2009-01-01

    Complex oxides are emerging as a versatile class of materials, exhibiting a wide variety of properties. In recent years, it has become increasingly clear that the properties of complex-oxide interfaces can differ considerably from those of the bulk. This opens up the possibility of tuning and

  13. In Between Matters : Interfaces in Complex Oxides

    NARCIS (Netherlands)

    van Zalk, M.

    2009-01-01

    Complex oxides are emerging as a versatile class of materials, exhibiting a wide variety of properties. In recent years, it has become increasingly clear that the properties of complex-oxide interfaces can differ considerably from those of the bulk. This opens up the possibility of tuning and

  14. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  15. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  16. Phase equilibria, crystal structure and properties of complex oxides in the Nd{sub 2}O{sub 3}–SrO–CoO system

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, T.V.; Efimova, T.G. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Lebedev, O.I. [Laboratoire CRISMAT, ENSICAEN UMR6508, 6 Bd Maréchal Juin, Cedex 4, Caen 14050 (France); Elkalashy, Sh.I.; Urusova, A.S. [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation); Cherepanov, V.A., E-mail: v.a.cherepanov@urfu.ru [Department of Physical and Inorganic Chemistry, Institute of Natural Science and Mathematics, Ural Federal University, Lenin av., 51, Yekaterinburg 620000 (Russian Federation)

    2017-04-15

    The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cell parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen

  17. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  18. From cation to oxide: hydroxylation and condensation of aqueous complexes

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al 3+ ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  19. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  20. Complex phase dynamics in coupled bursters

    DEFF Research Database (Denmark)

    Postnov, D E; Sosnovtseva, Olga; Malova, S Y

    2003-01-01

    The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...... the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes....

  1. Investigation of uranyl nitrate complexes with trialkylphosphine oxides

    International Nuclear Information System (INIS)

    Kobets, L.V.; Kopashova, I.M.; Dik, T.A.; Volodin, I.A.; Kovalenko, M.A.; Semenij, V.Ya.

    1982-01-01

    Using the methods of vibrational spectroscopy and thermal analysis a number of uranyl complexes with trialkylphosphine oxides of the general formula UO 2 (NO 3 ) 2 x2R 3 PO, where R-C 2 H 5 -C 10 H 21 have been studied. Infrared and Raman spectra are interpreted according to vibration types. Comparison of vibrational spectra of the complexes in solid phase and solutions of organic solvents permitted to find the differences in position and amount of acids responsible for complexing. It is detected that in the series of complexes investigated the strength of uranyl bond with phosphoryl group oxygen practically remains stable, whereas degree of covalence of nitrate groups is observed. The pointed out peculiarities are interpreted proceeding from the presence of bridge nitrate groups in the structure of the complexes. Thermal stability of the complexes is studied, chemism of their decomposition being suggested

  2. Crystalline structure and propylene oxidation in complex bismuth-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Manaila, R.; Ionescu, N.I.; Caldararu, M.

    1980-01-01

    Complex Bi-Mo oxide catalysts supported on amorphous SiO 2 were prepared by coprecipitation and tested in the reaction of selective oxidation of propylene to acrolein. They consist of a mixture of molybdate phases and excess MoO 3 . The Fe 2 (MoO 4 ) 3 phase was found to have a high concentration of lattice defects, induced by a Mo excess. These defects could be related to the catalytic conversion and to the selectivity to total oxidation by varying the calcination temperature. Calcination above 500 0 C induced also the transition of the metastable modification β-NiMoO 4 to the stable form α, accompanied by a loss of conversion. A complex Bi molybdate with scheelitic structure was found to have a high selectivity to acrolein. (author)

  3. Synthesis of complex plutonium oxides with alkaline-earth metals

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Nakajima, Kunihisa; Iwai, Takashi; Ohmichi, Toshihiko; Yamawaki, Michio.

    1995-03-01

    Complex plutonium(IV) oxides with strontium and barium, SuPuO 3 and BaPuO 3 , were synthesized and their crystal structure was analyzed. Compacted mixture of plutonium dioxide powder and the carbonate of strontium or barium was heated in a stream of argon gas using a cell with a small orifice. The products obtained were found to be composed of a nearly single phase showing the structure of orthorhombic slightly distorted from cubic. (author)

  4. Phased array ultrasound testing on complex geometry

    International Nuclear Information System (INIS)

    Tuan Arif Tuan Mat; Khazali Mohd Zin

    2009-01-01

    Phase array ultrasonic inspection is used to investigate its response to complex welded joints geometry. A 5 MHz probe with 64 linear array elements was employed to scan mild steel T-joint, nozzle and node samples. These samples contain many defects such as cracks, lack of penetration and lack of fusion. Ultrasonic respond is analysed and viewed using the Tomoview software. The results show the actual phase array images on respective types of defect. (author)

  5. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  6. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  7. Phase transitions in Pareto optimal complex networks.

    Science.gov (United States)

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  8. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  9. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  10. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    International Nuclear Information System (INIS)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-01-01

    Uranium-(VI) phases are the primary alteration products of the UO 2 in spent nuclear fuel and the UO 2+x , in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO 2 2+ polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO 2+x , to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements

  11. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    nonstoichiometry on ferroelectric properties are investigated, where enhanced ferroelectric responses are only found for stoichiometric films grown inside of the growth windows, whereas outside of the optimal growth window conditions, ferroelectric properties are greatly deteriorated and eventually disappear for highly nonstoichiometric film compositions. Utilizing these stoichiometric growth windows, high temperature polar phase transitions are discovered for compressively strained CaTiO3 films with transition temperatures in excess of 700 K, rendering this material as a strong candidate for high temperature electronic applications. Beyond the synthesis of single phase materials using hybrid MBE, a methodology is presented for constructing layered (SrTiO3)n/(CaTiO 3)n superlattice structures, where precise control over the unit cell layering thickness (n) is demonstrated using in-situ reflection high energy electron diffraction. The effects of interface roughness and layering periodicity (n) on the strain-induced ferroelectric properties for a series of n=1-10 (SrTiO3)n/(CaTiO3) n superlattice films are investigated. It is found that the stabilization of a ferroelectric phase is independent of n, but is however strongly dominated by the degree of interface roughness which is quantified by measuring the highest nth order X-ray diffraction peak splitting of each superlattice film. A counter-intuitive realization is made whereby a critical amount of interface roughness is required in order to enable the formation of the predicted strain-stabilized ferroelectric phase, whereas sharp interfaces actually suppress this ferroelectric phase from manifesting. It is shown how high-quality complex oxide superlattices can be constructed using hybrid MBE technique, allowing the ability to control layered materials at the atomic scale. Furthermore, a detailed growth methodology is provided for constructing a layered n=4 SrO(SrTiO3)n Ruddlesden-Popper (RP) phase by hybrid MBE, where the ability

  12. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  13. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, A. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Dörr, K. [Martin Luther University Halle-Wittenberg, Institute for Physics, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Ward, T. Z.; Eres, G. [ORNL, Materials Science and Technology Division, Bethel Valley Road, Oak Ridge, Tennessee 37831-6056 (United States); Christen, H. M.; Biegalski, M. D. [ORNL, Center for Nanophase Materials Sciences, Bethel Valley Road, Oak Ridge, Tennessee 37831-6496 (United States)

    2015-03-30

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases are grown with good long-range order. This method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.

  14. Integration of functional complex oxide nanomaterials on silicon

    Directory of Open Access Journals (Sweden)

    Jose Manuel eVila-Fungueiriño

    2015-06-01

    Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.

  15. Synthesis, characterization and oxidative behaviour of dioxoruthenium(VI) complexes

    International Nuclear Information System (INIS)

    Agarwal, D.D.; Rastogi, Rachana

    1995-01-01

    Dioxoruthenium(VI) complexes are found to give low yield of epoxide but good yield of cyclohexanone. The complexes are electro active giving metal centered Ru VI /Ru V couple. Cis-stilbene gives trans epoxide and benzaldehyde. Norbornene gives exo epoxy norbornene. The selectivity for allylic oxidation is high. In the present note the synthesis of dioxoruthenium(VI) complexes and their oxidation behaviour is reported. The dioxoruthenium(VI) complexes have been stoichiometrically found to be good oxidants. (author). 21 refs., 1 tab

  16. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  17. Aliasing in the Complex Cepstrum of Linear-Phase Signals

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen

    1997-01-01

    Assuming linear-phase of the associated time signal, this paper presents an approximated analytical description of the unavoidable aliasing in practical use of complex cepstrums. The linear-phase assumption covers two major applications of complex cepstrums which are linear- to minimum-phase FIR......-filter transformation and minimum-phase estimation from amplitude specifications. The description is made in the cepstrum domain, the Fourier transform of the complex cepstrum and in the frequency domain. Two examples are given, one for verification of the derived equations and one using the description to reduce...... aliasing in minimum-phase estimation...

  18. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    Science.gov (United States)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  19. Complex defects in the oxidation of uranium

    International Nuclear Information System (INIS)

    MacCrone, R.K.; Sankaran, S.; Shatynski, S.R.; Colmenares, C.A.

    1986-01-01

    We are reporting EPR results obtained with uranium powder samples fully oxidized in dry air, water vapor, and air/water vapor mixtures. The results reported previously are confirmed and additional paramagnetic centers, associated with chemisorbed species, have been identified. The temperature dependence of the g-value for these centers from room temperature to 10K is also reported

  20. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  1. Heteroaggregation of graphene oxide with minerals in aqueous phase.

    Science.gov (United States)

    Zhao, Jian; Liu, Feifei; Wang, Zhenyu; Cao, Xuesong; Xing, Baoshan

    2015-03-03

    Upon release into waters, sediments, and soils, graphene oxide (GO) may interact with fine mineral particles. We investigated the heteroaggregation of GO with different minerals, including montmorillonite, kaolinite, and goethite, in aqueous phase. GO significantly enhanced the dispersion of positively charged goethite (>50%) via heteroaggregation, while there was no interaction between GO and negatively charged montmorillonite or kaolinite. Electrostatic attraction was the dominant force in the GO-goethite heteroaggregation (pH 4.0-8.5), and the dissolved Fe ions (formation of multilayered GO-goethite complex with high configurational stability. These findings are useful for understanding the interaction of GO with mineral surfaces, and potential fate and toxicity of GO under natural conditions in aquatic environments, as well as in soils and sediments.

  2. Solution of a Complex Least Squares Problem with Constrained Phase.

    Science.gov (United States)

    Bydder, Mark

    2010-12-30

    The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.

  3. Electrochemical preparation of new uranium oxide phases

    International Nuclear Information System (INIS)

    Smolenskij, V.V.; Lyalyushkin, N.V.; Bove, A.L.; Komarov, V.K.; Kapshukov, I.I.

    1992-01-01

    Behaviour of uranium ions in oxidation states 3+ and 4+ in molten chlorides of alkali metals in the temperature range of 700-900 degC in the atmosphere of an inert gas was studied by the method of cyclic voltametry. It is shown that as a result of introduction of crystal uranium dioxide into the salt melt formation of uranium oxide ions of the composition UO + and UO 2+ occurs, the ions participating in electrode reactions and bringing about formation of the following uranium oxides on the cathode: UO and, presumably, U 3 O 4 . Oxides UO and U 3 O 4 are thermodynamically unstable at low temperatures and decompose into uranium oxide of the composition UO 2-x , where x varies from 0 to 0.05, and metal uranium

  4. Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar

    2014-01-01

    Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)

  5. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  6. Chaotic systems in complex phase space

    Indian Academy of Sciences (India)

    figure 1, a qualitative change in the complex behaviour is quite evident in ..... [19] S Fishman, Quantum Localization in Quantum Chaos, Proc. of the International ... of the 44th Scottish Universities Summer School in Physics, Stirling, August ...

  7. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  8. Resonating Nitrous Oxide Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroAstro proposes decomposing nitrous oxide (N2O) as an alternative propellant to existing spacecraft propellants. Decomposing N2O can be used as either a high Isp,...

  9. Diffusionless phase transitions and related structures in oxides

    International Nuclear Information System (INIS)

    Boulesteix, C.

    1992-01-01

    The relative importance of oxides in the field of materials science has been spectacularly increasing during the last twenty years. First the study of ferroelectrics kept the attention of scientists. Nevertheless this domain is far from being worked out and a lot of new results and of new fields of interest were recently discovered. Other ferroic oxides, especially ferroelastics, have also been the subject of a very great number of new results. In these cases the properties of oxides are at room temperature very tightly related to the phase transition that is generally occurring a few hundred of degrees above this room temperature. In many other cases also properties of oxides can be related to the existence of a phase transition or to a rather similar phenomenon. This book has been specially devoted to the study of the properties of oxides which are in some way related to the existence of a phase transition. The first chapters are focussed on general considerations: the first one is devoted to a general study of phase transitions, the second one to the twinning phenomenon which is of special interest for many oxides. Chapters 3 and 4 are focussed on ferroelectric and ferroelastic materials. These four chapters consitute the first part of the book. Chapters 5 to 8 are devoted to the study of oxides of special interest which have some of their properties related to a phase transition or to a rather similar phenomenon: rare earth oxides, oxides with a diffuse phase transition, zirconia and alumina systems, tungsten oxides and their relatives. These four chapters constitute the second part of the book. (orig.)

  10. Ultrafast strain engineering in complex oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Paul; Caviglia, Andrea; Hu, Wanzheng; Bromberger, Hubertus; Singla, Rashmi; Mitrano, Matteo; Hoffmann, Matthias C.; Kaiser, Stefan; Foerst, Michael [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Scherwitzl, Raoul; Zubko, Pavlo; Gariglio, Sergio; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneve 4, Geneva (Switzerland); Cavalleri, Andrea [Max-Planck Research Group for Structural Dynamics - Center for Free Electron Laser Science, University of Hamburg (Germany); Department of Physics, Clarendon Laboratory, University of Oxford (United Kingdom)

    2012-07-01

    The mechanical coupling between the substrate and the thin film is expected to be effective on the ultrafast timescale, and could be exploited for the dynamic control of materials properties. Here, we demonstrate that a large-amplitude mid-infrared field, made resonant with a stretching mode of the substrate, can switch the electronic properties of a thin film across an interface. Exploiting dynamic strain propagation between different components of a heterostructure, insulating antiferromagnetic NdNiO{sub 3} is driven through a prompt, five-order-of-magnitude increase of the electrical conductivity, with resonant frequency and susceptibility that is controlled by choice of the substrate material. Vibrational phase control, extended here to a wide class of heterostructures and interfaces, may be conductive to new strategies for electronic phase control at THz repetition rates.

  11. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  12. Using the Phase Space to Design Complexity

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Ayres, Phil

    2016-01-01

    Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence...... with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts......., and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying...

  13. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  14. Mechanism of water oxidation by trivalent ruthenium trisdipyridyl complex

    International Nuclear Information System (INIS)

    Moravskij, A.P.; Khannanov, N.K.; Khramov, A.V.; Shafirovich, V.Ya.

    1983-01-01

    Results of kinetic investigation of water oxidation reaction with photogenerated single-electron oxidizer-trisdipyridyl complex of Ru(3) are presented. CoCl 2 x6H 2 O within the concentration range of [Co 2+ ] 0 =5x10 -7 - 5x10 -5 M was used as a reaction catalyst. The method of stopped flow with spectrophotometric recording was used in order to control the reaction kinetics

  15. Phase Equilibria for Complex Polymer Solutions

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Hestkjær, L. L.; Hansen, A. F.

    2002-01-01

    the content of organic solvents. This work presents an investigation of the three polymer models Entropic-FV (EFV). UNIFAC-FV (UFV) and GC-Flory (GCF) for their capability of predicting solvent activity coefficients in binary systems containing complex polymers. It is possible to obtain good predictions...... at finite concentrations and satisfactory predictions at infinite dilution, particularly with the EFV model. The investigation shows that EFV is the most robust and stable of the models, which indicates that it is the most well suited model for further development of methods for predicting the miscibility...

  16. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  17. A Complex Solar Coronal Jet with Two Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Su, Jiangtao; Deng, Yuanyong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Priest, E. R., E-mail: chenjie@bao.ac.cn [Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2017-05-01

    Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on 2012 July 2. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find that the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux that decrease in size during the occurrence of the two phases. Based on these observations, we suggest that the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite-polarity fragment between them.

  18. Nanoparticles of complex metal oxides synthesized using the ...

    Indian Academy of Sciences (India)

    ASHOK K GANGULI∗, TOKEER AHMAD, PADAM R ARYA and PIKA JHA ... nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3 .... reasonable stability till 150◦C. All the lead-doped phases (sintered at 900◦C) show.

  19. Complex PTSD and phased treatment in refugees : a debate piece

    NARCIS (Netherlands)

    Ter Heide, F Jackie June; Mooren, Trudy M; Kleber, Rolf J

    2016-01-01

    BACKGROUND: Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD). Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused

  20. Patterning of high mobility electron gases at complex oxide interfaces

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, G. E. D. K.; von Soosten, Merlin

    2015-01-01

    Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects...... of amorphous-LSM (a-LSM) thin films, which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ∼8 700 cm2/V s at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually...... where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO3/SrTiO3 (a-LAO/STO) and modulation-doped amorphous-LaAlO3/La7/8Sr1/8MnO3/SrTiO3 (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching...

  1. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  2. The initial growth of complex oxides : study and manipulation

    NARCIS (Netherlands)

    Rijnders, Augustinus J.H.M.

    2001-01-01

    In this thesis, the initial growth stage, i.e., nucleation and growth of the first few unit cell layers, of complex oxides was studied in real time during pulsed laser deposition (PLD). These studies were performed at their optimal epitaxial growth conditions, i.e., high temperature and high oxygen

  3. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  4. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  5. Psychophysical estimates of cochlear phase response: masking by harmonic complexes.

    Science.gov (United States)

    Lentz, J J; Leek, M R

    2001-12-01

    Harmonic complexes with identical component frequencies and amplitudes but different phase spectra may be differentially effective as maskers. Such harmonic waveforms, constructed with positive or negative Schroeder phases, have similar envelopes and identical long-term power spectra, but the positive Schroeder-phase waveform is typically a less effective masker than the negative Schroeder-phase waveform. These masking differences have been attributed to an interaction between the masker phase spectrum and the phase characteristic of the basilar membrane. To explore this relationship, the gradient of stimulus phase change across masker bandwidth was varied by systematically altering the Schroeder-phase algorithm. Observers detected a signal tone added in-phase to a single component of a masker whose frequencies ranged from 200 to 5000 Hz, with a fundamental frequency of 100 Hz. For signal frequencies of 1000-4000 Hz, differences in masking across the harmonic complexes could be as large as 5-10 dB for phase gradients changing by only 10%. The phase gradient that resulted in a minimum amount of masking varied with signal frequency, with low frequencies masked least effectively by stimuli with rapidly changing component phases and high frequencies masked by stimuli with more shallow phase gradients. A gammachirp filter was implemented to model these results, predicting the qualitative changes in curvature of the phase-byfrequency function estimated from the empirical data: In some cases, small modifications to the gammachirp filter produced better quantitative predictions of curvature changes across frequency, but this filter, as implemented here, was unable to accurately represent all the data.

  6. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  7. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    Kremser, D.T.

    1982-01-01

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R 1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  8. Binding of properdin to solid-phase immune complexes

    DEFF Research Database (Denmark)

    Junker, A; Baatrup, G; Svehag, S E

    1998-01-01

    The capacity of serum to support deposition of C3, properdin and factor B was studied by enzyme-linked immunosorbent assay using solid-phase immune complexes (IC) for activation of complement. Deposition of C3 and properdin occurred in fairly dilute normal human serum (NHS), but factor B uptake...... fixed to IC was the principal ligand for properdin in the assay. The findings could have biological implications relating to complement-mediated modification of immune complexes in disease....

  9. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  10. Oxidative dehydrogenation of the 2-aminomethylpyridine (EDTA) ruthenium (III) complex

    International Nuclear Information System (INIS)

    Toma, H.E.; Tsurumaki, M.

    1990-01-01

    The oxidative dehydrogenation of the 2-aminomethylpyridine (ampy) ligand coordinated to the (EDTA)RU(III) complex was investigated based on cyclic voltammetry, spectoelectrochemistry and stopped-flow kinetic measurements in aqueous solution. The reaction mechanism is consistent with the deprotonation of the ampy ligand (pk a =7.48), followed by a reversible one-electron transfer step. The intermediate species generated at this step undergoes a metal-induced electron transfer process, with k=227 s -1 , converting into the corresponding 2-iminomethylpyridine complex. (author) [pt

  11. Formation of tungsten blue oxide and its phase constitution

    International Nuclear Information System (INIS)

    Zou, Z.; Wu, E.; Tan, A.; Qian, C.

    1984-01-01

    By means of X-ray diffraction structure analysis, SEM observation, chemical analysis and particle specific surface analysis etc., an investigation was made in order to determine the regularity of tungsten blue oxide formation during reductional calcine process of APT. It was found that the oxygen index (OI) decreased continuously with increasing calcine temperature. The decrease rate of OI variated as the calcine atmosphere being changed, the stronger the reductivity of the atmosphere is, the more OI decreases. The deammonia-dewater process and the phase constitution variation during calcine was studied, some idea for description of phase transformation path was suggested. It was found that the most important parameter affecting phase constitution and transformation is calcine temperature. At the temperature lower than 450 0 C, the main formed phase was ATB, while at higher temperature, the different phase like W/sub 20/O/sub 58/, WO/sub 3/ etc., could be formed by different ways depending on the atmosphere reductivity. The composition and the OI of ATB are changeable. An experiment for some blue oxides reduction at low temperature was carried out. It was found that OI and the constitution of blue oxide strongly affected the particle size of the formed W-powder

  12. Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond

    International Nuclear Information System (INIS)

    Kim, Y; Pham, C; Chang, J P

    2015-01-01

    This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal–oxide–semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the

  13. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed M Al Gadban

    2010-09-01

    Full Text Available Oxidized low-density lipoproteins (oxLDL and oxLDL-containing immune complexes (oxLDL-IC contribute to formation of lipid-laden macrophages (foam cells. It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCgamma receptor I (FCgamma RI. This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress.Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70 and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC.Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could

  14. Aqueous phase oxidation techniques as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Hickman, R.G.; Farmer, J.C.; Chiba, Z.; Gregg, D.W.; Wang, F.T.

    1992-03-01

    The Lawrence Livermore National Laboratory (LLNL) has three aqueous phase techniques under development for oxidation of high value or high risk waste steams. One is direct electrochemical oxidation and one is mediated electrochemical oxidation utilizing regenerable, strongly oxidizing cations such as Ag(II), Co (III), Ce(IV), etc. These cations can either attack oxidizable materials directly and/or indirectly via first reacting with water to generate OH radicals which then attack the oxidizable materials. The third system utilizes H 2 O 2 and UV light to generate OH radicals directly which in turn attack the oxidizable materials. All systems have the advantage of a chemical off-switch in that when the power is turned off, the reaction quickly subsides. All systems operate with low concentrations (typically <5 wt %) of oxidizable materials, therefore, the stored energy for possible run-away reactions is very low. 15 figures, 22 references

  15. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  16. Using lanthanoid complexes to phase large macromolecular assemblies

    International Nuclear Information System (INIS)

    Talon, Romain; Kahn, Richard; Durá, M. Asunción; Maury, Olivier; Vellieux, Frédéric M. D.; Franzetti, Bruno; Girard, Eric

    2011-01-01

    A lanthanoid complex, [Eu(DPA) 3 ] 3− , was used to obtain experimental phases at 4.0 Å resolution of PhTET1-12s, a large self-compartmentalized homo-dodecameric protease complex of 444 kDa. Lanthanoid ions exhibit extremely large anomalous X-ray scattering at their L III absorption edge. They are thus well suited for anomalous diffraction experiments. A novel class of lanthanoid complexes has been developed that combines the physical properties of lanthanoid atoms with functional chemical groups that allow non-covalent binding to proteins. Two structures of large multimeric proteins have already been determined by using such complexes. Here the use of the luminescent europium tris-dipicolinate complex [Eu(DPA) 3 ] 3− to solve the low-resolution structure of a 444 kDa homododecameric aminopeptidase, called PhTET1-12s from the archaea Pyrococcus horikoshii, is reported. Surprisingly, considering the low resolution of the data, the experimental electron density map is very well defined. Experimental phases obtained by using the lanthanoid complex lead to maps displaying particular structural features usually observed in higher-resolution maps. Such complexes open a new way for solving the structure of large molecular assemblies, even with low-resolution data

  17. Theory and Application of Photoelectron Diffraction for Complex Oxide Systems

    Science.gov (United States)

    Chassé, Angelika; Chassé, Thomas

    2018-06-01

    X-ray photoelectron diffraction (XPD) has been used to investigate film structures and local sites of surface and dopant atoms in complex oxide materials. We have performed angular-resolved measurements of intensity distribution curves (ADCs) and patterns (ADPs) of elemental core level intensities from binary to quaternary mixed oxide samples and compared them to multiple-scattering cluster (MSC) calculations in order to derive information on structural models and related parameters. MSC calculations permitted to describe both bulk diffraction features of binary oxide MnO(001) and the thickness-dependence of the tetragonal distortion of epitaxial MnO films on Ag(001). XPD was further used to investigate the surface termination of perovskite SrTiO3 and BaTiO3 substrates in order to evaluate influence of different ex situ and in situ preparation procedures on the surface layers, which are crucial for quality of following film growth. Despite the similarity of local environments of Sr (Ba) and Ti atoms in the perovskite film structure an angular region in the ADCs was identified as a fingerprint with the help of MSC simulations which provided clear conclusions on the perovskite oxide surfaces. Dopant sites in quaternary perovskite manganites La1-xCaxMnO3, La1-xSrxMnO3, and La1-xCexMnO3 were studied with polar angle scans of the photoemission intensities of host and dopant atoms. Both direct comparison of experimental ADCs and to the simulations within MSC models confirm the occupation of A sites by the dopants and the structural quality of the complex oxide films.

  18. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  19. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure

    Directory of Open Access Journals (Sweden)

    Lourdes Lorigados Pedre

    2018-06-01

    Full Text Available Oxidative stress (OS has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS patients compared to a control group (age and sex matched, and the results were related to clinical variables. We examined malondialdehyde (MDA, advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, nitric oxide (NO, uric acid, superoxide dismutase (SOD, glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE and nitrotyrosine (3-NT. All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001 while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively. Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005 similarly to SOD activity (p = 0.0001, whereas vitamin C was considerably diminished (p = 0.0001. Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

  20. Phase effects in masking by harmonic complexes: speech recognition.

    Science.gov (United States)

    Deroche, Mickael L D; Culling, John F; Chatterjee, Monita

    2013-12-01

    Harmonic complexes that generate highly modulated temporal envelopes on the basilar membrane (BM) mask a tone less effectively than complexes that generate relatively flat temporal envelopes, because the non-linear active gain of the BM selectively amplifies a low-level tone in the dips of a modulated masker envelope. The present study examines a similar effect in speech recognition. Speech reception thresholds (SRTs) were measured for a voice masked by harmonic complexes with partials in sine phase (SP) or in random phase (RP). The masker's fundamental frequency (F0) was 50, 100 or 200 Hz. SRTs were considerably lower for SP than for RP maskers at 50-Hz F0, but the two converged at 100-Hz F0, while at 200-Hz F0, SRTs were a little higher for SP than RP maskers. The results were similar whether the target voice was male or female and whether the masker's spectral profile was flat or speech-shaped. Although listening in the masker dips has been shown to play a large role for artificial stimuli such as Schroeder-phase complexes at high levels, it contributes weakly to speech recognition in the presence of harmonic maskers with different crest factors at more moderate sound levels (65 dB SPL). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Flow assurance : complex phase behavior and complex work requires confidence and vigilance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.D. [ConocoPhillips, Major Projects, Advanced Integrated Simulation, Houston, TX (United States)

    2008-07-01

    Petroleum exploration and development projects and operations increasingly rely on flow assurance definition. Flow assurance is an integrating discipline as it follows the fluid from the reservoir to the market. Flow assurance works across complex technical and non-technical interfaces, including the reservoir, well completions, operation processes, project management, physical/organic chemistry, fluid mechanics, chemical engineering, mechanical engineering and corrosion. The phase behaviour in real fluids also has complex interfaces. The understanding and management of flow assurance of complex phase behaviour must be well communicated in order to enable proper selection, execution, and operation of development concepts designed to manage successful production within the fluid's phase behaviour. Simulation tools facilitate the translation of science into engineering. Academic, industrial, and field research is the core of these tools. The author cautioned that vigilance is required to assist and identify the right time to move innovation into the core tools.

  2. Nematic phase formation in suspensions of graphene oxide

    Science.gov (United States)

    Fresneau, Nathalie; Campidelli, Stéphane

    The last decade has seen the rise of graphene. Graphene is a single layer of graphite; it can be obtained by direct liquid phase exfoliation of the latter through harsh sonication. This technique presents the disadvantage to produce small graphene flakes (typically in the 0.05 to 0.4 μm2 range for the monolayers) and multilayer graphene with uncontrolled thickness distributions. In order to improve the exfoliation process, one has to counter the strong van der Waals interactions between the carbon planes of graphite. This implies to increase the distance between two planes and it can be done, for example, by oxidizing graphite to introduce oxygen species in the graphenic planes. The fabrication of graphite oxide is known for almost 150 years, and it became popular again these last ten years. Generally, the oxidation of graphite is performed following a method described by Hummers in the 1950's and the material produced by this technique exfoliates quasi-spontaneously into monolayer species called graphene oxide (GO). The highly anisotropic shape of GO (several μm in length and width for a thickness of ca. 1 nm) combined with the presence of oxygenated functions on the sp2 carbon structure of graphene lead to the formation of a lyotropic liquid crystalline phase in water. Above a certain concentration of graphene flakes the gain in translational entropy for a long-range ordered phase outweighs the loss in rotational entropy, and the liquid crystal phase then forms. The value of the threshold is affected by the aspect ratio of the graphene flakes but other factors such as the interactions also play a strong role.

  3. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    DEFF Research Database (Denmark)

    Nielsen, Thomas Eiland

    2009-01-01

    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...... with significant structural complexity and diversity. This review describes some of the most systematic solid-phase approaches that are potentially suited for pharmaceutical applications, that is, the methods described are useful for the synthesis of compound collections, and exhibit tunable stereochemistry...

  4. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  5. Comparison of topotactic fluorination methods for complex oxide films

    Science.gov (United States)

    Moon, E. J.; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; Barbash, D.; May, S. J.

    2015-06-01

    We have investigated the synthesis of SrFeO3-αFγ (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  6. Comparison of topotactic fluorination methods for complex oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, E. J., E-mail: em582@drexel.edu; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Barbash, D. [Centralized Research Facilities, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  7. Comparison of topotactic fluorination methods for complex oxide films

    Directory of Open Access Journals (Sweden)

    E. J. Moon

    2015-06-01

    Full Text Available We have investigated the synthesis of SrFeO3−αFγ (α and γ ≤ 1 perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  8. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  9. From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts

    Science.gov (United States)

    Xu, Zhichuan J.

    2018-03-01

    Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.

  10. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    Energy Technology Data Exchange (ETDEWEB)

    Shvoeva, O P; Kuchava, G P; Evtikova, G A; Belyaeva, V K; Myasoedova, G V; Marov, I N [AN SSSR, Moscow (USSR). Inst. Geokhimii i Analiticheskoj Khimii

    1989-04-01

    Equilibrium and kinetic characteristics of V{sup 4+} sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that (VO{sup 2+}):(BIm)1:2 complex, where VO{sup 2+} is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10{sup 3} is attained at pH6.

  11. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Shvoeva, O.P.; Kuchava, G.P.; Evtikova, G.A.; Belyaeva, V.K.; Myasoedova, G.V.; Marov, I.N.

    1989-01-01

    Equilibrium and kinetic characteristics of V 4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO 2+ ]:[BIm]1:2 complex, where VO 2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x10 3 is attained at pH6

  12. Phase Behavior and Equations of State of the Actinide Oxides

    Science.gov (United States)

    Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.

  13. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  14. Complex PTSD and phased treatment in refugees: a debate piece

    Directory of Open Access Journals (Sweden)

    F. Jackie June ter Heide

    2016-02-01

    Full Text Available Background: Asylum seekers and refugees have been claimed to be at increased risk of developing complex posttraumatic stress disorder (complex PTSD. Consequently, it has been recommended that refugees be treated with present-centred or phased treatment rather than stand-alone trauma-focused treatment. This recommendation has contributed to a clinical practice of delaying or waiving trauma-focused treatment in refugees with PTSD. Objective: The aim of this debate piece is to defend two theses: (1 that complex trauma leads to complex PTSD in a minority of refugees only and (2 that trauma-focused treatment should be offered to all refugees who seek treatment for PTSD. Methods: The first thesis is defended by comparing data on the prevalence of complex PTSD in refugees to those in other trauma-exposed populations, using studies derived from a systematic review. The second thesis is defended using conclusions of systematic reviews and a meta-analysis of the efficacy of psychotherapeutic treatment in refugees. Results: Research shows that refugees are more likely to meet a regular PTSD diagnosis or no diagnosis than a complex PTSD diagnosis and that prevalence of complex PTSD in refugees is relatively low compared to that in survivors of childhood trauma. Effect sizes for trauma-focused treatment in refugees, especially narrative exposure therapy (NET and culturally adapted cognitive-behaviour therapy (CA-CBT, have consistently been found to be high. Conclusions: Complex PTSD in refugees should not be assumed to be present on the basis of complex traumatic experiences but should be carefully diagnosed using a validated interview. In line with treatment guidelines for PTSD, a course of trauma-focused treatment should be offered to all refugees seeking treatment for PTSD, including asylum seekers.

  15. Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions

    International Nuclear Information System (INIS)

    Kortov, V.S.; Zvonarev, S.V.; Medvedev, A.I.

    2011-01-01

    The methods of pulsed cathodoluminescence have been used to study compacted powders and ceramics containing different phases of aluminum oxide. An intensive luminescence of the samples under study in the visible, NIR, and UV regions of the spectrum has been found. The luminescence bands are very broad and include a few components. The number of the bands depends on the phase composition of the samples. The oxygen vacancies, which capture one or two electrons, produce luminescence centers in the near UV region. The most probable in the visible region is the luminescence of aggregate defects, impurities, and surface centers. - Highlights: → We investigate pulsed cathodoluminescence spectra of nanoscale alumina. → We found the intensive luminescence in the visible, NIR, and UV regions. → The transformation of R-line structure depends on phase composition of alumina. → We substantiate the relation of luminescence bands with concrete centers.

  16. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  17. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  18. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  19. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  20. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  1. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  2. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    Science.gov (United States)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  3. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  4. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  5. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  6. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  7. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    Science.gov (United States)

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  8. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  9. Applications of STEM-EELS to complex oxides

    KAUST Repository

    Gá zquez, Jaume; Sá nchez-Santolino, Gabriel; Biškup, Neven; Roldá n, Manuel A.; Cabero, M.; Pennycook, Stephen J.; Varela, Marí a

    2016-01-01

    In this chapter we will review a few examples of applications of atomic resolution aberration corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) to complex oxide materials. These are most challenging systems where subtle changes in structure or chemistry may result in colossal responses in macroscopic physical behavior. Here, we will review how atomic resolution compositional mapping can be achieved in manganite thin films and single crystals, highlighting the importance of considering artifacts during quantification. Besides, minor changes in near edge fine structure may take place when the crystalline environment, and hence nearest neighbor configuration, is modified. These can also be tracked by atomic resolution EELS, as will be shown through the study of binary Fe oxides. Also, examples regarding the study of distributions of point defects such as O vacancies in cobaltite thin films will be discussed. In these materials, a combination of epitaxial strain and defects may promote physical behaviors not present in bulk, such as the stabilization of unexpected spin state superlattices. Last, a study of extended defects such as dislocation lines will be reviewed. In particular, we will show how chemical segregation at dislocation cores in yttria-stabilized zirconia grain boundaries results in the generation of static O vacancies that affect the local electrostatic potential and hence, the macroscopic ionic conduction properties. © 2016.

  10. Applications of STEM-EELS to complex oxides

    KAUST Repository

    Gázquez, Jaume

    2016-06-26

    In this chapter we will review a few examples of applications of atomic resolution aberration corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) to complex oxide materials. These are most challenging systems where subtle changes in structure or chemistry may result in colossal responses in macroscopic physical behavior. Here, we will review how atomic resolution compositional mapping can be achieved in manganite thin films and single crystals, highlighting the importance of considering artifacts during quantification. Besides, minor changes in near edge fine structure may take place when the crystalline environment, and hence nearest neighbor configuration, is modified. These can also be tracked by atomic resolution EELS, as will be shown through the study of binary Fe oxides. Also, examples regarding the study of distributions of point defects such as O vacancies in cobaltite thin films will be discussed. In these materials, a combination of epitaxial strain and defects may promote physical behaviors not present in bulk, such as the stabilization of unexpected spin state superlattices. Last, a study of extended defects such as dislocation lines will be reviewed. In particular, we will show how chemical segregation at dislocation cores in yttria-stabilized zirconia grain boundaries results in the generation of static O vacancies that affect the local electrostatic potential and hence, the macroscopic ionic conduction properties. © 2016.

  11. Some organoperoxo complexes of antimony, niobium and tantalum and their oxidation properties

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.

    1999-05-01

    Several novel organoperoxo complexes of Nb(V), Ta(V) and Sb(V) have been synthesized and characterized. The complexes have the compositions [M(O 2 ) 2 L Cl] and [M(O 2 ) 2 L'] [L = monodentate and bidentate, neutral ligand; L' = bidentate, uninegative ligand]. These complexes are very reactive to both organic and inorganic substrates. Niobium and tantalum complexes were found to oxidize phosphines and arsines to their oxides. These also oxidize olefins to epoxides under stoichiometric conditions while under catalytic conditions, ring opening of the epoxides occur producing α-hydroxyketone when the substrate is trans-stilbene. The antimony complexes are decidedly inert towards oxidation. (author)

  12. The relation between intensity and complexity of coronary artery lesion and oxidative stress in patients with acute coronary syndrome.

    Science.gov (United States)

    Turan, Turhan; Menteşe, Ümit; Ağaç, Mustafa Tarık; Akyüz, Ali Rıza; Kul, Selim; Aykan, Ahmet Çağrı; Bektaş, Hüseyin; Korkmaz, Levent; Öztaş Menteşe, Seda; Dursun, İhsan; Çelik, Şükrü

    2015-10-01

    Oxidative stress plays a major role in the development of atherosclerosis. However, the relationship between oxidative stress and complexity and intensity of coronary artery disease is less clear. The aim of this study is to assess the relationship between oxidative stress markers and the complexity and intensity of coronary artery disease in patients with acute coronary syndrome (ACS). Sixty-seven consecutive patients with an early phase of ACS (=22). Likewise patients were divided into two CAD severity groups according to the median Gensini score of 64: less intensive CAD with Gensini score (=64. Blood samples were taken in 1 hour within administration in order to measure total oxidative status (TOS) and total antioxidant capacity (TAC) levels determined by Erel method. Oxidative stress index (OSI) was calculated by TOS /TAC. There was no significant difference between the two SYNTAX groups for oxidative stress markers. Median TOS and OSI values were significantly high in the intensive CAD group (p=0.005, p=0.04, respectively). The Gensini score was positively correlated with TOS and OSI (p=0.003, p=0.02, respectively). Oxidative stress markers may be considered supportive laboratory parameters related to CAD intensity but not complexity in ACS patients.

  13. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  14. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  15. Bimetallic oxamato complexes synthesized into mesoporous matrix as precursor to tunable nanosized oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kalinke, Lucas H.G. [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil); Instituto Federal de Goiás—IFG, Anápolis, GO (Brazil); Stumpf, Humberto O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte, MG (Brazil); Mazali, Italo O. [Instituto de Química, Universidade Estadual de Campinas—UNICAMP, Campinas, SP (Brazil); Cangussu, Danielle, E-mail: danielle_cangussu@ufg.br [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil)

    2015-10-15

    Highlights: • The bimetallic oxamato complexes as single-source precursor. • We prepared into a porous silica glass tunable nanosized oxide powders. • X-ray diffraction shows the formation of CeO{sub 2}/CuO and spinel cobaltite. • The different number of IDC allows control of the nanoparticle size. - Abstract: The bimetallic complexes were employed to prepare into a porous silica glass tunable nanosized oxide powders through the single source precursor (SSP) method. These materials were prepared by first anchoring of [Cu(opba)]{sup 2−} [opba = ortho-phenylenebis(oxamato)], second by reaction in situ with second metal [Co(II) or Ce(III)] and followed by a thermal treatment. The different number of impregnation–decomposition cycles (IDC) allows control of the nanoparticle size. X-ray diffraction shows the formation of mixture CeO{sub 2}–CuO and spinel copper cobaltite. Raman spectroscopy confirmed the formation of such phases. Transmission electron microscopy images revealed that spinel cobaltite particles (8 IDC) present a mean size of about 9 nm, whereas for the CeO{sub 2}–CuO phase the particle diameters are 4 nm (2 IDC) and 8 nm (6 IDC). For CeO{sub 2}–CuO the diffuse reflectance spectroscopy indicates a consistent red shift in band gap from 3.41 to 2.87 eV with increasing of particle size due to quantum confinement effect.

  16. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  17. Artificial neural networks using complex numbers and phase encoded weights.

    Science.gov (United States)

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  18. Energetics and Defect Interactions of Complex Oxides for Energy Applications

    Science.gov (United States)

    Solomon, Jonathan Michael

    The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher

  19. [DNA complexes, formed on aqueous phase surfaces: new planar polymeric and composite nanostructures].

    Science.gov (United States)

    Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B

    2003-01-01

    The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and

  20. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    Science.gov (United States)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  1. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  2. Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation

    Science.gov (United States)

    Bakker-Arkema, J.; Ziemann, P. J.

    2017-12-01

    Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful

  3. Gas-Phase Thermolysis of a Thioketen-S-Oxide

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst

    1980-01-01

    The unimolecular gas-phase thermolytic decomposition of 1,1,3,3-tetramethyl-2-thiocarbonylcyclohexane S-oxide (3) has been studied as a function of temperature by a flash vacuum thermolysis (f.v.t.) technique. The products detected are the carbenes (4) and (5), the ketone (6), the keten (7......), the thioketone (8), and the thioketen (9). The product ratio is highly dependent on the thermolysis temperature. The thermolysis of (3) is mechanistically rationalized by assuming the existence of only two concurrent primary processes, which are (a) extrusion of atomic oxygen, leading to the thioketen (9...... and CSO leading to the carbenes (5) and (4), respectively, are observed. Owing to an apparently very short half-life of the oxathiiran (10), only the decomposition products of the three-membered ring compound have been detected. These are the thioketone (8), formed by rearrangement of (10) into the α...

  4. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O.; Savee, John D.; Osborn, David L.; Zádor, Judit; Taatjes, Craig A.; Sheps, Leonid

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed

  5. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    Science.gov (United States)

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 3D stereolithography printing of graphene oxide reinforced complex architectures

    International Nuclear Information System (INIS)

    Lin, Dong; Jin, Shengyu; Cheng, Gary J; Zhang, Feng; Zhou, Chi; Wang, Chao; Wang, Yiqian

    2015-01-01

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young’s modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. (paper)

  7. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  8. Phased Array Imaging of Complex-Geometry Composite Components.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke

  9. Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework.

    Science.gov (United States)

    Das, Biswanath; Lee, Bao-Lin; Karlsson, Erik A; Åkermark, Torbjörn; Shatskiy, Andrey; Demeshko, Serhiy; Liao, Rong-Zhen; Laine, Tanja M; Haukka, Matti; Zeglio, Erica; Abdel-Magied, Ahmed F; Siegbahn, Per E M; Meyer, Franc; Kärkäs, Markus D; Johnston, Eric V; Nordlander, Ebbe; Åkermark, Björn

    2016-09-14

    The synthesis of two molecular iron complexes, a dinuclear iron(iii,iii) complex and a nonanuclear iron complex, based on the dinucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)3](3+).

  10. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive...

  11. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  12. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  13. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  14. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission

    Science.gov (United States)

    Lu, Jianing; Fu, Songnian; Tang, Haoyuan; Xiang, Meng; Tang, Ming; Liu, Deming

    2017-01-01

    Low complexity carrier phase recovery (CPR) scheme based on vertical blind phase search (V-BPS) for M-ary offset quadrature amplitude modulation (OQAM) is proposed and numerically verified. After investigating the constellations of both even and odd samples with respect to the phase noise, we identify that the CPR can be realized by measuring the verticality of constellation with respect to different test phase angles. Then measurement without multiplication in the complex plane is found with low complexity. Furthermore, a two-stage configuration is put forward to further reduce the computational complexity (CC). Compared with our recently proposed modified blind phase search (M-BPS) algorithm, the proposed algorithm shows comparable tolerance of phase noise, but reduces the CC by a factor of 3.81 (or 3.05) in the form of multipliers (or adders), taking the CPR of 16-OQAM into account.

  15. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    Science.gov (United States)

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  16. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  17. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi, E-mail: zhaoyi9515@163.com; Hao, Runlong; Guo, Qing

    2014-09-15

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg{sup 0} removal was prepared. • A novel integrative process for Hg{sup 0} removal was proposed. • The simultaneous removal efficiencies of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg{sup 0}) removal has been proposed in this paper, in which Hg{sup 0} was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH{sub 3}COOOH) and sodium chloride (NaCl), after which Hg{sup 2+} was absorbed by the resultant Ca(OH){sub 2}. The experimental results indicated that CH{sub 3}COOOH and NaCl were the best additives for Hg{sup 0} oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg{sup 0} removal. The coexisting gases, SO{sub 2} and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg{sup 0} was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  18. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    International Nuclear Information System (INIS)

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-01-01

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg 0 removal was prepared. • A novel integrative process for Hg 0 removal was proposed. • The simultaneous removal efficiencies of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO 2 , NO and Hg 0 was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg 0 ) removal has been proposed in this paper, in which Hg 0 was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH 3 COOOH) and sodium chloride (NaCl), after which Hg 2+ was absorbed by the resultant Ca(OH) 2 . The experimental results indicated that CH 3 COOOH and NaCl were the best additives for Hg 0 oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg 0 removal. The coexisting gases, SO 2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg 0 was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO 2 , NO and Hg 0 was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references

  19. Development studies for a novel wet oxidation process. Phase 2

    International Nuclear Information System (INIS)

    1994-07-01

    DETOX SM is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit

  20. Imprinted magnetic graphene oxide for the mini-solid phase extraction of Eu (III) from coal mine area

    Science.gov (United States)

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    The present work represents the preparation of imprinted magnetic reduced graphene oxide and applied it for the selective removal of Eu (III) from local coal mines area. A simple solid phase extraction method was used for this purpose. The material shows a very high adsorption as well as removal efficiency towards Eu (III), which suggest that the material have potential to be used in future for their real time applications in removal of Eu (III) from complex matrices.

  1. High Performance Nitrous Oxide Analyzer for Atmospheric Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  2. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  3. The Fourier Transform Microwave (ftmw) Spectra of Cyclohexene Oxide and its Argon Complex

    Science.gov (United States)

    Frohman, Daniel J.; Novick, Stewart E.; Pringle, Wallace C.

    2012-06-01

    The microwave spectrum of cyclohexene oxide and its isotopologues have been observed and assigned, improving upon previous rotational studies of this molecule. Additionally, the 17O isotopomer of cyclohexene oxide and the Ar complex of the normal isotopologue of cyclohexene oxide have been fit for the first time. Fits for the 13C-cyclohexene oxide Ar complexes will also be presented. Tatsuya Ikeda, Roger Kewley, and R. F. Curl, Jr. J. Mol. Spectrosc., 4} (1972), 459-469. Raquel Sánchez, Susana Blanco, Juan C. López, and José L. Alonso. J. Mol. Struct., 780-781 (2006), 57-64.

  4. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  5. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  6. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  7. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  8. Structural Investigations of Complex Oxides using Synchrotron Radiation

    International Nuclear Information System (INIS)

    Hans-Conrad zur Loye

    2007-01-01

    The work is a collaborative effort between Prof. Hanno zur Loye at the University of South Carolina and Dr. Tom Vogt at Brookhaven National Laboratory. The collaborative research focuses on the synthesis and the structural characterization of perovskites and perovskite related oxides and will target new oxide systems where we have demonstrated expertise in synthesis, yet lack the experimental capabilities to answer important structural issues. Synthetically, we will focus on two subgroups of perovskite structures, the double and triple perovskites, and the 2H-perovskite related oxides belonging to the A 3n+3m A(prime) 3M+n B 3m+n O 9m+6n family. In the first part of the proposal, our goal of synthesizing and structurally characterizing new ruthenium, iridium, rhodium and ruthenium containing double and triple perovskites, with the emphasis on exercising control over the oxidation state(s) of the metals, is described. These oxides will be of interest for their electronic and magnetic properties that will be investigated as well

  9. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    Directory of Open Access Journals (Sweden)

    Nikky Pathak

    2017-03-01

    Full Text Available The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP and Dual-Phase (DP steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition or drilled and then reamed (reamed edge condition. The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  10. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    Science.gov (United States)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  11. Low temperature phase transition of the stoichiometric Ln2NiO4 oxides

    International Nuclear Information System (INIS)

    Fernandez, F.; Saez-Puche, R.; Botto, I.L.; Baran, E.J.

    1991-01-01

    In this paper we will present a comparative study of the structural phase transition in Ln 2 NiO 4 oxides, by means of neutron diffraction and infrared(IR) spectroscopy. In the Ln 2 NiO 4 oxides (Ln=La, Pr and Nd), there is a low temperature structural phase transition from the orthorhombic symmetry to a tetragonal phase, of first order character. The IR spectra show, at low temperature, a splitting of the bands related with the stretching Ni-O, strongly correlated with the phase transformation. From the neutron data, the phase transition can be visualized as a sudden tilt of the nickel octahedra

  12. Thorium oxide dissolution kinetics for hydroxide and carbonate complexation

    International Nuclear Information System (INIS)

    Jardin, R.; Curran, V.; Czerwinski, K.R.

    2002-01-01

    The purpose of this project was to determine the kinetics and thermodynamics of thorium oxide dissolution in the environment. Solubility is important because it establishes an upper concentration limit on the concentration of a dissolved radionuclide in solution L1. While understanding the behavior of thorium fuels in the proposed repository at Yucca Mountain is most applicable, a more rigorous study of thorium solubility over a wide pH range was performed so that the data could also be used to model the behavior of thorium fuels in any environmental system. To achieve this, the kinetics and thermodynamics of thorium oxide dissolution under both pure argon and argon with P CO2 of 0. 1 were studied under the full pH range available in each atmosphere. In addition, thorium oxide powder remnants were studied after each experiment to examine structural changes that may affect kinetics

  13. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

  14. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  15. Monolithic Approach to Oxide Dispersion Strengthened Aluminum, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nassau Stern Company is investigating an approach for manufacturing oxide dispersion strengthened (ODS) aluminum in bulk rather than powder form. The approach...

  16. Advanced Wastewater Photo-oxidation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  17. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  18. Oxidative potential of gas phase combustion emissions - An underestimated and potentially harmful component of air pollution from combustion processes

    Science.gov (United States)

    Stevanovic, S.; Vaughan, A.; Hedayat, F.; Salimi, F.; Rahman, M. M.; Zare, A.; Brown, R. A.; Brown, R. J.; Wang, H.; Zhang, Z.; Wang, X.; Bottle, S. E.; Yang, I. A.; Ristovski, Z. D.

    2017-06-01

    The oxidative potential (OP) of the gas phase is an important and neglected aspect of environmental toxicity. Whilst prolonged exposure to particulate matter (PM) associated reactive oxygen species (ROS) have been shown to lead to negative health effects, the potential for compounds in gas phase to cause similar effects is yet to be understood. In this study we describe: the significance of the gas phase OP generated through vehicle emissions; discuss the origin and evolution of species contributing to measured OP; and report on the impact of gas phase OP on human lung cells. The model aerosol for this study was exhaust emitted from a Euro III Common-rail diesel engine fuelled with different blends of diesel and biodiesel. The gas phase of these emissions was found to be potentially as hazardous as the particle phase. Fuel oxygen content was found to negatively correlate with the gas phase OP, and positively correlate with particle phase OP. This signifies a complex interaction between reactive species present in gas and particle phase. Furthermore, this interaction has an overarching effect on the OP of both particle and gas phase, and therefore the toxicity of combustion emissions.

  19. Oxidation kinetics of zircaloy-4 in the temperature range correspondent to alpha phase

    International Nuclear Information System (INIS)

    Medeiros, L.F.

    1975-12-01

    Oxidation kinetics of Zry-4 in the alpha phase is isothermally studied in the temperature range from 600 0 C to 800 0 C, by continuous and discontinuous gravimetric methods. The total mass gain during the oxidation takes place by two distinct ways: oxide formation and solid solution formation. The first one has been studied by microscopy: the latter by microhardness. The oxygen diffusion coefficients in the zirconium are experimentally determined by microhardness measurements and are compared with those obtained by the oxide layer thickness and by oxygen mass in the oxide. The oxygen diffusion coefficients in the oxide are obtained too by oxide layer thickness and by oxygen diffusivities in the alpha phase and compared with literature. (author)

  20. (alpha-Diimine)tricarbonylhalorhenium complexes: the oxidation side

    Czech Academy of Sciences Publication Activity Database

    Drozdz, A.; Bubrin, M.; Fiedler, Jan; Záliš, Stanislav; Kaim, W.

    2012-01-01

    Roč. 41, č. 3 (2012), s. 1013-1019 ISSN 1477-9226 R&D Projects: GA MŠk LD11086; GA MŠk(CZ) ME10124 Institutional research plan: CEZ:AV0Z40400503 Keywords : (alpha-Diimine)tricarbonylhalorhenium complexes * electrochemistry * metal carbonyl complexes Subject RIV: CG - Electrochemistry Impact factor: 3.806, year: 2012

  1. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  2. Low temperature delayed recombination decay in complex oxide scintillating crystals

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Jarý, Vítězslav; Schulman, L. S.; Nikl, Martin

    2014-01-01

    Roč. 61, č. 1 (2014), 257-261 ISSN 0018-9499 R&D Projects: GA MŠk LH12150; GA MŠk LH12185 Grant - others:AVČR(CZ) M100101212 Institutional support: RVO:68378271 Keywords : luminescence * oxides * scintillator * tunneling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2014

  3. Chemical solution deposition techniques for epitaxial growth of complex oxides

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Koster, G.; Huijben, Mark; Rijnders, G.

    2015-01-01

    The chemical solution deposition (CSD) process is a wet-chemical process that is employed to fabricate a wide variety of amorphous and crystalline oxide thin films. This chapter describes the typical steps in a CSD process and their influence on the final microstructure and properties of films, and

  4. Rare earth [beta]-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Tu, Z.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kaul, A.R. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Girichev, G.V. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Giricheva, N.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Rykov, A.N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korenev, Y.M. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-08-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.).

  5. Rare earth β-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    International Nuclear Information System (INIS)

    Kuzmina, N.P.; Martynenko, L.I.; Tu, Z.A.; Kaul, A.R.; Girichev, G.V.; Giricheva, N.I.; Rykov, A.N.; Korenev, Y.M.

    1993-01-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.)

  6. Phase-field modeling of corrosion kinetics under dual-oxidants

    Science.gov (United States)

    Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.

    2012-04-01

    A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.

  7. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  8. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    NARCIS (Netherlands)

    Forkink, M.; Basit, F.; Teixeira, J.; Swarts, H.G.; Koopman, W.J.H.; Willems, P.H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24h) inhibition

  9. Mew organometallic complexes of technetium in different oxidation states

    International Nuclear Information System (INIS)

    Joachim, J.E.

    1993-09-01

    New organometallic compounds of Tc(I), Tc(III) and Tc(VII) were synthesized and their properties examined. These compounds were correlated with their homologous compounds of manganese and rhenium, which were also synthesized by the same route. The molecular and crystal structures of most technetium complexes and of the homologous complexes of manganese and rhenium were determined by single crystal X-ray diffraction. (orig.) [de

  10. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  11. Distributed Diagnosis, Prognosis and Recovery for Complex Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex space systems such as lunar habitats generate huge amounts of data. For example, the International Space Station (ISS) has over 250,000 individually...

  12. Characterization of S-Phase Specific BRCA1-Containing Complex

    National Research Council Canada - National Science Library

    You, Fanglei

    2003-01-01

    ...), was observed in HeLa and in 293 cells. Hydroxyurea treatment of cells results in the reduction of BRCA1 content in the RNA polymerase II holoenzyme complex with a complementary increase in the HUIC...

  13. Characterization of S-Phase Specific BRCA1-Containing Complex

    National Research Council Canada - National Science Library

    Chiba, Natsuko

    2002-01-01

    ...), was observed in HeLa and in 293 cells. Hydroxyurea treatment of cells results in the reduction of BRCA1 content in the RNA polymerase II holoenzyme complex with a complementary increase in the HUIC...

  14. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  15. Nytrox Oxidizers for NanoSat Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  16. Complex motion of a vehicle through a series of signals controlled by power-law phase

    Science.gov (United States)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  17. Electrocatalytic oxidations of pyridine derivatives using Ru(IV) poly pyridine complex

    International Nuclear Information System (INIS)

    Oliveira, S.M. de.

    1989-01-01

    The oxidation reactions electro catalysed by bi pyridine oxo tri pyridine ruthenium perchlorate metallic complex from selected organic substrates are studied. The obtained results are compared with forecasting results showing the coherence of suggested mechanism. The substrates 2-, 2- and 4- picolines with its respective 1-oxides and 1,2 -; 1,3 - and 1,4 - dimethyl pyridine chloride salts were analysed. The oxidation of toluene as reference substrate was also studied and the mass spectra of oxidation products were interpreted. (M.C.K.)

  18. Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    2012-01-01

    During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated...... in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant......-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels...

  19. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  20. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    Science.gov (United States)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R

  1. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  2. Molecular Recognition in the Oxidation of Catechols by Dicobalt-BISDIEN Dioxygen Complexes

    Science.gov (United States)

    1992-01-30

    Recognition in the Oxidation of Catechols by Dicobalt-RISDIEN Dioxygen Complexes Lizete F S Cezar and Bruno Szpoganicz Departamento de Quimica ...bridged bi- nuclear Co(II)-BISDIEN dioxygen complexes; Co20 2 LCat2 + is the bivalent form, and Co20 2 (OH)LCat + and Co 20 2 (OH)2 Cat° are hydroxo

  3. Electrocatalytic Azide Oxidation Mediated by a Rh(PNP) Pincer Complex

    NARCIS (Netherlands)

    Rebreyend, Christophe; Gloaguen, Yann; Lutz, Martin; Van Der Vlugt, Jarl Ivar; Siewert, Inke; Schneider, Sven; Bruin, Bas De

    2017-01-01

    One-electron oxidation of the rhodium(I) azido complex [Rh(N3)(PNP)] (5), bearing the neutral, pyridine-based PNP ligand 2,6-bis(di-tert-butylphosphinomethyl)pyridine, leads to instantaneous and selective formation of the mononuclear rhodium(I) dinitrogen complex [Rh(N2)(PNP)]+ (9+). Interestingly,

  4. Electrocatalytic Azide Oxidation Mediated by a Rh(PNP) Pincer Complex

    NARCIS (Netherlands)

    Rebreyend, C.; Gloaguen, Y.; Lutz, M.; van der Vlugt, J.I.; Siewert, I.; Schneider, S.; de Bruin, B.

    2017-01-01

    One-electron oxidation of the rhodium(I) azido complex [Rh(N3)(PNP)] ( 5 ), bearing the neutral, pyridine-based PNP ligand 2,6-bis(di-tert-butylphosphinomethyl)pyridine, leads to instantaneous and selective formation of the mononuclear rhodium(I) dinitrogen complex [Rh(N2)(PNP)]+ ( 9 +).

  5. How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions

    NARCIS (Netherlands)

    Fraters, B.D.; Amrollahi Buky, Rezvaneh; Mul, Guido

    2015-01-01

    The effect of Pt nanoparticles on the gas-phase photocatalytic oxidation activity of TiO2 is shown to be largely dependent on the molecular functionality of the substrate. We demonstrate that Pt nanoparticles decrease rates in photocatalytic oxidation of propane, whereas a strong beneficial effect

  6. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Science.gov (United States)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  7. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    International Nuclear Information System (INIS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-01-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations

  8. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M.; Howells, R. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2014-11-15

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal–oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  9. High Transparent Metal Oxide / Polyimide Antistatic Coatings, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Through this Phase I program, Agiltron has successfully produced an innovative transparent conductive nanocomposite paint that holds the promise of meeting space...

  10. Reference free phasing and representation of complex variation

    DEFF Research Database (Denmark)

    Jensen, Jacob Malte

    2017-01-01

    High throughput sequencing has revolutionized our ability to interrogate genomes and entire human genomes are sequenced daily across the world. Mapping of short reads to a reference genome has enhanced our ability to detect genetic variation and is currently the most widely used technology....... Therefore, new methods for detecting variation that reduce reference bias are needed including ways of representing genomes that account for the variability within and between populations. The major histocompatibility complex (MHC) region is one of the most diverse and complex regions of the human genome...... to detect and call variation in humans. However, it has become evident that mapping of short reads to a single reference genome is subject to ascertainment bias (reference bias). This bias is especially pronounced in complex regions of the genome and particularly hampers detection of structural variation...

  11. Environmental monitoring program for Itataia industrial complex before operational phase

    International Nuclear Information System (INIS)

    Condessa, M.L.M.B.

    1982-01-01

    This environmental monitoring program aims to characterize the environment in adjacent area of Itataia Industrial Complex. The places and frequencies of samples and measurements, as well as analysis and parameters to be measured in each type of samples are presented. (C.M.) [pt

  12. Oxidation behaviour of a Ti2AlN MAX-phase coating

    International Nuclear Information System (INIS)

    Wang Qimin; Kim, Kwangho; Garkas, W; Renteria, A Flores; Leyens, C; Sun Chao

    2011-01-01

    In this paper, we reported the oxidation behaviour of Ti 2 AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti 2 AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti 2 AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  13. Oxidation behaviour of a Ti{sub 2}AlN MAX-phase coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qimin; Kim, Kwangho [National Core Research Center for Hybrid Materials Solution, Pusan National University, Busan 609-735 (Korea, Republic of); Garkas, W; Renteria, A Flores [Chair of Physical Metallurgy and Materials Technology, Technical University of Brandenburg at Cottbus, 03046 Cottbus (Germany); Leyens, C [Institute of Materials Science, Technical University of Dresden, Helmholtzstrasse 7, 01069 Dresden (Germany); Sun Chao, E-mail: qmwang@pusan.ac.kr, E-mail: kwhokim@pusan.ac.kr [Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-10-29

    In this paper, we reported the oxidation behaviour of Ti{sub 2}AlN coatings on a -TiAl substrate. The coatings composed mainly of Ti{sub 2}AlN MAX phase were obtained by magnetron sputtering and subsequent vacuum annealing. Isothermal oxidation tests at 700-900 deg. C were performed in air. The results indicated that the oxidation resistance of the -TiAl alloy can be improved by depositing a Ti{sub 2}AlN layer on the alloy surface, especially at high temperatures. An Al-rich oxide scale formed on the coating surfaces during oxidation. This scale acts as diffusion barrier blocking the ingress of oxidation, and effectively protects the coated alloys from further oxidation attack.

  14. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  15. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex.

    Science.gov (United States)

    Lam, William W Y; Man, Wai-Lun; Wang, Yi-Ning; Lau, Tai-Chu

    2008-08-04

    The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.

  16. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  17. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  18. Phase change induced by polypyrrole in iron-oxide polypyrrole ...

    Indian Academy of Sciences (India)

    Unknown

    polymer. Polypyrrole, one of the conducting polymers, has received lot of attention in the preparation of nanocomposites due to its high stability in conducting oxidized form (Partch et al 1991; Huang and Matijevic. 1995; Maeda and Armes 1995). Nanocomposite materials based on nanosized magnetic materials have been ...

  19. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy

    International Nuclear Information System (INIS)

    Castro, V. de; Marquis, E.A.; Lozano-Perez, S.; Pareja, R.; Jenkins, M.L.

    2011-01-01

    Transmission electron microscopy and atom-probe tomography were used to characterize on a near-atomic scale the microstructure and oxide and carbide phases that form during thermo-mechanical treatments of a model oxide dispersion strengthened Fe-12 wt.% Cr-0.4 wt.% Y 2 O 3 alloy. It was found that some of the Y-rich nanoparticles retained their initial crystallographic structure but developed a Cr-enriched shell, while others evolved into ternary oxide phases during the initial processing. The Y- and Cr-rich oxide phases formed remained stable after annealing at 1023 K for 96 h. However, the number of Cr-rich carbides appeared to increase, inducing Cr depletion in the matrix.

  20. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe-12Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. de, E-mail: vanessa.decastro@uc3m.es [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Marquis, E.A.; Lozano-Perez, S. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain); Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

    2011-06-15

    Transmission electron microscopy and atom-probe tomography were used to characterize on a near-atomic scale the microstructure and oxide and carbide phases that form during thermo-mechanical treatments of a model oxide dispersion strengthened Fe-12 wt.% Cr-0.4 wt.% Y{sub 2}O{sub 3} alloy. It was found that some of the Y-rich nanoparticles retained their initial crystallographic structure but developed a Cr-enriched shell, while others evolved into ternary oxide phases during the initial processing. The Y- and Cr-rich oxide phases formed remained stable after annealing at 1023 K for 96 h. However, the number of Cr-rich carbides appeared to increase, inducing Cr depletion in the matrix.

  1. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  2. Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics

    Directory of Open Access Journals (Sweden)

    Anna Kachina

    2007-01-01

    Full Text Available Gas-phase photocatalytic oxidation (PCO and thermal catalytic oxidation (TCO of dimethylamine (DMA on titanium dioxide was studied in a continuous flow simple tubular reactor. Volatile PCO products of DMA included ammonia, formamide, carbon dioxide, and water. Ammonia was further oxidized in minor amounts to nitrous oxide and nitrogen dioxide. Effective at 573 K, TCO resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The PCO kinetic data fit well to the monomolecular Langmuir-Hinshelwood model, whereas TCO kinetic behaviour matched the first-order process. No deactivation of the photocatalyst during the multiple long-run experiments was observed.

  3. Complex phase behavior in solvent-free nonionic surfactants

    DEFF Research Database (Denmark)

    Hillmyer, M.A.; Bates, F.S.; Almdal, K.

    1996-01-01

    Unsolvated block copolymers and surfactant solutions are ''soft materials'' that share a common set of ordered microstructures, A set of polyethyleneoxide-polyethylethylene (PEG-PEE) block copolymers that are chemically similar to the well-known alkane-oxyethylene (C(n)EO(m)) nonionic surfactants...... was synthesized here. The general phase behavior in these materials resembles that of both higher molecular weight block copolymers and lower molecular weight nonionic surfactant solutions. Two of the block copolymers exhibited thermally induced order-order transitions and were studied in detail by small...

  4. Acute phase proteins in cattle after exposure to complex stress

    DEFF Research Database (Denmark)

    Lomborg, S. R.; Nielsen, L. R.; Heegaard, Peter M. H.

    2008-01-01

    Abstract Stressors such as weaning, mixing and transportation have been shown to lead to increased blood concentrations of acute phase proteins (APP), including serum amyloid A (SAA) and haptoglobin, in calves. This study was therefore undertaken to assess whether SAA and haptoglobin levels...... concentrations of SAA and haptoglobin increased significantly in response to the stressors (P...... in blood mirror stress in adult cattle. Six clinically healthy Holstein cows and two Holstein heifers were transported for four to six hours to a research facility, where each animal was housed in solitary tie stalls. Blood samples for evaluation of leukocyte counts and serum SAA and haptoglobin...

  5. Phases quantification in titanium oxides by means of X-ray diffraction

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Ita T, A. de; Chavez R, A.

    2001-01-01

    In this work two phases of titanium oxides are quantified which belong to the same crystalline system and by means of a computer program named Quanto created by the first author, contains the information for calculating the absorption coefficients, it can be quantified phases having one of the pure phases and the problem samples. In order to perform this work different mixtures of different titanium oxides were prepared measuring by means of the X-ray diffraction technique in the Siemens X-ray diffractometer of ININ which were processed with the Peakfit package and also they were evaluated by means of the computer program with the necessary information finding acceptable results. (Author)

  6. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  7. Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes

    Science.gov (United States)

    Ngwack, Bernd; Sigg, Laura

    1997-03-01

    The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.

  8. Measuring the complex behavior of the SO2 oxidation reaction

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad

    2015-09-01

    Full Text Available The two step reversible chemical reaction involving five chemical species is investigated. The quasi equilibrium manifold (QEM and spectral quasi equilibrium manifold (SQEM are used for initial approximation to simplify the mechanisms, which we want to utilize in order to investigate the behavior of the desired species. They show a meaningful picture, but for maximum clarity, the investigation method of invariant grid (MIG is employed. These methods simplify the complex chemical kinetics and deduce low dimensional manifold (LDM from the high dimensional mechanism. The coverage of the species near equilibrium point is investigated and then we shall discuss moving along the equilibrium of ODEs. The steady state behavior is observed and the Lyapunov function is utilized to study the stability of ODEs. Graphical results are used to describe the physical aspects of measurements.

  9. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Combined gas-phase oxidation of methane and ethylene

    International Nuclear Information System (INIS)

    Pogosyan, N.M.; Pogosyan, M.D.

    2009-01-01

    It is established that depending on the reaction conditions combined oxidation of methane and ethylene may result in ethylene and propylene oxides with high selectivity with respect to the process, where in the initial reaction mixture methane is replaced by the same quantity of nitrogen. The formed additional methyl radicals increase the yield of all reaction products except CO. At low temperatures methyl radicals react with oxygen resulting in methyl peroxide radicals, which in turn, reacting with ethylene provide its epoxidation and formation of other oxygen-containing products. At high temperatures as a result of addition reaction between methyl radicals and ethylene, propyl radicals are formed that, in turn yield propylene. Alongside with positive influence on the yield of reaction products, methane exerts negative influence upon the conversion, that is it decreases the rate of ethylene and oxygen conversion, simultaneously decreasing significantly the yield of CO

  11. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  12. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  13. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  14. Phase composition and catalytic properties of oxide multicomponent molybdenum-containing catalysts for partial oxidation of propylene

    International Nuclear Information System (INIS)

    Malakhov, V.V.; Vlasov, A.A.; Boldyreva, N.N.; Dovlitova, L.S.; Plyasova, L.M.; Andrushkevich, T.V.; Kuznetsova, T.G.

    1996-01-01

    The catalytic properties and phase composition of multicomponent molybdenum-containing catalyst treated under various redox conditions have been studied. The phase composition has been considered by the methods of X-ray phase analysis and noncalibrated methods of differentiating dissolution (DD). Using the DD method the data on element composition, stoichiometry and quantitative content of phases of complex molybdates have been obtained for the first time. Data on modification of basic phases of the catalyst-cobalt and iron molybdates - by other cations from its composition suggest that the mechanism of action of the multicomponent catalyst is defined by the properties of one or several formed modified phases combining all the functions of an effective catalyst. 18 refs., 7 figs., 2 tabs

  15. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR COMPLEX FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Athanassios Z. Panagiotopoulos

    2009-09-09

    The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.

  16. Molecular Simulation Of Phase Equilibria For Complex Fluids

    International Nuclear Information System (INIS)

    Panagiotopoulos, Athanassios Z.

    2009-01-01

    The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.

  17. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  18. Nonheme oxoiron(IV) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity

    OpenAIRE

    Wang, Dong; Ray, Kallol; Collins, Michael J.; Farquhar, Erik R.; Frisch, Jonathan R.; Gomez, Laura; Jackson, Timothy A.; Kerscher, Marion; Waleska, Arkadius; Comba, Peter; Costas, Miquel; Que, Lawrence, Jr.

    2013-01-01

    Oxoiron(IV) species have been found to act as the oxidants in the catalytic cycles of several mononuclear nonheme iron enzymes that activate dioxygen. To gain insight into the factors that govern the oxidative reactivity of such complexes, a series of five synthetic S = 1 [FeIV(O)(LN5)]2+ complexes has been characterized with respect to their spectroscopic and electrochemical properties as well as their relative abilities to carry out oxo transfer and hydrogen atom abstraction. The Fe=O units...

  19. TiO2 Photocatalyzed Oxidation of Free and Complex Metallic Cyanides.

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, J. E.; Esteghamatdarsthad, B.; Renteria, J.

    2006-07-01

    The TiO2 photo catalyzed oxidation of free cyanide and transition metal cyanide complexes often found in industrial mining wastes were studied. The photoreactor system used was a UV illuminated and stirred tank with suspended particles of TiO2. After to determine the optimization parameters such as light intensity, concentration of complex and free cyanides, in ideal conditions, the effect of the presence of different type of anions was also studied. The model substances chosen were potassium cyanide and cyanides complexes of Iron, Cobalt and Copper in a strong alkaline solution (pH = 11.0 - 12.0). The experimental results indicate that in the case of the hexaferricyanide complex Fe(CN)6 3, the reaction occur in two steps. The first step is the breakdown of the metal-cyanide bond (photo-dissociation) forming free cyanide (CN-) and Fe3+ ions. The second step is the photo-oxidation of the free cyanides formed before. The ions Fe3+ and OH- present in the alkaline solution, precipitate as iron hydroxide Fe(OH)3. During the photo-dissociation step of the iron complex, free CN- ions produced reaches a maximum concentration before it is eliminated by photo-oxidation. The free cyanide produced from the hexaferricyanide complex disappears rapidly at a velocity of 64.6 + - 5.0 ?M/min. This rate of photo-oxidation is comparable with the experiments using just alkaline solutions of potassium cyanide ('free cyanides'). In contrast, in alkaline solutions of cyanide complexes of Cu and Co the rate of photo-oxidation was substantially reduced (6.17+ - 0.80 ?M/min and 0.04 + - 0.010 ?M/min, respectively) and do not show any initial increase of free cyanides in the suspension. The slower rate of photo-oxidation suggests the formation of very stable hydroxyl-cyanide polymeric metallic complexes in the reaction mix. The photo-oxidation pathway of the nitrogen oxide products was also investigated and found that the final product consists mainly of nitrate ions. (Author)

  20. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  1. Complex magnetic monopoles, geometric phases and quantum evolution in the vicinity of diabolic and exceptional points

    International Nuclear Information System (INIS)

    Nesterov, Alexander I; Aceves de la Cruz, F

    2008-01-01

    We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase

  2. Natively oxidized amino acid residues in the spinach cytochrome b 6 f complex.

    Science.gov (United States)

    Taylor, Ryan M; Sallans, Larry; Frankel, Laurie K; Bricker, Terry M

    2018-01-29

    The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10-20 fold higher than that observed for the analogous respiratory cytochrome bc 1 complex. The types of ROS produced (O 2 •-, 1 O 2 , and, possibly, H 2 O 2 ) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p •- (possible sources for O 2 •- ), the Rieske iron-sulfur cluster (possible source of O 2 •- and/or 1 O 2 ), Chl a (possible source of 1 O 2 ), and heme c n (possible source of O 2 •- and/or H 2 O 2 ). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.

  3. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  4. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  5. Nitrous oxide: Saturation properties and the phase diagram

    International Nuclear Information System (INIS)

    Ferreira, A.G.M.; Lobo, L.Q.

    2009-01-01

    The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.

  6. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    DEFF Research Database (Denmark)

    Baatrup, G; Jonsson, H; Sjöholm, A

    1988-01-01

    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were...

  7. Oxidation kinetics of a Pb-64 at.% In single-phase alloy

    International Nuclear Information System (INIS)

    Zhang, M.X.; Chang, Y.A.; Marcotte, V.C.

    1991-01-01

    The solid-state oxidation kinetics of a Pb-64 at.% IN(50 wt.%) single-phase alloy were studied from room temperature to 150C using AES (Auger Electron Spectroscopy) depth profiling technique. The general oxidation behavior of this alloy is different from that of a Pb-3 at.% In alloy but similar to that of a Pb-30 at.% In alloy. The oxide formed on this alloy is almost pure In oxide (In 2 O 3 ) with the possible existence of some In suboxide near the oxide/alloy interface. At room temperature, oxidation of the alloy follows a direct logarithmic law, and the results can be described by the model proposed previously by Zhang, Chang, and Marcotte. At temperatures higher than 75C, rapid oxidation occurred initially followed by a slower parabolic oxidation at longer time. These data were described quantitatively by the model which assumes the existence of short-circuit diffusion in addition to lattice diffusion in the oxide as proposed by Smeltzer, Haering, and Kirkaldy. The effects of alloy composition in the oxidation kinetics of (pb, In) alloy are also examined by comparing the data for Pb-3, 30, and 64 at.% In alloys

  8. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    International Nuclear Information System (INIS)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M.; Sa, Gilberto F.

    2013-01-01

    The Tb 3+ -β-diketonate complexes [Tb(DBM) 3 L], [Tb(DBM) 2 (NO 3 )L 2 ] and [Tb(DBM)(NO 3 ) 2 (HMPA) 2 ] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd 3+ complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  9. Vanadium oxide monolayer catalysts : The vapor-phase oxidation of methanol

    NARCIS (Netherlands)

    Roozeboom, Fred; Cordingley, Peter D.; Gellings, P.J.

    1981-01-01

    The oxidation of methanol over vanadium oxide, unsupported and applied as a monolayer on γ-Al2O3, CeO2, TiO2, and ZrO2, was studied between 100 and 400 °C in a continuous-flow reactor. At temperatures from 150 to about 250 °C two main reactions take place, (a) dehydration of methanol to dimethyl

  10. Potential Impacts of two SO2 oxidation pathways on regional sulfate concentrations: acqueous-hase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates

    Science.gov (United States)

    We examine the potential impacts of two additional sulfate production pathways using the Community Multiscale Air Quality modeling system. First we evaluate the impact of the aqueous-phase oxidation of S(IV) by nitrogen dioxide using two published rate constants, differing by 1-2...

  11. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  12. Influence of cobalt oxide on structure and phase composition of zirconium-containing materials

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1986-01-01

    Effect of Co 3 O 4 addition in a quantity from 10 to 90% on microstructure, phase content, lattice parameter and structure of ZrO 2 ceramics spallings stabilized with yttrium oxide, is studied. It is found out that in the process of ceramics synthesis the formation of three-phased heterogeneous system of matrix type occurs. At cobalt oxide content within the range of 10-30% a matrix consist of ZrO 2 base solid solution, at cobalt oxide content from 50 to 90% it is a matrix base, at 40% Co 3 O 4 the regions with both type matrixes exist. Cobalt oxide introduction decreases the sintering temperature without loss in operation indices of heat sensitive ceramics for resistance transducers

  13. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  14. The liquid phase oxidation of n-butane: a search for plausible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, C.C. [Celanese Ltd., TX (United States). Corpus Christi Technical Center

    1998-12-31

    This articles deals with an approach that has given some key information about the mechanisms of the liquid phase oxidation of butane to acetic acid. This procedure has been developed over the last 34 years; however, much of what will be discussed represents a synthesis of previous insights. Many of the observations are relatively recent and have not been previously published. In principle, this approach should be applicable to many oxidation processes. (orig.)

  15. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    International Nuclear Information System (INIS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°

  16. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: mizutani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)

    2014-08-30

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  17. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  18. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  19. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk

    2013-01-01

    The oxidation of phenol, cychohexanol and hydroquinone has been screened in the presence of copper(II) complexes with the Schiff‐base salen ligand, 1,5‐bis[(E)‐5‐chloro‐2‐hydroxybenzylideneamino]‐1H‐imidazole‐4‐carbonitrile, and encapsulated into NaY zeolite by using two different methods. The new...

  20. Thermochemistry of the complex oxides of uranium, vanadium, and alkali metals

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Suleimanov, E.V.; Kharyushina, E.A.

    1992-01-01

    The standard enthalpies of the formation at T 298.15 K of complex oxides of uranium(VI), vanadium(V) and alkali metals with the general formula M 1 VUO 6 where M 1 = Na, K, Rb, and Cs, were calculated from the results of calorimetric experiments and from published data. 8 refs., 1 tab

  1. Toluidine blue-sodium lauryl ether sulfate complexes : Influence of ethylene oxide length

    NARCIS (Netherlands)

    Vleugels, L.F.W.; Féat, A.; Voets, I.K.; Tuinier, R.

    2017-01-01

    Sodium Lauryl Ether Sulfates (SLES) are an increasingly important and versatile type of surfactants. The complexation between ortho-Toluidine blue (TBO) and a homologous series of SLES, including Sodium Lauryl Sulfate (SDS) without Ethylene Oxide (EO), has been investigated using visible

  2. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems

    Science.gov (United States)

    Craig L. Hill; Laurent Delannoy; Dean C. Duncan; Ira A. Weinstock; Roman F. Renneke; Richard S. Reiner; Rajai H. Atalla; Jong Woo Han; Daniel A. Hillesheim; Rui Cao; Travis M. Anderson; Nelya M. Okun; Djamaladdin G. Musaev; Yurii V. Geletii

    2007-01-01

    Progress in four interrelated catalysis research efforts in our laboratory are summarized: (1) catalytic photochemical functionalization of unactivated CeH bonds by polyoxometalates (POMs); (2) self-repairing catalysts; (3) catalysts for air-based oxidations under ambient conditions; and (4) terminal oxo complexes of the late-transition metal elements and their...

  4. Study of the emission oxidative reactions of ruthenium (II) complex by cationic compounds in anionic micelles

    International Nuclear Information System (INIS)

    Bonilha, J.B.S.

    1985-01-01

    The oxidative quenching of the emission of the tetraanionic complex tris (4,4' dicarboxylate - 2,2' - bipyridine ruthenium (II) in aqueous solution, by both organic and inorganic compounds in presence of anionic detergents, above and below the critical micelle concentration is studied. The organic cations, the inorganic ion and detergents used are shown. (M.J.C.) [pt

  5. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  6. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  7. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  8. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  9. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  10. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2015-12-01

    Full Text Available Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La complex were added as a filler to form natural rubber (NR composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR and thermogravimetric analysis (TGA, a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  11. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber.

    Science.gov (United States)

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W; Wu, Sizhu

    2015-12-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  12. Enthalpy changes when passing from simple to complex perovskite-like oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.

    1999-01-01

    Formation enthalpies of complex perovskite-like oxides and their hexagonal analogs of the composition: Ba 2 ReFeO 6 , Sr 2 ReFeO 6 , Sr 2 ReMnO 6 , Ca 2 ReMnO 6 , Sr 2 WCrO 6 , Sr 2 MoCrO 6 , Ca 2 MoCrO 6 , Ca 2 WCrO 6 , Ba 3 Fe 2 ReO 9 , Ba 3 Cr 2 ReO 9 , Ba 2 RhTaO 6 and B 2 ScIrO 6 from simple oxides were calculated by approximate method using enthalpies of the cations coordination change in oxygen medium. The conclusion was made that enthalpy stabilization of the oxide with regard to simple oxides is mainly determined by the change in enthalpies of alkaline earth metal cations [ru

  13. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    Science.gov (United States)

    Zheng, Wei; Liu, Li; Zhao, Xiuying; He, Jingwei; Wang, Ao; Chan, Tung W.; Wu, Sizhu

    2015-01-01

    Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La) complex were added as a filler to form natural rubber (NR) composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and thermogravimetric analysis (TGA), a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT) calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD. PMID:26693513

  14. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  15. The single-phase multiferroic oxides: from bulk to thin film

    International Nuclear Information System (INIS)

    Prellier, W; Singh, M P; Murugavel, P

    2005-01-01

    Complex perovskite oxides exhibit a rich spectrum of properties, including magnetism, ferroelectricity, strongly correlated electron behaviour, superconductivity and magnetoresistance, which have been research areas of great interest among the scientific and technological community for decades. There exist very few materials which exhibit multiple functional properties; one such class of materials is called the multiferroics. Multiferroics are interesting because they exhibit simultaneously ferromagnetic and ferroelectric polarizations and a coupling between them. Due to the nontrivial lattice coupling between the magnetic and electronic domains (the magnetoelectric effect), the magnetic polarization can be switched by applying an electric field; likewise the ferroelectric polarization can be switched by applying a magnetic field. As a consequence, multiferroics offer rich physics and novel devices concepts, which have recently become of great interest to researchers. In this review article the recent experimental status, for both the bulk single phase and the thin film form, has been presented. Current studies on the ceramic compounds in the bulk form including Bi(Fe,Mn)O 3 , REMnO 3 and the series of REMn 2 O 5 single crystals (RE = rare earth) are discussed in the first section and a detailed overview on multiferroic thin films grown artificially (multilayers and nanocomposites) is presented in the second section. (topical review)

  16. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  17. Phase dynamics of complex-valued neural networks and its application to traffic signal control.

    Science.gov (United States)

    Nishikawa, Ikuko; Iritani, Takeshi; Sakakibara, Kazutoshi; Kuroe, Yasuaki

    2005-01-01

    Complex-valued Hopfield networks which possess the energy function are analyzed. The dynamics of the network with certain forms of an activation function is de-composable into the dynamics of the amplitude and phase of each neuron. Then the phase dynamics is described as a coupled system of phase oscillators with a pair-wise sinusoidal interaction. Therefore its phase synchronization mechanism is useful for the area-wide offset control of the traffic signals. The computer simulations show the effectiveness under the various traffic conditions.

  18. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  19. Experimental study of the oxide film structural phase state in the E635 and E110 alloys

    International Nuclear Information System (INIS)

    Shevyakov, A. Yu.; Shishov, V. N.; Novikov, V. V.

    2013-01-01

    The microstructure, phase and element compositions of oxide films of E110 (Zr-1%Nb) and E635 (Zr-1%Nb-0,35%Fe-1,2%Sn) alloys after autoclave tests in pure water had been studied by the method of transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDS). TEM investigations of oxide film structure were carried on different oxide layers according to their thickness (near interface of “metal-oxide”, in central part of the oxide film and near outer surface) and in cross-section. The results of the tests show that oxide films of the alloys have different microstructure (grain size, fraction of tetragonal phase, content of defects, etc) and the phase compositions. The crystal structure of oxide films is mainly monoclinic, however, at the “metal-oxide” interface there are a significant fraction of the tetragonal phase. Researching of oxides on different stages of oxidation allow us to determine the kinetics of the second phase precipitate structure change: a) in E635 alloy at early oxidation stages of the amorphization process of the Laves phase precipitates begins with decreasing the content of iron and niobium; b) in E110 alloy the amorphization process of β-Nb precipitates begins at a later stage of oxidation. The influence of changes of the crystal structure and the chemical composition of the second phase precipitates on protective properties of the oxides had been determined. Researching of alloying element redistribution in E635 alloy oxide film shows that iron and niobium are concentrated in pores. Increased porosity of the E635 alloy oxide films at a later oxidation stage, in comparison with the E110 alloy, shows the influence of change composition and subsequent dissolution of the Laves phase particles on the pore formation in the oxide. (authors)

  20. Ionic Mobility and Phase Transitions in Perovskite Oxides for Energy Application

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2017-02-01

    Full Text Available Perovskite oxides find applications or are studied in many fields related to energy production, accumulation and saving. The most obvious application is oxygen or proton conductors in fuel cells (SOFCs, but the (antiferroelectric compositions may find application in high energy capacitors for energy storage, efficient electrocaloric cooling, and electromechanical energy harvesting. In SOFCs, the diffusion of O vacancies and other mobile ionic species, such as H+, are at the base of the functioning of the device, while in the other cases they constitute unwanted defects that reduce the performance and life-time of the device. Similarly, the (antiferroelectric phase transitions are a requisite for the use of some types of devices, but the accompanying domain walls can generate extended defects detrimental to the life of the material, and structural phase transformations should be avoided in SOFCs. All these phenomena can be studied by mechanical spectroscopy, the measurement of the complex elastic compliance as a function of temperature and frequency, which is the mechanical analogue of the dielectric susceptibility, but probes the elastic response and elastic dipoles instead of the dielectric response and electric dipoles. The two techniques can be combined to provide a comprehensive picture of the material properties. Examples are shown of the study of structural transitions and hopping and tunnelling processes of O vacancies and H in the ion conductor BaCe1-xYxO3-x and in SrTiO3-x, and of the aging and fatigue effects found in PZT at compositions where the ferro- and antiferroelectric states coexist.

  1. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2016-01-01

    Full Text Available A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane copper(I complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.

  2. Heterogeneous catalysis in the liquid-phase oxidation of olefins--3. The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1979-03-01

    The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene to 1-cyclohexenyl hydroperoxide, 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was due to the interaction between the metal oxides and the carriers. The oxidation reaction was carried out in benzene at 60/sup 0/C for four hours with the binary oxide supported on (GAMMA)-alumina or silica; three series of catalysts were prepared by combining the vanadium and chromium oxide components with alumina hydrate or silica sol by a kneading method. The silica-supported catalysts had the greatest activity, the highest being the V/sub 2/O/sub 5//SiO/sub 2/ system, which lost its activity quickly during the reaction. This was followed in activity by the Cr/sub 2/O/sub 3//SiO/sub 2/ system, containing the chromium(V) species. The Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ system also had high activity and the chromium(V) species. The vanadium and chromium metal ions are probably coordinated tetrahedrally on the support, and these complexes catalyze cyclohexene autoxidation by decomposing 1-cyclohexenyl hydroperoxide.

  3. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  4. Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Vidhi Gaur

    2016-09-01

    Full Text Available Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex. Adaptations include increased metabolic gene expression, mitochondrial capacity, and lipid oxidation. An existing HDAC inhibitor, Scriptaid, had similar phenotypic effects through disruption of the class IIa HDAC corepressor complex. Acute Scriptaid administration to mice increased the expression of metabolic genes, which required an intact class IIa HDAC corepressor complex. Chronic Scriptaid administration increased exercise capacity, whole-body energy expenditure and lipid oxidation, and reduced fasting blood lipids and glucose. Therefore, compounds that disrupt class IIa HDAC function could be used to enhance metabolic health in chronic diseases driven by physical inactivity.

  5. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  6. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  7. Engineering Interfacial Energetics: A Novel Hybrid System of Metal Oxide Quantum Dots and Cobalt Complex for Photocatalytic Water Oxidation

    International Nuclear Information System (INIS)

    Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin

    2016-01-01

    Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.

  8. Long-term oxidization and phase transition of InN nanotextures

    Directory of Open Access Journals (Sweden)

    Dražic Goran

    2011-01-01

    Full Text Available Abstract The long-term (6 months oxidization of hcp-InN (wurtzite, InN-w nanostructures (crystalline/amorphous synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-O x -N y (indium oxynitride phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-O x -N y oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-O x -N y phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase.

  9. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  10. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    Science.gov (United States)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  11. Complexation of Phenol and Thiophenol by Amine N-Oxides: Isothermal Titration Caloritmetry and ab Initio Calculations

    NARCIS (Netherlands)

    Cuypers, R.; Sukumaran, M.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for removal of phenols from water the complex formation of dimethyldodecylamine. N-oxide (DMDAO), trioctylamine N-oxide (TOAO), and tris(2-ethylhexyl)amine N-oxide (TEHAO) with phenol (PhOH) and thiophenol (PhSH) is studied To this end we use

  12. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  13. Application of Ab Initio Results in Modeling Phase Diagrams Containing Complex Phases

    Czech Academy of Sciences Publication Activity Database

    Šob, Mojmír; Kroupa, Aleš; Pavlů, Jana; Vřešťál, J.

    2012-01-01

    Roč. 6, č. 1 (2012), s. 39-47 ISSN 1880-9871 R&D Projects: GA ČR(CZ) GAP108/10/1908; GA MŠk(CZ) OC10008; GA MŠk LD11024; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z20410507 Keywords : computer aided analysis * iron and steel * phase transformations Subject RIV: BJ - Thermodynamics

  14. The semiquantitative three-phase bone scintigraphy on hemiplegic patients with earlier complex regional pain syndrome

    International Nuclear Information System (INIS)

    Li Fang; Liu Xingdang; Lu Zhihui; Liu Congjin

    2010-01-01

    Objective: To investigate the difference between the early phases and delay phase of three-phase bone scintigraphy on hemiplegic patients with earlier complex regional pain syndrome (CRPS). Methods: Twenty-nine stroke patients with hemiplegia complicating CRPS received three-phase bone scintigraphy after intravenous injection of 99 Tc m -methylene diphosphonate (MDP). The region of interest (ROI) technique was used to obtain the radioactive counts of involved joints and contralateral sites on wrists, metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints. The total counts of these four sites in each patient were then obtained and the total uptake ratios of involved joints/contralateral joints for each phase were calculated to compare the difference among the three phases. Wilcoxon test and ANOVA were used in data analyses. Results: The involved joints of hemiplegic side displayed higher tracer uptake. There were significant differences of the radioactive counts between involved joints and uninvolved ones in the perfusion, pool and delay phase (Wilcoxon test, Z: -4.73 to -2.10, P<0.05). There was no significant difference of total uptake ratios of involved joints/contralateral joints among the three phases (ANOVA, F = 0. 807, P < 0.05). Conclusions: Due to higher bone seeking agent accumulation on three-phase bone scintigraphy, both early phases and delay phase imaging showed similar value in stroke patients with hemiplegia complicating earlier CRPS. (authors)

  15. Origin of Fe-Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite-Gabbro Intrusive Complex (Northern Karelia, Russia)

    Science.gov (United States)

    Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.

    2018-03-01

    Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and

  16. X-ray diffraction study of phase transitions in iron(II) trisnioximate hexadecylboronate clathrochelate complex

    International Nuclear Information System (INIS)

    Vorontsov, I.I.; Antipin, M.Yu.; Dubovik, I.I.; Papkov, V.S.; Potekhin, K.A.; Voloshin, Ya.Z.; Stash, A.I.; Belsky, V.K.

    2001-01-01

    Crystals of the iron(II) nioximate hexadecylboronate clathrochelate complex-FeNx 3 (BHd ) 2 [tris(μ-1,2-cyclohexanedionedioximato-O:O ' )di-n-hexadecyldiborato(2-) - N,'''N''',N''',N''',N''',N ' ]iron(II) - are investigated by differential scanning calorimetry and X-ray diffraction. Two structural phase transitions are revealed at T cr1 = 290(3) K and T cr2 = 190(3) K. The crystal structures of phases I, II, and III are determined by X-ray diffraction analysis at 303, 243, and 153 K, respectively. It is demonstrated that the I ↔ II phase transition is due to a change in the system of translations, and the II ↔ III phase transition is accompanied only by a jumpwise change in the unit cell parameters. The possible mechanisms of phase transitions are discussed in terms of geometry and molecular packing of FeNx 3 (BHd) 2 in all three phases

  17. Phase transition and computational complexity in a stochastic prime number generator

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, L; Luque, B [Departamento de Matematica Aplicada y EstadIstica, ETSI Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Miramontes, O [Departamento de Sistemas Complejos, Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Mexico 01415 DF (Mexico)], E-mail: lucas@dmae.upm.es

    2008-02-15

    We introduce a prime number generator in the form of a stochastic algorithm. The character of this algorithm gives rise to a continuous phase transition which distinguishes a phase where the algorithm is able to reduce the whole system of numbers into primes and a phase where the system reaches a frozen state with low prime density. In this paper, we firstly present a broader characterization of this phase transition, both in analytical and numerical terms. Critical exponents are calculated, and data collapse is provided. Further on, we redefine the model as a search problem, fitting it in the hallmark of computational complexity theory. We suggest that the system belongs to the class NP. The computational cost is maximal around the threshold, as is common in many algorithmic phase transitions, revealing the presence of an easy-hard-easy pattern. We finally relate the nature of the phase transition to an average-case classification of the problem.

  18. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    Science.gov (United States)

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  19. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...

  20. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    Science.gov (United States)

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  1. Extraction complexes of Pu(IV) with carbamoylmethylphosphine oxide ligands. A relativistic density functional study

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Lan, Jian-Hui; Feng, Yi-Xiao; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun; Wei, Yue-Zhou

    2014-01-01

    The extraction complexes of Pu(IV) with n-octyl(phenyl)-N,N-diisobutyl-methylcarbamoyl phosphine oxide (CMPO) and diphenyl-N,N-diisobutyl carbamoyl phosphine oxide (Ph 2 CMPO) have been studied by using density functional theory (DFT) combined with relativistic small-core pseudopotentials. For most complexes, the CMPO and Ph 2 CMPO molecules are coordinated as bidentate chelating ligands through the carbonyl oxygen and phosphoric oxygen atoms. The metal-ligand bonding is mainly ionic for all of these complexes. The neutral PuL(NO 3 ) 4 and PuL 2 (NO 3 ) 4 complexes are predicted to be the most thermodynamically stable molecules according to the metal-ligand complexation reactions. In addition, hydration energies may also play a significant role in the extractability of CMPO and Ph 2 CMPO for the plutonium cations. In most cases, the complexes with CMPO possess qualitatively similar geometries and electron structures to those with Ph 2 CMPO, and they also have comparable metal-ligand binding energies. Thus, replacement of alkyl groups by phenyl groups at the phosphorus atom of CMPO seems to have no obvious influence on the extraction of Pu(IV). (orig.)

  2. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  3. Bright electroluminescence from a chelate phosphine oxide Eu{sup III} complex with high thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hui [School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang Province (China); Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Yin Kun; Wang Lianhui [Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Huang Wei [Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: wei-huang@njupt.edu.cn

    2008-10-01

    The chelate phosphine oxide ligand 1,8-bis(diphenylphosphino)naphthalene oxide (NaPO) was used to prepare complex 1 tris(2-thenoyltrifluoroacetonate)(1,8-bis(diphenylphosphino)naphthalene oxide)europium(III). The rigid structure of NaPO makes 1 have more compact structure resulting in a temperature of glass transition as high as 147 deg. C, which is the highest in luminescent Eu{sup III} complexes, and a higher decomposition temperature of 349 deg. C. The improvement of carrier transfer ability of NaPO was proved by Gaussian simulation. The multi-layered electroluminescent device based on 1 had a low turn-on voltage of 6.0 V, the maximum brightness of 601 cd m{sup -2} at 21.5 V and 481.4 mA cm{sup -2}, and the excellent voltage-independent spectral stability. These properties demonstrated NaPO cannot only be favorable to form the rigid and compact complex structure, and increase the thermal and morphological stability of the complex, but also reduce the formation of the exciplex.

  4. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  5. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    Institute of Scientific and Technical Information of China (English)

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  6. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  7. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  8. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  9. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    Science.gov (United States)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  10. Crystalline oxides on semiconductors: A structural transition of the interface phase

    Science.gov (United States)

    Walker, F. J.; Buongiorno-Nardelli, Marco; Billman, C. A.; McKee, R. A.

    2004-03-01

    The growth of crystalline oxides on silicon is facilitated by the preparation of a surface phase of alkaline earth silicide. We describe how the surface phase serves as a precursor of the final interface phase using reflection high energy electron diffraction (RHEED) and density functional theory (DFT). RHEED intensity oscillations of the growth of BaSrO show layer-by-layer build up of the oxide on the interface. The 2x1 symmetry of the surface precursor persists up to 3 ML BaSrO coverage at which point a 1x1 pattern characteristic of the rock-salt structure of BaSrO is observed. Prior to 3 ML growth of alkaline earth oxide, DFT calculations and RHEED show that the surface precursor persists as the interface phase and induces large displacements in the growing oxide layer away from the rock-salt structure and having a 2x1 symmetry. These distortions of the rock-salt structure are energetically unfavorable and become more unfavorable as the oxide thickness increases. At 3 ML, the stability of the rock-salt structure drives a structural transformation of the film and the interface phase to a structure that is distinct from the surface precursor. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.

  11. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  12. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    International Nuclear Information System (INIS)

    Gomez, Celia L.; Depablos-Rivera, Osmary; Silva-Bermudez, Phaedra; Muhl, Stephen; Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre; Camps, Enrique; Rodil, Sandra E.

    2015-01-01

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi 2 O 3 thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi 2 O 3 phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi 2 O 3 thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV

  13. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  14. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  15. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  16. In-situ formation of complex oxide precipitates during processing of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Jayasankar, K.; Pandey, Abhishek; Mishra, B.K.; Das, Siddhartha

    2016-01-01

    Highlights: • Use of dual drive planetary ball mill for Bench scale (>1 kg) production. • X-ray diffraction and TEM were used to study transformations during sintering. • HIPped and rolled samples with nearly 99% density successfully produced. - Abstract: In fusion and fission reactor material development, ODS alloys are the most suitable candidate materials due to its high temperature creep properties and irradiation resistance properties. This paper describes the preparation of oxide dispersion strengthened alloy powder in large quantity (>1 kg batch) in dual drive planetary ball mill using pre-alloyed ferrtic steel powder with nano sized Y_2O_3. The consolidation of the powders was carried out in hot isostatic press (HIP) followed by hot rolling. 99% of the theoretical density was achieved by this method. The vickers hardness values of pressed and rolled samples were in the range of 380 ± 2HV and 719 ± 2HV, respectively. Samples were further investigated using X-ray diffraction particle size analyzer and electron microscope. Initial increase in particle size with milling was observed showing flattening of the particle. It was found that 5 h of milling time is sufficient to reduce the particle size to achieve the desired size. Transmission electron microscopy analysis of milled ODS steel powder revealed a uniform distribution of combustion synthesized nano-Y_2O_3 in ferritic steel matrix after a milling time of 5 h. Preliminary results demonstrated suitability of dual drive planetary ball mill for mass production of alloy within a short time due to various kinds of forces acting at a time during milling process. Fine monoclinic Y_2Si_2O_7 precipitates were also observed in the steel. This study explains the particle characteristics of nano Y_2O_3 dispersed ODS powder and formation of nano clusters in ODS ferritic alloy.

  17. Complexation of amidocarbamoyl phosphine oxides with Ln{sup +3} (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh [Alzahra Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2016-05-01

    In the present study, we have mainly investigated the nature of interactions in Ln{sup 3+} (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln{sup 3+} cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln{sup 3+} cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO]{sup 3+} and [Ln-CPPO]{sup 3+} complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln{sup 3+} complexes series show a similar trend with increasing in the hardness of Ln{sup 3+} cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  18. Complexation of amidocarbamoyl phosphine oxides with Ln+3 (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    International Nuclear Information System (INIS)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh

    2016-01-01

    In the present study, we have mainly investigated the nature of interactions in Ln 3+ (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln 3+ cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln 3+ cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO] 3+ and [Ln-CPPO] 3+ complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln 3+ complexes series show a similar trend with increasing in the hardness of Ln 3+ cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  19. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  20. Controlling the oxidation of bis-tridentate cobalt(ii) complexes having bis(2-pyridylalkyl)amines: ligand vs. metal oxidation.

    Science.gov (United States)

    Anjana, S; Donring, S; Sanjib, P; Varghese, B; Murthy, Narasimha N

    2017-08-22

    Two bis-tridentate chelated cobalt(ii) complexes, which differ in the ligand structure by a methylene group, activate molecular oxygen (O 2 ), and give different oxidation products. The O 2 reaction of [Co II (pepma) 2 ] 2+ (1) with unsymmetrical 2-(2-pyridyl)-N-(2-pyridylmethyl)ethanamine (pepma) results in ligand oxidation, to the corresponding Co(ii) imine complex [Co II (pepmi) 2 ] 2+ (2). Contrastingly, the Co(ii) complex [Co II (bpma) 2 ] 2+ (3) of similar symmetrical bis(2-pyridylmethyl)amine (bpma), undergoes metal oxidation, yielding a cobalt(iii) complex, [Co III (bpma) 2 ] 2+ (4). The reversibility of the amine to imine conversion and the stability of the Co(ii) imine complex (2) are investigated. Furthermore, the solution dynamics of Co(ii) complexes are highlighted with the help of paramagnetic 1 H-NMR spectroscopy.

  1. Peculiarities in film growth of ferroelectric complex oxides in ion-plasma sputtering

    International Nuclear Information System (INIS)

    Mukhortov, V.M.; Golovko, Yu.I.; Mukhortov, Vl.M.; Dudkevich, V.P.

    1981-01-01

    Experimental investigation into the process of complex oxide film growth (using BaTiO 3 and (Ba,Sr)TiO 3 as an example) during ion-plasma sputtering has been carried out. It is shown that neutral excited atoms are knocked out of a ceramic target during its ion bombardment. Removing from the target they loss energy at the expence of collisions and at some distance hsub(cr) the oxidation reaction (BaO, TiO, TiO 2 , SrO) becomes possible. So the ''construction'' material comes in either in the form of atoms or in the form of molecules of simple oxides depending on a distance between cathode and substrate. Two mechanisms of synthesis and crystallization distinguished with dependences of growth rate, elementary cell parameters and other structure characteristics on precipitation temperature correspond to two precipitation mechanisms. Part of re-evaporation and reduction processes is discussed [ru

  2. Multistep Oxidation of Diethynyl Oligophenylamine-Bridged Diruthenium and Diiron Complexes.

    Science.gov (United States)

    Zhang, Jing; Guo, Shen-Zhen; Dong, Yu-Bao; Rao, Li; Yin, Jun; Yu, Guang-Ao; Hartl, František; Liu, Sheng Hua

    2017-01-17

    Homo-dinuclear nonlinear complexes [{M(dppe)Cp*} 2 {μ-(-C≡C) 2 X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η 5 -C 5 Me 5 ; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1 H, 13 C, and 31 P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a] + with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.

  3. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  4. TEMPERATURE TRENDS OF THE PERMITTIVITY IN COMPLEX OXIDES OF RARE-EARTH ELEMENTS WITH PEROVSKITE-TYPE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A.G.Belous

    2003-01-01

    Full Text Available Ceramic materials based on complex oxides with both the perovskite structure (Ln2/3Nb2O6 and the structure of tetragonal tungsten bronze (Ba6-xLn8+2x/3Ti18O54 have been investigated over a wide frequency and temperature ranges. The results obtained for certain structures denote the presence of the temperature anomalies of dielectric parameters (ε, tanδ. These anomalies occur over the wide frequency range including submilimeter (SMM wavelength range, and are related neither with the processing peculiarities nor with the presence of the phase transitions. Temperature behavior of the permittivity has been considered in terms of the polarization mechanism based on the elastic-strain lattice oscillations. It has been assumed that the observed anomalies could be ascribed to a superposition of harmonic and anharmonic contribution to lattice oscillations that determines τε sign and magnitude.

  5. Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry.

    Science.gov (United States)

    Maria, Leonor; Santos, Isabel C; Santos, Isabel

    2018-05-23

    The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.

  6. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  7. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sachdeva, T.O.; Pant, K.K. [Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016 (India)

    2010-09-15

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO{sub x}) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  8. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst

    International Nuclear Information System (INIS)

    Sachdeva, T.O.; Pant, K.K.

    2010-01-01

    High sulfur level in diesel fuel has been identified as a major contributor to air pollutant in term of sulfur dioxide (SO x ) through diesel fueled vehicles. The main aim of the present work is to develop a promising methodology for ultra deep desulfurization of diesel fuel using oxidation followed by phase transfer of oxidized sulfur. Experiments were carried out in a batch reactor using n-decane as the model diesel compound and also using commercial diesel feedstock. To remove sulfur tetraoctylammonium bromide, phosphotungstic acid, and hydrogen peroxide were used as phase transfer agent, catalyst and oxidant respectively. The percent sulfur removal increases with increasing the initial concentration of sulfur in fuel and with increasing the reaction temperature. Similar trends were observed when commercial diesel was used to carry out desulfurization studies. The amphiphilic catalyst serves as a catalyst and also as an emulsifying agent to stabilize the emulsion droplets. The effects of temperature, agitation speed, quantity of catalyst and the phase transfer agent were studied to estimate the optimal conditions for the reactions. The sulfur removal from a commercial diesel by phase transfer catalysis has been found effective and removal efficiency was more than 98%. Kinetic experiments carried out for the desulfurization revealed that the sulfur removal results are best fitted to a pseudo first order kinetics and the apparent activation energy of desulfurization was 30.6 kJ/mol. (author)

  9. Online Measurements of Highly Oxidized Organics in the Gas and Particle phase during SOAS and SENEX

    Science.gov (United States)

    Lopez-Hilfiker, F.; Lee, B. H.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Thornton, J. A.

    2014-12-01

    We present measurements of a large suite of gas and particle phase organic compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington and with airborne HR-ToF-CIMS measurements. The FIGAERO instrument was deployed on the Jülich Plant Atmosphere Chamber to study α-pinene oxidation, and subsequently at the SMEAR II forest station in Hyytiälä, Finland and the SOAS ground site, in Brent Alabama. During the Southern Atmosphere Study, a gas-phase only version of the HR-ToF-CIMS was deployed on the NOAA WP-3 aircraft as part of SENEX. We focus here on highly oxygenated organic compounds derived from monoterpene oxidation detected both aloft during SENEX and at the ground-based site during SOAS. In both chamber and the atmosphere, many highly oxidized, low volatility compounds were observed in the gas and particles and many of the same compositions detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition such as O/C ratios, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. The detailed structure in the thermograms reveals a significant contribution from large molecular weight organics and/or oligomers in both chamber and ambient aerosol samples. Approximately 50% of the measured organics in the particle phase are associated with compounds having effective vapour pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. We discuss the implications of these findings for measurements of gas-particle partitioning and for evaluating the contribution of monoterpene oxidation to organic aerosol formation and growth. We also use the aircraft measurements and a

  10. A study of the oxidation of nickel-titanium intermetallics. II. Phase composition of the scale

    Energy Technology Data Exchange (ETDEWEB)

    Chuprina, V G [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1989-06-01

    The phase composition of the scale formed on NiTi during oxidation in air in the temperature range 600-1000 C was investigated by X-ray diffraction and layer-by-layer metallographic analyses. The scale was found to contain NiO, NiO.TiO2, TiO2, Ti2O3, Ti3O5, Ni, and Ni(Ti) solid solution; an Ni3Ti sublayer was present at the scale-alloy boundary. Oxygen diffusion in the scale toward the sublayer and counterdiffusion of Ni(+2) were found to be the principal processes responsible for NiTi oxidation. 8 refs.

  11. Detection of OH on photolysis of styrene oxide at 193 nm in gas phase

    Science.gov (United States)

    Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.

    2006-10-01

    Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.

  12. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    Science.gov (United States)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The

  13. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    Science.gov (United States)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  15. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    Science.gov (United States)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  16. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    Science.gov (United States)

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The influence of surfactant on the synthesis of gamma ferric oxide: implications on phase composition and magnetic properties

    International Nuclear Information System (INIS)

    Narasimhan, B.R.V.; Prabhakar, S.; Manohar, P.; Gnanam, F.D.

    2002-01-01

    It has already been established that ferrous carbonate precipitated from the reaction of ferrous sulphate and sodium carbonate, on direct thermal decomposition yields gamma ferric oxide. The present work describes the effect of sodium lauryl sulphate (Sodium dodecyl sulphate) on the synthesis of gamma ferric oxide when it is introduced during the precipitation of ferrous carbonate. Since ferrous carbonate undergoes rapid oxidation on standing in air, the extent of oxidation in presence of sodium lauryl sulphate is also studied using oxidation-reduction potential measurements. The ferric oxide powders are characterized for phase analysis (XRD), magnetic properties (VSM) and particle size analysis. (author)

  18. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  19. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Science.gov (United States)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  20. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  1. Study of the degradation of organic molecules complexing radionuclides by using Advanced Oxidation Processes

    International Nuclear Information System (INIS)

    Rekab, K.

    2014-01-01

    This research thesis reports the study of the application of two AOPs (Advanced Oxidation Processes) to degrade and mineralise organic molecules which are complexing radio-elements, and thus to allow their concentrations by trapping on mineral matrices. EDTA (ethylene diamine tetraacetic acid) is chosen as reference organic complexing agent for preliminary tests performed with inactive cobalt 59 before addressing actual nuclear effluents with active cobalt 60. The author first presents the industrial context (existing nuclear wastes, notably liquid effluents and their processing) and proposes an overview of the state of the art on adsorption and precipitation of cobalt (natural and radioactive isotope). Then, the author presents the characteristics of the various studied oxides, the photochemical reactor used to perform tests, experimental techniques and operational modes. Results are then presented regarding various issues: adsorption of EDTA and the Co-EDTA complex, and cobalt precipitation; determination of the lamp photon flow by chemical actinometry and by using the Keitz method; efficiency of different processes (UV, UV/TiO 2 , UV/H 2 O 2 ) to degrade EDTA and to degrade the Co-EDTA complex; processing of a nuclear effluent coming from La Hague pools with determination of decontamination factors

  2. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M., E-mail: teotonioees@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica; Brito, Hermi F. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Fundamental; Felinto, Maria Claudia F.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Sa, Gilberto F. [Universidade Federal de Pernambuco (UFPE/CCEN), Recife, PE (Brazil). Centro de Ciencias Exatas e da Natureza. Departamento de Quimica Fundamental

    2013-04-15

    The Tb{sup 3+}-{beta}-diketonate complexes [Tb(DBM){sub 3}L], [Tb(DBM){sub 2}(NO{sub 3})L{sub 2}] and [Tb(DBM)(NO{sub 3}){sub 2} (HMPA){sub 2}] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd{sup 3+} complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  3. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  4. Nanoscale Phase Stability Reversal During the Nucleation and Growth of Titanium Oxide Minerals

    Science.gov (United States)

    Hummmer, D. R.; Heaney, P. J.; Kubicki, J. D.; Kent, P. R.; Post, J. E.

    2008-12-01

    Fine-grained titanium oxide minerals are important in soils, where they affect a variety of geochemical processes. They are also industrially important as catalysts, pigments, food additives, and dielectrics. Recent research has indicated an apparent reversal of thermodynamic stability between TiO2 phases at the nanoscale thought to be caused by an increased contribution of surface energy to the total free energy. Time-resolved X-ray diffraction (XRD) experiments in which titanium oxides crystallize from aqueous TiCl4 solutions confirm that anatase, a metastable phase, is always the first phase to nucleate under our range of initial conditions. Rutile peaks are observed only minutes after the first appearance of anatase, after which anatase abundance slowly decreases while rutile continues to form. Whole pattern refinement of diffraction data reveals that lattice constants of both phases increase throughout the crystallization process. In addition, transmission electron microscope (TEM) observations and kinetic modeling indicate that anatase does not undergo a solid-state transformation to the rutile structure as once thought. Instead, anatase appears to re-dissolve and then feed the growth of already nucleated rutile nanocrystals. Density functional theory (DFT) calculations were employed to model 1, 2, and 3 nm particles of both mineral phases. The total surface energies calculated from these models did yield lower values for anatase than for rutile by 8-13 kJ/mol depending on particle size, indicating that surface free energy is sufficient to account for stability reversal. However, these whole-particle surface energies were much higher than the sum of energies of each particle's constituent crystallographic surfaces. We attribute the excess energy to defects associated with the edges and corners of nanoparticles, which are not present on a 2-D periodic surface. This previously unreported edge and corner energy may play a dominant role in the stability reversal

  5. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    Science.gov (United States)

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  6. Kinematics and thermodynamics across a propagating non-stoichiometric oxidation phase front in spent fuel grains

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-09-01

    Spent fuel contains mixtures, alloy and compound, but are dominated by U and O except for some UO 2 fuels with burnable poisons (gadolinia in BWR rods), the other elements evolve during reactor operation from neutron reaction and fission + fission decay events. Due to decay, chemical composition and activity of spent fuel will continue to evolve after removal from reactors. During the time interval with significant radioactivity levels relevant for a geological repository, it is important to develop models for potential chemical responses in spent fuel and potential degradation of repository. One such potential impact is the oxidation of spent fuel, which results in initial phase change of UO 2 lattice to U 4 O 9 and the next phase change is probably to U 3 O 8 although it has not been observed yet below 200C. The U 4 O 9 lattice is nonstoichiometric with a O/U weight ratio at 2.4. Preliminary indications are that the UO 2 has a O/U of 2. 4 at the time just before it transforms into the U 4 O 9 phase. In the oxygen weight gain versus time response, a plateau appears as the O/U approaches 2.4. Part of this plateau is due to geometrical effects of a U 4 O 9 phase change front propagating into UO 2 grain volumes; however, this may indicate a metastable phase change delay kinetics or a diffusional related delay time until the oxygen density can satisfy stoichiometry and energy conditions for phase changes. Experimental data show a front of U 4 O 9 lattice structure propagating into grains of the UO 2 lattice. To describe this spatially inhomogenous oxidation phase transition, as well as the expected U 3 O 8 phase transition from the U 4 O 9 lattice, lattice models are developed and spatially discontinuous kinematic and energetic expressions are derived. 9 refs

  7. Phase stability of zirconium oxide films during focused ion beam milling

    Science.gov (United States)

    Baxter, Felicity; Garner, Alistair; Topping, Matthew; Hulme, Helen; Preuss, Michael; Frankel, Philipp

    2018-06-01

    Focused ion beam (FIB) is a widely used technique for preparation of electron transparent samples and so it is vital to understand the potential for introduction of FIB-induced microstructural artefacts. The bombardment of both Xe+ and Ga+ ions is observed to cause extensive monoclinic to tetragonal phase transformation in ZrO2 corrosion films, however, this effect is diminished with reduced energy and is not observed below 5 KeV. This study emphasises the importance of careful FIB sample preparation with a low energy cleaning step, and also gives insight into the stabilisation mechanism of the tetragonal phase during oxidation.

  8. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  9. Hysteresis phenomena at metal-semiconductor phase transformation in vanadium oxides

    International Nuclear Information System (INIS)

    Lanskaya, T.G.; Merkulov, I.A.; Chudnovski , F.A.

    1978-01-01

    The hysteresis phenomena during the metal-semiconductor phase transformation (MSPT) in vanadium oxides are investigated. It is shown experimentally that the hysteresis effects during MSPT in vanadium oxides are associated not only with the martensite nature of the transformation, but also with activation processes. It is shown that the hysteresis phenomena during MSPT may be described by the distribution function of microregions of the crystal in the phase transformation temperature T 0 and the coercive temperature Tsub(c). An experimental method for constructing this distribution function was worked out. An analysis of the experimental data shows that finely dispersed films are characterized by a wide range of values of T 0 and Tsub(c) (55 deg C 0 <65 deg C, 6 deg C< Tsub(c)<12 deg C). The peculiarities of the optical recording of information on monocrystal and finely dispersed films are considered

  10. Photochemical preparation of aluminium oxide layers via vacuum ultraviolet irradiation of a polymeric hexanoato aluminium complex

    International Nuclear Information System (INIS)

    Wennrich, L.; Khalil, H.; Bundesmann, C.; Decker, U.; Gerlach, J.W.; Helmstedt, U.; Manova, D.; Naumov, S.; Prager, L.

    2013-01-01

    By means of photochemical conversion of thin layers of a polymeric hexanoato aluminium complex as the precursor, thin aluminium oxide layers were prepared onto silicon wafers. The precursor compound was synthesized and characterized by several analytical techniques like NMR, FTIR, XPS, ICP, and found to be a polymeric aluminium-containing coordination compound which has been proposed to be a hydroxo-bridged aluminium chain with pendant hexanoyl side-chains ascertained as catena-poly[{di(κ-O,O-hexanoato)aluminium}(μ-hydroxo)] (PHAH). Thin layers deposited from a solution of PHAH in toluene onto silicon wafers were irradiated using VUV radiation from a xenon excimer lamp. The layers were characterized by XPS, XRD, XRR, and spectroscopic ellipsometry. VUV radiation with a radiant exposure of E = 36 J cm −2 led to almost carbon-free amorphous layers with a composition close to that of alumina having a density of about 2.1 g cm −3 . Thus, using the example of a polymeric aluminium complex, the potential of the photochemical conversion of metal complexes into oxides could be shown as an alternative method, in addition to sol–gel techniques, for the generation of thin plane metal-oxide layers at normal temperature and pressure. Highlights: ► A polymeric aluminium complex was synthesized and characterized by NMR, FTIR, XPS and ICP. ► Thin layers of the compound were irradiated using vacuum-UV radiation and converted to AlO x . ► Quantum-chemical calculations explain the conversion mechanism.

  11. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...... particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution....

  12. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  13. US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-03-20

    A presentation of the US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids. Includes slides on Supercritical Steam, sCO2 Power Cycles – Indirect, sCO2 Power Cycles – Direct, Experimental Exposures, Alloys, Why Si, Results—Ni-xCr Alloys (5-24Cr), Fatigue Crack Growth$-$Experiment, and Alloys and Samples, Fatigue Crack Growth—Results (H282).

  14. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  15. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    OpenAIRE

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  16. Comparative analysis of oxide phase formation and its effects on electrical properties of SiO{sub 2}/InSb metal-oxide-semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaeyel [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Sehun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Jungsub; Yang, Changjae; Kim, Sujin; Seok, Chulkyun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Jinsub [Department of Electronic Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of)

    2012-06-01

    We report on the changes in the interfacial phases between SiO{sub 2} and InSb caused by various deposition temperatures and heat treatments. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to evaluate the relative amount of each phase present at the interface. The effect of interfacial phases on the electrical properties of SiO{sub 2}/InSb metal-oxide-semiconductor (MOS) structures was investigated by capacitance-voltage (C-V) measurements. The amount of both In and Sb oxides increased with the deposition temperature. The amount of interfacial In oxide was larger for all samples, regardless of the deposition and annealing temperatures and times. In particular, the annealed samples contained less than half the amount of Sb oxide compared with the as-deposited samples, indicating a strong interfacial reaction between Sb oxide and the InSb substrate during annealing. The interface trap density sharply increased for deposition temperatures above 240 Degree-Sign C. The C-V measurements and Raman spectroscopy indicated that elemental Sb accumulation due to the interfacial reaction of Sb oxide with InSb substrate was responsible for the increased interfacial trap densities in these SiO{sub 2}/InSb MOS structures. - Highlights: Black-Right-Pointing-Pointer We report the quantitative analysis of interfacial oxides at the SiO{sub 2}/InSb interface. Black-Right-Pointing-Pointer Interfacial oxides were measured quantitatively by X-ray Photoelectron Spectroscopy. Black-Right-Pointing-Pointer As-grown and annealed samples showed different compositions of oxide phases. Black-Right-Pointing-Pointer Considerable reduction of antimony oxide phases was observed during annealing. Black-Right-Pointing-Pointer Interface trap densities at the SiO{sub 2}/InSb interface were calculated.

  17. Heavy haze in winter Beijing driven by fast gas phase oxidation

    Science.gov (United States)

    Lu, K.; Tan, Z.; Wang, H.; Li, X.; Wu, Z.; Chen, Q.; Wu, Y.; Ma, X.; Liu, Y.; Chen, X.; Shang, D.; Dong, H.; Zeng, L.; Shao, M.; Hu, M.; Fuchs, H.; Novelli, A.; Broch, S.; Hofzumahaus, A.; Holland, F.; Rohrer, F.; Bohn, B.; Georgios, G.; Schmitt, S. H.; Schlag, P.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.

    2017-12-01

    Heavy haze conditions were frequently presented in the airsheds of Beijing and surrounding areas, especially during winter time. To explore the trace gas oxidation and the subsequent formation of aerosols, a comprehensive field campaign was performed at a regional site (in the campus of University of Chinese Academy of Science, UCAS) in Beijing winter 2016. Serious haze pollution processes were often observed with the fast increase of inorganic salt (especially nitrate) and these pollutions were always associated with enhanced humidity and the concentrations of PAN (PeroxyAcyl Nitrates) which is normally a marker of gas phase oxidations from NOx and VOCs. Moreover, based on the measurements of OH, HO2, RO2, total OH reactivity, N2O5, NO, NO2, SO2, particle concentrations/distributions/chemical compositions, and meteorological parameters, the gas phase oxidation rates that leads to the formation of sulfate, nitrate and secondary organic aerosols were estimated. These determined formation rates were clearly enhanced by several folds during pollution episodes compared to that of the clean air masses. Preliminary analysis result showed that the gas phase formation potential of nitrate and secondary organic aerosols were larger than the observed concentrations of nitrate and SOA of which the excess production may be explained by deposition and dilution.

  18. Kinematics and thermodynamics of non-stoichiometric oxidation phase transitions in spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-01-01

    At low temperatures ( 2 lattice to a U 4 O 9 lattice but with an oxygen-to-uranium (O/U) ratio of ∼2.4. Also, the weight gain time response has a plateau as the O/U approaches 2.4. Part of this response results from a geometrical dependency as a U 4 O 9 oxidation front propagates into grain volumes Of UO 2 It may also be indicative of a metastable, non-stoichiometric U 4 O 9 phase whose existence may inhibit the transition kinetics to the next expected phase Of U 3 O 8 . To gain a mechanistic understanding and to plan future oxidation tests, lattice kinematic and thermodynamic models are developed for lattice deformations and energetics of lattice phase changes (UO 2 → U 4 O 9 → U 3 0 7 → U 3 O 8) that include zeroth order influences on oxidation kinetics due to interstitial oxygen atoms and vacancies plus interstitial and substitutional actinides and fission decay products in spent fuel

  19. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  20. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method

    Science.gov (United States)

    Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.

    2012-01-01

    Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978

  1. Characteristics of growth of complex ferroelectric oxide films by plasma-ion sputtering

    Science.gov (United States)

    Mukhortov, V. M.; Golovko, Yu. I.; Mukhortov, Vl. M.; Dudkevich, V. P.

    1981-02-01

    An experimental investigation was made of the process of growth of a complex oxide film, such as BaTiO3 or (Ba, Sr)TiO3, by plasma-ion sputtering. It was found that ion bombardment of a ceramic target knocked out neutral excited atoms. These atoms lost energy away from the target by collisions and at a certain critical distance hcr they were capable of oxidation to produce BaO, TiO, TiO2, and SrO. Therefore, depending on the distance between the cathode and the substrate, the “construction” material arrived in the form of atoms or molecules of simple oxides. These two (atomic and molecular) deposition mechanisms corresponded to two mechanisms of synthesis and crystallization differing in respect of the dependences of the growth rate, unit cell parameters, and other structural properties on the deposition temperature. The role of re-evaporation and of oxidation-reduction processes was analyzed.

  2. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    Science.gov (United States)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  3. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  4. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  6. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  7. Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Science.gov (United States)

    Weinrich, Anja; Kunst, Michael; Wirmer, Andrea; Holstein, Gay R.

    2008-01-01

    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers. PMID:18574586

  8. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    Science.gov (United States)

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  9. Effect of boron oxide on the cubic-to-monoclinic phase transition in yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Florio, D.Z. de; Muccillo, R.

    2004-01-01

    Specimens of yttria fully stabilized zirconia with different amounts of boron oxide have been studied by X-ray diffraction at room temperature and at higher temperatures up to 1250 deg. C. A boron oxide-assisted cubic-to-monoclinic phase transformation was determined in the temperature range 800-1250 deg. C. In situ high temperature X-ray diffraction experiments gave evidences of the dependence of the phase transformation on the heating rate. The possibility of tuning the cubic-monoclinic phase ratio by suitable addition of boron oxide before pressing and sintering is proposed

  10. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases.

    Science.gov (United States)

    White, Corey J; Speelman, Amy L; Kupper, Claudia; Demeshko, Serhiy; Meyer, Franc; Shanahan, James P; Alp, E Ercan; Hu, Michael; Zhao, Jiyong; Lehnert, Nicolai

    2018-02-21

    Flavodiiron nitric oxide reductases (FNORs) are a subclass of flavodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N 2 O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe 2 (BPMP)(OPr)(NO) 2 ](OTf) 2 for the FNOR active site that is capable of reducing NO to N 2 O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemistry, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N 2 O, following a semireduced reaction mechanism. This reaction is very efficient and produces N 2 O with a first-order rate constant k > 10 2 s -1 . Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe 2 (BPMP)(OPr) 2 ](OTf) and an unidentified ferric product. These results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe 2 (BPMP)(OPr)(NO) 2 ] 2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N 2 O in FNORs and in synthetic catalysts.

  11. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  12. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    International Nuclear Information System (INIS)

    Singh, S. C.; Gopal, R.; Kotnala, R. K.

    2015-01-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects

  13. Polycation-sodium lauryl ether sulfate-type surfactant complexes: influence of ethylene oxide length.

    Science.gov (United States)

    Vleugels, Leo F W; Pollet, Jennifer; Tuinier, Remco

    2015-05-21

    Polyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES with only one or two ethylene oxide (EO) groups are used for this application. We have studied the influence of the size of the EO block (ranging from 0 to 30 EO groups) on complexation with two model polycations: linear polyDADMAC and branched PEI. PESC size and electrostatic properties were determined during stepwise titration of buffered polycation solutions. The critical aggregation concentration (CAC) of PESC was determined by surface tension measurements and fluorescence spectroscopy. For polyDADMAC, there is no influence of the size of the EO block on the complexation behavior; the stiff polycation governs the structure formation. For PEI, it was seen that the EO block size does affect the structure of the complexes. The CAC value of the investigated complexes turns out to be rather independent of the EO block size; however, the CMC/CAC ratio decreases with increasing size of the EO block. This latter observation explains why the Lochhead-Goddard effect is most effective for small EO blocks.

  14. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  15. PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION

    Directory of Open Access Journals (Sweden)

    Jan Setiawan

    2016-10-01

    Full Text Available ABSTRACT PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION. The oxidation on two silicon carbide contain 6H phase and contains 6H and 4H phases has been done.  Silicon carbide is ceramic non-oxide with excellent properties that potentially used in industry.  Silicon carbide is used in nuclear industry as structure material that developed as light water reactor (LWR fuel cladding and as a coating layer in the high temperature gas-cooled reactor (HTGR fuel.  In this study silicon carbide oxidation simulation take place in case the accident in primary cooling pipe is ruptured.  Sample silicon carbide made of powder that pressed into pellet with diameter 12.7 mm and thickness 1.0 mm, then oxidized at temperature 1000 oC, 1200 oC dan 1400 oC for 1 hour.  The samples were weighted before and after oxidized.  X-ray diffraction con-ducted to the samples using Panalytical Empyrean diffractometer with Cu as X-ray source.  Diffraction pattern analysis has been done using General Structure Analysis System (GSAS software. This software was resulting the lattice parameter changes and content of SiC phases.  The result showed all of the oxidation samples undergoes weight gain.  The 6S samples showed the highest weight change at oxidation temperature 1200 oC, for the 46S samples showed increasing tendency with the oxidation temperature.  X-ray diffraction pattern analysis showed the 6S samples contain dominan phase 6H-SiC that matched to ICSD 98-001-5325 card.  Diffraction pattern on 6S showed lattice parameter, composition and crystallite size changes.  Lattice parameters changes had smaller tendency from the model and before oxidation.  However, the lowest silicon carbide composition or the highest converted into other phases up to 66.85 %, occurred at oxidation temperature 1200 oC.  The 46S samples contains two polytypes silicon car-bide.  The 6H-SiC phases matched by ICSD 98-016-4972 card and 4H-SiC phase matched by ICSD 98

  16. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  17. Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel

    Energy Technology Data Exchange (ETDEWEB)

    Boegelein, Thomas, E-mail: t.boegelein@liv.ac.uk; Louvis, Eleftherios; Dawson, Karl; Tatlock, Gordon J.; Jones, Andy R.

    2016-02-15

    Oxide dispersion strengthened (ODS) alloys exhibit superior mechanical and physical properties due to the presence of nanoscopic Y(Al, Ti) oxide precipitates, but their manufacturing process is complex. The present study is aimed at further investigation of the application of an alternative, Additive Manufacturing (AM) technique, Selective Laser Melting (SLM), to the production of consolidated ODS alloy components. Mechanically alloyed PM2000 (ODS-FeCrAl) powders have been consolidated and a fine dispersion of Y-containing precipitates were observed in an as built thin-walled component, but these particles were typically poly-crystalline and contained a variety of elements including O, Al, Ti, Cr and Fe. Application of post-build heat treatments resulted in the modification of particle structures and compositions; in the annealed condition most precipitates were transformed to single crystal yttrium aluminium oxides. During the annealing treatment, precipitate distributions homogenised and localised variations in number density were diminished. The resulting volume fractions of those precipitates were 25–40% lower than have been reported in conventionally processed PM2000, which was attributed to Y-rich slag-like surface features and inclusions formed during SLM. - Highlights: • A wall structure was grown from ODS steel powder using selective laser melting. • A fine dispersion of nano-precipitates was apparent in as-build material. • Precipitates were multi-phased containing several elements, e.g. O, Ti, Al, Fe, Cr, Y. • Post-build annealing changed those into typically single-crystalline Y–Al–O. • The anneal also reduced and stabilised the volume fraction of precipitates to ~ 0.006.

  18. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  19. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  20. Exploring the Photoreduction of Au(III) Complexes in the Gas-Phase

    Science.gov (United States)

    Marcum, Jesse C.; Kaufman, Sydney H.; Weber, J. Mathias

    2010-06-01

    We have used photodissociation spectroscopy to probe the electronic structure and photoreduction of Au(III) in gas-phase complexes containing Cl- and OH-. The gas-phase electronic spectrum of [AuCl_4]- closely resembles the aqueous solution spectrum, showing a lack of strong solvatochromic shifts. Substitution of Cl- ligands with OH- results in a strong blue shift, in agreement with ligand-field theory. Upon excitation, [AuCl_4]- can dissociate by loss of either one or two neutral Cl atoms, resulting in the reduction of gold from Au(III) to Au(II) and Au(I) respectively. The hydroxide substituted complex, [AuCl_2(OH)_2]-, demonstrates similar behavior but the only observable fragment channel is the loss of two neutral OH ligands, leading only to Au(I).

  1. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    Science.gov (United States)

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  2. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation

    International Nuclear Information System (INIS)

    Lei, Jing; Liu Chengshuai; Li Fangbai; Li Xiaomin; Zhou Shungui; Liu Tongxu; Gu Minghua; Wu Qitang

    2006-01-01

    To understand the photodegradation of azo dyes in natural aquatic environment, a novel photo-Fenton-like system, the heterogeneous iron oxide-oxalate complex system was set up with the existence of iron oxides and oxalate. Five iron oxides, including γ-FeOOH, IO-250, IO-320, IO-420 and IO-520, were prepared and their adsorption capacity was investigated in the dark. The results showed that the saturated adsorption amount (Γ max ) was ranked the order of IO-250>IO-320>γ-FeOOH>IO-420>IO-520 and the adsorption equilibrium constant (K a ) followed the order of IO-250>IO-520>γ-FeOOH>IO-420>IO-320. The effect of initial pH value, the initial concentrations of oxalate and orange I on the photodegradation of orange I were also investigated in different iron oxide-oxalate systems. The results showed that the photodegradation of orange I under UVA irradiation could be enhanced greatly in the presence of oxalate. And the optimal oxalate concentrations (C ox 0 ) for γ-FeOOH, IO-250, IO-320, IO-420 and IO-520 were 1.8, 1.6, 3.5, 3.0 and 0.8mM, respectively. The photodegradation of orange I in the presence of optimal C ox 0 was ranked as the order of γ-FeOOH>IO-250>IO-320>IO-420>IO-520. The optimal range of initial pH was at about 3-4. The first-order kinetic constant for the degradation of orange I decreased with the increase in the initial concentration of orange I. Furthermore, the variation of pH, the concentrations of Fe 3+ and Fe 2+ during the photoreaction were also strongly dependent on the C ox 0 and iron oxides

  3. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.

    Science.gov (United States)

    Nagata, Takahiro; Fukushi, Keisuke; Takahashi, Yoshio

    2009-04-15

    A deficiency in environmental iodine can cause a number of health problems. Understanding how iodine is sequestered by materials is helpful for evaluating and developing methods for minimizing human health effects related to iodine. In addition, (129)I is considered to be strategically important for safety assessment of underground radioactive waste disposal. To assess the long-term stability of disposed radioactive waste, an understanding of (129)I adsorption on geologic materials is essential. Therefore, the adsorption of I(-) on naturally occurring oxides is of environmental concern. The surface charges of hydrous ferric oxide (HFO) in NaI electrolyte solutions were measured by potentiometric acid-base titration. The surface charge data were analyzed by means of an extended triple-layer model (ETLM) for surface complexation modeling to obtain the I(-) adsorption reaction and its equilibrium constant. The adsorption of I(-) was determined to be an outer-sphere process from ETLM analysis, which was consistent with independent X-ray absorption near-edge structure (XANES) observation of I(-) adsorbed on HFO. The adsorption equilibrium constants for I(-) on beta-TiO(2) and gamma-Al(2)O(3) were also evaluated by analyzing the surface charge data of these oxides in NaI solution as reported in the literature. Comparison of these adsorption equilibrium constants for HFO, beta-TiO(2), and gamma-Al(2)O(3) based on site-occupancy standard states permitted prediction of I(-) adsorption equilibrium constants for all oxides by means of the Born solvation theory. The batch adsorption data for I(-) on HFO and amorphous aluminum oxide were reasonably reproduced by ETLM with the predicted equilibrium constants, confirming the validity of the present approach. Using the predicted adsorption equilibrium constants, we calculated distribution coefficient (K(d)) values for I(-) adsorption on common soil minerals as a function of pH and ionic strength.

  4. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    Energy Technology Data Exchange (ETDEWEB)

    Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Department of Applied Physics, Stanford University (United States); Gaidukova, I.Yu.; Ruchkin, A.V. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Anokhin, A.O. [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Irkhin, V.Yu., E-mail: valentin.irkhin@imp.uran.ru [Institute of Metal Physics, Ural Division of the Russian, Ekaterinburg (Russian Federation); Ryazanov, M.V.; Kuz’mina, N.P. [Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Nikiforov, V.N. [Faculty of Physics, M.V. Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa){sub 2}cpo]{sub 2} (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa){sub 2}(cpo)]{sub 2} is simulated numerically by an extrapolation to spin S=5/2. The Mn–Mn exchange integral is evaluated.

  5. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  6. On the phase of Chern-Simons theory with complex gauge group

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, R.; Mokhtari, S. [Dept. of Phys., Louisiana Tech. Univ., Ruston, LA (United States)

    1995-10-07

    We compute the eta function for Chern-Simons quantum field theory with complex gauge group. The calculation is performed using the Schwinger expansion technique. We discuss, in particular, the role of the metric on the field configuration space, and demonstrate that for a certain class of acceptable metrics the one-loop phase contribution to the effective action can be calculated explicitly. The result is found to be proportional to a gauge invariant part of the action. (author)

  7. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Directory of Open Access Journals (Sweden)

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  8. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets

    Science.gov (United States)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-07-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i

  9. Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media

    International Nuclear Information System (INIS)

    Dong-Yong Chung; Min-Sung Park; Keun-Young Lee; Eil-Hee Lee; Kwang-Wook Kim; Jei-Kwon Moon

    2015-01-01

    Uranium oxide was dissolved in the form of the uranyl peroxo-carbonato complex ion, UO 2 (O 2 )(CO 3 ) 2 4- in carbonate solutions with hydrogen peroxide. When UO 2 (O 2 )(CO 3 ) 2 4- ions lose their peroxide component, they become a stable species of uranyl tricarbonato complex ion, UO 2 (O 2 )(CO 3 ) 2 4- . The uranyl peroxo-carbonato complex self-decomposed more rapidly into the uranyl tricarbonato complex ion in the presence of a metal oxide in the carbonate solution. In this study, decomposition of the uranyl peroxo-carbonato complex in a carbonate solution was investigated in the presence of several metal oxides using absorption spectroscopy. (author)

  10. On the role of complex phases in the quantum statistics of weak measurements

    International Nuclear Information System (INIS)

    Hofmann, Holger F

    2011-01-01

    Weak measurements carried out between quantum state preparation and post-selection result in complex values for self-adjoint operators, corresponding to complex conditional probabilities for the projections on specific eigenstates. In this paper it is shown that the complex phases of these weak conditional probabilities describe the dynamic response of the system to unitary transformations. Quantum mechanics thus unifies the statistical overlap of different states with the dynamical structure of transformations between these states. Specifically, it is possible to identify the phase of weak conditional probabilities directly with the action of a unitary transform that maximizes the overlap of initial and final states. This action provides a quantitative measure of how much quantum correlations can diverge from the deterministic relations between physical properties expected from classical physics or hidden variable theories. In terms of quantum information, the phases of weak conditional probabilities thus represent the logical tension between sets of three quantum states that is at the heart of quantum paradoxes. (paper)

  11. Electrogenerated luminescence of chosen lanthanide complexes at stationary oxide-covered aluminium electrode

    Energy Technology Data Exchange (ETDEWEB)

    Staninski, Krzysztof [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznan 60-780 (Poland); Lis, Stefan [Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, Poznan 60-780 (Poland)], E-mail: blis@amu.edu.pl

    2008-02-28

    The electrochemiluminescence (ECL) of aqueous solutions of Tb{sup 3+}, Dy{sup 3+}, and Eu{sup 3+} complexes having a variety of ligand groups was studied using an oxide-covered aluminium electrode. The ligand groups, under study, were the aromatic acids (salicylic, phthalic), the chelatic ligands (ethylenediamine DL(o-hydroxy-phenylacetic acid), EDDHA and ethylenediamine tetraacetic acid, EDTA), as well as Schiff bases: 1,10-disalicylidene-4,7-diaza-1,10-decyldiamine and 2-salicylideneamine-2-hydroxymethyl-1,3-propanediol. The results show that the generated emissions were mainly the result of energy transfer from the ligands to the metals. The best ECL properties were observed in the case of the complexes Tb(III)-EDDHA, Dy(III)-EDDHA, and Dy(III)-salicylic acid. In the ternary systems: Schiff base-Tb(III)-Eu(III) energy transfer to the emitting level of the Eu(III) ion was observed.

  12. Electrogenerated luminescence of chosen lanthanide complexes at stationary oxide-covered aluminium electrode

    International Nuclear Information System (INIS)

    Staninski, Krzysztof; Lis, Stefan

    2008-01-01

    The electrochemiluminescence (ECL) of aqueous solutions of Tb 3+ , Dy 3+ , and Eu 3+ complexes having a variety of ligand groups was studied using an oxide-covered aluminium electrode. The ligand groups, under study, were the aromatic acids (salicylic, phthalic), the chelatic ligands (ethylenediamine DL(o-hydroxy-phenylacetic acid), EDDHA and ethylenediamine tetraacetic acid, EDTA), as well as Schiff bases: 1,10-disalicylidene-4,7-diaza-1,10-decyldiamine and 2-salicylideneamine-2-hydroxymethyl-1,3-propanediol. The results show that the generated emissions were mainly the result of energy transfer from the ligands to the metals. The best ECL properties were observed in the case of the complexes Tb(III)-EDDHA, Dy(III)-EDDHA, and Dy(III)-salicylic acid. In the ternary systems: Schiff base-Tb(III)-Eu(III) energy transfer to the emitting level of the Eu(III) ion was observed

  13. Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst

    KAUST Repository

    Zhu, Yihan

    2012-08-28

    The determination of the atomic structure of a functional material is crucial to understanding its "structure-to-property" relationship (e.g., the active sites in a catalyst), which is however challenging if the structure possesses complex inhomogeneities. Here, we report an atomic structure study of an important MoVTeO complex metal oxide catalyst that is potentially useful for the industrially relevant propane-based BP/SOHIO process. We combined aberration-corrected scanning transmission electron microscopy with synchrotron powder X-ray crystallography to explore the structure at both nanoscopic and macroscopic scales. At the nanoscopic scale, this material exhibits structural and compositional order within nanosized "domains", while the domains show disordered distribution at the macroscopic scale. We proposed that the intradomain compositional ordering and the interdomain electric dipolar interaction synergistically induce the displacement of Te atoms in the Mo-V-O channels, which determines the geometry of the multifunctional metal oxo-active sites.

  14. Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus.

    Science.gov (United States)

    Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G

    2018-06-07

    Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.

  15. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  16. Vibrational Spectra of Discrete UO22+ Halide Complexes in the Gas Phase

    International Nuclear Information System (INIS)

    Groenewold, G.S.; Van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; Gresham, Garold L.; Mcilwain, Michael

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO 2 (X)(ACO) 3 ) + (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν 3 UO 2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν 3 peak in the spectrum of the F-containing complex was 9 cm -1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν 1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes (UO 2 X 3 ) - (where X = Cl - , Br - and I - ) compared the ν 3 UO 2 modes versus halide, and showed that the ν 3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that (UO 2 X 2 ) - -X, and (UO 2 X 2 )·-X - dissociation energies

  17. Investigation of phase stability and oxide ion performance in new perovskite-type bismuth vanadate

    International Nuclear Information System (INIS)

    Al-Alas, Ahlam; Beg, Saba; Al-Areqi, Niyazi A.S.

    2012-01-01

    Samples of the BICDVOX system, formulated as Bi 4 Cd x V 2−x O 11−(3x/2)−δ in the Cd substitution range 0 ≤ x ≤ 0.25 were synthesized using the standard solid state reaction.The correlation between phase stability and oxide ion performance were investigated by variable temperature XRPD, DSC and AC impedance spectroscopy. The substitution of V 5+ by Cd 2+ exhibited different phase transitions upon varying composition. For compositions with x ≤ 0.05, two successive transitions; α↔β↔γ are evident, while the β↔γ transition exists in the composition range 0.05 4+ → V 5+ re–oxidation results in increased defect trapping effects in the system at higher temperatures. -- Highlights: ► γ-Stabilized BICDVOX at lower dopant concentrations. ► Good oxide-ion conductivity at lower temperatures. ► High temperature-vanadium reduction with lower dopant concentrations.

  18. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, C.S.; Li, F.B.; Liu, C.P.; Liang, J.B.

    2009-01-01

    To better understand the photodegradation of polycyclic aromatic hydrocarbons (PAH) in solid phase in natural environment, laboratory experiments were conducted to study the influencing factors, kinetics and intermediate compound of pyrene photodegradation by iron oxides. The results showed that the pyrene photodegradation rate followed the order of α-FeOOH > α-Fe 2 O 3 > γ-Fe 2 O 3 > γ-FeOOH at the same reaction conditions. Lower dosage of α-FeOOH and higher light intensity increased the photodegradation rate of pyrene. Iron oxides and oxalic acid can set up a photo-Fenton-like system without additional H 2 O 2 in solid phase to enhance the photodegradation of pyrene under UV irradiation. All reaction followed the first-order reaction kinetics. The half-life (t 1/2 ) of pyrene in the system showed the higher efficiencies of using iron oxide as photocatalyst to degrade pyrene. Intermediate compound pyreno was found during photodegradation reactions by gas chromatography-mass spectrometry (GC-MS). The photodegradation efficiency for PAHs in this photo-Fenton-like system was also confirmed by using the contaminated soil samples. This work provides some useful information to understand the remediation of PAHs contaminated soils by photochemical techniques under practical condition

  19. Aqueous phase complexation of Cm(III) and Cf(III) with ionizable macrocyclic ligands

    International Nuclear Information System (INIS)

    Manchanda, V.K.; Mohapatra, P.K.

    1995-01-01

    Complexation behaviour of Cm(III) and Cf(III) with 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N'-diacetic acid (K21DA), 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N'-diacetic acid (K22DA) and ethylene diamine N,N'- diacetic acid (EDDA) has been investigated using dinonyl naphthalene sulphonic acid (DNNS), in tetramethyl ammonium form as liquid cation exchanger. The aqueous phase complex formation constants are computed from the distribution data. Though larger complex formation constants are observed with K21DA as well as K22DA compared to those with the acyclic analog EDDA, no size correlation is observed. (author). 5 refs., 1 tab

  20. Verification and application of beam steering Phased Array UT technique for complex structures

    International Nuclear Information System (INIS)

    Yamamoto, Setsu; Miura, Takahiro; Semboshi, Jun; Ochiai, Makoto; Mitsuhashi, Tadahiro; Adachi, Hiroyuki; Yamamoto, Satoshi

    2013-01-01

    Phased Array Ultrasonic Testing (PAUT) techniques for complex geometries are greatly progressing. We developed an immersion PAUT which is suitable for complex surface profiles such as nozzles and deformed welded areas. Furthermore, we have developed a shape adaptive beam steering technique for 3D complex surface structures with conventional array probe and flexible coupling gel which makes the immersion beam forming technique usable under dry conditions. This system consists of 3 steps. Step1 is surface profile measurement which based on 3D Synthesis Aperture Focusing Technique (SAFT), Step2 is delay law calculation which could take into account the measured 3D surface profiles and steer a shape adjusted ultrasonic beam, Step3 is shape adjusted B-scope construction. In this paper, verification results of property of this PAUT system using R60 curved specimen and nozzle shaped specimen which simulated actual BWR structure. (author)

  1. Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

    Directory of Open Access Journals (Sweden)

    Tohru Wada

    2017-02-01

    Full Text Available We synthesized 1,8-bis(2,2′:6′,2″-terpyrid-4′-ylanthraquinone (btpyaq as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(µ-Cl(bpy2(btpyaq](BF43 ([3](BF43, bpy = 2,2′-bipyridine was used as a catalyst for water oxidation to oxygen with (NH42[Ce(NO36] as the oxidant (turnover numbers = 248. The initial reaction rate of oxygen evolution was directly proportional to the concentration of the catalyst and independent of the oxidant concentration. The cyclic voltammogram of [3](BF43 in water at pH 1.3 showed an irreversible catalytic current above +1.6 V (vs. SCE, with two quasi-reversible waves and one irreversible wave at E1/2 = +0.62, +0.82 V, and Epa = +1.13 V, respectively. UV-vis and Raman spectra of [3](BF43 with controlled-potential electrolysis at +1.40 V revealed that [Ru(IV=O O=Ru(IV]4+ is stable under electrolysis conditions. [Ru(III, Ru(II] species are recovered after dissociation of an oxygen molecule from the active species in the catalytic cycle. These results clearly indicate that an O–O bond is formed via [Ru(V=O O=Ru(IV]5+.

  2. Infertility and recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in animal models.

    Science.gov (United States)

    Ishii, Takamasa; Yasuda, Kayo; Miyazawa, Masaki; Mitsushita, Junji; Johnson, Thomas E; Hartman, Phil S; Ishii, Naoaki

    2016-04-01

    Oxidative stress is associated with some forms of both male and female infertility. However, there is insufficient knowledge of the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. There are a number of animal models for understanding age-dependent decrease of reproductive ability and diabetic embryopathy, especially abnormal spermatogenesis, oogenesis and embryogenesis with mitochondrial dysfunctions. Several important processes occur in mitochondria, including ATP synthesis, calcium ion storage, induction of apoptosis and production of reactive oxygen species (ROS). These events have different effects on the several aspects of reproductive function. Tet-mev-1 conditional transgenic mice, developed after studies with the mev-1 mutant of the nematode C. elegans, offer the ability to carefully regulate expression of doxycycline-induced mutated SDHC(V69E) levels and hence modulate endogenous oxidative stress. The mev-1 models have served to illuminate the effects of complex II deficiency-dependent mitochondrial ROS production, although interestingly they maintain normal mitochondrial and intracellular ATP levels. In this review, the reproductive dysfunctions are presented focusing on fertility potentials in each gamete, early embryogenesis, maternal conditions with placental function and neonatal development. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Oxidation mechanism of diethyl ether: a complex process for a simple molecule.

    Science.gov (United States)

    Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo

    2011-08-28

    A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.

  4. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    Science.gov (United States)

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  5. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  6. High turnover catalysis of water oxidation by Mn(II) complexes of monoanionic pentadentate ligands

    DEFF Research Database (Denmark)

    Seidler-Egdal, Rune Kirk; Nielsen, Anne; Bond, Andrew

    2011-01-01

    -pyridylmethyl)ethane-1,2-diamine (bcbpen(-)), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [Mn(II)(L)(H(2)O)](n)(n+), L = mcbpen(-) or bcbpen(-) with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert......:1 reaction of TBHP with [Mn] is rate determining and the resultant species is proposed to be the mononuclear, catalytically competent, [Mn(IV)(O)(mcbpen)](+). At very close m/z values [Mn(III)(OH)(mcbpen)](+), [Mn(2)(III/IV)(O)(2)(mcbpen)(2)](+) and [Mn(IV)(2)(O)(2)(mcbpen)(2)](2+) are detected by ESI MS......-butyl hydrogen peroxide (TBHP), (NH(4))(2)[Ce(NO(3))(6)], Ce(ClO(4))(4), oxone and [Ru(bipy)(3)](3+) to form metastable (t(½) = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)(3)](2+)-mediated photooxidization...

  7. High Turnover Catalysis of Water Oxidation by Mn(II) complexes of Monoanionic Pentadentate Ligands

    DEFF Research Database (Denmark)

    Seidler-Egdal, Rune Kirk; Nielsen, Anne; Bond, Andrew

    2011-01-01

    -pyridylmethyl)ethane-1,2-diamine (bcbpen−), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [MnII(L)(H2O)]nn+, L = mcbpen− or bcbpen− with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert-butyl hydrogen...... determining and the resultant species is proposed to be the mononuclear, catalytically competent, [MnIV(O)(mcbpen)]+. At very close m/z values [MnIII(OH)(mcbpen)]+, [Mn2III/IV(O)2(mcbpen)2]+ and [MnIV2(O)2(mcbpen)2]2+are detected by ESI MS and CE when the concentration of TBHP is comparable to or lower than...... peroxide (TBHP), (NH4)2[Ce(NO3)6], Ce(ClO4)4, oxone and [Ru(bipy)3]3+ to form metastable (t½ = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)3]2+-mediated photooxidization in the presence of an electron acceptor...

  8. Synthesis of Tb_4O_7 complexed with reduced graphene oxide for Rhodamine-B absorption

    International Nuclear Information System (INIS)

    Gao, Hui; Zhou, Yang; Chen, Keqin; Li, Xiaolong

    2016-01-01

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb_4O_7 complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb_4O_7 particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, and the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.

  9. Investigation of the effects of phase transformations in micro and nano aluminum powders on kinetics of oxidation using thermogravimetric analysis.

    Science.gov (United States)

    Saceleanu, Florin; Atashin, Sanam; Wen, John Z

    2017-07-26

    Aluminum micro and nanoparticles are key ingredients in the synthesis of nano energetic materials. Hence it is important to characterize the kinetics and the rate controlling process of their oxidation. The literature shows that the mass diffusion and phase transformation within the aluminum oxide shell are important. However, the description of physical processes regarding simultaneous oxidation and phase transformation is lacking. In this paper, the controlled thermogravimetric (TGA) oxidation of 40-60 nm and 1 µm Al powders is investigated at constant heating rates and under isothermal conditions, respectively, upon varying the partial pressure of oxygen. It is found that the core-shell model of homogenous oxidation is applicable to explain the TGA results when the shell does not undergo phase transformation, which predicts the apparent activation energy in good agreement with the literature data. On the other hand, the simultaneous oxidation and phase transformation is able to be addressed using the JMAK model which reveals key parameters of the rate controlling processes. Mass diffusion is indeed rate determining during the oxidation of Al micro and nanopowders while the kinetics of the reaction is fast. Unlike the micron powders, the particle size distribution has a significant effect on the shape of the oxidation curves of the nanopowders.

  10. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NARCIS (Netherlands)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-01-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent

  11. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  13. Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)-Schiff base complexes as catalysts

    International Nuclear Information System (INIS)

    Ourari, Ali; Khelafi, Mostefa; Aggoun, Djouhra; Jutand, Anny; Amatore, Christian

    2012-01-01

    Three complexes Ru(III)ClL n involving different tetradentate Schiff base ligands L n (see L 1 , L 2 and L 3 in ) were used as catalysts in the oxidation of cyclooctene and tetraline in the presence of molecular dioxygen associated with benzoic anhydride. The efficiency of this oxidation reaction was tested in the presence of two apical bases: 1- or 2-methylimidazole. All complexes exhibit a quasi-reversible redox system. The electrolysis experiments were carried out at controlled potential for each complex, using different substrates such as cyclooctene and tetraline. The oxidized products are cyclooctene oxide (turnover 6.7), a mixture of 1-tetralol and 1-tetralone (turnover 7.6) respectively.

  14. Enantiomeric separation of iridium (III) complexes using HPLC chiral stationary phases based on amylose derivatives

    International Nuclear Information System (INIS)

    Kim, Hee Eun; Seo, Na Hyeon; Hyun, Myung Ho

    2016-01-01

    Cyclometalated iridium (III) complexes formed with three identical cyclometalating (C-N) ligands (homoleptic) or formed with two cyclometalating (C-N) ligands and one ancillary (LX) ligand (heteroleptic) have been known as highly phosphorescent materials and, thus, they have been utilized as efficient phosphorescent dopants in organic light emitting diodes (OLEDs) 1–3 or as effective phosphorescent chemosensors. 4–7 Cylometalated iridium (III) complexes are chiral compounds consisting of lambda (Λ, left-handed) and delta (Δ, right-handed) isomers. Racemic cyclometa- lated iridium (III) complexes emit light with no net polarization, but optically active cyclometalated iridium (III) complexes emit circularly polarized light. 8,9 Circularly polarized light can be used in various fields including highly efficient three dimensional electronic devices, photo nic devices for optical data storage, biological assays, and others. 8,9 In order to obtain optically active cylometalated iridium (III) complexes and to determine the enantiomeric composition of optically active cylometalated iridium (III) complexes, liquid chromatogr aphic enantiomer separation method on chiral stationary phases (CSPs) has been used. For example, Okamoto and coworkers first reported the high performance liquid chromatographic (HPLC) direct enantiomeric separation of two homoleptic cylometalated iridium (III) complexes on immobilized amylose tris(3,5- dimethylphenylcarbamate) (Chiralpak IA), coated cellulose tris(3,5-dimethylphenylcarbamate) (Chiralc el OD), and coated cellulose tris(4-methylbenzoate) (Chiralce l OJ). 10 Supercritical fluid chromatography (SFC) was also used by Bernhard and coworkers for the enantiomeric separation of cylometalated iridium (III) complexes on coated amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD-H). 8 However, the general use of the HPLC method for the direct enantiomeric separation of homoleptic

  15. Enantiomeric separation of iridium (III) complexes using HPLC chiral stationary phases based on amylose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Eun; Seo, Na Hyeon; Hyun, Myung Ho [Dept. of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan (Korea, Republic of)

    2016-12-15

    Cyclometalated iridium (III) complexes formed with three identical cyclometalating (C-N) ligands (homoleptic) or formed with two cyclometalating (C-N) ligands and one ancillary (LX) ligand (heteroleptic) have been known as highly phosphorescent materials and, thus, they have been utilized as efficient phosphorescent dopants in organic light emitting diodes (OLEDs) 1–3 or as effective phosphorescent chemosensors. 4–7 Cylometalated iridium (III) complexes are chiral compounds consisting of lambda (Λ, left-handed) and delta (Δ, right-handed) isomers. Racemic cyclometa- lated iridium (III) complexes emit light with no net polarization, but optically active cyclometalated iridium (III) complexes emit circularly polarized light. 8,9 Circularly polarized light can be used in various fields including highly efficient three dimensional electronic devices, photo nic devices for optical data storage, biological assays, and others. 8,9 In order to obtain optically active cylometalated iridium (III) complexes and to determine the enantiomeric composition of optically active cylometalated iridium (III) complexes, liquid chromatogr aphic enantiomer separation method on chiral stationary phases (CSPs) has been used. For example, Okamoto and coworkers first reported the high performance liquid chromatographic (HPLC) direct enantiomeric separation of two homoleptic cylometalated iridium (III) complexes on immobilized amylose tris(3,5- dimethylphenylcarbamate) (Chiralpak IA), coated cellulose tris(3,5-dimethylphenylcarbamate) (Chiralc el OD), and coated cellulose tris(4-methylbenzoate) (Chiralce l OJ). 10 Supercritical fluid chromatography (SFC) was also used by Bernhard and coworkers for the enantiomeric separation of cylometalated iridium (III) complexes on coated amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD-H). 8 However, the general use of the HPLC method for the direct enantiomeric separation of homoleptic.

  16. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  17. Synthesis and characterization of lanthanide picrate complexes with 4-picoline-N-oxide (4-pic N O)

    International Nuclear Information System (INIS)

    Silva, E.M. da.

    1991-01-01

    The lanthanide picrate complexes with 4-picoline-N-oxide were obtained from ethanolic solutions of the hydrated lanthanide picrate and the ligand. The lanthanide content was determined by complexometric titration with EDTA. Carbon, Nitrogen and Hydrogen were determined by microanalytical procedures. Chemical analysis of the lanthanide picrate complexes are also presented. (author)

  18. Effect of silver on the phase transition and wettability of titanium oxide films

    Science.gov (United States)

    Mosquera, Adolfo A.; Albella, Jose M.; Navarro, Violeta; Bhattacharyya, Debabrata; Endrino, Jose L.

    2016-01-01

    The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C. The results are interpreted in terms of the steric effects produced by agglomeration of Ag atoms into larger clusters following annealing which hinders diffusion of Ti and O ions for anatase formation and constrains the volume available for the anatase lattice, thus disrupting its structure to form rutile phase. The effect of silver on the optical and wetting properties of TiO2 was evaluated to demonstrate its improved photocatalytic performance. PMID:27571937

  19. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    Science.gov (United States)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  20. The calculation of phase equilibria of oxide core-concrete systems

    International Nuclear Information System (INIS)

    Ball, R.G.J.; Mignanelli, M.A.; Barry, T.I.; Gisby, J.A.

    1993-01-01

    Thermodynamic models have been developed to describe the phase equilibria of oxide solutions appropriate for the understanding of the chemical interactions between nuclear reactor core debris and concrete. For this purpose, the Gibbs energy of the liquid phase is described by the inclusion of associate species and nonideal interactions between the components and associate species. Assessments of the thermodynamic and phase equilibrium data for the subsystems of the CaO-Al 2 O 3 -SiO 2 -UO 2 -ZrO 2 system have been used to obtain a thermodynamic description of the crystalline and liquid phases in good agreement with published data. The data for the subsystems have then been combined, using well established principles, to predict the phase relationships in the ternary and quaternary sytsems and in the overall quinary system. The results show that he overall system cannot properly be treated as a pseudo-ideal liquid and solid solution, as used in some computer codes which attempt to model the physics and chemistry of core-concrete interactions. The limitations of the current model are discussed. (orig.)

  1. Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Lee, Jong-Hyun

    2003-01-01

    This paper proposes a 10 μm thick oxide layer structure, which can be used as a substrate for RF circuits. The structure has been fabricated by anodic reaction and complex oxidation, which is a combined process of low temperature thermal oxidation (500 deg. C, for 1 h at H 2 O/O 2 ) and a rapid thermal oxidation (RTO) process (1050 deg. C, for 1 min). The electrical characteristics of oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current through the OPSL of 10 μm was about 100-500 pA in the range of 0-50 V. The average value of breakdown field was about 3.9 MV cm -1 . From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL, prepared by complex process were confirmed to be completely oxidized and also the role of RTO process was important for the densification of porous silicon layer (PSL) oxidized at a lower temperature. For the RF-test of Si substrate with thick silicon dioxide layer, we have fabricated high performance passive devices such as coplanar waveguide (CPW) on OPSL substrate. The insertion loss of CPW on OPSL prepared by complex oxidation process was -0.39 dB at 4 GHz and similar to that of CPW on OPSL prepared by a temperature of 1050 deg. C (1 h at H 2 O/O 2 ). Also the return loss of CPW on OPSL prepared by complex oxidation process was -23 dB at 10 GHz, which is similar to that of CPW on OPSL prepared by high temperature

  2. Nitric oxide production by visible light irradiation of aqueous solution of nitrosyl ruthenium complexes.

    Science.gov (United States)

    Sauaia, Marília Gama; de Lima, Renata Galvão; Tedesco, Antonio Claudio; da Silva, Roberto Santana

    2005-12-26

    [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.

  3. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  4. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Abdur, Rob; Gerlits, Oksana O.; Gan, Jianhua; Jiang, Jiansheng; Salon, Jozef; Kovalevsky, Andrey Y.; Chumanevich, Alexander A.; Weber, Irene T.; Huang, Zhen, E-mail: huang@gsu.edu [Georgia State University, Atlanta, GA 30303 (United States)

    2014-02-01

    Selenium-derivatized oligonucleotides may facilitate phase determination and high-resolution structure determination for protein–nucleic acid crystallography. The Se atom-specific mutagenesis (SAM) strategy may also enhance the study of nuclease catalysis. The crystal structures of protein–nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein–nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H–RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.

  5. Algebrodynamics over complex space and phase extension of the Minkowski geometry

    International Nuclear Information System (INIS)

    Kassandrov, V. V.

    2009-01-01

    First principles should predetermine physical geometry and dynamics both together. In the 'algebrodynamics' they follow solely from the properties of biquaternion algebra B and the analysis over B. We briefly present the algebrodynamics over Minkowski background based on a nonlinear generalization to B of the Cauchi-Riemann analyticity conditions. Further, we consider the effective real geometry uniquely resulting from the structure of B multiplication and found it to be of the Minkowski type, with an additional phase invariant. Then we pass to study the primordial dynamics that takes place in the complex B space and brings into consideration a number of remarkable structures: an ensemble of identical correlated matter pre-elements ('duplicons'), caustic-like signals (interaction carriers), a concept of random complex time resulting in irreversibility of physical time at macrolevel, etc. In partucular, the concept of 'dimerous electron' naturally arises in the framework of complex algebrodynamics and, together with the above-mentioned phase invariant, allows for a novel approach to explanation of quantum interference phenomena alternative to recently accepted wave-particle dualism paradigm.

  6. Mathematical modelling of brittle phase precipitation in complex ruthenium containing nickel-based superalloys

    International Nuclear Information System (INIS)

    Rettig, Ralf

    2010-01-01

    A new model has been developed in this work which is capable of simulating the precipitation kinetics of brittle phases, especially TCP-phases (topologically close packed phases) in ruthenium containing superalloys. The model simultaneously simulates the nucleation and the growth stage of precipitation for any number of precipitating phases. The CALPHAD method (Calculation of Phase Diagrams) is employed to calculate thermodynamic properties, such as the driving force or phase compositions in equilibrium. For calculation of diffusion coefficients, kinetic mobility databases which are also based on the CALPHAD-method are used. The model is fully capable of handling multicomponent effects, which are common in complex superalloys. Metastable phases can be treated and will automatically be dissolved if they get unstable. As the model is based on the general CALPHAD method, it can be applied to a broad range of precipitation processes in different alloys as long as the relevant thermodynamic and kinetic databases are available. The developed model proves that the TCP-phases precipitate in a sequence of phases. The first phase that is often formed is the metastable σ-phase because it has the lowest interface energy due to low-energy planes at the interface between matrix and precipitate. After several hundred hours the stable μ- and P-phases start to precipitate by nucleating at the σ-phase which is energetically favourable. During the growth of these stable phases the sigma-phase is continuously dissolved. It can be shown by thermodynamic CALPHAD calculations that the sigma-phase has a lower Gibbs free enthalpy than the μ- and P-phase. All required parameters of the model, such as interface energy and nucleate densities, have been estimated. The mechanisms of suppression of TCP-phase precipitation in the presence of ruthenium in superalloys were investigated with the newly developed model. It is shown by the simulations that ruthenium mostly affects the nucleation

  7. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  8. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    Science.gov (United States)

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    Science.gov (United States)

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  10. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Directory of Open Access Journals (Sweden)

    Weihong Yang

    Full Text Available Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II-oxidizing isolates (>50 mM MnO2 were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II-oxidizing bacterial genera (species, namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II to Mn(III/IV by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the

  11. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  12. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    Science.gov (United States)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  13. Strengthening of the DNA-protein complex during stationary phase aging of cell cultures

    International Nuclear Information System (INIS)

    Khokhlov, A.N.; Chirkova, E.Yu.; Gorin, A.I.

    1986-01-01

    The possibility of accumulation of cross-linkages in the DNA-protein complex was studied during stationary phase aging of cells in culture. Chinese hamster cells were used in the experiments, along with human fibroblasts. 3 H-thymidine, 14 C-valine, and 14 C-leucine were added to the medium. The quantity of protein firmly bound with DNA was judged from the value of the coefficient 14 C/ 3 H determined with allowance for penetration of counting from the 14 C-channel into the 3 H-channel. The authors maintain that the results presented in this paper provide further evidence of the value of stationary phase cell cultures for the study of the mechanisms of aging and also of some of the general principles underlying hereditary pathology

  14. Workshop on Strategic Behavior and Phase Transitions in Random and Complex Combinatorial Structures : Extended Abstracts

    CERN Document Server

    Kirousis, Lefteris; Ortiz-Gracia, Luis; Serna, Maria

    2017-01-01

    This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been e...

  15. Theoretical consideration on phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF3SO3 systems in lithium battery

    International Nuclear Information System (INIS)

    Ko, Sung Jin; Kim, Sun Joon; Kong, Sung Ho; Bae, Young Chan

    2004-01-01

    A new thermodynamic model is developed based on the extended perturbed hard sphere chain (PHSC) model and melting point depression theory to describe the phase behaviors of copolymer electrolyte/salt systems. The phase behaviors of poly(ethylene oxide-block-propylene oxide)/LiCF 3 SO 3 systems are investigated by thermo-optical analysis (TOA) technique. Quantitative descriptions according to the proposed model are in good agreement with experimental data. The obtained results show that monomer ratio and sequence type of copolymers play a great role in determining eutectic points of the given systems

  16. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  17. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  18. Transformers: the changing phases of low-dimensional vanadium oxide bronzes.

    Science.gov (United States)

    Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit

    2015-03-28

    In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.

  19. Physical and numerical modelling of heat treatment the precipitation-hardening complex-phase steel (CP

    Directory of Open Access Journals (Sweden)

    B. Koczurkiewicz

    2013-01-01

    Full Text Available The article presents the results of physical and numerical modeling of the processes of thermo- plastic treatment of an experimental complex-phase (CP steel. Numerical tests were carried out using a commercial software program, ThermoCalc. Based on the obtained test results, the austenitization temperature was established. Physical modeling was performed using a DIL 805A/D dilatometer and the Gleeble 3800 system. The characteristic temperatures of the steel and the primary austenite grain size were determined. The test pieces were also subjected to metallographic examinations and Vickers hardness tests. The obtained results served for building an actual CCT diagram for the steel tested.

  20. A microplate adaptation of the solid-phase C1q immune complex assay

    International Nuclear Information System (INIS)

    Hunt, J.S.; Kennedy, M.P.; Barber, K.E.; McGiven, A.R.

    1980-01-01

    A method has been developed for the detection of C1q binding immune complexes in serum in which microculture plates are used as the solid-phase matrix for adsorption of C1q. This micromethod used only one-tenth of the amount of both C1q and [ 125 I]antihuman immunoglobulin per test and enabled 7 times as many samples to be tested in triplicate in comparison with the number performed in duplicate by the standard tube assay. (Auth.)

  1. Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation

    International Nuclear Information System (INIS)

    Gameiro, Marcio; Mischaikow, Konstantin; Wanner, Thomas

    2005-01-01

    Phase separation processes in compound materials can produce intriguing and complicated patterns. Yet, characterizing the geometry of these patterns quantitatively can be quite challenging. In this paper we propose the use of computational algebraic topology to obtain such a characterization. Our method is illustrated for the complex microstructures observed during spinodal decomposition and early coarsening in both the deterministic Cahn-Hilliard theory, as well as in the stochastic Cahn-Hilliard-Cook model. While both models produce microstructures that are qualitatively similar to the ones observed experimentally, our topological characterization points to significant differences. One particular aspect of our method is its ability to quantify boundary effects in finite size systems

  2. Precise U-Pb Zircon Dating of the Syenite Phase from the Ditrau Alkaline Igneous Complex

    Directory of Open Access Journals (Sweden)

    Pană Dinu

    2000-04-01

    Full Text Available The Ditrău igneous complex represents the largest alkaline intrusion in the Carpathian-Pannonian region consisting of a plethora of rock types formed by complicated magmatic and metasomatic processes. A detailed U-Pb zircon age study is currently underway and the results for the syenite intrusion phase is reported herein. The U-Pb zircon emplacement age of the syenite of 229.6 +1.7/-1.2 Ma documents the quasi-contemporaneous production and emplacement of the gabbro and syenite magmas. We suggest that the syenite and associated granite formed by crustal melting during the emplacement of the mantle derived gabbroic magma around 230 Ma. The thermal contact aureole produced by the Ditrău alkaline igneous complex constrains the main tectonism recorded by surrounding metamorphic lithotectonic assemblages to be pre-Ladinian.

  3. EXAFS Phase Retrieval Solution Tracking for Complex Multi-Component System: Synthesized Topological Inverse Computation

    International Nuclear Information System (INIS)

    Lee, Jay Min; Yang, Dong-Seok; Bunker, Grant B

    2013-01-01

    Using the FEFF kernel A(k,r), we describe the inverse computation from χ(k)-data to g(r)-solution in terms of a singularity regularization method based on complete Bayesian statistics process. In this work, we topologically decompose the system-matched invariant projection operators into two distinct types, (A + AA + A) and (AA + AA + ), and achieved Synthesized Topological Inversion Computation (STIC), by employing a 12-operator-closed-loop emulator of the symplectic transformation. This leads to a numerically self-consistent solution as the optimal near-singular regularization parameters are sought, dramatically suppressing instability problems connected with finite precision arithmetic in ill-posed systems. By statistically correlating a pair of measured data, it was feasible to compute an optimal EXAFS phase retrieval solution expressed in terms of the complex-valued χ(k), and this approach was successfully used to determine the optimal g(r) for a complex multi-component system.

  4. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    Science.gov (United States)

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  5. The oxidative p-dichlorobenzene dechlorinating in the presence of copper (ΙΙ complexes and nitrogen (ΙΙ, ΙV oxides

    Directory of Open Access Journals (Sweden)

    Valentina Yemelyanova

    2012-12-01

    Full Text Available The results of dechlorination in the solution CuCl2–TBP–NaNO2–О2–Н2О kinetics research are presented in the article. All system components influence to the dechlorination process is studied and quantitatively described. The composition of copper intermediate complexes participating in reaction is studied by the instrumentality of UV-spectroscopy. Established part of binuclear copper complexes in the catalytic intermediate complex constants of formation were estimated and compared with the kinetic and spectrophotometric methods. The composition of the intermediate complexes responsible for process is defined, the mechanism scheme is offered, the p-dichlorobenzene dechlorination limiting stage including redox-disintegration of the intermediate complex consisting of dimeric complex of copper (II, I chloride, nitrogen oxide and p-dichlorobenzene is defined.

  6. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  7. Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media.

    Science.gov (United States)

    Moral-Vico, J; Sánchez-Redondo, S; Lichtenstein, M P; Suñol, C; Casañ-Pastor, N

    2014-05-01

    Much effort is currently devoted to implementing new materials in electrodes that will be used in the central nervous system, either for functional electrostimulation or for tests on nerve regeneration. Their main aim is to improve the charge capacity of the electrodes, while preventing damaging secondary reactions, such as peroxide formation, occurring while applying the electric field. Thus, hybrids may represent a new generation of materials. Two novel hybrid materials are synthesized using three known biocompatible materials tested in the neural system: polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and iridium oxide (IrO2). In particular, PPy-IrO2 and PEDOT-IrO2 hybrid nanocomposite materials are prepared by chemical polymerization in hydrothermal conditions, using IrO2 as oxidizing agent. The reaction yields a significant ordered new hybrid where the conducting polymer is formed around the IrO2 nanoparticles, encapsulating them. Scanning electron microscopy and backscattering techniques show the extent of the encapsulation. Both X-ray photoelectron and Fourier transform infrared spectroscopies identify the components of the phases, as well as the absence of impurities. Electrochemical properties of the final phases in powder and pellet form are evaluated by cyclic voltammetry. Biocompatibility is tested with MTT toxicity tests using primary cultures of cortical neurons grown in vitro for 6 and 9days. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  9. Evidence of an Intermediate Phase in bulk alloy oxide glass sysem

    Science.gov (United States)

    Chakraborty, S.; Boolchand, P.

    2011-03-01

    Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.

  10. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Bajpai, M.B.; Shenoi, M.R.K.; Keni, V.S.

    1994-01-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author)

  11. Recovery of sodium hydroxide and silica from zirconium oxide plant effluent of Nuclear Fuel Complex

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, M B; Shenoi, M R.K.; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sodium hydroxide (lye) and silica can be recovered in pure form from the alkaline sodium silicate waste of Nuclear Fuel Complex, Hyderabad. Electrolytic method was used to amalgamate the sodium present in an electrolyser with flowing mercury as cathode and nickel as anode. The amalgam is then denuded with water in a graphite packed tower to recover mercury for recycling to the electrolyser and sodium hydroxide lye. Sodium hydroxide lye can be recycled in the zirconium oxide plant. Silica is recovered from the spent electrolyte by ion exchange method using cation exchange resin. Both the process details are described in this paper, with experimental data useful for the scale up. The process converts waste to value products. (author). 3 figs., 2 tabs.

  12. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.

    Science.gov (United States)

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Wang, Jun; Cai, Yuanli; Green, Nelson W; Wei, Shiqiang

    2017-05-01

    The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45μm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment. Copyright © 2016. Published by Elsevier B.V.

  13. Method of encapsulating a phase change material with a metal oxide

    Science.gov (United States)

    Ram, Manoj Kumar; Jotshi, Chand K.; Stefanakos, Elias K.; Goswami, Dharendra Yogi

    2016-11-15

    Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs), such as NaNO.sub.3, NaCl, KNO.sub.3, have very low thermal conductivities. To enhave the storage of PCMs, macroencapsulation of PCMs was performed using a metal oxide, such as SiO.sub.2 or a graphene-SiO.sub.2, over polyimide-coated or nickel-embedded, polyimide-coated pellets The macro encapsulation provides a self-supporting structure, enhances the heat transfer rate, and provides a cost effective and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO.sub.3 was selected for thermal storage in a temperature range of 300.degree. C. to 500.degree. C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures.

  14. submitter Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    CERN Document Server

    Hoyle, C R; Järvinen, E; Saathoff, H; Dias, A; El Haddad, I; Gysel, M; Coburn, S C; Tröstl, J; Bernhammer, A -K; Bianchi, F; Breitenlechner, M; Corbin, J C; Craven, J; Donahue, N M; Duplissy, J; Ehrhart, S; Frege, C; Gordon, H; Höppel, N; Heinritzi, M; Kristensen, T B; Molteni, U; Nichman, L; Pinterich, T; Prévôt, A S H; Simon, M; Slowik, J G; Steiner, G; Tomé, A; Vogel, A L; Volkamer, R; Wagner, A C; Wagner, R; Wexler, A S; Williamson, C; Winkler, P M; Yan, C; Amorim, A; Dommen, J; Curtius, J; Gallagher, M W; Flagan, R C; Hansel, A; Kirkby, J; Kulmala, M; Möhler, O; Stratmann, F; Worsnop, D R; Baltensperger, U

    2016-01-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and −10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion – pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and −10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in ...

  15. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  16. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  17. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Directory of Open Access Journals (Sweden)

    Schaller Melinda S

    2008-09-01

    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  18. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with on-line battery of analyzers. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behaviour in other combustion equipments, i.e. fluidized bed combustors. It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor. 27 refs., 6 figs., 1 tab.

  19. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Song, Na [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States); Concepcion, Javier J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Binstead, Robert A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Rudd, Jennifer A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Vannucci, Aaron K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry and Biochemistry; Dares, Christopher J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Coggins, Michael K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Meyer, Thomas J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry

    2015-04-06

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$-$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.

  20. Effect of Zinc Oxide Doping on Electroluminescence and Electrical Behavior of Metalloporphyrins-Doped Samarium Complex

    Science.gov (United States)

    Janghouri, Mohammad; Amini, Mostafa M.

    2018-02-01

    Samarium complex [(Sm(III)] as a new host material was used for preparation of red organic light-emitting diodes (OLEDs). Devices with configurations of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):(poly(styrenesulfonate) (PEDOT:PSS (50 nm)/polyvinyl carbazole (PVK):[zinc oxide (ZnO)] (50 nm)/[(Sm(III)]:[zinc(II) 2,3-tetrakis(dihydroxyphenyl)-porphyrin and Pt(II) 2,3-dimethoxyporphyrin] (60 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (15 nm)/Al (150 nm) have been fabricated and investigated. An electroplex occurring at the (PVK/Sm: Pt(II) 2,3-dimethoxyporphyrin) interface has been suggested when ZnO nanoparticles were doped in PVK. OLED studies have revealed that the photophysical characteristics and electrical behavior of devices with ZnO nanoparticles are much better than those of devices with pure PVK. The efficiency of devices based on [(Sm(III)] was superior than that of known aluminum tris(8-hydroxyquinoline) (Alq3) and also our earlier reports on red OLEDs under the same conditions.

  1. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  2. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  4. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    Science.gov (United States)

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    Science.gov (United States)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  6. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  7. Design Implementation and Testing of a VLSI High Performance ASIC for Extracting the Phase of a Complex Signal

    National Research Council Canada - National Science Library

    Altmeyer, Ronald

    2002-01-01

    This thesis documents the research, circuit design, and simulation testing of a VLSI ASIC which extracts phase angle information from a complex sampled signal using the arctangent relationship: (phi=tan/-1 (Q/1...

  8. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  9. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  10. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    Science.gov (United States)

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  11. Phase transitions in complex oxide systems based on Al{sub 2}O{sub 3} and ZrO{sub 2}; Przemiany fazowe w zlozonych ukladach tlenkowych na bazie Al{sub 2}O{sub 3} i ZrO{sub 2} zachodzace w procesach z szybkozmiennym dzialaniem temperatury

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, L [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1999-07-01

    Different compositions of materials based on Al{sub 2}O{sub 3} and ZrO{sub 2} and protective coatings sprayed from them working in the high temperature region are studied. There are especially thermal barrier coatings of increasing resistance to thermal shocks and conditions of corrosion and erosion caused by the hot gases and liquids. Such conditions are encountered in many technical branches among others in jet and Diesel engines. These coatings are deposited by the plasma spraying process and their resistance to thermal shocks is studied on special experimental arrangement in the conditions near to coatings applications. Both above processes are characterized by a short time temperature action with subsequent high cooling rate, which may cause phase transitions other than in the conditions of thermodynamical equilibrium. These transitions are studied by X-ray diffraction analysis methods. The microstructure changes accompanied to phase transitions are determined by light microscopy and scanning electron microscopy methods. The cases of coating degradation caused by thermal shocks have been observed. The highest resistance to thermal fatigue conditions (up to thermal shocks) show coatings based on Al{sub 2}O{sub 3} containing aluminium titanate and coatings based on ZrO{sub 2} stabilised by 7-8% of Y{sub 2}O{sub 3}. (author)

  12. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  13. Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction

    International Nuclear Information System (INIS)

    McElmurry, Shawn P.; Long, David T.; Voice, Thomas C.

    2010-01-01

    Trace metal cycling in natural waters is highly influenced by the amount and type of dissolved organic C (DOC). Although determining individual species of DOC is unrealistic, there has been success in classifying DOC by determining operationally defined fractions. However, current fractionation schemes do not allow for the simultaneous quantification of associated trace metals. Using operational classifications, a scheme was developed to fractionate DOC based on a set of seven solid-phase extraction (SPE) cartridges. The cartridges isolated fractions based on a range of specific mechanisms thought to be responsible for DOC aggregation in solution, as well as molecular weight. The method was evaluated to determine if it can identify differences in DOC characteristics, including differences in Cu-DOC complexation. Results are that: (1) cartridge blanks were low for both DOC and Cu, (2) differences are observed in the distribution of DOC amongst the fractions from various sources that are consistent with what is known about the DOC materials and the mechanisms operative for each cartridge, (3) when present as a free cation, Cu was not retained by non-cationic cartridges allowing the method to be used to assess Cu binding, (4) the capability of the method to provide quantitative assessment of Cu-DOC complexation was demonstrated for a variety of DOC standards, (5) Cu was found to preferentially bind with high molecular weight fractions of DOC, and (6) estimated partitioning coefficients and conditional binding constants for Cu were similar to those reported elsewhere. The method developed describes DOC characteristics based on specific bonding mechanisms (hydrogen, donor-acceptor, London dispersion, and ionic bonding) while simultaneously quantifying Cu-DOC complexation. The method provides researchers a means of describing not only the extent of DOC complexation but also how that complex will be behave in natural waters.

  14. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  15. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    Science.gov (United States)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  16. Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case

    Energy Technology Data Exchange (ETDEWEB)

    Munter, R.; Overbeck, P.; Sutt, J. [Tallinn University of Technology, Tallinn (Estonia). Dept. of Chemical Engineering

    2008-07-01

    A short overview of the significance of a preoxidation stage groundwater treatment is presented. As an example the case of complexed iron removal from Kogalym groundwater (Tjumen, Siberia, Russian Federation) using different preoxidants (ozone, oxygen, chlorine, hydrogen peroxide, and potassium permanganate) is discussed. The key problem is stable di- and trivalent iron-organic complexes in groundwater which after aeration tend to pass through the hydroanthracite-sand gravity filters. The total organic carbon (TOC) content in raw groundwater is in the range of 3.2-6.4 mg/L, total iron content 2.7-6.0 mg/L and divalent iron content 2.4-4.0 mg/L. Separation from Kogalym groundwater by XAD-16 adsorbent humic matter fraction was homogeneous, with only 1 peak on the chromatogram with maximum Rt = 10.75 min and corresponding molecular mass 1911 ({lt} 2000). The final developed treatment technology is based on the water oxidation/reduction potential (ORP) optimization according to the iron system pE-pH diagram and consists of intensive aeration of raw water in the Gas-Degas Treatment (GDT) unit with the following sequence: filtration through the hydroanthracite and special anthracite Everzit, with intermediate enrichment of water with pure oxygen between the filtration stages.

  17. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    Science.gov (United States)

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  18. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    Science.gov (United States)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  19. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis.

    Science.gov (United States)

    Ruokolainen, Miina; Valkonen, Minna; Sikanen, Tiina; Kotiaho, Tapio; Kostiainen, Risto

    2014-12-18

    The aim of this study was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for oxidation of anabolic steroids and for imitation of their phase I metabolism. The photocatalytic reaction products of five anabolic steroids were compared to their phase I in vitro metabolites produced by human liver microsomes (HLM). The same main reaction types - hydroxylation, dehydrogenation and combination of these two - were observed both in TiO2 photocatalysis and in microsomal incubations. Several isomers of each product type were formed in both systems. Based on the same mass, retention time and similarity of the product ion spectra, many of the products observed in HLM reactions were also formed in TiO2 photocatalytic reactions. However, products characteristic to only either one of the systems were also formed. In conclusion, TiO2 photocatalysis is a rapid, simple and inexpensive method for imitation of phase I metabolism of anabolic steroids and production of metabolite standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface

    Science.gov (United States)

    Smialek, James L.; Garg, Anita

    2014-01-01

    Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.

  1. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    Science.gov (United States)

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  2. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    KAUST Repository

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  3. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  4. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The prediction and representation of phase equilibria and physicochemical properties in complex coal ash slag systems

    Energy Technology Data Exchange (ETDEWEB)

    E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)

    2003-07-01

    A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.

  6. Thermal oxidation of cesium loaded Prussian blue as a precaution for exothermic phase change in extreme conditions

    International Nuclear Information System (INIS)

    Parajuli, Durga; Tanaka, Hisashi; Takahashi, Akira; Kawamoto, Tohru

    2013-01-01

    Cesium adsorbed Prussian blue is studied for the thermal oxidation. The TG-DTA shows exothermic phase change of micro aggregates of nano-PB at above 270°C. For this reason, Cs loaded PB was heated between 180 to 260°C. Heating at 180 removed only the water. Neither the oxidation of Iron nor the removal of cyanide is observed at this temperature. Oxidation of cyanide is observed upon heating above 200°C while loaded Cs is released after heating at >250°C followed by washing with water. Thermal oxidation between 200 to 220°C for more than 2 h showed control on exothermic phase change and loaded Cs is also not solubilized. (author)

  7. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb)

    International Nuclear Information System (INIS)

    Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T.

    1981-01-01

    The electrical conduction in various phases of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La, Nd, Sm, Dy, Er, or Yb) was investigated by measuring ac conductivity and the emf of the oxygen gas concentration cell. High-oxide-ion conduction was observed in the rhombohedral and face-centered cubic (fcc) phase in these systems. The fcc phase could be stabilized over a wide range of temperature by adding a certain amount of Ln 2 O 3 . In these cases, the larger the atomic number of Ln, the lower the content of Ln 2 O 3 required to form the fcc solid solution, except in the case of Yb 2 O 3 . The oxide ion conductivity of this phase decreased with increasing content of Ln 2 O 3 . Maximum conductivity was obtained at the lower limit of the fcc solid solution formation range in each system, which was more than one order of magnitude higher than those of conventional stabilized zirconias. Lattice parameters of the fcc phase were calculated from the x-ray diffraction patterns. The relationship between the oxide ion conductivity and the lattice parameter was also discussed

  8. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  9. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  10. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  11. Swift heavy ion induced phase transformation and thermoluminescence properties of zirconium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lokesha, H.S. [Physics R & D Centre, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Nagabhushana, K.R., E-mail: bhushankr@gmail.com [Physics R & D Centre, PES Institute of Technology, BSK 3rd Stage, Bangalore 560085 (India); Department of Physics, PES University, BSK 3rd Stage, Bangalore 560085 (India); Singh, Fouran [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Zirconium oxide (ZrO{sub 2}) powder is synthesized by combustion technique. XRD pattern of ZrO{sub 2} shows monoclinic phase with average crystallite size 35 nm. Pellets of ZrO{sub 2} are irradiated with 100 MeV swift Si{sup 7+}, Ni{sup 7+} and 120 MeV swift Ag{sup 9+} ions in the fluence range 3 × 10{sup 10}–3 × 10{sup 13} ions cm{sup −2}. XRD pattern show the main diffraction peak correspond to monoclinic and tetragonal phase of ZrO{sub 2} in 2θ range 27–33°. Structural phase transformation is observed for Ni{sup 7+} and Ag{sup 9+} ion irradiated samples at a fluence 1 × 10{sup 13} ions cm{sup −2} and 3 × 10{sup 12} ions cm{sup −2} respectively, since the deposited electronic energy loss exceeds an effective threshold (>12 keV nm{sup −1}). Phase transition induced by Ag{sup 9+} ion is nearly 2.9 times faster than Ni{sup 7+} ion at 1 × 10{sup 13} ions cm{sup −2}. Ag{sup 9+} ion irradiation leads two ion impact processes. Thermoluminescence (TL) glow curves exhibit two glows, a well resolved peak at ∼424 K and unresolved peak at 550 K for all SHI irradiated samples. TL response is decreased with increase of ion fluence. Beyond 3 × 10{sup 12} ions cm{sup −2}, samples don’t exhibit TL due to annihilation of defects.

  12. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  13. Symmetry-induced deformation and reconstructive phase transformation in metal-oxide interface: the Fe (001) example

    International Nuclear Information System (INIS)

    Lahoche, L.; Universite de Technologie de Compiegne; Lorman, V.; Roelandt, J.M.; Rochal, S.B.

    1996-01-01

    A model is proposed for the structural transformation and corresponding induced deformation in physical three-dimensional interface of the metal-oxide system. The thermodynamical and elastic state of the system is described by the Landau-Ginzbourg free energy. Calculated theoretical phase diagram shows several different types of isothermal growth processes. The model is applied to the case of the oxidation of the (001) Fe surface. (orig.)

  14. Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage

    International Nuclear Information System (INIS)

    Huang Shan; Zhou Lixiang

    2012-01-01

    During the processes of secondary iron hydroxysulfate mineral formation, Fe 2+ ion was oxidized by the following three methods: (1) biooxidation treatment by Acidithiobacillus ferrooxidans (A. ferrooxidans); (2) rapid abiotic oxidation of Fe 2+ with H 2 O 2 (rapid oxidation treatment); (3) slow abiotic oxidation of Fe 2+ with H 2 O 2 (slow oxidation treatment). X-ray diffraction (XRD) patterns, element composition, precipitate weight and total Fe removal efficiency were analyzed. The XRD patterns and element composition of precipitates synthesized through the biooxidation and the slow oxidation treatments well coincide with those of potassium jarosite, while precipitates formed at the initial stage of incubation in the rapid oxidation treatment showed a similar XRD pattern to schwertmannite. With the ongoing incubation, XRD patterns and element composition of the precipitates that occurred in the rapid oxidation treatment were gradually close to those in the biooxidation and the slow oxidation treatments. Due to the inhibition of A. ferrooxidans itself and its extracellular polymeric substances (EPS) in aggregation of precipitates, the amount of precipitates and soluble Fe removal efficiency were lower in the biooxidation treatment than in the slow oxidation treatment. Therefore, it is concluded that Fe 2+ oxidation rate can greatly affect the mineral phase of precipitates, and slow oxidation of Fe 2+ is helpful in improving jarosite formation. - Highlights: ► Slow oxidation of Fe 2+ is helpful in jarosite formation. ► The already-formed schwertmannite can be gradually transformed to jarosite. ► Precipitates formation can be inhibited probably by EPS from A. ferrooxidans.

  15. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  16. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    Science.gov (United States)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  17. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  18. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  19. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

    Science.gov (United States)

    Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad

    2018-05-01

    Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

  20. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  1. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  2. Microstructures and phase relationships of crystalline oxidation products formed on unused CANDU fuel exposed to aerated steam and aerated water near 200 degrees C

    International Nuclear Information System (INIS)

    Taylor, P.; Wood, D.D.; Owen, D.G.; Hutchings, W.G.; Duclos, A.M.

    1991-11-01

    This report reviews the findings from dry-, moist- and wet-air oxidation experiments on unused UO 2 fuel specimens at 200-225 degrees C, performed in support of the Dry Storage Program for used CANDU (CANada Deuterium Uranium) fuel. The presence of liquid water, or unsaturated steam, adds to the complexity of air oxidation of UO 2 . The following processes have been identified by using a combination of optical and scanning electron microscopy and X-ray diffraction to detect oxidation products, and are discussed in this report: oxidative dissolution of U(VI) and precipitation of hydrated UO 3 ; back-reduction of dissolved U(VI) and precipitation of U 3 O 8 on the UO 2 /U 3 O 7 surface; solid-state surface and grain-boundary oxidation of UO 2 to β-U 3 O 7 ; and, preferential dissolution of UO 2 grain boundaries, sometimes followed by the filling of the resulting gap with higher uranium oxide(s). Although moisture thus adds greatly to the variety of oxidation reactions that can occur on UO 2 surfaces, it does not appear to promote swelling and spalling of the fuel, in spite of the large increase in molar volume associated with formation of the hydrated phase. This conclusion is qualified, however, since variability in the reactivity of fuel specimens, particularly with respect to grain-boundary oxidation, makes it difficult to distinguish moisture effects. With unused fuel, grain-boundary alteration to U 3 O 7 is the primary process by which oxidation penetrates the fuel near 200 degrees C. Reactions involving water proceed on the specimen surface, and can also follow oxidized grain boundaries and (presumably) open porosity. Because of differences in the pore and grain-boundary structure of unused and used UO 2 fuel, as well as possible radiolytic processes in the latter, comparisons between these findings and the results of the ongoing CEX-1 (dry controlled-environment experiment) and CEX-2 (moist) used-fuel storage experiments at Whiteshell Laboratories must be

  3. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  4. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  5. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  6. On the phase formation of sputtered hafnium oxide and oxynitride films

    International Nuclear Information System (INIS)

    Sarakinos, K.; Music, D.; Mraz, S.; Baben, M. to; Jiang, K.; Nahif, F.; Braun, A.; Zilkens, C.; Schneider, J. M.; Konstantinidis, S.; Renaux, F.; Cossement, D.; Munnik, F.

    2010-01-01

    Hafnium oxynitride films are deposited from a Hf target employing direct current magnetron sputtering in an Ar-O 2 -N 2 atmosphere. It is shown that the presence of N 2 allows for the stabilization of the transition zone between the metallic and the compound sputtering mode enabling deposition of films at well defined conditions of target coverage by varying the O 2 partial pressure. Plasma analysis reveals that this experimental strategy facilitates control over the flux of the O - ions which are generated on the oxidized target surface and accelerated by the negative target potential toward the growing film. An arrangement that enables film growth without O - ion bombardment is also implemented. Moreover, stabilization of the transition sputtering zone and control of the O - ion flux without N 2 addition is achieved employing high power pulsed magnetron sputtering. Structural characterization of the deposited films unambiguously proves that the phase formation of hafnium oxide and hafnium oxynitride films with the crystal structure of HfO 2 is independent from the O - bombardment conditions. Experimental and theoretical data indicate that the presence of vacancies and/or the substitution of O by N atoms in the nonmetal sublattice favor the formation of the cubic and/or the tetragonal HfO 2 crystal structure at the expense of the monoclinic HfO 2 one.

  7. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    Science.gov (United States)

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  8. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  9. Ultrastructural Complexity of Nuclear Components During Early Apoptotic Phases in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Castelli

    2001-01-01

    Full Text Available Fractal morphometry was used to investigate the ultrastructural features of the plasma membrane, perinuclear membrane and nuclear chromatin in SK‐BR‐3 human breast cancer cells undergoing apoptosis. Cells were incubated with 1 μM calcimycin (A23187 for 24 h. Cells in the early stage of apoptosis had fractal dimension (FD values indicating that their plasma membranes were less rough (lower FD than those of control cells, while their perinuclear membranes were unaffected. Changes of the chromatin texture within the entire nucleus and in selected nuclear domains were more pronounced in treated cells. This confirms that the morphological reorganization imputable to a loss of structural complexity (reduced FD occurs in the early stage of apoptosis, is accompanied by the inhibition of distinct enzymatic events and precedes the onset of conventional cellular markers, which can only be detected during the active phases of the apoptotic process.

  10. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes

    NARCIS (Netherlands)

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-01-01

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,

  11. Kinetics of Oxidation of Cobalt(III Complexes of a Acids by Hydrogen Peroxide in the Presence of Surfactants

    Directory of Open Access Journals (Sweden)

    Mansur Ahmed

    2008-01-01

    Full Text Available Hydrogen peroxide oxidation of pentaamminecobalt(III complexes of α-hydroxy acids at 35°C in micellar medium has been attempted. In this reaction the rate of oxidation shows first order kinetics each in [cobalt(III] and [H2O2]. Hydrogen peroxide induced electron transfer in [(NH35 CoIII-L]2+ complexes of α-hydroxy acids readily yields 100% of cobalt(II with nearly 100% of C-C bond cleavage products suggesting that it behaves mainly as one equivalent oxidant in micellar medium. With unbound ligand also it behaves only as C-C cleavage agent rather than C-H cleavage agent. With increasing micellar concentration an increase in the rate is observed.

  12. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    Science.gov (United States)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention

  13. Dissolution studies of natural analogues spent fuel and U(VI)-Silicon phases of and oxidative alteration process

    International Nuclear Information System (INIS)

    Perez Morales, I.

    2000-01-01

    In order to understand the long-term behavior of the nuclear spent fuel in geological repository conditions, we have performed dissolution studies with natural analogues to UO 2 as well as with solid phases representatives of the oxidative alteration pathway of uranium dioxide, as observed in both natural environment and laboratory studies. In all cases, we have studied the influence of the bicarbonate concentration in the dissolution process, as a first approximation to the groundwater composition of a granitic environment, where carbonate is one of the most important complexing agents. As a natural analogue to the nuclear spent fuel some uraninite samples from the Oklo are deposit in Gabon, where chain fission reactions took place 2000 millions years ago, as well as a pitchblende sample from the mine Fe ore deposit, in Salamanca (spain) have been studied. The studies have been performed at 25 and 60 deg C and 60 deg C, and they have focussed on the determination of both the thermodynamic and the kinetic properties of the different samples studied, using batch and continuous experimental methodologies, respectively. (Author)

  14. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  15. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    Science.gov (United States)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  16. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  17. Uranium exploration target selection for proterozoic iron oxide/breccia complex type deposits in India

    International Nuclear Information System (INIS)

    Dwivedy, K.K.; Sinha, K.K.

    1997-01-01

    Multimetal iron oxide/breccia complex (IOBC) type deposits exemplified by Olympic Dam in Australia, fall under low grade, large tonnage deposits. A multidisciplinary integrated exploration programme consisting of airborne surveys, ground geological surveys, geophysical and geochemical investigations and exploratory drilling, supported adequately by the state of the art analytical facilities, data processing using various software and digital image processing has shown moderate success in the identification of target areas for this type of deposits in the Proterozoic terrains of India. Intracratonic, anorogenic, continental rift to continental margin environment have been identified in a very wide spectrum of rock associations. The genesis and evolution of such associations during the Middle Proterozoic period have been reviewed and applied for target selection in the (i) Son-Narmada rift valley zone; (ii) areas covered by Dongargarh Supergroup of rocks in Madhya Pradesh; (iii) areas exposing ferruginous breccia in the western part of the Singhbhum Shear Zone (SSZ) around Lotapahar; (iv) Siang Group of rocks in Arunachal Pradesh; (v) Crystalline rocks of Garo Hills around Anek; and (vi) Chhotanagpur Gneissic complex in the Bahia-Ulatutoli tract of Ranchi Plateau. Of theses six areas, the Son-Narmada rift area appears to be the most promising area for IOBC type deposits. Considering occurrences of the uranium anomalies near Meraraich, Kundabhati, Naktu and Kudar and positive favourability criteria observed in a wide variety of rocks spatially related to the rifts and shears, certain sectors in Son-Narmada rift zone have been identified as promising for intense subsurface exploration. 20 refs, 4 figs, 1 tab

  18. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  19. Stochastic production phase design for an open pit mining complex with multiple processing streams

    Science.gov (United States)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  20. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors.

    Science.gov (United States)

    Minigalieva, Ilzira A; Katsnelson, Boris A; Panov, Vladimir G; Privalova, Larisa I; Varaksin, Anatoly N; Gurvich, Vladimir B; Sutunkova, Marina P; Shur, Vladimir Ya; Shishkina, Ekaterina V; Valamina, Irene E; Zubarev, Ilya V; Makeyev, Oleg H; Meshtcheryakova, Ekaterina Y; Klinova, Svetlana V

    2017-04-01

    Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections