WorldWideScience

Sample records for complex non-isothermal loading

  1. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  2. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample

    International Nuclear Information System (INIS)

    Saha, B.; Maiti, A.K.; Ghoshal, A.K.

    2006-01-01

    Pyrolysis, one possible alternative to recover valuable products from waste plastics, has recently been the subject of renewed interest. In the present study, the isoconversion methods, i.e., Vyazovkin model-free approach is applied to study non-isothermal decomposition kinetics of waste PET samples using various temperature integral approximations such as Coats and Redfern, Gorbachev, and Agrawal and Sivasubramanian approximation and direct integration (recursive adaptive Simpson quadrature scheme) to analyze the decomposition kinetics. The results show that activation energy (E α ) is a weak but increasing function of conversion (α) in case of non-isothermal decomposition and strong and decreasing function of conversion in case of isothermal decomposition. This indicates possible existence of nucleation, nuclei growth and gas diffusion mechanism during non-isothermal pyrolysis and nucleation and gas diffusion mechanism during isothermal pyrolysis. Optimum E α dependencies on α obtained for non-isothermal data showed similar nature for all the types of temperature integral approximations

  3. Non-isothermal curing kinetics and physical properties of MMT-reinforced unsaturated polyester (UP) resins

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, María A., E-mail: angelesvh@yahoo.com [Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, 55210 Ecatepec de Morelos (Mexico); Vázquez, H. [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Física, Av. San Rafael Atlixco 186, col. Vicentina, Mexico, D.F. 09340 (Mexico); Guthausen, G. [KIT, Pro2NMR at MVM and IBG, Karlsruhe (Germany)

    2015-07-10

    Highlights: • Non-isothermal DSC analysis results have shown that the addition of MMT to a UP resin produces a delay in the cure reaction. • The shape of experimental heat-flow DSC curves showed two exothermic peaks for all the samples at different heating rates. • The overall kinetic analysis was performed by isoconversional methods. • It was found that the dependence of the activation energy (E{sub a}) on degree of reaction (α) is complex. - Abstract: Cure behavior of unsaturated polyester (UP)/montmorillonite (MMT)/methyl ethyl ketone peroxide (MEKP)/cobalt octoate intercalated nanocomposites with various MMT loadings was investigated by dynamic differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). UP/MMT nanocomposites were prepared by sequential mixing. Non-isothermal DSC curves were obtained by applying heating rates ranging from 5 to 20 °C/min. They presented two exothermic peaks, which should correspond to two independent cure reactions. The effective activation energy E{sub a}, was determined by applying both the Kissinger’s and Starink’s methods. The results showed slightly higher activation energy for nanocomposites, except for UP/10-MMT. It was found that the dependence of E{sub a} on α is complex. All the systems in this study fitted Sesták–Berggren (SB) model in overall reaction controlled kinetics and the corresponding model parameters, n, m, A were obtained, but it was insufficient in depicting the complex reaction kinetics. Transmission electron microscopy data support the formation of a partially delaminated nanocomposite material. UP and nanocomposites showed similar behavior on thermal stability.

  4. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  5. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  6. Hardness of H13 Tool Steel After Non-isothermal Tempering

    Science.gov (United States)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  7. Isothermal and non-isothermal conditions of isotope separation by chemical exchange method

    International Nuclear Information System (INIS)

    Khoroshilov, A.V.; Andreev, B.M.; Katalnikov, S.G.

    1992-01-01

    The published data about the effect of temperature on thermodynamic and mass transfer parameters of isotope separation by the chemical exchange method were used to examine the influence of iso- and non-isothermal conditions on the effectiveness of the separation process. It has been shown that simultaneous fulfillment of several optimization criteria is impossible in optimization of the isothermal process. If the limitation that temperature must be constant in the whole range of concentrational changes for an isolated isotope is removed, then it is possible to solve the problem of optimization with simultaneous fulfillment of several optimization criteria. When the separation process is carried out with non-isothermal conditions, that is, in temperature cascade, then the maximum concentration change takes place at every theoretical separation plate, and whole cascade is characterised by maximum throughput, minimum height and volume, and minimum cost for the stream reflux. From the results of our study, it was concluded that in the optimum temperature cascade, the cost of production of unity quantity of isotope can be decreased at least by a factor of two as compared with the optimal isothermal version of the separation process. (author)

  8. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study

    International Nuclear Information System (INIS)

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus, Yolanda; Fraga, Iria

    2012-01-01

    Highlights: ► First evaluation of T g of tri-functional epoxy resin TGAP by DSC. ► Clearly shows advantages of TOPEM for isothermal and non-isothermal cure analysis. ► Evidence of highly non-linear enthalpy relaxation in partially cured TGAP system. - Abstract: The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures T c has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature T g as a function of isothermal cure time is determined by conventional DSC from a second (non-isothermal) scan, and the vitrification time t v is obtained as the time at which T g = T c . In parallel, TOPEM experiments at the same T c lead directly to the determination of t v from the sigmoidal change in the quasi-static heat capacity. It is not possible to identify the glass transition temperature of the fully cured system, T g∞ , in a third scan by conventional DSC. In contrast, with TOPEM a second (non-isothermal) scan at 2 K/min after the isothermal cure gives rise to three separate transitions: devitrification of the partially cured and vitrified material; almost immediate vitrification as the T g of the system again rises; finally another devitrification, at a temperature approximating closely to T g∞ . Thus with TOPEM it is possible to obtain a calorimetric measure of the glass transition temperature of this fully cured system.

  9. Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW in Indonesia using non-isothermal and isothermal experimental

    Directory of Open Access Journals (Sweden)

    Indra Mamad Gandidi

    2017-09-01

    Full Text Available Municipal solid waste (MSW, disposed of at open dumping sites, poses health risks, contaminates surface water, and releases greenhouse gasses such as methane. However, pyrolysis offers the opportunity to convert MSW into Bio-Oil (BO for clean energy resource. In this paper, an MSW sample consisting of plastic, paper and cardboard, rubber and textiles, and vegetable waste is pyrolysed on a laboratory scale in a fixed-bed vacuum reactor. In the non-isothermal process, the sample was fed into the reactor and then heated. In the isothermal process, the reactor is first heated and then the sample is added. The non-isothermal process created greater BO in both quality and quantity. The BO had a larger amount of gasoline species than diesel-48 fuel, with at 33.44%the BO produced by isothermal pyrolysis and 36.42% in non-isothermal pyrolysis. However the product of isothermal pyrolysis had a higher acid content that reduced its heating value.

  10. Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.; Bruining, J.

    2011-01-01

    This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition.

  11. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  12. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method

    Directory of Open Access Journals (Sweden)

    Ke WEI

    2018-04-01

    Full Text Available Avoiding the folding defect and improving the die filling capability in the transitional region are desired in isothermal local loading forming of a large-scale Ti-alloy rib-web component (LTRC. To achieve a high-precision LTRC, the folding evolution and die filling process in the transitional region were investigated by 3D finite element simulation and experiment using an equal-thickness billet (ETB. It is found that the initial volume distribution in the second-loading region can greatly affect the amount of material transferred into the first-loading region during the second-loading step, and thus lead to the folding defect. Besides, an improper initial volume distribution results in non-concurrent die filling in the cavities of ribs after the second-loading step, and then causes die underfilling. To this end, an unequal-thickness billet (UTB was employed with the initial volume distribution optimized by the response surface method (RSM. For a certain eigenstructure, the critical value of the percentage of transferred material determined by the ETB was taken as a constraint condition for avoiding the folding defect in the UTB optimization process, and the die underfilling rate was considered as the optimization objective. Then, based on the RSM models of the percentage of transferred material and the die underfilling rate, non-folding parameter combinations and optimum die filling were achieved. Lastly, an optimized UTB was obtained and verified by the simulation and experiment. Keywords: Die filling, Folding defect, Isothermal local loading forming, Transitional region, Unequal-thickness billet optimization

  13. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Science.gov (United States)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  14. The kinetic of mass loss of grades A and B of melted TNT by isothermal and non-isothermal gravimetric methods

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pouretedal

    2018-04-01

    Full Text Available The kinetic and activation energy of mass loss of two grades of melted TNT explosive, grade A and grade B, with freezing points of 80.57 and 78.15 °C, respectively, were studied by isothermal and non-isothermal gravimetric methods. In isothermal method, the mass loss of samples in containers of glass and aluminum was followed in temperatures of 80, 90 and 100 °C. The kinetic of the mass loss of the samples in the aluminum container was higher than the kinetic of it in the glass container that can be related to the effects of heat transfer and catalytic of aluminum metal. Also, the presence of impurities in grade B was due to increasing of kinetic of mass loss of it versus grade A. The non-isothermal curves were obtained in range of 30–330 °C at heating rates of 10, 15 and 20 °C⋅min−1. The TG/DTG data were used for determination of activation energy (Ea of mass loss of TNT samples upon degradation by using Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW and Kissinger-Akahira-Sunose (KAS methods as model free methods. The activation energies of grades of A and B of TNT was obtained 99–120 and 66–70 kJ mol−1, respectively. The lower values of activation energy of the degradation reaction of grade B confirm the effect of impurities in the kinetics of mass loss of this grade. Keywords: TNT, Isothermal, Non-isothermal, Kinetic, Mass loss

  15. Isothermal and non-isothermal infiltration and deuterium transport: a case study in a soil column from a headwater catchment

    Czech Academy of Sciences Publication Activity Database

    Sobotková, M.; Sněhota, M.; Budínová, E.; Tesař, Miroslav

    2017-01-01

    Roč. 65, č. 3 (2017), s. 234-243 ISSN 0042-790X Grant - others:GA ČR(CZ) GA14-03691S Institutional support: RVO:67985874 Keywords : isothermal infiltration * non-isothermal infiltration * column leaching * breakthrough curve * deuterium * viscosity * capillary trapping * entrapped air * permeability Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.654, year: 2016

  16. Method to Predict Tempering of Steels Under Non-isothermal Conditions

    Science.gov (United States)

    Poirier, D. R.; Kohli, A.

    2017-05-01

    A common way of representing the tempering responses of steels is with a "tempering parameter" that includes the effect of temperature and time on hardness after hardening. Such functions, usually in graphical form, are available for many steels and have been applied for isothermal tempering. In this article, we demonstrate that the method can be extended to non-isothermal conditions. Controlled heating experiments were done on three grades in order to verify the method.

  17. Non-linear frequency response of non-isothermal adsorption controlled by micropore diffusion with variable diffusivity

    Directory of Open Access Journals (Sweden)

    MENKA PETKOVSKA

    2000-12-01

    Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.

  18. Incorporating classic adsorption isotherms into modern surface complexation models: implications for sorption of radionuclides

    International Nuclear Information System (INIS)

    Kulik, D.A.

    2005-01-01

    Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution

  19. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  20. Assessment of Salmonella spp. and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions.

    Science.gov (United States)

    de Oliveira Elias, Susana; Noronha, Tiago Baptista; Tondo, Eduardo Cesar

    2018-06-01

    This study aimed to assess the growth of Salmonella and Escherichia coli O157:H7 on lettuce exposed to isothermal and non-isothermal conditions. Pathogens were inoculated on lettuce separately and stored under isothermal condition at 5 °C, 10 °C, 25 °C, 37 °C for both bacteria, at 40 °C for Salmonella and 42 °C for E. coli O157:H7. Growth curves were built by fitting the data to the Baranyi's DMFit, generating R 2 values greater than 0.92 for primary models. Secondary models were fitted with Ratkowsky equations, generating R 2 values higher than 0.91 and RMSE lower than 0.1. Experimental data showed that both bacteria could grow at all temperatures. Also, the growth of both pathogens under non-isothermal conditions was studied simulating temperatures found from harvest to supermarkets in Brazil. Models were analysed by R 2 , RMSE, bias factor (Bf) and accuracy factor (Af). Salmonella and E. coli O157:H7 were able to grow in this temperature profile and the models could predict the behavior of these microorganisms on lettuce under isothermal and non-isothermal conditions. Based on the results, a negligible growth time (ς) was proposed to provide the time which lettuce could be exposed to a specific temperature and do not present an expressive growth of bacteria. The ς was developed based on Baranyi's primary model equation and on growth potential concept. ς is the value of lag phase added of the time necessary to population grow 0.5 log CFU/g. The ς of lettuce exposed to 37 °C was 1.3 h, while at 5 °C was 3.3 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite

    International Nuclear Information System (INIS)

    Ebrahimi Kahrizsangi, R.; Abbasi, M. H.; Saidi, A.

    2007-01-01

    The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5 d eg C .min -1 . The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol -1 With pre-exponential factor about 10 8 sec -1 for extent of reaction less than 0.5

  2. Non-isothermal cure and exfoliation of tri-functional epoxy-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Shiravand

    2015-08-01

    Full Text Available The non-isothermal cure kinetics of polymer silicate layered nanocomposites based on a tri-functional epoxy resin has been investigated by differential scanning calorimetry. From an analysis of the kinetics as a function of the clay content, it can be concluded that the non-isothermal cure reaction can be considered to consist of four different processes: the reaction of epoxy groups with the diamine curing agent; an intra-gallery homopolymerisation reaction which occurs concurrently with the epoxy-amine reaction; and two extra-gallery homopolymerisation reactions, catalysed by the onium ion of the organically modified clay and by the tertiary amines resulting from the epoxy-amine reaction. The final nanostructure displays a similar quality of exfoliation as that observed for the isothermal cure of the same nanocomposite system. This implies that the intra-gallery reaction, which is responsible for the exfoliation, is not significantly inhibited by the extra-gallery epoxy-amine cross-linking reaction.

  3. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    Science.gov (United States)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  4. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  5. Mathematical modelling of non-isothermal venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, A. [Isfahan Univ., Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering; Taheri, M.; Fathikakajahi, J. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Chemical Engineering

    2005-06-01

    Venturi scrubbers collect gaseous pollutants and particulate matter from industrial exhaust. This air pollution control device is highly efficient, easy to maintain and has a low initial cost. However, the high pressure drop through the device results in a high running cost. The main mechanism for collecting particulates is the inertial impaction of the particles on the droplets, which occurs due to high velocity between the gas stream and droplets. Droplet acceleration and irreversible drag-force which results from this high relative velocity are responsible for the high pressure drop in this type of scrubber. While several attempts have been made to mathematically model particulate removal in Venturi scrubbers, most models do not consider simultaneous heat and mass transfer. This factor is important because most Venturi scrubbers operate under non-isothermal conditions where the inlet gas is humidified in order to cool it before entering the scrubber. For that reason, the authors developed a more realistic model to determine the effects of heat and mass transfer on the particulate removal efficiency of a non-isothermal Venturi type scrubber. The model considers the effect of droplet size distribution and liquid film flow on the walls. It consists of differential equations for energy, momentum and material exchange. Model results were compared with data from experimental studies and industrial facilities. It was concluded that the removal efficiency of the scrubber is influenced by the inlet humidity temperature of the inlet gas. 26 refs., 1 tab., 10 figs.

  6. Non-isothermal effects on multi-phase flow in porous medium

    DEFF Research Database (Denmark)

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  7. Non-isothermal Crystallization, Thermal Stability, and Mechanical Performance of Poly(L-lactic acid/Barium Phenylphosphonate Systems

    Directory of Open Access Journals (Sweden)

    Cai Yan-Hua

    2017-11-01

    Full Text Available The introduction of a nucleating agent in semi-crystalline polymers is a frequently utilized way to improve the crystallization performance, and the use of a nucleating agent has a very great effect on the performance of the polymer in other areas including thermal stability and mechanical properties. In this investigation, barium phenylphosphonate (BaP was prepared as a crystallization accelerator for Poly(L-lactic acid (PLLA, and the non-isothermal crystallization behavior, thermal stability, and mechanical properties of PLLA modified by BaP were investigated using differential scanning calorimetry (DSC, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and electronic tensile testing. Non-isothermal crystallization analysis showed that the BaP could significantly accelerate the crystallization of PLLA, and the non-isothermal crystallization peak shifted to a higher temperature with increasing concentration of BaP, however, the corresponding crystallization peak became wider. XRD results after non-isothermal crystallization confirmed the non-isothermal crystallization DSC results. Additionally, the addition of BaP did not change the crystal form of PLLA. A comparative study on thermal stability indicated that BaP decreased the onset decomposition temperature of PLLA, resulting from the formation of more tiny and imperfect crystals. Whereas the influence of BaP on the thermal decomposition profile of PLLA was negligible. In terms of mechanical properties, the tensile strength and elastic modulus of PLLA/BaP increased compared to the virgin PLLA, unfortunately, the elongation at break decreased.

  8. A new approach to non-isothermal models for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Frémond, M.; Rocca, E.; Schimperna, G.

    2012-01-01

    Roč. 205, č. 2 (2012), s. 651-672 ISSN 0003-9527 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : liquid crystals * non-isothermal model * flows Subject RIV: BA - General Mathematics Impact factor: 2.292, year: 2012 http://www.springerlink.com/content/cl205h73077jr810/

  9. Numerical studies of pulsating buoyant plume in isothermal and non isothermal situations

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Mohanty, Ananya; Das, D.

    2014-01-01

    A computational study has been carried out for predicting the behaviour of buoyant plume in isothermal and non isothermal configuration. General simulation objectives of any buoyant flow simulation are macroscopic in nature and deals with the grass data in respect of buoyancy induced scalar transport. However, the accuracy of predicting such macroscopic parameters is a strong function of several other microscopic parameters which govern the overall macroscopic behaviour. Some of the microscopic parameters for analysis could be buoyancy induced stable/unstable flows, relative plume behaviour, baroclinic velocity distribution etc. Only the CFD based flow modelling approach is capable of calculating several of these aspects. LES based modelling scores over the conventional RANS based computational modelling. The primary objective of the present study was to model buoyant plume simulation of different types in order to explore the details regarding plume and flow structure, instabilities and puffing behaviour. One of the influencing parameters on the overall plume behaviour is the buoyancy resolution index i.e. fineness of chosen grid in relation to the buoyancy intensity and other hydrodynamic parameters. The grid sensitivity studies have been carried out to find out the optimum value grid size by way of buoyant pool fire simulations. Comparative simulation has also been made for a square and round pool fire and it was found that for engineering simulations equivalent area square pool modeling is sufficient. Using the optimum value of grid size and square pool shape simulations have been carried out for different value of fire intensity. The flame puffing frequency as calculated by the reported correlation was compared against the computationally observed puffing frequency and the agreement was generally found to be excellent. Besides these results the comparisons of predicted peak flames temperatures data for various case studies with the available experimental data

  10. Asymptotic solution of the non-isothermal Cahn-Hilliard system

    International Nuclear Information System (INIS)

    Omel'yanov, G.A.

    1995-05-01

    The non-isothermal Cahn-Hillard questions with a small parameter in the n-dimensional case (n = 2.3) are considered. The small parameter is proportional both to the relaxation time and to the linear scale of transition zone, so the large time process is examined. The asymptotic solution describing the free interface dynamics is constructed. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan problem with corrected Gibbs-Thomson law. The justification of the asymptotic solution is proved. (author). 26 refs

  11. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): a stochastic TMDSC study

    OpenAIRE

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus Solé, Yolanda; Fraga Rivas, Iria

    2012-01-01

    The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures Tc has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature Tg as a function of isothermal cure time is determined by co...

  12. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  13. Simulation of non-isothermal gas-water processes in complex fracture-matrix systems

    International Nuclear Information System (INIS)

    Jakobs, H.

    2004-01-01

    Degassing effects may occur in fractures in the vicinity of deep radioactive-waste-disposal sites as a result of a pressure drop. These effects play an important role in the investigation of the hydraulic conditions in the near field of the disposal sites. The assumption of single-phase conditions may lead to the misinterpretation of experimental data as degassing leads to two-phase conditions and to a reduction of the effective permeability. The aim of this work is to contribute to the simulation of non-isothermal behaviour of water-gas systems in the near field of atomic waste disposal sites in fractured porous media. We distinguish between sub-REV effects within single fractures and effects due to super-REV heterogeneities which result from the fracture matrix system. We assume to have undisturbed physical conditions as report from the AespoeHard Rock Laboratory in Sweden, i.e.: - a fully water saturated system - a hydrostatic pressure of 5 million Pa. For the simulation on the laboratory scale we use a percolation model. To transfer the information from the laboratory scale to the field scale we use a renormalisation scheme. On the field scale we use a numerical simulator which solves the multiphase flow equations based on the extended form of Darcy's law. In order to investigate the limits of our models we analyse the importance of the forces taken into account, i.e., capillary forces, gravity forces, and viscous forces. This method allows us to quantify the constraints of our models. Furthermore, we investigate the influence of strong parameter heterogeneities caused by the fracture-matrix system on the flow behaviour of gas and water. We consider in particular the influence of the large difference between the entry pressures of matrix and fracture on the migration of the gas phase from the fracture system into the matrix system. (orig.)

  14. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters.

    Science.gov (United States)

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dispersive kinetic model for the non-isothermal reduction of nickel oxide by hydrogen

    International Nuclear Information System (INIS)

    Adnadevic, Borivoj; Jankovic, Bojan

    2008-01-01

    The kinetics of the non-isothermal reduction process of powder nickel oxide samples using hydrogen was investigated by temperature-programmed experiments at the different constant heating rates. The new procedure for the determination of density distribution function of activation energies (ddfE a ), evaluated from the experimentally obtained non-isothermal conversion curves, was developed. The analytical relationships between the corresponding thermo-kinetic parameters for the investigated reduction process were established. From the influence of heating rate on the basic characteristics of ddfE a 's, it was concluded that the evaluated ddfE a 's are completely independent of the heating rate (v h ). It was found that the value of activation energy at the peak of the distribution curve (E a,max ), at all considered heating rates, is in good agreement with the value of E a,0 (96.6 kJ mol -1 ) calculated from the isoconversional dependence of activation energy, in the conversion range of 0.20≤α≤0.60. From the appearances of the true compensation effect, it was concluded that the factor that produces the changes of kinetic parameter values is a conversion fraction (α). Using the model prediction, the experimentally obtained conversion curves are completely described by the evaluated distribution curves (g(E a ) vhj ) at all considered heating rates. It was concluded that the assumption about the distribution of potential energies of oxygen vacancies presented in NiO samples leads to the distribution of activation energies, which determine the kinetics of non-isothermal reduction processes

  16. Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Stefanov, Stefan [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2014-05-15

    The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical

  17. A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2015-01-01

    Roč. 47, October (2015), s. 79-86 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : non-isothermal crystallization kinetics * cumulative curves * inflection point Subject RIV: JI - Composite Materials Impact factor: 2.350, year: 2015

  18. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions

    International Nuclear Information System (INIS)

    Kumar, K. Vasanth; Porkodi, K.; Rocha, F.

    2008-01-01

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r 2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r 2 ), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r 2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K 2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm

  19. Typical parameters of the plasma chemical similarity in non-isothermal reactive plasmas

    International Nuclear Information System (INIS)

    Gundermann, S.; Jacobs, H.; Miethke, F.; Rutsher, A.; Wagner, H.E.

    1996-01-01

    The substance of physical similarity principles is contained in parameters which govern the comparison of different realizations of a model device. Because similarity parameters for non-isothermal plasma chemical reactors are unknown to a great extent, an analysis of relevant equations is given together with some experimental results. Modelling of the reactor and experimental results for the ozone synthesis are presented

  20. Wall modeling for the simulation of highly non-isothermal unsteady flows; Modelisation de paroi pour la simulation d'ecoulements instationnaires non-isothermes

    Energy Technology Data Exchange (ETDEWEB)

    Devesa, A

    2006-12-15

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-{rho}). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  1. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng; Liu, Chun; Qian, Tiezheng

    2012-01-01

    profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve

  2. The non-isothermal kinetics of decomposition of manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2012-06-01

    Full Text Available The non-isothermal kinetics of decomposition of manganese carbonate ore from Denizli – Tavas region was studied. The ore decomposed according to a serie of reaction, MnCO3 ;#8594;(400-600°C MnO2 ;#8594;(;600 Mn2O3. By using of Kissenger equation, the activation energies for the decomposition of MnCO3 to MnO2 and the transformation of MnO2 to Mn2O3 were calculated as 185,7 kJ/mol and 217,3 kJ/mol, respectively.

  3. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  4. Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Science.gov (United States)

    Xing, F.; Masson, R.; Lopez, S.

    2017-09-01

    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.

  5. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    International Nuclear Information System (INIS)

    Zvetkov, V.L.; Djoumaliisky, S.; Simeonova-Ivanova, E.

    2013-01-01

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix

  6. The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends

    Energy Technology Data Exchange (ETDEWEB)

    Zvetkov, V.L., E-mail: zvetval@yahoo.com [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria); Djoumaliisky, S.; Simeonova-Ivanova, E. [Institute of Mechanics, Bulgarian Academy of Sciences, bl. I, Sofia 1113 (Bulgaria)

    2013-02-10

    Highlights: ► The non-isothermal DSC kinetics of the reaction of DGEBA with DDS, in particular in the presence of phase separating PET, has been studied. ► The specific features in the kinetics of PET formulations in comparison to the pure system have been discussed. ► The fast pre-curing of the epoxy phase allows supposing sub-micro phase separation of PET and efficient toughening of the epoxy matrix. - Abstract: Polyethylene tereftalate has been dissolved in an epoxy resin based on diglycidyl ether of bisphenol-A, DGEBA, and the epoxy component has been cross-linked with the aid of two diamine hardeners. Two series of samples have been tested at the epoxy-amine stoichiometry applying the differential scanning calorimetry, DSC, in scanning mode. One of the series of samples was pre-cured at low temperatures with the aid of an aliphatic diamine hardener near the gel point and post-cured with diaminodiphenyl sulfone, DDS. The other series of samples contained the higher temperature hardener only. Consequently, the experimental data obtained in this study on both systems relate to the non-isothermal curing of DGEBA with DDS. The kinetics has been estimated applying preferably isoconversional (model free) methods. It has been established that the fast pre-curing allows performing a sub-micro phase separation and efficient toughening of the epoxy matrix.

  7. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing

    Directory of Open Access Journals (Sweden)

    Jun-Zhou Chen

    2018-05-01

    Full Text Available A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01. Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.

  8. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing.

    Science.gov (United States)

    Chen, Jun-Zhou; Li, Guo-Ai; Cai, Xin; Jiang, Jian-Tang; Shao, Wen-Zhu; Yang, Li; Zhen, Liang

    2018-05-03

    A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.

  9. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  10. Eulerian-Lagrangian simulation of non-isothermal gas-solid flows: particle-turbulence interactions in pipe flows; Simulation eulerienne-lagrangienne d'ecoulements gaz-solide non isothermes: interactions particules-turbulence, application aux ecoulements en conduite

    Energy Technology Data Exchange (ETDEWEB)

    Chagras, V.

    2004-03-15

    The aim of this work is to contribute to the numerical modeling of turbulent gas-solid flows in vertical or horizontal non isothermal pipes, which can be found in many industrial processes (pneumatic transport, drying, etc). The model is based on an Eulerian-Lagrangian approach allowing a fine description of the interactions between the two phases (action of the fluid upon the particles (dispersion), action of the particles upon the fluid (two way coupling) and between particles (collisions)), more or less influential according to the characteristics of the flow. The influence of the gas phase turbulence on the particle motion is taken into account using a non-isotropic dispersion model, which allows the generation of velocity and temperature fluctuations of the fluid seen by the particles. The numerical developments brought to the model for vertical and horizontal pipe flow have been validated by comparison with available experimental results from the literature. The sensitivity tests highlight the influence of the dispersion model, collisions and turbulence modulation (direct and non direct modifications ) on the dynamic and thermal behavior of the suspension. The model is able to predict the heat exchanges in the presence of particles for a wide range of flows in vertical and horizontal pipes. However numerical problems still exist in two-way coupling for very small particles and loading ratios above one. This is related to the problems encountered when modeling the coupling terms between the two phases (parameters C{sub {epsilon}}{sub 2} and C{sub {epsilon}}{sub 3} ) involved in the turbulence dissipation balance. (author)

  11. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters

    International Nuclear Information System (INIS)

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by 1 H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t 1/2 , Z c and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. - Highlights: • The incorporation of NPGS units reduced the spherulite size of BS unit. • The existence of NPGS units did not change the crystal structure of BS unit. • The NPGS units incorporated in PBS could significantly improve the ductility of PBS. • The

  12. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  13. In Situ Study of Phase Transformations during Non-Isothermal Tempering of Bainitic and Martensitic Microstructures

    Directory of Open Access Journals (Sweden)

    S. Hesamodin Talebi

    2017-09-01

    Full Text Available Phase transformations during non-isothermal tempering of bainitic or martensitic microstructures obtained after quenching of a medium-carbon low-alloy steel was studied. The microstructures correspond to different locations of an as-quenched large-sized forged ingot used as a die material in the automotive industry. High-resolution dilatometry experiments were conducted to simulate the heat treatment process, as well as to investigate different phenomena occurring during non-isothermal tempering. The microstructures were characterized using optical and scanning electron microscopy. Dilatometry analyses demonstrated that tempering behavior varied significantly from bainitic to martensitic microstructures. Retained austenite, which exists between bainitic ferrite sheaves, decomposes to lower bainite causing a remarkable volume increase. It was found that this decomposition finishes below 386 °C. By contrast, martensite tempering was accompanied with a volume decrease due to the decomposition of medium-carbon martensite to low carbon martensite and carbides.

  14. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    Science.gov (United States)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  15. Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

    OpenAIRE

    Nasser Mohamed Ramli; Mohamad Syafiq Mohamad

    2017-01-01

    Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...

  16. Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-12-01

    Full Text Available This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions of the non-isothermal nth order distributed activation energy model (DAEM using the Gamma distribution and discusses the special case for the positive integer value of the scale parameter (λ, i.e. the Erlang distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters and the distribution of activation energies.

  17. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    International Nuclear Information System (INIS)

    Naderi, M.; Saeed-Akbari, A.; Bleck, W.

    2008-01-01

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s -1 to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases

  18. The effects of non-isothermal deformation on martensitic transformation in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, M. [Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Shariati Street, Arak (Iran, Islamic Republic of)], E-mail: malek.naderi@iehk.rwth-aachen.de; Saeed-Akbari, A.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Aachen (Germany)

    2008-07-25

    In the present paper, the effects of process parameters on phase transformations during non-isothermal deformations are described and discussed. Non-isothermal high temperature compressive deformations were conducted on 22MnB5 boron steel by using deformation dilatometry. Cylindrical samples were uniaxially deformed at different strain rates ranging from 0.05 to 1.0 s{sup -1} to a maximum compressive strain of 50%. Qualitative and quantitative investigations were carried out using surface hardness mapping data as well as dilatation curves. It was observed that a higher initial deformation temperatures resulted in a higher martensite fraction of the microstructure, while a variation in the martensite start temperature was negligible. Another conclusion was that by applying larger amounts of strain as well as higher force levels, not only the martensite start temperature, but also the amount of martensite was reduced. Moreover, it was concluded that using surface hardness mapping technique and dilatometry experiments were very reliable methods to quantify and qualify the coexisting phases.

  19. Analytical solutions for non-linear conversion of a porous solid particle in a gas–II. Non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, Gerrit; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  20. Analytical solutions for non-linear conversion of a porous solid particle in a gas : II. non-isothermal conversion and numerical verification

    NARCIS (Netherlands)

    Brem, G.; Brouwers, J.J.H.

    1990-01-01

    In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid

  1. Evaluation and visualization of multiaxial fatigue behavior under random non-proportional loading condition

    Directory of Open Access Journals (Sweden)

    Takahiro Morishita

    2017-07-01

    Full Text Available In cyclic multiaxial stress/strain condition under nonproportional loading in which principal direction of stress/strain are changed in a cycle, it becomes difficult to analyze stress/strain ranges because of complexity of multiaxial stress/strain states depending on time in cycles. In order to evaluate stress/strain simply and suitably under non-proportional loading, Itoh and Sakane have proposed a method called as IS-method and a strain parameter for life evaluation under non-proportional loading NP. In the method, 6-components of stress/strain are converted to an equivalent stress/strain indicating the amplitude and the direction of principal stress/strain as a function of time as well as an intensity of loading nonproportionality fNP. Based on IS-method, the authors also have developed a tool which enables to analyze multiaxial stress/strain condition with the nonproportionality of loading history and evaluate failure life under nonproportional multiaxial loading. The tool indicates the analyzed results on monitor and users can understand visually not only variation of the stress/strain conditions but also non-proportionality during the cycle, which helps the design of material strength.

  2. Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Andreas, E-mail: ries750@yahoo.com.br [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Canedo, Eduardo L. [Materials Engineering Department, Federal University of Campina Grande, Campina Grande, PB 58429-900 (Brazil); Souto, Cícero R. [Electrical Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil); Wellen, Renate M.R. [Materials Engineering Department, Federal University of Paraíba, João Pessoa, PB 58051-900 (Brazil)

    2016-08-10

    Highlights: • Non-isothermal cold crystallization kinetics of PHB filled with ZnO is presented. • Pseudo-Avrami model is best for describing an individual crystallization condition. • Mo model is allows to judge the kinetics of a condition untested in this work. • ZnO affects the kinetics irregularly. - Abstract: The non-isothermal cold crystallization kinetics of poly(3-hydroxybutyrate) (PHB) and PHB-ZnO composites, with ZnO content of 1%, 5% and 10% per weight, was investigated at different heating rates (5, 7.5, 10, 15, 20 and 30 °C/min) using differential scanning calorimetry. Both, Kissinger and Friedman activation energies predict correctly the slowest and fastest crystallizing composition. It was further found, that ZnO can neither be classified as a crystallization accelerator, nor as a crystallization inhibitor; its action is strongly concentration dependent. The empirical Pseudo-Avrami model has the best overall capability for fitting the experimental kinetic data. However, since the Pseudo-Avrami exponent was found to vary irregularly with heating rate and filler content, this model should not be applied for kinetic predictions of an arbitrary composition or an untested heating rate. In such cases, Mo's model should be used.

  3. A NON-ISOTHERMAL THEORY FOR INTERPRETING SODIUM LINES IN TRANSMISSION SPECTRA OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Lavie, Baptiste [University of Bern, Physics Institute, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Wyttenbach, Aurélien; Ehrenreich, David; Lovis, Christophe [Observatoire de l’Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Sing, David K., E-mail: kevin.heng@csh.unibe.ch [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-04-10

    We present a theory for interpreting the sodium lines detected in transmission spectra of exoplanetary atmospheres. Previous analyses employed the isothermal approximation and dealt only with the transit radius. By recognizing the absorption depth and the transit radius as being independent observables, we develop a theory for jointly interpreting both quantities, which allows us to infer the temperatures and number densities associated with the sodium lines. We are able to treat a non-isothermal situation with a constant temperature gradient. Our novel diagnostics take the form of simple-to-use algebraic formulae and require measurements of the transit radii (and their corresponding absorption depths) at line center and in the line wing for both sodium lines. We apply our diagnostics to the HARPS data of HD 189733b, confirm the upper atmospheric heating reported by Huitson et al., derive a temperature gradient of 0.4376 ± 0.0154 K km{sup −1}, and find densities ∼1–10{sup 4} cm{sup −3}.

  4. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  5. Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Bok, H.-H.; Kim, S.N.; Suh, D.W. [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Barlat, F., E-mail: f.barlat@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Lee, M.-G., E-mail: myounglee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul (Korea, Republic of)

    2015-02-25

    A non-isothermal phase transformation kinetics model obtained by modifying the well-known JMAK approach is proposed for application to a low carbon boron steel (22MnB5) sheet. In the modified kinetics model, the parameters are functions of both temperature and cooling rate, and can be identified by a numerical optimization method. Moreover, in this approach the transformation start and finish temperatures are variable instead of the constants that depend on chemical composition. These variable reference temperatures are determined from the measured CCT diagram using dilatation experiments. The kinetics model developed in this work captures the complex transformation behavior of the boron steel sheet sample accurately. In particular, the predicted hardness and phase fractions in the specimens subjected to a wide range of cooling rates were validated by experiments.

  6. Wall modeling for the simulation of highly non-isothermal unsteady flows

    International Nuclear Information System (INIS)

    Devesa, A.

    2006-12-01

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-ρ). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  7. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2017-10-01

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.

  8. Interpretation of Quasi-Isothermal Thermogravimetric Weight Curves

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1979-01-01

    Quasi-isothermal analysis (QIA) is a very useful technique. Compared to conventional non-isothermal thermogravimetry, close-lying reactions can easily be separated by use of this method and kinetic data can be obtained for each intermediate reaction in a single run. This paper discusses the shape...

  9. A general approach for defining the macroscopic free energy density of saturated porous media at finite strains under non-isothermal conditions

    International Nuclear Information System (INIS)

    Gajo, A.

    2011-01-01

    A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an 'open system', moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semi-linear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyper-elastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents. (authors)

  10. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  11. Non-isothermal modelling of the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2009-01-01

    An non-isothermal model for the all-vanadium redox flow battery (RFB) is presented. The two-dimensional model is based on a comprehensive description of mass, charge, energy and momentum transport and conservation, and is combined with a global kinetic model for reactions involving vanadium species. Heat is generated as a result of activation losses, electrochemical reaction and ohmic resistance. Numerical simulations demonstrate the effects of changes in the operating temperature on performance. It is shown that variations in the electrolyte flow rate and the magnitude of the applied current substantially alter the charge/discharge characteristics, the temperature rise and the distribution of temperature. The influence of heat losses on the charge/discharge behaviour and temperature distribution is investigated. Conditions for localised heating and membrane degradation are discussed.

  12. Non-isothermal crystallization kinetics of As{sub 30}Te{sub 60}Ga{sub 10} glass

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mansour; Abd-Elnaiem, Alaa M.; Abdel-Rahim, M.A.; Hafiz, M.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Hassan, R.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt); Aden University, Physics Department, Faculty of Education-Zingiber, Aden (Yemen)

    2017-08-15

    The crystallization study under non-isothermal conditions of As{sub 30}Te{sub 60}Ga{sub 10} glass was investigated. The studied composition was synthesized by melt-quenching technique and characterized by different techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The XRD analysis revealed that the as-prepared and annealed bulk glass of As{sub 30}Te{sub 60}Ga{sub 10} exhibit the amorphous, and polycrystalline nature, respectively. The DSC results showed that the heating rate affects the characteristic temperatures, for instance, the glass transition, onset, and peak crystallization temperatures. Furthermore, some thermal analysis methods such as the Kissinger and Matusita et al., approximations were employed to determine the crystallization parameters: for example Avrami exponent and the activation energies for glass transition and crystallization process. In addition, we have compared the experimental DSC data with the calculated ones based on the Johnson-Mehl-Avrami (JMA) and Sestak-Berggren SB(M,N) models. The results indicated that the SB(M,N) model is more suitable for describing the non-isothermal crystallization kinetics of the investigated composition. (orig.)

  13. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  14. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    Science.gov (United States)

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations.

  15. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...... to solve mass balance equation for the gaseous mixture with heat and fractional mass transport equations. Temperature change resulting from fluid expansion and viscous heat dissipation is included in heat transport in addition to advection and conduction. We have used a modified version of the Peng...

  16. Non-isothermal crystallization of PET/PLA blends

    International Nuclear Information System (INIS)

    Chen, Huipeng; Pyda, Marek; Cebe, Peggy

    2009-01-01

    Binary blends of poly(ethylene terephthalate) with poly(lactic acid), PET/PLA, were studied by differential scanning calorimetry and X-ray scattering. The PET/PLA blends, prepared by solution casting, were found to be miscible in the melt over the entire composition range. Both quenched amorphous and semicrystalline blends exhibit a single, composition dependent glass transition temperature. We report the non-isothermal crystallization of (a) PET, with and without the presence of PLA crystals and (b) PLA, with and without the presence of PET crystals. PET can crystallize in all blends, regardless of whether PLA is amorphous or crystalline, and degree of crystallinity of PET decreases as PLA content increases. In contrast, PLA crystallization is strongly affected by the mobility of the PET fraction. When PET is wholly amorphous, PLA can crystallize even in 70/30 blends, albeit weakly. But when PET is crystalline, PLA cannot crystallize when its own content drops below 0.90. These different behaviors may possibly be related to the tendency of each polymer to form constrained chains, i.e., to form the rigid amorphous fraction, or RAF. PET is capable of forming a large amount of RAF, whereas relatively smaller amount of RAF forms in PLA. Like the crystals, the rigid amorphous fraction of one polymer component may inhibit the growth of crystals of the other blend partner.

  17. Synthesis and kinetics of non-isothermal degradation of acetylene terminated silazane

    Institute of Scientific and Technical Information of China (English)

    Wei Jian Han; Li Ye; Ji Dong Hu; Tong Zhao

    2011-01-01

    Novel acetylene terminated silazane compounds, with three types of substituent, were synthesized by the aminolysis of dichlorosilane with 3-aminophenylacetylene (3-APA). Thermal property of the compounds is studied by thermogravimetry analysis (TGA). It shows that the acetylene terminated silazane has high temperature resistance. The char yield at 1000℃ is 77.6, 81.9 and 68.7 wt% for methyl, vinyl, and phenyl substituted silazane, respectively. The pyrolysis kinetics of the silazane is investigated by non-isothermal thermogravimetric measurement. The pyrolysis undergoes three stages, which is resolved by PEAKFIT. The kinetic parameters are calculated by the Kissinger method. The role of functionalities on the thermal resistance is discussed. The vinyl-silazane exhibits higher thermal stability because of higher cross-linking density.

  18. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    International Nuclear Information System (INIS)

    Zhang, Zun; Tang, Haibin; Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-01-01

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3

  19. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  20. Thermal-mechanical and isothermal fatigue of IN 792 CC

    International Nuclear Information System (INIS)

    Beck, T.; Pitz, G.; Lang, K.-H.; Loehe, D.

    1997-01-01

    The cyclic deformation and lifetime behaviour of the cast Ni-base superalloy IN 792 CC was investigated both under thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) conditions. During TMF the phase relations between temperature and mechanical strain were in-phase and out-of-phase, respectively. For both phase relations a similar cyclic deformation behaviour is observed. In all cases out-of-phase TMF causes tensile mean stresses, whereas in-phase TMF leads to compressive mean stresses. At T max below 800 C out-of-phase cycling results in smaller lifetimes than in-phase loading. In spite of the rather high compressive mean stresses developing at T max above 800 C, at these temperatures in-phase loading causes shorter lifetimes than out-of-phase TMF. This effect is due to the different damage mechanisms caused by in-phase and out-of-phase loadings: at higher T max considerable intergranular damage caused by in-phase loading reduces the lifetime below the respective values measured during out-of-phase TMF, after which no intergranular damage could be detected. A comparison of the TMF data with the cyclic deformation and lifetime behaviour under IF conditions shows that the material's reactions under TMF cannot be assessed satisfactorily by the results obtained from isothermal fatigue tests. (orig.)

  1. Wave propagation in a non-isothermal atmosphere and the solar five-minute oscillations. [Acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi, C; Giovanardi, C [Florence Univ. (Italy). Istituto di Astronomia

    1979-11-01

    This paper presents a detailed discussion of the properties of linear, periodic acoustic waves that propagate vertically in a non-isothermal atmosphere. In order to retain the basic feature of the solar atmosphere we have chosen a temperature profile presenting a minimum. An analytical solution of the problem is possible if T/..mu.., ..mu.. being the mean molecular weight, varies parabolically with height. The purpose of this study is to point out the qualitative differences existing between the case treated here and the customary analysis based on a locally isothermal treatment. The computed velocity amplitude and the temperature-perturbation as functions of the wave period exhibit a sharp peak in the region between 180 and 300 s, thus showing the possibility of interpreting the five-minute oscillations as a resonant phenomenon. The propagating or stationary nature of the waves is investigated by a study of the phase of the proposed analytical solution.

  2. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    Science.gov (United States)

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  3. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis

    International Nuclear Information System (INIS)

    Ai, Lunhong; Zhang, Chunying; Liao, Fang; Wang, Yao; Li, Ming; Meng, Lanying; Jiang, Jing

    2011-01-01

    Highlights: ► M-MWCNTs were synthesized by a facile one-pot solvothermal method and used as an efficient adsorbent for removing toxic dye from aqueous solution. ► The adsorption process was characterized by kinetics and isotherm analysis. ► FTIR analysis was employed to investigate the interactions between M-MWCNTs and dye. - Abstract: In this study, we have demonstrated the efficient removal of cationic dye, methylene blue (MB), from aqueous solution with the one-pot solvothermal synthesized magnetite-loaded multi-walled carbon nanotubes (M-MWCNTs). The as-prepared M-MWCNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The effects of contact time, initial dye concentration, and solution pH on the adsorption of MB onto M-MWCNTs were systematically studied. It was shown that the MB adsorption was pH-dependent. Adsorption kinetics was best described by the pseudo-second-order model. Equilibrium data were well fitted to the Langmuir isotherm model, yielding maximum monolayer adsorption capacity of 48.06 mg g −1 . FTIR analysis suggested that the adsorption mechanism was possibly attributed to the electrostatic attraction and π–π stacking interactions between MWCNTs and MB.

  4. Simulation of competitive Cu precipitation in steel during non-isothermal aging

    International Nuclear Information System (INIS)

    Yang, J.B.; Yamashita, T.; Sano, N.; Enomoto, M.

    2008-01-01

    A numerical model has been developed to simulate Cu precipitation in dilute bcc Fe-Cu alloys during non-isothermal aging taking into account competitive nucleation at grain boundaries, dislocations and in the matrix, and structural transformation of Cu particles that occurs during growth. The temporal evolution of number density, mean particle size and size distribution during continuous cooling is simulated and is compared with experimental observations under transmission electron microscope and three-dimensional atom probe field ion microscope. With decreasing temperature the growth and coarsening rates diminishes rapidly whereas nucleation continues to occur down to lower temperatures due to the decrease in the activation energy of nucleation and thus, distributions of fine particles can be obtained relatively easily after cooling. Precipitation and dissolution during continuous heating are simulated and are compared with experimental observations in the literature

  5. Quasi-equilibria and plasma chemical similarity in non-isothermal reactive plasmas

    International Nuclear Information System (INIS)

    Miethke, F.; Rutscher, A.; Wagner, H.E.

    2000-01-01

    With regard to the output of stable products the mode of operation of non-isothermal plasma chemical reactors shows physical and chemical well defined states, which represent limiting cases and may be interpreted as quasi-equilibrium states. The occurrence and the characteristics of these states, meanwhile more than once observed and described, are demonstrated by an instructive model reaction. Within the frame of the so-called Macroscopic Kinetics a central parameter is dominating the reactor operation. This result may be generalized and is linked up to the application of similarity principles for the reactor operation. After the general formulation of such principles, starting from the balance equations of particles and energy, a dimensionless similarity parameter is formulated, characterizing the composition of the effluent gas of the reactor. The applicability of this parameter is demonstrated by experimental examples. (Authors)

  6. Non-Isothermal Gas-Based Direct Reduction Behavior of High Chromium Vanadium-Titanium Magnetite Pellets and the Melting Separation of Metallized Pellets

    Directory of Open Access Journals (Sweden)

    Jue Tang

    2017-04-01

    Full Text Available The non-isothermal reduction behavior of high chromium vanadium-titanium magnetite (HCVTM pellets by gas mixtures was investigated using different heating rates (4, 8, and 12 K/min and varied gas compositions (H2/CO = 2/5, H2/CO = 1/1, and H2/CO = 5/2 volume ratios; the pellets were then used for melting separation. It was observed that the temperature corresponding to the maximum reduction ratio increased with the increasing heating rate. The HCVTM pellets reached the same final reduction ratio under a given reducing gas composition, although the heating rates were different. Under the same heating rate, the gas mixture with more H2 was conducive for obtaining a higher reduction ratio. The phase transformations during the non-isothermal reduction were ordered as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; V1.7Cr0.3O3 → V2O3 → Fe2VO4; Fe1.2Cr0.8O3 → Cr2O3 → FeCr2O4. The non-isothermal reduction kinetic model was established based on the unreacted core model with multiple reaction interfaces. The correlation coefficients were greater than 0.99, revealing that this kinetic model could properly describe the non-isothermal reduction of the HCVTM pellets by gas mixtures. Iron containing V and Cr along with the Ti-rich slag was obtained through the melting separation of the metallized HCVTM pellets. The mass fractions and recovery rates of Fe, V, and Cr in the iron were 93.87% and 99.45%, 0.91% and 98.83%, and 0.72% and 95.02%, respectively. The mass fraction and recovery rate of TiO2 in the slag were 38.12% and 95.08%, respectively.

  7. Measuring cognitive load: performance, mental effort and simulation task complexity.

    Science.gov (United States)

    Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-08-01

    Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95)  = 41.1, p cognitive load (F(2.3,58.5)  = 57.7, p load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.

  8. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  9. Load-redistribution strategy based on time-varying load against cascading failure of complex network

    International Nuclear Information System (INIS)

    Liu Jun; Shi Xin; Wang Kai; Shi Wei-Ren; Xiong Qing-Yu

    2015-01-01

    Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently. (paper)

  10. Modeling of Non-isothermal Austenite Formation in Spring Steel

    Science.gov (United States)

    Huang, He; Wang, Baoyu; Tang, Xuefeng; Li, Junling

    2017-12-01

    The austenitization kinetics description of spring steel 60Si2CrA plays an important role in providing guidelines for industrial production. The dilatometric curves of 60Si2CrA steel were measured using a dilatometer DIL805A at heating rates of 0.3 K to 50 K/s (0.3 °C/s to 50 °C/s). Based on the dilatometric curves, a unified kinetics model using the internal state variable (ISV) method was derived to describe the non-isothermal austenitization kinetics of 60Si2CrA, and the abovementioned model models the incubation and transition periods. The material constants in the model were determined using a genetic algorithm-based optimization technique. Additionally, good agreement between predicted and experimental volume fractions of transformed austenite was obtained, indicating that the model is effective for describing the austenitization kinetics of 60Si2CrA steel. Compared with other modeling methods of austenitization kinetics, this model, which uses the ISV method, has some advantages, such as a simple formula and explicit physics meaning, and can be probably used in engineering practice.

  11. Rapid analytical assessment of the mechanical perturbations induced by non-isothermal injection into a subsurface formation.

    Science.gov (United States)

    De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta

    2016-04-01

    Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.

  12. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  13. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    Science.gov (United States)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  14. Isothermal temperature reactivity coefficient measurement in TRIGA reactor

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Trkov, A.

    2002-01-01

    Direct measurement of an isothermal temperature reactivity coefficient at room temperatures in TRIGA Mark II research reactor at Jozef Stefan Institute in Ljubljana is presented. Temperature reactivity coefficient was measured in the temperature range between 15 o C and 25 o C. All reactivity measurements were performed at almost zero reactor power to reduce or completely eliminate nuclear heating. Slow and steady temperature decrease was controlled using the reactor tank cooling system. In this way the temperatures of fuel, of moderator and of coolant were kept in equilibrium throughout the measurements. It was found out that TRIGA reactor core loaded with standard fuel elements with stainless steel cladding has small positive isothermal temperature reactivity coefficient in this temperature range.(author)

  15. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    Science.gov (United States)

    Zhang, Nan

    constructed by calculating the theoretical M-K model with Newton method and backtracking algorithm. The obtained FLDs are found to be instructive and will be applied in the post-processing of FE simulation for stamping so as to identify the critical area of failure. The developed constitutive model and modified yield function are implemented in the form of user defined subroutine (VUMAT) in ABAQUS/Explicit. An explicit stress integration algorithm has been selected for the stress integration with rate-depend viscoplasticity model at temperature higher than 150°. In the low temperature range, the Newton method and cutting plane algorithm are utilized to update the stress tensor with a classic elastoplastic constitutive model. To validate the VUMAT, a non-isothermal tensile testing has been performed with aids of infrared thermal camera and DIC. The heat transfer coefficients in FE model are calibrated with captured thermal images. With appropriate selection of mesh size and mass scaling factor, the punch load vs. displacement curve obtained from the simulation perfectly correlates the experimental result.

  16. Transient non-isothermal model of a polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.A. [Queen' s-RMC Fuel Cell Research Centre, 945 Princess Street, Kingston, Ont. K7L 5L9 (Canada); Kim, G.-S.; Harvey, D. [Ballard Power Systems, 4343 North Fraser Way, Burnaby, BC V5J 5J9 (Canada); Sui, P.C. [Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2007-01-01

    In this paper we present a one-dimensional transient model for the membrane electrode assembly of a polymer-electrolyte fuel cell. In earlier work we established a framework to describe the water balance in a steady-state, non-isothermal cathode model that explicitly included an agglomerate catalyst layer component. This paper extends that work in several directions, explicitly incorporating components of the anode, including a micro-porous layer, and accounting for electronic potential variations, gas convection and time dependance. The inclusion of temperature effects, which are vital to the correct description of condensation and evaporation, is new to transient modelling. Several examples of the modelling results are given in the form of potentiostatic sweeps and compared to experimental results. Excellent qualitative agreement is demonstrated, particularly in regard to the phenomenon of hysteresis, a manifestation of the sensitive response of the system to the presence of water. Results pertaining to pore size, contact angle and the presence of a micro-porous layer are presented and future work is discussed. (author)

  17. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  18. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    Science.gov (United States)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  19. Analysis of a self-propelling sheet with heat transfer through non-isothermal fluid in an inclined human cervical canal.

    Science.gov (United States)

    Walait, Ahsan; Siddiqui, A M; Rana, M A

    2018-02-13

    The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.

  20. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    Science.gov (United States)

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  1. Resident Load Influence Analysis Method for Price Based on Non-intrusive Load Monitoring and Decomposition Data

    Science.gov (United States)

    Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang

    2018-01-01

    In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.

  2. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  3. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  4. Safety assessment of reactor components under complex multiaxial cyclic loading. Final report; Sicherheitsbewertung kerntechnischer Komponenten bei komplexer, mehrachsiger Schwingbeanspruchung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fesich, Thomas M.; Herter, Karl-Heinz; Schuler, Xaver

    2012-12-15

    Objective of the project was the experimental assurance of investigations on the theoretical basis of multiaxial fatigue loading. The review of the applicability of existing hypotheses, as well as the extension of the corresponding data base was carried out by experimental studies in fatigue tests under complex multiaxial loading for a ferritic and austenitic material. To investigate the influence of complex multiaxial stress conditions on the fatigue behavior, in this project notched cylindrical specimens were examined under alternating tensile/pressure loading and alternating torsional loading. Through the notch in the notched section inhomogeneous, multiaxial stress states are generated. By uniaxial alternating tests on unnotched specimens and a further series of tests on unnotched specimens under alternating torsional loading an evaluation of the impact and influence of the notch of stress on fatigue behavior was possible. A series of experiments with superimposition of alternating torsional and alternating tensile/pressure loading permits verification of the effect of phase-shifted stress and rotating principal coordinate system. All experiments were performed at room temperature. As part of the research project, the experimental results with the ferritic and austenitic materials were evaluated in terms of material behavior (hardening or softening) under cyclic loading. These were to uniaxial alternating tensile/pressure tests, alternating torsional tests (unnotched cylindrical specimens), alternating tensile/pressure tests on notched cylindrical specimens, alternating torsional tests on notched cylindrical specimens, alternating tensiontorsion tests with complex proportional stresses on unnotched cylindrical specimens (superimposition of normal and shear stress components), as well as alternating tension-torsion tests with complex non-proportional strain on unnotched cylindrical specimens (superimposition of normal and shear stress components with 90 phase

  5. Nonlinear kinematic hardening under non-proportional loading

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1979-07-01

    Within the framework of conventional plasticity theory, it is first determined under which conditions Melan-Prager's and Ziegler's kinematic hardening rules result in identical material behaviour. Next, assuming initial isotropy and adopting the von Mises yield criterion, a nonlinear kinematic hardening function is proposed for prediction of metal behaviour. The model assumes that hardening at a specific stress point depends on the direction of the new incremental loading. Hereby a realistic response is obtained for general reversed loading, and a smooth behaviour is assured, even when loading deviates more and more from proportional loading and ultimately results in reversed loading. The predictions of the proposed model for non-proportional loading under plane stress conditions are compared with those of the classical linear kinematic model, the isotropic model and with published experimental data. Finally, the limitations of the proposaed model are discussed. (author)

  6. The Application of Simulation Method in Isothermal Elastic Natural Gas Pipeline

    Science.gov (United States)

    Xing, Chunlei; Guan, Shiming; Zhao, Yue; Cao, Jinggang; Chu, Yanji

    2018-02-01

    This Elastic pipeline mathematic model is of crucial importance in natural gas pipeline simulation because of its compliance with the practical industrial cases. The numerical model of elastic pipeline will bring non-linear complexity to the discretized equations. Hence the Newton-Raphson method cannot achieve fast convergence in this kind of problems. Therefore A new Newton Based method with Powell-Wolfe Condition to simulate the Isothermal elastic pipeline flow is presented. The results obtained by the new method aregiven based on the defined boundary conditions. It is shown that the method converges in all cases and reduces significant computational cost.

  7. Preparation of a novel breviscapine-loaded halloysite nanotubes complex for controlled release of breviscapine

    Science.gov (United States)

    Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong

    2017-11-01

    For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.

  8. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    International Nuclear Information System (INIS)

    Lang, Peter; Wojcik, Tomasz; Povoden-Karadeniz, Erwin; Falahati, Ahmad; Kozeschnik, Ernst

    2014-01-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed

  9. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  10. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell

    International Nuclear Information System (INIS)

    Xing, Lei; Liu, Xiaoteng; Alaje, Taiwo; Kumar, Ravi; Mamlouk, Mohamed; Scott, Keith

    2014-01-01

    A two dimensional, across the channel, steady-state model for a proton exchange membrane fuel cell (PEMFC) is presented in which the non-isothermal model for temperature distribution, the two-phase flow model for liquid water transport and the agglomerate model for oxygen reduction reaction are fully coupled. This model is used to investigate thermal transport within the membrane electrode assembly (MEA) associated with the combinational water phase-transfer and transport mechanisms. Effective temperature distribution strategies are established aim to enhance the cell performance. Agglomerate assumption is adopted in which the ionomer and liquid water in turn cover the agglomerate to form the ionomer and liquid water films. Ionomer swelling is associated with the non-uniform distribution of the water content. The modelling results show that heat accumulates within the cathode catalyst layer under the channel. Higher operating temperature improves the cell performance by increasing the kinetics, reducing the liquid water saturation on the cathode and increasing the water carrying capacity of the anode gas. Applying higher temperature on the anode and enlarging the width ratio of the channel/rib could improve the cell performance. Higher cathode temperature decreases the oxygen mole fraction, resulting in an insufficient oxygen supply and a limitation of the cell performance. - Highlights: • The two-phase flow and non-isothermal model couple with the agglomerate model. • Oxygen diffusivity and solubility in Nafion ® relate to water content and temperature. • Higher anode operating temperature improves the fuel cell performance. • Insufficient oxygen supply limits cell performance at higher current densities

  11. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-09-01

    Full Text Available This paper deals with the influence of some parameters relevant to biomass pyrolysis on the numerical solutions of the nonisothermal nth order distributed activation energy model using the Rayleigh distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order and the scale parameters of the Rayleigh distribution. The influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Rayleigh distribution from the experimentally derived thermoanalytical data of biomass pyrolysis.

  12. Non-isothermal degradation and evaluation of kinetic parameters of some Schiff base metal complexes

    International Nuclear Information System (INIS)

    Mishra, A.P.; Soni, Monika

    2008-01-01

    Thermal decomposition of VO (II)-methyl isobutyl ketone-nicotinamide, VO (II)-2-furfurylidine-3,4-dichloroaniline, Co(II)-4-dimethyl amino benzylidine-3-chloro-4-fluoroaniline, VO(II)-2-pyridine carboxylidine-4-aminobenzoic acid complexes have been carried out by thermogravimetric method. The TG curves of complexes were recorded at a uniform rate of 20 deg C/min in nitrogen. The thermogram of the three VO(II) complexes exhibit single stage decomposition whereas the Co(II) complex shows a double stage decomposition. Various kinetic parameters i. e., energy of activation (E), entropy (AS) and frequency factor (Z) have been evaluated by using Coats-Redfern and Piloyan-Novikova equations and their comparable values are reported. The order of thermal stability of first decomposition stage is as: 4=2>1>3. (author)

  13. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.

    Science.gov (United States)

    Aragao, Glaucia M F; Corradini, Maria G; Normand, Mark D; Peleg, Micha

    2007-11-01

    Published survival curves of Escherichia coli in two growth media, with and without the presence of salt, at various temperatures and in a Greek eggplant salad having various levels of essential oil, all had a characteristic downward concavity when plotted on semi logarithmic coordinates. Some also exhibited what appeared as a 'shoulder' of considerable length. Regardless of whether a shoulder was noticed, the survival pattern could be considered as a manifestation of an underlying unimodal distribution of the cells' death times. Mathematically, the data could be described equally well by the Weibull and log normal distribution functions, which had similar modes, means, standard deviations and coefficients of skewness. When plotted in their probability density function (PDF) form, the curves also appeared very similar visually. This enabled us to quantify and compare the effect of temperature or essential oil concentration on the organism's survival in terms of these temporal distributions' characteristics. Increased lethality was generally expressed in a shorter mean and mode, a smaller standard deviation and increased overall symmetry as judged by the distributions' degree of skewness. The 'shoulder', as expected, simply indicated that the distribution's standard deviation was much smaller than its mode. Rate models based on the two distribution functions could be used to predict non isothermal survival patterns. They were derived on the assumption that the momentary inactivation rate is the isothermal rate at the momentary temperature at a time that corresponds to the momentary survival ratio. In this application, however, the Weibullian model with a fixed power was not only simpler and more convenient mathematically than the one based on the log normal distribution, but it also provided more accurate estimates of the dynamic inactivation patterns.

  14. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    OpenAIRE

    Erna Apriliani; Dieky Adzkiya; Arief Baihaqi

    2011-01-01

    Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ense...

  15. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  16. Identifying the optimal resistive load for complex training in male rugby players.

    Science.gov (United States)

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam; Jensen, Randall L

    2007-01-01

    Alternating a resistance exercise with a plyometric exercise is referred to as "complex training". In this study, we examined the effect of various resistive loads on the biomechanics of performance of a fast stretch-shortening cycle activity to determine if an optimal resistive load exists for complex training. Twelve elite rugby players performed three drop jumps before and after three back squat resistive loads of 65%, 80%, and 93% of a single repetition maximum (1-RM) load. All drop jumps were performed on a specially constructed sledge and force platform apparatus. Flight time, ground contact time, peak ground reaction force, reactive strength index, and leg stiffness were the dependent variables. Repeated-measures analysis of variance found that all resistive loads reduced (P benefit performance. However, it is unknown if these acute changes will produce any long-term adaptations to muscle function.

  17. Numerical measures of the degree of non-proportionality of multiaxial fatigue loadings

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2015-07-01

    Full Text Available The influence of the non-proportional loadings on the fatigue life depends on the material ductility. Ductile materials react with a shortening of lifetime compared to proportional loading conditions. For a semiductile material there is almost no difference between proportional and non-proportional loadings with respect to the fatigue life. Brittle materials show an increase of the lifetime under non-proportional loadings. If fatigue life assessment is performed using stress-based hypotheses, it is a rather difficult task to take into account material ductility correctly, especially the fatigue life reduction as displayed by ductile materials. Most stress-based hypotheses will compute a longer fatigue life under non-proportional loading conditions. There are also hypotheses, which already include quantitative evaluation of the non-proportionality (e.g. EESH, SSCH and MWCM. Anyway in order to improve assessment for ductile materials, some sort of numerical measure for the degree of non-proportionality of the fatigue loading is required. A number of measures of this kind (or non-proportionality factors were proposed in the literature and are discussed here: - the factor used in EESH is a quotient of stress amplitudes integrals, - the factor according to Gaier, which works with a discrete stress tensor values in a scaled stress space, - the factor according to Kanazawa, which makes use of plane-based stress values, - the factor used in MWCM, which exploits stress values in the plane with the highest shear stress amplitude, a new non-proportionality factor, which is based on the correlation between individual stress tensor components, is proposed. General requirements imposed on the non-proportionality factors are discussed and each of the factors is evaluated with respect to these requirements. Also application with the stress-based hypotheses is discussed and illustrated using the experimental data for aluminum and magnesium welded joints under

  18. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  19. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  20. A numerical study of non-isothermal turbulent coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Kriaa, Wassim; Abderrazak, Kamel; Mhiri, Hatem [Ecole Nationale d' Ingenieurs de Monastir, Laboratoire de Mecanique des Fluides et Thermique, Monastir (Tunisia); Palec, Georges le; Bournot, Philippe [Institut de Mecanique de Marseille, Marseille (France)

    2008-07-15

    In this work, we propose to study non isothermal air-air coaxial jets with two different approaches: parabolic and elliptic approaches. The standard k-{epsilon} model and the RSM model were applied in this study. The numerical resolution of the equations governing this flow type was carried out for: the parabolic approach, by a ''home-made'' CFD code based on a finite difference method, and the elliptic approach by an industrial code (FLUENT) based on a finite volume method. In forced convection mode (Fr={infinity}), the two turbulence models are valid for the prediction of the mean flow. But for turbulent sizes, k-{epsilon} model gives results closer to those achieved in experiments compared to RSM Model. Concerning the limit of validity of the parabolic and elliptic approaches, we showed that for velocities ratio r lower than 1, the results of the two approaches were satisfactory. On the other hand, for r>1, the difference between the results became increasingly significant. In mixed convection mode (Fr{approx_equal}20), the results obtained by the two turbulence models for the mean axial velocity were very different even in the plume region. For the temperature and the turbulent sizes the two models give satisfactory results which agree well with the correlations suggested by the experimenters for X{>=}20. Thus, the second order model with {sigma}{sub t}=0.85 is more effective for a coaxial jet study in a mixed convection mode. (orig.)

  1. Non-isothermal kinetics of phase transformations in magnetron sputtered alumina films with metastable structure

    International Nuclear Information System (INIS)

    Zuzjaková, Š.; Zeman, P.; Kos, Š.

    2013-01-01

    Highlights: • Non-isothermal kinetics of phase transformations in alumina films was investigated. • The structure of alumina films affects kinetics of the transformation processes. • Kinetic triplets of all transformation processes were determined. • The KAS, FWO, FR and IKP methods for determination of E a and A were used. • The Málek method for determination of the kinetic model was used. - Abstract: The paper reports on non-isothermal kinetics of transformation processes in magnetron sputtered alumina thin films with an amorphous and γ-phase structure leading ultimately to the formation of the thermodynamically stable α-Al 2 O 3 phase. Phase transformation sequences in the alumina films were investigated using differential scanning calorimetry (DSC) at four different heating rates (10, 20, 30, 40 °C/min). Three isoconversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR) method) as well as the invariant kinetic parameters (IKP) method were used to determine the activation energies for transformation processes. Moreover, the pre-exponential factors were determined using the IKP method. The kinetic models of the transformation processes were determined using the Málek method. It was found that the as-deposited structure of alumina films affects kinetics of the transformation processes. The film with the amorphous as-deposited structure heated at 40 °C/min transforms to the crystalline γ phase at a temperature of ∼930 °C (E a,IKP = 463 ± 10 kJ/mol) and subsequently to the crystalline α phase at a temperature of ∼1200 °C (E a,IKP = 589 ± 10 kJ/mol). The film with the crystalline γ-phase structure heated at 40 °C/min is thermally stable up to ∼1100 °C and transforms to the crystalline α phase (E a,IKP = 511 ± 16 kJ/mol) at a temperature of ∼1195 °C. The empirical two-parameter Šesták–Berggren kinetic model was found to be the most adequate one to describe all transformation processes

  2. Non-isothermal irradiation creep of nickel alloys Inconel 706 and PE-16

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Chin, B.A.

    1984-06-01

    The results of in-reactor step temperature change experiments conducted on two nickel alloys, PE-16 and Inconel 706, were evaluated to determine the creep behavior under nonisothermal conditions. The effect of the temperature changes was found to be significantly different for the two alloys. Following a step temperature change, the creep rate of PE-16 adjusted to the rate found in isothermal tests at the new temperature. In contrast for Inconel 706, a reduction in temperature from 540 to 425 0 C produced a 300% increase in creep above that measured at 540 0 C in isothermal tests. The response of in-reactor creep in Inconel 706 to temperature changes was attributed to the dissolution of the gamma double-prime phase and subsequent loss of precipitation-strengthening at temperatures below 500 C

  3. The method of measurement and synchronization control for large-scale complex loading system

    International Nuclear Information System (INIS)

    Liao Min; Li Pengyuan; Hou Binglin; Chi Chengfang; Zhang Bo

    2012-01-01

    With the development of modern industrial technology, measurement and control system was widely used in high precision, complex industrial control equipment and large-tonnage loading device. The measurement and control system is often used to analyze the distribution of stress and displacement in the complex bearing load or the complex nature of the mechanical structure itself. In ITER GS mock-up with 5 flexible plates, for each load combination, detect and measure potential slippage between the central flexible plate and the neighboring spacers is necessary as well as the potential slippage between each pre-stressing bar and its neighboring plate. The measurement and control system consists of seven sets of EDC controller and board, computer system, 16-channel quasi-dynamic strain gauge, 25 sets of displacement sensors, 7 sets of load and displacement sensors in the cylinders. This paper demonstrates the principles and methods of EDC220 digital controller to achieve synchronization control, and R and D process of multi-channel loading control software and measurement software. (authors)

  4. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  5. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  6. Moisture ingress into electronics enclosures under isothermal conditions

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based......The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture...

  7. Modeling of the non isothermal and non isobaric transformations kinetics. Application to the kaolinite de-hydroxylation and to the tri-uranium octo-oxide reduction by hydrogen; Modelisation de la cinetique de transformations non isothermes et (ou) non isobares. Application a la deshydroxylation de la kaolinite et a la reduction de l'octooxyde de triuranium par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, St

    2002-12-15

    The aim of this work is to be able to describe transformations, occurring when solids and gases are in non isothermal and non isobaric conditions, with kinetic models. A methodology has been used. Two essential processes have to be taken into account: the germination and the growth. The germs are supposed to be formed (at constant temperature and pressure) in the grains surface with a constant velocity by surface unit, (gamma), called germination surface frequency (number of germs.m{sup -2}.s{sup -1}. The growth velocity is characterized by a growth surface reactivity, (phi) (in mol.m{sup -2}.s{sup -1}). With an appropriate transformation model, it is possible to obtain the variations of (gamma) and (phi) in terms of the temperature and pressure which are then used in the calculation of the velocity in non isothermal and non isobaric conditions. In order to validate the developed method, two reactions have been studied. For the first one, the kaolinite de-hydroxylation, an anisotropic germination-growth model, where the step limiting the growth is a diffusion step, has been developed in order to explain the experimental kinetic curves. Nevertheless the velocity curves calculated from this model do not allow to describe the reaction for some temperature variations. This result shows the difficulty to precisely determine the germination surface frequency what induces an important approximation on the kinetic curves. The second reaction is the tri-uranium octo-oxide reduction by hydrogen. It has been shown that this reaction occurs according to three successive transformations. A kinetic model has been developed for each of these reactions considering germination as instantaneous. At last, in comparing this model with the experimental velocity curves, a very good agreement has been verified as well as for a temperature variation than for a hydrogen partial pressure change during the reaction. (O.M.)

  8. Studies of non-isothermal flow in saturated and partially saturated porous media

    International Nuclear Information System (INIS)

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-01-01

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell

  9. Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate/SiO2 Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. R. Memarzadeh

    2013-09-01

    Full Text Available Poly(ethylene adipte and poly(ethylene adipate/silica nanocomposite (PEAd/SiO2 containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC. The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinetics and to determine the crystallization parameters of the prepared PEAd/SiO2 nanocomposites. It is found that the inclusion of the silica nanoparticles can accelerate the nucleation rate due to heterogeneous nucleation effect of silica on the polymer matrix. According to the obtained results, the combined Avrami and Ozawa equation shown that the better model for examination of this system.

  10. A strategy to load balancing for non-connectivity MapReduce job

    Science.gov (United States)

    Zhou, Huaping; Liu, Guangzong; Gui, Haixia

    2017-09-01

    MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.

  11. Overload cascading failure on complex networks with heterogeneous load redistribution

    Science.gov (United States)

    Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui

    2017-09-01

    Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.

  12. Modeling of the non isothermal and non isobaric transformations kinetics. Application to the kaolinite de-hydroxylation and to the tri-uranium octo-oxide reduction by hydrogen

    International Nuclear Information System (INIS)

    Perrin, St.

    2002-12-01

    The aim of this work is to be able to describe transformations, occurring when solids and gases are in non isothermal and non isobaric conditions, with kinetic models. A methodology has been used. Two essential processes have to be taken into account: the germination and the growth. The germs are supposed to be formed (at constant temperature and pressure) in the grains surface with a constant velocity by surface unit, (gamma), called germination surface frequency (number of germs.m -2 .s -1 . The growth velocity is characterized by a growth surface reactivity, (phi) (in mol.m -2 .s -1 ). With an appropriate transformation model, it is possible to obtain the variations of (gamma) and (phi) in terms of the temperature and pressure which are then used in the calculation of the velocity in non isothermal and non isobaric conditions. In order to validate the developed method, two reactions have been studied. For the first one, the kaolinite de-hydroxylation, an anisotropic germination-growth model, where the step limiting the growth is a diffusion step, has been developed in order to explain the experimental kinetic curves. Nevertheless the velocity curves calculated from this model do not allow to describe the reaction for some temperature variations. This result shows the difficulty to precisely determine the germination surface frequency what induces an important approximation on the kinetic curves. The second reaction is the tri-uranium octo-oxide reduction by hydrogen. It has been shown that this reaction occurs according to three successive transformations. A kinetic model has been developed for each of these reactions considering germination as instantaneous. At last, in comparing this model with the experimental velocity curves, a very good agreement has been verified as well as for a temperature variation than for a hydrogen partial pressure change during the reaction. (O.M.)

  13. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet

    Science.gov (United States)

    Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu

    2016-11-01

    To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.

  14. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  15. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  16. TAF11 assembles RISC loading complex to enhance RNAi efficiency

    Science.gov (United States)

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C.; Liu, Qinghua

    2015-01-01

    SUMMARY Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains Dicer-2(Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here, we identified the missing factor of RLC as TATA-binding protein associated factor 11 (TAF11) by genetic screen. Although an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11−/− ovary extract, we reconstituted the RLC in vitro using recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of Drosophila RLC and elucidate a novel cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. PMID:26257286

  17. Non-isothermal electrochemical model for lithium-ion cells with composite cathodes

    Science.gov (United States)

    Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2015-06-01

    Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.

  18. Instructional Control of Cognitive Load in the Design of Complex Learning Environments

    NARCIS (Netherlands)

    Kester, Liesbeth; Paas, Fred; Van Merriënboer, Jeroen

    2010-01-01

    Kester, L., Paas, F., & Van Merriënboer, J. J. G. (2010). Instructional control of cognitive load in the design of complex learning environments. In J. L. Plass, R. Moreno, & Roland Brünken (Eds.), Cognitive Load Theory (pp. 109-130). New York: Cambridge University Press.

  19. Laboratory Investigation of Rheology and Infiltration Process of Non-Newtonian Fluids through Porous Media in a Non-Isothermal Flow Regime for Effective Remediation of Contaminants

    Science.gov (United States)

    Naseer, F.

    2017-12-01

    Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension

  20. Immediate non-occlusal loading of single implants in the aesthetic zone : A randomized clinical trial

    NARCIS (Netherlands)

    den Hartog, Laurens; Raghoebar, Gerry M.; Stellingsma, Kees; Vissink, Arjan; Meijer, Henny J. A.

    P>Aim This study compared the outcome of immediate non-occlusal loading with conventional loading for single implants in the maxillary aesthetic zone. It was hypothesized that immediate non-occlusal loading is not inferior to conventional loading. Materials and Methods Sixty-two patients with a

  1. Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory

    Science.gov (United States)

    Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.

    2018-01-01

    The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.

  2. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)

    2012-01-15

    The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)

  3. Thermodiffusion as a close-to-interface effect that matters in non-isothermal (dis)orderly protein aggregations

    Energy Technology Data Exchange (ETDEWEB)

    Gadomski, A., E-mail: agad@utp.edu.pl; Kruszewska, N., E-mail: nkruszewska@utp.edu.pl

    2014-08-01

    The goal of this discussion letter is to argue how and why an inherent nanoscale thermodiffusion (Soret-type) effect can be relevant in (dis)orderly protein aggregation. We propose a model in which the aggregation of proteins, in the presence of temperature gradient, is described in terms of Smoluchowski dynamics in the phase space of nuclei sizes. The Soret coefficient of the aggregation is proportional to the variations of the aggregation free energy over temperature. The free energy is related to the (interface) boundary condition of the system. When boundary condition is of equilibrium Gibbs–Thomson type, with a well-stated surface tension of the nucleus, to the system can be assigned a negative Soret effect. On the contrary, when a non-equilibrium perturbing (salting-out) term enters the boundary condition, a positive Soret effect may manifest. A zero-value Soret regime is expected to occur in between, yielding very soft (“fragile”) non-Kossel protein-type crystals. - Highlights: • Comprehension for non-isothermal formation of (dis)orderly protein aggregation. • Classification of temperature-sensitive morphologies in colloid-type aggregation. • Morphologies split into near-equilibrium and nonequilibrium structural outcomes. • Classification on mesoscopic nonequilibrium thermodynamics near local equilibrium.

  4. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available The thermal stability and kinetics of non-isothermal degradation of polypropene and polypropene composites filled with 20 mass% vigorously grounded and mixed raw rice husks (RRH, black rice husks ash (BRHA, white rice husks ash (WRHA and Aerosil Degussa (AR were studied. The calculation procedures of Coats – Redfern, Madhysudanan et al., Tang et al., Wanjun et al. and 27 model kinetic equations were used. The kinetics of thermal degradation were found to be best described by kinetic equations of n-th order (Fn mechanism. The kinetic parameters E, A, ΔS≠, ΔH≠and ΔG≠for all the samples studied were calculated. The highest values of n, E and A were obtained for the composites filled with WRHA and AR. A linear dependence between lnA and E was observed, known also as kinetic compensation effect. The results obtained were considered enough to conclude that the cheap RRH and the products of its thermal degradation BRHA and WRHA, after vigorously grounding and mixing, could successfully be used as fillers for polypropene instead of the much more expensive synthetic material Aerosil to prepare various polypropene composites.

  5. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  6. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  7. Simulation and scaling for natural convection flow in a cavity with isothermal boundaries

    International Nuclear Information System (INIS)

    Jiracheewanun, S.; Armfield, S.W.; McBain, G.D.; Behnia, M.

    2005-01-01

    A numerical study of the transient two-dimensional natural convection flow within a differentially heated square cavity with iso-flux side walls and adiabatic top and bottom boundaries is presented. The governing equations are discretized using a non-staggered mesh and solved using a non-iterative fractional-step pressure correction method which provides second-order accuracy in both time and space. Results are obtained with the iso-flux boundary condition for Ra = 5.8 x 10 9 and Pr = 7.5. The results show that the transient flow features obtained for the iso-flux cavity are similar to the flow features for the isothermal case. However, the fully developed flow features of the iso-flux cavity are very different from the isothermal case. The scalings for the fully developed iso-flux boundary condition flow have been found to be different to those of the isothermal boundary condition flow. (authors)

  8. Optimal fatigue analysis of structures during complex loadings

    Directory of Open Access Journals (Sweden)

    Karaouni Habib

    2016-01-01

    Full Text Available A new framework for high cycle fatigue analysis of metallic structures under complex multi-parameter loadings was here developed. This allows to reduce the analysis on a 2-D window with a characterized one-parameter cyclic loading thanks to an equivalence rule relative to damage between any two loadings. The simplified inelastic analysis introduced by J. Zarka [J. Zarka et al. 1990. A new approach in inelastic analysis of structures. CADLM] was used to find the limit state of the structure. A new design rules for fatigue analysis by utilizing automatic learning systems was successfully performed. A database was built by coupling numerical simulations and experimental results on several welded specimens which are considered as a general structure in the proposed approach. This could be possible by the introduction of an intelligent description of a general fatigue case based on the actual theories and models. A software, FATPRO [M.I. Systems, FatPro, available at http://www.mzintsys.com/our_products_fatpro.html], based on this work has been developed at MZ Intelligent Systems.

  9. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  10. Instruction sequence based non-uniform complexity classes

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform

  11. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  12. Preliminary results for complexation of Pu with humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guczi, J.; Szabo, G. [National Research Inst. for Radiobiology and Radiohygi ene, Budapest, H-1775 (Hungary)]. e-mail: guczi@hp.osski.hu; Reiller, P. [CEA, CE Sac lay, Nuclear Energy Division/DPC/SERC, Laboratoire de Speciation des Radionuclei des et des Molecules, F-91191 Gif-sue-Yvette (France); Bulman, R.A. [Radiation Protection Division Division, Health Protection Agency, Chilton, Didcot (United Kingdom); Geckeis, H. [FZK - Inst. fuer Nukleare Entsorgung, Karlsruhe (Germany)

    2007-06-15

    Interaction of plutonium with humic substances has been investigated by a batch method use of the surface bound humic acid from perchlorate solutions at pH 4-6. By using these novel solid phases, complexing capacities and interaction constants are obtained. The complexing behavior of plutonium is analyzed. Pu(IV)-humate conditional stability constants have been evaluated from data obtained from these experiments by using non-linear regression of binding isotherms. The results have been interpreted in terms of complexes of 1:1 stoichiometry.

  13. Kinetic analysis of batch ethanol acetylation in isothermal non-stationary multiphase systems by lyophilized mycelium of Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Emilio Palazzi

    2011-03-01

    Full Text Available A relatively complex network of reactions has been investigated, using as a network model the isothermal batch esterification of acetic acid with ethanol in n-heptane catalyzed by lyophilized mycelium of Aspergillus oryzae. The kinetic analysis was firstly carried out on the whole system, without any simplification, by means of the well-known integral method. Owing to the poor results obtained by this way, we developed an alternative approach, combining initial rates and integral analysis and reducing the number of empirical parameters to be determined by the use of equilibrium data. All the values of the parameters calculated according to this "composite" approach to kinetic analysis well correlate with experimental data.

  14. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  15. Isothermal Martensite Formation

    DEFF Research Database (Denmark)

    Villa, Matteo

    Isothermal (i.e. time dependent) martensite formation in steel was first observed in the 40ies of the XXth century and is still treated as an anomaly in the description of martensite formation which is considered as a-thermal (i.e. independent of time). Recently, the clarification of the mechanism...... of lattice strains provided fundamental information on the state of stress in the material and clarified the role of the strain energy on martensite formation. Electron backscatter diffraction revealed that the microstructure of the material and the morphology of martensite were independent on the cooling...... leading to isothermal kinetics acquired new practical relevance because of the identification of isothermal martensite formation as the most likely process responsible for enhanced performances of sub-zero Celsius treated high carbon steel products. In the present work, different iron based alloys...

  16. TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency.

    Science.gov (United States)

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C; Liu, Qinghua

    2015-09-03

    Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains the Dicer-2 (Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here we identified the missing factor of RLC as TATA-binding protein-associated factor 11 (TAF11) by genetic screen. Although it is an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11(-/-) ovary extract, we reconstituted the RLC in vitro using the recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of the Drosophila RLC and elucidate a cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A damage cumulation method for crack initiation prediction under non proportional loading and overloading

    International Nuclear Information System (INIS)

    Taheri, S.

    1992-04-01

    For a sequence of constant amplitude cyclic loading containing overloads, we propose a method for damage cumulation in non proportional loading. This method uses as data cyclic stabilized states at non proportional loading and initiation or fatigue curve in uniaxial case. For that, we take into account the dependence of Cyclic Strain Stress Curves (C.S.S.C.) and mean cell size on prehardening and we define a stabilized uniaxial state cyclically equivalent to a non proportional stabilized state through a family of C.S.S.C. Although simple assumptions like linear damage function and linear cumulation is used we obtain a sequence effect for difficult cross slip materials as 316 stainless steel, but the Miner rule for easy cross-slip materials. We show then differences between a load-controlled test and a strain controlled test: for a 316 stainless steel in a load controlled test, the non proportional loading at each cycle is less damaging than the uniaxial one for the same equivalent stress, while the result is opposite in a strain controlled test. We show also that an overloading retards initiation in a load controlled test while it accelerates initiation in a strain controlled test. (author). 26 refs., 8 figs

  18. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    Science.gov (United States)

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    KAUST Repository

    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin

    2017-01-01

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  20. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    KAUST Repository

    Ng, Kim Choon

    2017-08-31

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  1. Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe

    International Nuclear Information System (INIS)

    Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su

    2013-01-01

    Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe

  2. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  3. Unpacking the Complexity of Patient Handoffs Through the Lens of Cognitive Load Theory.

    Science.gov (United States)

    Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S; Irby, David M

    2016-01-01

    The transfer of a patient from one clinician to another is a high-risk event. Errors are common and lead to patient harm. More effective methods for learning how to give and receive sign-out is an important public health priority. Performing a handoff is a complex task. Trainees must simultaneously apply and integrate clinical, communication, and systems skills into one time-limited and highly constrained activity. The task demands can easily exceed the information-processing capacity of the trainee, resulting in impaired learning and performance. Appreciating the limits of working memory can help identify the challenges that instructional techniques and research must then address. Cognitive load theory (CLT) identifies three types of load that impact working memory: intrinsic (task-essential), extraneous (not essential to task), and germane (learning related). The authors generated a list of factors that affect a trainee's learning and performance of a handoff based on CLT. The list was revised based on feedback from experts in medical education and in handoffs. By consensus, the authors associated each factor with the type of cognitive load it primarily effects. The authors used this analysis to build a conceptual model of handoffs through the lens of CLT. The resulting conceptual model unpacks the complexity of handoffs and identifies testable hypotheses for educational research and instructional design. The model identifies features of a handoff that drive extraneous, intrinsic, and germane load for both the sender and the receiver. The model highlights the importance of reducing extraneous load, matching intrinsic load to the developmental stage of the learner and optimizing germane load. Specific CLT-informed instructional techniques for handoffs are explored. Intrinsic and germane load are especially important to address and include factors such as knowledge of the learner, number of patients, time constraints, clinical uncertainties, overall patient

  4. Biodegradable films containing α-tocopherol/β-cyclodextrin complex

    International Nuclear Information System (INIS)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir; Barreto, Pedro L.M.

    2011-01-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work β-cyclodextrin/α-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the β-cyclodextrin/α-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The β-cyclodextrin/α-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  5. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex.

    Science.gov (United States)

    Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter

    2012-09-07

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.

  6. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  7. Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523

    International Nuclear Information System (INIS)

    Carter, Mitch; Howard, Bryan; Weyerman, Wade; Mctaggart, Jerri

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE

  8. Isothermal transitions of a thermosetting system

    Science.gov (United States)

    Gillham, J. K.; Benci, J. A.; Noshay, A.

    1974-01-01

    A study of the curing reactions of a cycloaliphatic epoxy resin/anhydride system by torsional braid analysis showed the existence of two critical isothermal temperatures - namely, the maximum glass transition temperature of the thermoset system and the glass transition temperature of the material at its gel point. Two rheologically active kinetic transitions occur during isothermal cure which correspond to gelation and vitrification. Three types of isothermal behavior occur. Methods for determining the time to gel and the time to vitrify, and also the two above-mentioned critical isothermal temperatures, have been developed. The time to gel obeyed the Arrhenius relationship, whereas the time to vitrify passed through a minimum. Application of these results to thermosetting systems in general is discussed in terms of the influence of molecular structure on the values of the critical isothermal temperatures.

  9. Room temperature isotherms for Mo and Ni

    International Nuclear Information System (INIS)

    Masse, J.L.

    1986-11-01

    Isotherms at room temperature for Mo and Ni are proposed. They are of three types: BIRCH, KEANE and BORN-MIE. The adjustable constants appearing in these isotherms have been determined from experimental quantities at zero pressure. An evaluation of the limit of (δB T /δP) T as P #-> # ∞, where B T is the isothermal bulk modulus, has been also used. These three isotherms obtained for Mo and Ni are compared with isotherms derived from shock-wave data according to the PRIETO's model. There is a good agreement between these and these derived from shock-wave data. The three isotherms proposed for Mo and Ni can be considered as valid until pressures of several B To , where B To is the bulk modulus B T at P = o [fr

  10. On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system

    International Nuclear Information System (INIS)

    Rogers, C; Schief, W K

    2011-01-01

    A 2+1-dimensional version of a non-isothermal gas dynamic system with origins in the work of Ovsiannikov and Dyson on spinning gas clouds is shown to admit a Hamiltonian reduction which is completely integrable when the adiabatic index γ = 2. This nonlinear dynamical subsystem is obtained via an elliptic vortex ansatz which is intimately related to the construction of a Lax pair in the integrable case. The general solution of the gas dynamic system is derived in terms of Weierstrass (elliptic) functions. The latter derivation makes use of a connection with a stationary nonlinear Schrödinger equation and a Steen–Ermakov–Pinney equation, the superposition principle of which is based on the classical Lamé equation

  11. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  12. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency.

    Science.gov (United States)

    Carrillo, Carolina; Suñé, Josep Maria; Pérez-Lozano, Pilar; García-Montoya, Encarna; Sarrate, Rocío; Fàbregas, Anna; Miñarro, Montserrat; Ticó, Josep Ramon

    2014-07-01

    Chitosan has been studied for use in particle delivery systems for therapeutic purposes, since one of its most important applications is as a non-viral vector in gene therapy. Due to its positive charge, it is capable of forming DNA complexes (polyplexes) obtained through several methods and with the property of protecting nucleic acids. Two methods for obtaining the nanoparticles of chitosan-nucleic acids are reported in this study: simple complexation (of depolymerized chitosan or of different chitosan salts with plasmid) and ionic gelation (by adsorption of plasmid in the nanoparticles or by encapsulation of plasmid into nanoparticles). The determination of the loading efficiency of chitosan nanoparticles with the plasmid is carried out by electrophoretic mobility of the samples on agarose gel. Furthermore, the nanoparticles have been characterized according to their morphology, size and surface charge using AFM, TEM, laser diffraction and dynamic light scattering techniques. The polyplexes obtained have been found to be spherical and nanometric in size (between 100-230nm) with a zeta potential between 37 and 48mV. Positive results have been obtained by agarose gel electrophoresis for all studied cases: a concentration of between 20 and 30μg/mL of chitosan salts is required while for the remaining chitosan samples studied, 100% loading efficiency does not occur until a concentration equal to 100μg/mL (regardless of previous depolymerisation and the method performed). Chitosan-plasmid nanocapsules have been obtained at the polymer concentrations worked with (between 0.025 and 0.2%). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  14. Isothermal calorimetry of enzymatic biodiesel reaction

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Westh, Peter; Christensen, Knud Villy

    2010-01-01

      Isothermal calorimetry ITC has been used to investigate enzymatic biodiesel production. The transesterification of rapeseed oil with methanol and ethanol was catalyzed by the immobilized lipase Novozym 435 at 40°C. The ITC-experiments clearly demonstrate the possibilities of investigating complex...... and composition change in the system, the heat of reaction at 40°C for the two systems has been determined to -9.8 ± 0.9 kJ/mole biodiesel formed from rapeseed oil and methanol, and - 9.3 ± 0.7 kJ/mole when rapeseed oil and ethanol is used....

  15. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2015-01-01

    Highlights: • We study how angle and height of trapezoid baffle affect PEMFC net power. • The jet-type, trapping, and blockage effects augment non-isothermal transport in flow channel. • Greater angles and heights of trapezoid baffles provide more reactant to the catalyst layer. • Baffles of 1.5 mm and 90° fully block flow channel to show bad heat transfer and large pressure drop. • Maximum enhancement of cell net power is 90% with baffles of 60° angle and 1.125 mm height. - Abstract: The present study performed a three-dimensional numerical simulation to observe how trapezoid baffles affect non-isothermal reactant transports and cell net power in the proton exchange membrane fuel cell (PEMFC) by the SIMPLE-C method. The geometric parameters of trapezoid baffles installed in the gas channel employed in this study include the angle and height with the same gas diffusion and catalyst layers to realize the cell net power considering the effect of liquid water formation on the fluid flow field. The cell net power is adopted to evaluate the real enhancement of cell performance due to the additional pumping power induced by the pressure loss through the PEMFC. The results illustrated that compared with traditional gas channel without baffles, the novel gas channel with trapezoid baffles, whose angle is 60° and height is 1.125 mm, enhances the cell net power best by approximately 90% among all trapezoid baffle designs

  16. Complex suicide with black powder muzzle loading derringer.

    Science.gov (United States)

    Hejna, Petr; Šafr, Miroslav; Zátopková, Lenka; Straka, Luboš

    2012-09-01

    Planned complex suicide is defined as the combination of more than one method of suicide, previously planned by the victim, to prevent failure of the first method. Herein, we present a case of planned complex suicide, committed by a black powder muzzle loading handgun and hanging. A 39-year-old man was found dead in the bathroom of his flat, hanging by the neck with a huge atypical gunshot entrance in the right temporal region of his head with extensive backspatter. The skin defects, as well as soft tissues in the subcutaneous pocket undermining, were heavily burnt. Along the wound canal were multiple bone fragments, and at the end of the path at the left temple was an embedded lead ogival projectile with a cross shaped artificial incision at its tip. The hanging was incomplete. There were no fractures of the hyoid bone and laryngeal cartilages. Cervical muscles and vessels were intact. Simon's sign was negative. Signs of asphyxia were not present. This is the first reported case of complex suicide with a black powder derringer and manipulated projectile.

  17. Numerical Investigation of Merged and Non-merged Flame of a Twin Cavity Annular Trapped Vortex Combustor

    Directory of Open Access Journals (Sweden)

    Pravendra Kumar

    2016-09-01

    Full Text Available : The present work is focused to characterize numerically the merged and non-merged flame emanating from the cavities in downstream of twin cavity Annular Trapped Vortex Combustor (ATVC.The isotherm corresponding to the auto-ignition temperature is used to locate the merging point of the flame in the mainstream region along the combustor length. In present study, the cavity flame is said to be merged only if this isotherm corresponding to self-ignition temperature of methane is located within 20 percentage of the combustor length from aft wall of cavities. It is interesting to note that on increasing the power loading parameter (PLP in mainstream for a constant power loading parameter ratio (outer to inner cavity, the merging point gets shifted towards the cavity aft-wall. This leads to the reduction of combustor length and subsequent reduction in overall weight of the gas turbine engine.

  18. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    G. Nath

    2012-12-01

    Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

  19. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  20. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  1. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  2. Congressing kinetochores progressively load Ska complexes to prevent force-dependent detachment.

    Science.gov (United States)

    Auckland, Philip; Clarke, Nicholas I; Royle, Stephen J; McAinsh, Andrew D

    2017-06-05

    Kinetochores mediate chromosome congression by either sliding along the lattice of spindle microtubules or forming end-on attachments to their depolymerizing plus-ends. By following the fates of individual kinetochores as they congress in live cells, we reveal that the Ska complex is required for a distinct substep of the depolymerization-coupled pulling mechanism. Ska depletion increases the frequency of naturally occurring, force-dependent P kinetochore detachment events, while being dispensable for the initial biorientation and movement of chromosomes. In unperturbed cells, these release events are followed by reattachment and successful congression, whereas in Ska-depleted cells, detached kinetochores remain in a futile reattachment/detachment cycle that prevents congression. We further find that Ska is progressively loaded onto bioriented kinetochore pairs as they congress. We thus propose a model in which kinetochores mature through Ska complex recruitment and that this is required for improved load-bearing capacity and silencing of the spindle assembly checkpoint. © 2017 Auckland et al.

  3. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  4. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: characterization, spectroscopic and isothermal titration calorimetry measurements of M2+ binding and sensing (M2+=Ca2+, Mg2+).

    Science.gov (United States)

    Dixit, Namrata; Mishra, Lallan; Mustafi, Sourajit M; Chary, Kandala V R; Houjou, Hirohiko

    2009-07-01

    Bis-[methylsalicylidine-4'benzoic acid]-ethylene (LH2) complexed with cis-Ru(bpy)2Cl(2).2H2O provides a complex of composition [Ru(bpy)2L].2NH4PF6 (1), which has been characterized spectroscopically. Its binding behaviour towards Mg2+ and Ca2+ ions is monitored using 1H NMR titration, isothermal titration calorimetry (ITC) and luminescence microscopy. The luminescent ruthenium complex binds Ca2+ in a more selective manner as compared to Mg2+.

  5. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng

    2012-11-07

    Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  6. Endpoint Visual Detection of Three Genetically Modified Rice Events by Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Qing Zhu

    2012-11-01

    Full Text Available Genetically modified (GM rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR, currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB] within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%–0.005% GM, was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.

  7. Model for predicting non-linear crack growth considering load sequence effects (LOSEQ)

    International Nuclear Information System (INIS)

    Fuehring, H.

    1982-01-01

    A new analytical model for predicting non-linear crack growth is presented which takes into account the retardation as well as the acceleration effects due to irregular loading. It considers not only the maximum peak of a load sequence to effect crack growth but also all other loads of the history according to a generalised memory criterion. Comparisons between crack growth predicted by using the LOSEQ-programme and experimentally observed data are presented. (orig.) [de

  8. The Cu2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR

    Science.gov (United States)

    Ghosh, Shreya; Lawless, Matthew J.; Rule, Gordon S.; Saxena, Sunil

    2018-01-01

    Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.

  9. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  10. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  11. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  12. Computational solutions for non-isothermal, nonlinear magneto-convection in porous media with hall/ionslip currents and ohmic dissipation

    Directory of Open Access Journals (Sweden)

    O. Anwar Bég

    2016-03-01

    Full Text Available A theoretical and numerical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow and heat transfer in a non-Darcian, isotropic, homogenous porous medium, in the presence of Hall currents, Ionslip currents, viscous heating and Joule heating. A power-law variation is used for the temperature at the wall. The governing nonlinear coupled partial differential equations for momentum conservation in the x and z directions and heat conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ,η coordinate system in terms of dimensionless x-direction velocity (∂F/∂η and z-direction velocity (G and dimensionless temperature function (H under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also local Nusselt number. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

  13. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  14. Instruction sequences and non-uniform complexity theory

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic

  15. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    International Nuclear Information System (INIS)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-01-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  16. Adiabatic and isothermal resistivities

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1989-01-01

    The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester

  17. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery.

    Science.gov (United States)

    Adelli, Goutham R; Balguri, Sai Prachetan; Bhagav, Prakash; Raman, Vijayasankar; Majumdar, Soumyajit

    2017-11-01

    The goal of the present study is to develop polymeric matrix films loaded with a combination of free diclofenac sodium (DFS free ) and DFS:Ion exchange resin complexes (DFS:IR) for immediate and sustained release profiles, respectively. Effect of ratio of DFS and IR on the DFS:IR complexation efficiency was studied using batch processing. DFS:IR complex, DFS free , or a combination of DFS free  +   DFS:IR loaded matrix films were prepared by melt-cast technology. DFS content was 20% w/w in these matrix films. In vitro transcorneal permeability from the film formulations were compared against DFS solution, using a side-by-side diffusion apparatus, over a 6 h period. Ocular disposition of DFS from the solution, films and corresponding suspensions were evaluated in conscious New Zealand albino rabbits, 4 h and 8 h post-topical administration. All in vivo studies were carried out as per the University of Mississippi IACUC approved protocol. Complexation efficiency of DFS:IR was found to be 99% with a 1:1 ratio of DFS:IR. DFS release from DFS:IR suspension and the film were best-fit to a Higuchi model. In vitro transcorneal flux with the DFS free  +   DFS:IR (1:1) (1 + 1) was twice that of only DFS:IR (1:1) film. In vivo, DFS solution and DFS:IR (1:1) suspension formulations were not able to maintain therapeutic DFS levels in the aqueous humor (AH). Both DFS free and DFS free  +   DFS:IR (1:1) (3 + 1) loaded matrix films were able to achieve and maintain high DFS concentrations in the AH, but elimination of DFS from the ocular tissues was much faster with the DFS free formulation. DFS free  +   DFS:IR combination loaded matrix films were able to deliver and maintain therapeutic DFS concentrations in the anterior ocular chamber for up to 8 h. Thus, free drug/IR complex loaded matrix films could be a potential topical ocular delivery platform for achieving immediate and sustained release characteristics.

  18. Linear elastic analysis of pavement structure under non-circular loading

    CSIR Research Space (South Africa)

    Maina, JW

    2012-10-01

    Full Text Available the development of a method for pavement structural analysis considering both uniform and non-uniform loads acting over a rectangular area. In this approach, three components of displacements, which satisfy Navier’s equations, are expressed using Neuber...

  19. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    International Nuclear Information System (INIS)

    Huang, J.-W.; Wen, Y.-L.; Kang, C.-C.; Yeh, M.-Y.; Wen, S.-B.

    2007-01-01

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T mI and T mII ). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K g of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation

  20. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    Science.gov (United States)

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  1. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Directory of Open Access Journals (Sweden)

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading

  2. Vortex-induced dynamic loads on a non-spinning volleyball

    Science.gov (United States)

    Qing-ding, Wei; Rong-sheng, Lin; Zhi-jie, Liu

    1988-09-01

    An experiment on vortex-induced dynamic loads on a non-spinning Volleyball was conducted in a wind tunnel. The flow past the Volleyball was visualized, and the aerodynamic load was measured by use of a strain gauge balance. The separation on the Volleyball was measured with hot-film. The experimental results suggest that under the action of an unstable tail vortex system the separation region is changeable, and that the fluctuation of drag and lateral forces is the same order of magnitude as the mean drag, no matter whether the seam of the Volleyball is symmetric or asymmetric, with regard to the flow. Based on the experimental data a numerical simulation of Volleyball swerve motion was made.

  3. Kinetic Model of LiFePO4 Formation Using Non-Isothermal Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Abdul Halim

    2014-03-01

    Full Text Available The formation reaction of LiFePO4 from decomposition of precursors LiOH, FeSO4.7H2O and (NH42HPO4 with mol ratio of Li:Fe:P=1:1:1 was investigated. The experiment was carried out by thermogravimetric differential thermal analysis (TG-DTA method using nitrogen as atmosfer at a constant heating rate to obtain kinetic constant parameters. Several heating rates were selected, there are 5, 7, 10, 15, 17.5, 22.5 and 25 °C/min. Activation energy, pre-exponential factor and reaction order were taken using Kissinger method and obtained respectively 56.086 kJ/mol, 6.95×108 min-1, and 1.058. Based on fitting result between reaction model and experiment were obtained that reaction obeyed the three dimension diffusion model. © 2014 BCREC UNDIP. All rights reservedReceived: 19th September 2013; Revised: 9th December 2013; Accepted: 23rd January 2014 [How to Cite: Halim, A., Widiyastuti, W., Setyawan, H., Winardi, S. (2014. Kinetic of LiFePO4 For-mation Using Non-isothermal Thermogravimetric Analysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 60-65. (doi:10.9767/bcrec.9.1.5508.60-65][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5508.60-65] 

  4. Wear Behavior of Uncoated and Coated Tools under Complex Loading Conditions

    Directory of Open Access Journals (Sweden)

    M. Wieland

    2012-03-01

    Full Text Available In automotive industry crash relevant structures of the body in white are manufactured using the direct hot stamping process. Due to the high temperature difference between the hot blank and the cold tool surfaces and the relative movement between the blank and the tool surfaces during the forming operation, high thermal and mechanical loads are applied on the tool leading to excessive wear in terms of adhesion on the tool surfaces. One possibility to reduce wear of hot stamping tools is the application of tool coating systems. In the scope of this work uncoated and coated tools are characterized under complex loading conditions with respect to adhesive layer build-up.

  5. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    data were tested using Freundlich and Langmuir adsorption isotherms. The values of the numeric constants ... Keywords: Adsorbate, Adsorbent, Adsorption isotherms, Maize cob, Thermodynamics. INTRODUCTION. Maize (Zea mays) ... several times with water, air – dried and ground to. 850μm particle size and finally kept ...

  6. A study by non-isothermal thermal methods of spruce wood bark materialss after their application for dye removal

    Directory of Open Access Journals (Sweden)

    VIORICA DULMAN

    2005-11-01

    Full Text Available This paper deals with a study of some materials obtained from spruce bark (Picea abies, Romania, after retention of some dyes frequently used in dyeing processes in the textile industry and waste water treatment. These materials obtained by dye retention exhibit a particular thermal behavior which is different from that of the blank sample (spruce bark. The characteristic temperatures, weight losses, the residue remaining after thermo-oxidative degradation, as well as the activation energies of the significant thermo-destruction stages, estimated from non-isothermal thermogravimetric data, together with the thermal quantities calculated from DTAdata support the conclusion presented in a previous study on dye retention from aqueous solution. The obtained results made evident that, under optimal retention conditions, spruce bark shows the highest retention capacity for the Basic Blue dye, followed by Direct Brown 95 and Direct Brown 2.

  7. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Ecole Polytechnique Federale de Lausanne (EPFL); Le Boudec, Jean-Yves [Ecole Polytechnique Federale de Lausanne (EPFL)

    2018-04-06

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for the non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.

  8. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2010-01-01

    austenitized and quenched in oil and thereafter investigated with vibrating sample agnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the subzero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5...... with a continuation of the martensitic transformation. On prolonged isothermal holding a volume reduction was observed for AISI 52100, but not for AISI 1070. A mechanism is proposed that explains the occurrence of isothermal martensite formation....

  9. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  10. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  11. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-01-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes

  12. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variably Saturated Geologic Media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO 2 disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater

  13. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  14. Isothermal microcalorimetry for antifungal susceptibility testing of Mucorales, Fusarium spp., and Scedosporium spp.

    NARCIS (Netherlands)

    Furustrand Tafin, U.; Meis, J.F.G.M.; Trampuz, A.

    2012-01-01

    We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical

  15. Evolution of the Cerro Prieto geothermal system as interpreted from vitrinite reflectance under isothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. (US Geological Survey, Denver, CO); Pawlewicz, M.J.; Bostick, N.H.; Elders, W.A.

    1981-01-01

    Temperature estimates from reflectance data in the Cerro Prieto system correlate with modern temperature logs and temperature estimates from fluid inclusion and oxygen isotope geothermometry indicating that the temperature in the central portion of the Cerro Prieto System is now at its historical maximum. Isoreflectance lines formed by contouring vitrinite reflectance data for a given isothermal surface define an imaginary surface that indicates an apparent duration of heating in the system. The 250/sup 0/C isothermal surface has a complex dome-like form suggesting a localized heat source that has caused shallow heating in the central portion of this system. Isoreflectance lines relative to this 250/sup 0/C isothermal surface define a zone of low reflectance roughly corresponding to the crest of the isothermal surface. Comparison of these two surfaces suggest that the shallow heating in the central portion of Cerro Prieto is young relative to the heating (to 250/sup 0/C) on the system margins. Laboratory and theoretical models of hydrothermal convection cells suggest that the form of the observed 250/sup 0/C isothermal surface and the reflectance surface derived relative to it results from the convective rise of thermal fluids under the influence of a regional hydrodynamic gradient that induces a shift of the hydrothermal heating effects to the southwest.

  16. The complex Laguerre symplectic ensemble of non-Hermitian matrices

    International Nuclear Information System (INIS)

    Akemann, G.

    2005-01-01

    We solve the complex extension of the chiral Gaussian symplectic ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correlation functions of complex eigenvalues are given in terms of the corresponding skew orthogonal polynomials in the complex plane for finite-N, where N is the matrix size or number of eigenvalues, respectively. We also allow for an arbitrary number of complex conjugate pairs of characteristic polynomials in the weight function, corresponding to massive quark flavours in applications to field theory. Explicit expressions are given in the large-N limit at both weak and strong non-Hermiticity for the weight of the Gaussian two-matrix model. This model can be mapped to the complex Dirac operator spectrum with non-vanishing chemical potential. It belongs to the symmetry class of either the adjoint representation or two colours in the fundamental representation using staggered lattice fermions

  17. Diagnostic Indicators for Shipboard Mechanical Systems Using Non-Intrusive Load Monitoring

    National Research Council Canada - National Science Library

    McKay, Thomas D

    2006-01-01

    This thesis examines the use of Non-intrusive Load Monitoring (NILM) in auxiliary shipboard systems, such as a low pressure air system, to determine the state of equipment in larger connected systems, such as the main propulsion engines...

  18. Rapid and sensitive detection of Bordetella bronchiseptica by loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

  19. How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers

    KAUST Repository

    Palacios, Jordana K.

    2017-12-05

    PEO-b-PCL-b-PLLA triblock terpolymers are fascinating triple-crystalline materials. In this work, the isothermal crystallization kinetics of these terpolymers evaluated by differential scanning calorimetry (DSC) is presented for the first time and compared to analogous PCL-b-PLLA diblock copolymers and to PLLA, PCL, and PEO homopolymers. The results are complemented by in situ SAXS/WAXS synchrotron experiments. One-, two-, and three-step crystallization protocols were employed to study the crystallization kinetics of the blocks. At PLLA block crystallization temperatures, both PCL and PEO molten chains caused a strong plasticizing effect on the PLLA block crystallization, and the overall crystallization rate of the PLLA block in the terpolymers was higher than that in the PLLA-b-PCL diblock copolymers. In the case of the PCL block, the crystallization was followed after PLLA was fully crystallized (two-step crystallization). A nucleating effect induced by the previously formed PLLA crystals was observed. However, an antiplasticizing effect on PCL crystallization was detected if the sample is quenched directly from the melt to the PCL crystallization temperature (one-step crystallization). Finally, the crystallization of the PEO block was followed after PLLA and PCL had fully crystallized (three-step crystallization). The PEO crystallization rate highly decreased due to the confinement imposed by the previously formed PLLA and PCL crystals. Complex competitive effects such as plasticization, nucleation, antiplasticization, and confinement occurred during the isothermal crystallization of tricrystalline PEO-b-PCL-b-PLLA triblock terpolymers.

  20. How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers

    KAUST Repository

    Palacios, Jordana K.; Zhao, Junpeng; Hadjichristidis, Nikolaos; Mü ller, Alejandro J.

    2017-01-01

    PEO-b-PCL-b-PLLA triblock terpolymers are fascinating triple-crystalline materials. In this work, the isothermal crystallization kinetics of these terpolymers evaluated by differential scanning calorimetry (DSC) is presented for the first time and compared to analogous PCL-b-PLLA diblock copolymers and to PLLA, PCL, and PEO homopolymers. The results are complemented by in situ SAXS/WAXS synchrotron experiments. One-, two-, and three-step crystallization protocols were employed to study the crystallization kinetics of the blocks. At PLLA block crystallization temperatures, both PCL and PEO molten chains caused a strong plasticizing effect on the PLLA block crystallization, and the overall crystallization rate of the PLLA block in the terpolymers was higher than that in the PLLA-b-PCL diblock copolymers. In the case of the PCL block, the crystallization was followed after PLLA was fully crystallized (two-step crystallization). A nucleating effect induced by the previously formed PLLA crystals was observed. However, an antiplasticizing effect on PCL crystallization was detected if the sample is quenched directly from the melt to the PCL crystallization temperature (one-step crystallization). Finally, the crystallization of the PEO block was followed after PLLA and PCL had fully crystallized (three-step crystallization). The PEO crystallization rate highly decreased due to the confinement imposed by the previously formed PLLA and PCL crystals. Complex competitive effects such as plasticization, nucleation, antiplasticization, and confinement occurred during the isothermal crystallization of tricrystalline PEO-b-PCL-b-PLLA triblock terpolymers.

  1. An attempt to model the probability of growth and aflatoxin B1 production of Aspergillus flavus under non-isothermal conditions in pistachio nuts.

    Science.gov (United States)

    Aldars-García, Laila; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2015-10-01

    Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four theoretical temperature scenarios, including temperature levels observed in pistachio nuts during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. Logistic models, with temperature and time as explanatory variables, were fitted to the probability of growth and AFB1 production under a constant temperature. Subsequently, they were used to predict probabilities under non-isothermal scenarios, with levels of concordance from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information obtained in the present work could be used by producers and processors to predict the time for AFB1 production by A. flavus on pistachio nuts during transport and storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  3. Pyrolysis kinetics investigation of Malaysian based biomass with non-isothermal thermogravimetric analysis (TGA)

    International Nuclear Information System (INIS)

    Seyed Shahabeddin Nehzati; Dayang Radiah Awang Biak; Wan Azlina Wan Abdul Karim Ghani; Mohd Amran Mohd Salleh

    2010-01-01

    Full text: Biomass is currently being used as a sustainable energy source. Otherwise the scarceness of fossil fuel sources and the demand for environmental responsibility force the industries to use biomass as an alternate source of energy. Pyrolysis is the first step of biomass conversion and well understanding of this process can develop the biomass conversion such as gasification, liquefaction, carbonization and combustion .TGA studies of Malaysian based biomass have been carried out. TGA studies provide important insight on the thermochemical behavior of specific solid waste. The results of non-isothermal thermogravimetric analysis of palm kernel shell, coconut shell and bagasse, carried out at heating rates of 10 degree Celsius/ min, 20 degree Celsius/ min and 50 degree Celsius/ min, to ramp the temperature from 30 to 1000 were analysed. The TGA studies were carried out in an inert atmosphere of nitrogen. Arrhenius parameters were estimated by 3 different models namely Kissinger model, three-pseudo component and DEAM model the estimated values and the models were compared. The results show that the three-pseudo component model has a good agreement with the experimental results, indicating that ligno celluloses components in the mixture behave in the same way as they do separately. Also it is seen that the decomposition process shifts to higher temperatures at higher heating rates as a result of the competing effects of heat and mass transfer to the material. (Author)

  4. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  5. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Directory of Open Access Journals (Sweden)

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  6. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  7. Diagnostic devices for isothermal nucleic acid amplification.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  8. Small-Scale Testing of Laterally Loaded Non-Slender Monopiles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Roesen, Hanne Ravn; Ibsen, Lars Bo

    in sand subjected to lateral loading are analysed by means of small-scale laboratory tests. The six quasi-static tests are conducted on piles with diameters of 40 mm and 100 mm and a slenderness ratio, L/D, of 5. In order to minimise scale effects, the tests are carried out in a pressure tank at stress...... levels of 0 kPa, 50 kPa, and 100 kPa, respectively. From the tests load-deflection relationships of the piles at three levels above the soil surface are obtained. The load-deflection relationships reveal that the uncertainties of the results for the pile with diameter of 40~mm are large due to the small......In current design of offshore wind turbines, monopiles are often used as foundation. The behaviour of the monopiles when subjected to lateral loading has not been fully investigated, e.g. the diameter effect on the soil response. In this paper the behaviour of two non-slender aluminium piles...

  9. Microstructural evolution during isothermal aging and strain-induced transformation followed by isothermal aging in Co-Cr-Mo-C alloy: A comparative study

    International Nuclear Information System (INIS)

    Lashgari, H.R.; Zangeneh, Sh.; Hasanabadi, F.; Saghafi, M.

    2010-01-01

    The present study was undertaken to investigate the effects of isothermal aging (at 850 deg. C for 4, 8, 16 and 24 h) and strain-induced transformation (engineering strains of 10% and 20%) followed by isothermal aging (at 850 deg. C for 4, 8 and 16 h) on the microstructural evolution of a Co-28Cr-5Mo-0.3C alloy. The obtained results showed that isothermal aging at 850 deg. C resulted in the formation of lamellar-type carbides at the grain boundaries. Moreover, X-ray diffraction analysis indicated that isothermal aging of solution treated specimens at 850 deg. C for 24 h did not lead to complete fcc phase transformation to hcp one. In contrast with the isothermally aged specimens, applying plastic deformation to the solutionized samples accelerated the completion and saturation of fcc(metastable) → hcp transformation after 8 h aging at 850 deg. C. In addition, the X-ray diffraction results indicated that implementing isothermal aging of the strain-induced specimens at the higher aging time (16 h) caused the formation of (1 1 1) fcc and (2 0 0) fcc diffraction peaks again. Also, the strain-induced specimens followed by isothermal aging showed higher amount of microhardness as compared with the other specimens aged solely.

  10. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  11. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  12. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  13. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  14. Status and challenges of residential and industrial non-intrusive load monitoring

    DEFF Research Database (Denmark)

    Adabi, Ali; Mantey, Patrick; Holmegaard, Emil

    2015-01-01

    in recent years due to improvement in algorithms and methodologies. Currently, the important challenges facing residential NILM are inaccessibility of electricity meter high sampling data, and lack of reliable high resolution datasets. For industrial NILM the identification is more challenging due......Non-Intrusive Load Monitoring (NILM) is the process of identification of loads from an aggregate power interface using disaggregation algorithms. This paper identifies the current status, methodologies and challenges of NILM in residential and industrial settings. NILM has advanced substantially...... to increased number of loads and the variability of equipment type, temporal patterns and industrial secrecy. From our examination of data and its use in NILM, we observe that the number of devices that can be recognized and the training period required to achiever recognition is not only a function...

  15. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents

    International Nuclear Information System (INIS)

    Guo, M.X.; Zhang, Y.; Zhang, X.K.; Zhang, J.S.; Zhuang, L.Z.

    2016-01-01

    The non-isothermal precipitation behaviors of Al–Mg–Si–Cu alloys with different Zn contents were investigated by differential scanning calorimetry (DSC) analysis, hardness measurement and high resolution transmission electron microscope characterization. The results show that Zn addition has a significant effect on the GP zone dissolution and precipitation of Al-Mg-Si-Cu alloys. And their activation energies change with the changes of Zn content and aging conditions. Precipitation kinetics can be improved by adding 0.5 wt% or 3.0 wt%Zn, while be suppressed after adding 1.5 wt%Zn. The Mg-Si precipitates (GP zones and β″) are still the main precipitates in the Al-Mg-Si-Cu alloys after heated up to 250 °C, and no Mg-Zn precipitates are observed in the Zn-added alloy due to the occurrence of Mg-Zn precipitates reversion. The measured age-hardening responses of the alloys are corresponding to the predicted results by the established precipitation kinetic equations. Additionally, a double-hump phenomenon of hardness appears in the artificial aging of pre-aged alloy with 3.0 wt% Zn addition, which resulted from the formation of pre-β″ and β″ precipitates. Finally, the precipitation mechanism of Al-Mg-Si-Cu alloys with different Zn contents was proposed based on the microstructure evolution and interaction forces between Mg, Si and Zn atoms.

  16. The Application of Load-cell Technique in the Study of Armour Unit Responses to Impact Loads Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1995-01-01

    The slender, complex types of armour units, such as Tetrapods and Dolosse are widely used for rubble mound breakwaters. Many of the recent failures of such structures were caused by unforeseen early breakage of the units, thus revealing an in balance between the strength (structural integrity......) of the units and the hydraulic stability (resistance to displacements) of the armour layers. Breakage is caused by stresses from static, pulsating and impact loads. Impact load generated stresses are difficult to investigate due to non-linear scaling laws. The paper describes a method by which impact loads on....... slender armour units can be studied. by load-cell technique. Moreover, the paper presents DoJos design diagrams for the prediction of both breakage and hydraulic stability...

  17. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  18. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    International Nuclear Information System (INIS)

    Shi, H.J.; Niu, L.S.; Korn, C.; Pluvinage, G.

    2000-01-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data

  19. A Closed-tube Loop-Mediated Isothermal Amplification Assay for the Visual Endpoint Detection of Brucella spp. and Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Trangoni, Marcos D; Gioffré, Andrea K; Cravero, Silvio L

    2017-01-01

    LAMP (loop-mediated isothermal amplification) is an isothermal nucleic acid amplification technique that is characterized by its efficiency, rapidity, high yield of final product, robustness, sensitivity, and specificity, with the blueprint that it can be implemented in laboratories of low technological complexity. Despite the conceptual complexity underlying the mechanistic basis for the nucleic acid amplification, the technique is simple to use and the amplification and detection can be carried out in just one step. In this chapter, we present a protocol based on LAMP for the rapid identification of isolates of Brucella spp. and Mycobacterium avium subsp. paratuberculosis, two major bacterial pathogens in veterinary medicine.

  20. Universality of isothermal fluid spheres in Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  1. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Erna Apriliani

    2011-01-01

    Full Text Available Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ensemble estimation by using the singular value decomposition (the SVD, and then we reduced the rank of the diagonal matrix of those singular values. We make a simulation by using Matlab program. We took some the number of ensemble such as 100, 200 and 500. We compared the computational time and the accuracy between the square root ensemble Kalman filter and the ensemble Kalman filter. The reduced rank ensemble Kalman filter can’t be applied in this problem because the dimension of state variable is too less.

  2. In Vitro Activity of Copper(II Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2016-05-01

    Full Text Available Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb, presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS composed of 10% phase oil (cholesterol, 10% surfactant (soy phosphatidylcholine, sodium oleate, and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8, and an 80% aqueous phase (phosphate buffer pH = 7.4 as a tactic to enhance the in vitro anti-Mtb activity of the copper(II complexes [CuCl2(INH2]·H2O (1, [Cu(NCS2(INH2]·5H2O (2 and [Cu(NCO2(INH2]·4H2O (3. The Cu(II complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI was calculated using the cytotoxicity index (IC50 against Vero (ATCC® CCL-81, J774A.1 (ATCC® TIB-67, and MRC-5 (ATCC® CCL-171 cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.. These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.

  3. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  4. Non-ideal assembly of the driving unit affecting shape of load-displacement curves

    International Nuclear Information System (INIS)

    Huang, Hu; Zhao, Hongwei

    2015-01-01

    The results of nanoindentation testing strongly rely on load-displacement curves, but an abnormal load-displacement curve with obvious inflection in the unloading portion was commonly observed in previously published papers and the reason is not clear. In this paper, possible reasons involved in a custom-made indentation instrument, such as sensors, control and assembly issues, are analyzed and discussed step by step. Experimental results indicate that non-ideal assembly of the precision driving unit strongly affects the shape of the load-displacement curve and its affecting mechanism is studied by theoretical analysis and finite element simulations. This paper reveals the reason leading to the abnormal load-displacement curve, which is helpful for debugging of indentation instruments and can enhance comparability of indentation results. (paper)

  5. Development Of An Approach To Modeling Loading And Elution Of Spherical Resorcinol Formaldehyde Ion-Exchange Resin

    International Nuclear Information System (INIS)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-01-01

    The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO 3 ). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO 3 during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of fixed

  6. DEVELOPMENT OF AN APPROACH TO MODELING LOADING AND ELUTION OF SPHERICAL RESORCINOL FORMALDEHYDE ION-EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-10-03

    The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO{sub 3}). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO{sub 3} during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of

  7. Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading

    Directory of Open Access Journals (Sweden)

    G. Dagan

    2017-06-01

    Full Text Available Large eddy simulations (LESs with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation and cooling of the upper part (net evaporation. Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect. On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability. The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.

  8. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    International Nuclear Information System (INIS)

    Jain-Gupta, Neeta; Pothayee, Nipon; Pothayee, Nikorn; Tyler, Ronald; Caudell, David L.; Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S.; Sriranganathan, Nammalwar

    2013-01-01

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30–32 weight percentage of gentamicin. The zeta potential changed from −39 to −13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log 10 ), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log 10 ). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B.melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers

  9. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    Energy Technology Data Exchange (ETDEWEB)

    Jain-Gupta, Neeta [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States); Pothayee, Nipon; Pothayee, Nikorn [Virginia Polytechnic Institute and State University, Macromolecules and Interfaces Institute (United States); Tyler, Ronald; Caudell, David L. [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States); Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S. [Virginia Polytechnic Institute and State University, Macromolecules and Interfaces Institute (United States); Sriranganathan, Nammalwar, E-mail: nathans@vt.edu [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States)

    2013-11-15

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30–32 weight percentage of gentamicin. The zeta potential changed from −39 to −13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log{sub 10}), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log{sub 10}). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B.melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

  10. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    Science.gov (United States)

    Jain-Gupta, Neeta; Pothayee, Nipon; Pothayee, Nikorn; Tyler, Ronald; Caudell, David L.; Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S.; Sriranganathan, Nammalwar

    2013-11-01

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30-32 weight percentage of gentamicin. The zeta potential changed from -39 to -13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log10), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log10). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B. melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

  11. Moisture ingress into electronics enclosures under isothermal conditions

    International Nuclear Information System (INIS)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    2016-01-01

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. This QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.

  12. A reference stress approach for the characterisation of the creep failure of dissimilar welds under isothermal conditions

    International Nuclear Information System (INIS)

    Nicholson, R.D.; Williams, J.A.

    1988-11-01

    In high temperature power plant, welds between austenitic and ferritic steels are required to operate under plant conditions for up to 250,000h. The experience and failure modes for such joints are briefly surveyed in this report. A semi-empirical reference stress approach is used to define the failure life of joints under isothermal conditions. The reference stress is based on a previously published form for multiaxial creep fracture of homogeneous materials but modified to include an additional factor to reflect the complex strains present close to the interface in a dissimilar weld. This reference stress can be modified to give approximate bounds characterised by the equivalent stress or the axial stress on the weld. The reference stress, when applied to the 21/4Cr1Mo:Type 316 welded component data base, gives conservative results for the test data available although conservatism is low for the 9Cr1Mo:Alloy 600 combination. The existing data base for welded components is limited. More data are needed covering a wider range of stress ratios and incorporating bending loads. (author)

  13. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  14. An energy estimation framework for event-based methods in Non-Intrusive Load Monitoring

    International Nuclear Information System (INIS)

    Giri, Suman; Bergés, Mario

    2015-01-01

    Highlights: • Energy estimation is NILM has not yet accounted for complexity of appliance models. • We present a data-driven framework for appliance modeling in supervised NILM. • We test the framework on 3 houses and report average accuracies of 5.9–22.4%. • Appliance models facilitate the estimation of energy consumed by the appliance. - Abstract: Non-Intrusive Load Monitoring (NILM) is a set of techniques used to estimate the electricity consumed by individual appliances in a building from measurements of the total electrical consumption. Most commonly, NILM works by first attributing any significant change in the total power consumption (also known as an event) to a specific load and subsequently using these attributions (i.e. the labels for the events) to estimate energy for each load. For this last step, most published work in the field makes simplifying assumptions to make the problem more tractable. In this paper, we present a framework for creating appliance models based on classification labels and aggregate power measurements that can help to relax many of these assumptions. Our framework automatically builds models for appliances to perform energy estimation. The model relies on feature extraction, clustering via affinity propagation, perturbation of extracted states to ensure that they mimic appliance behavior, creation of finite state models, correction of any errors in classification that might violate the model, and estimation of energy based on corrected labels. We evaluate our framework on 3 houses from standard datasets in the field and show that the framework can learn data-driven models based on event labels and use that to estimate energy with lower error margins (e.g., 1.1–42.3%) than when using the heuristic models used by others

  15. Non-equibiaxial deformation of W/Cu nanocomposite thin films on stretchable substrate: Effect of loading path

    Energy Technology Data Exchange (ETDEWEB)

    Renault, Pierre-Olivier, E-mail: pierre.olivier.renault@univ-poitiers.fr [Institut Pprime, CNRS-Université de Poitiers, Bd Marie et Pierre Curie, 86962 Futuroscope (France); Le Bourhis, Eric; Goudeau, Philippe [Institut Pprime, CNRS-Université de Poitiers, Bd Marie et Pierre Curie, 86962 Futuroscope (France); Thiaudière, Dominique [Synchrotron SOLEIL, L' Orme des Merisiers, 91192 Gif sur Yvette (France); Faurie, Damien [LSPM, CNRS-Université Paris13, 93430 Villetaneuse (France)

    2013-12-31

    In situ biaxial tensile tests were carried out on W/Cu nanocomposite thin films deposited on a polyimide cruciform substrate. A biaxial testing machine developed on the DiffAbs beamline at the French SOLEIL synchrotron allows for scrutinizing the mechanical behaviour of crystalline thin films at the micro-scale and the macro-scale using simultaneously synchrotron X-ray diffraction and digital image correlation techniques. Both strain analyses have been performed for two controlled non-equibiaxial loading paths: loading ratios of 0.8 and 0.33. The mechanical response is analysed and compared for the two loading ratios. - Highlights: • Non-equibiaxial tensile tests are performed on metallic film-substrate composite. • Two different loading paths have been performed. • Applied strains are measured in situ by X-ray diffraction and image correlation. • Lattice strain and elastic stress–true strain curves are plotted. • The different mechanical behaviours in the two directions of applied load are revealed.

  16. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy

    2017-07-01

    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  17. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Science.gov (United States)

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  18. Phase transitions in diglyceride monolayers studied by computer simulations, pressure-area isotherms and x-ray diffraction

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Toxværd, S.; Larsen, N.B.

    1994-01-01

    1,2-sn-diglyceride monolayers exhibit unique and complex phase transitions as a function of surface pressure. The dynamical response of the layer on expanding the film has been investigated by computer simulations, (π-A) isotherms and grazing-incidence X-ray diffraction. Good agreement is found b...

  19. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  20. The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Ye YJ

    2015-07-01

    Full Text Available Ya-Jing Ye,1 Yun Wang,1 Kai-Yan Lou,1 Yan-Zuo Chen,1 Rongjun Chen,2 Feng Gao1,3,4 1Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China; 2Department of Chemical Engineering, Imperial College London, London, United Kingdom; 3Shanghai Key Laboratory of Functional Materials Chemistry, 4Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: A novel biocompatible and biodegradable drug-delivery nanoparticle (NP has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl-β-cyclodextrin (DM-β-CD, using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS to form NPs (with a size of 323.9–407.8 nm in diameter using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol®, the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC0→24h (the area under the plasma drug concentration–time curve over the period of 24 hours and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the

  1. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Isothermal calorimeter for reactor radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Radak, B; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Odeljenje za radijacionu hemiju, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    An isothermal calorimeter with thermistors for measuring absorbed dose rates from 10{sup 4}-5-6.10{sup 5} rad/h in reactor experimental holes has been designed. A kinetics method for determining the equilibrium temperature difference has been developed, and its application in isothermal calorimetry proved. The expected accuracy in measurements within {+-} 2-5% has been proved by measurements carried out in the reactor. Some data obtained by measurements in the reactor RA are presented (author)

  3. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  4. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  5. Compactifications of heterotic strings on non-Kaehler complex manifolds II

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Dasgupta, Keshav; Green, Paul S.; Sharpe, Eric

    2004-01-01

    We continue our study of heterotic compactifications on non-Kaehler complex manifolds with torsion. We give further evidence of the consistency of the six-dimensional manifold presented earlier and discuss the anomaly cancellation and possible supergravity description for a generic non-Kaehler complex manifold using the newly proposed superpotential. The manifolds studied in our earlier papers had zero Euler characteristics. We construct new examples of non-Kaehler complex manifolds with torsion in lower dimensions, that have nonzero Euler characteristics. Some of these examples are constructed from consistent backgrounds in F-theory and therefore are solutions to the string equations of motion. We discuss consistency conditions for compactifications of the heterotic string on smooth non-Kaehler manifolds and illustrate how some results well known for Calabi-Yau compactifications, including counting the number of generations, apply to the non-Kaehler case. We briefly address various issues regarding possible phenomenological applications

  6. Compatibility of epirubicin-loaded DC bead™ with different non-ionic contrast media.

    Science.gov (United States)

    Sarakbi, Iman; Krämer, Irene

    2016-12-01

    The aim of this study was to determine the compatibility of epirubicin-loaded DC bead™ with different non-ionic contrast media over a period of seven days when stored light protected under refrigerated conditions. DC bead™ (2 ml) (Biocompatibles UK Ltd) of the bead size 70-150 µm ( = DC bead M1) or bead size 100-300 µm were loaded with 75 mg epirubicin powder formulation (Farmorubicin® dissolved in 3 ml water for injection to a concentration of 25 mg/ml) or 76 mg epirubicin injection solution (Epimedac® 2 mg/ml) within 2 h or 6 h, respectively. After removal of the excess solution, the epirubicin-loaded beads were mixed in polypropylene syringes with an equal volume (∼1.5 ml) of contrast media, i.e. Accupaque™ 300 (Nycomed Inc.), Imeron® 300 (Bracco S.p.A), Ultravist® 300 (Bayer Pharma AG), Visipaque™ 320 (GE Healthcare) and agitated in a controlled manner to get a homogenous suspension. Syringes with loaded beads in contrast media were stored protected from light under refrigeration (2-8℃). Compatibility was determined by measuring epirubicin concentrations in the suspensions in triplicate on day 0, 1, and 7. A reversed phase high-performance liquid chromatography assay with ultraviolet detection was utilized to analyze the concentration and purity of epirubicin. Mixing of epirubicin-loaded beads with different non-ionic contrast media released 0.1-0.5% of epirubicin over a period of 24 h, irrespectively, of the DC bead™ size or type of contrast media. No further elution or degradation was observed after seven days when the admixtures were stored protected from light under refrigeration. Compatibility of epirubicin-loaded DC bead™ with an equal volume of different contrast media in polypropylene syringes is given over a period of seven days. Due to a maximum elution of 0.1-0.5% of epirubicin from loaded DC bead™, admixtures with contrast media can be prepared in advance in centralized cytotoxic preparation units

  7. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.

    Science.gov (United States)

    Komor, E; Orlich, G; Weig, A; Köckenberger, W

    1996-08-01

    level in most organs of the seedling and throughout the germination period. Leaves of adult Ricinus have significantly lower levels of this transcript. Recirculation of excess, phloem-delivered solutes from the sink back to the source is shown not only to be a common feature of long-distance transport, but the only way that an imbalance between supply to and consumption of nutrients in the sink can be adjusted in the source. It is a pathway by which sink activity regulates phloem loading. Non-invasive NMR imaging revealed the flow rates and flow speeds in phloem and xylem in the intact seedling and proved directly the existence of an internal circulating solution flow. A unified model of phloem loading is proposed, based on a pump-and-leak model, where active sucrose carriers (and other carriers) accumulate solutes in the sieve tubes with a concomitant build-up of pressure resulting in mass flow. Plasmodesmata are leaks (as are the transport carriers, too), slowing down the transport rate, but they also serve as diffusion channels for substances which are produced in the neighbouring cell. Therefore, compounds, which are not made in the sieve tubes themselves are translocated together with the bulk solution of sieve tube sap.

  8. A phenomenological SMA model for combined axial–torsional proportional/non-proportional loading conditions

    International Nuclear Information System (INIS)

    Bodaghi, M.; Damanpack, A.R.; Aghdam, M.M.; Shakeri, M.

    2013-01-01

    In this paper, a simple and robust phenomenological model for shape memory alloys (SMAs) is proposed to simulate main features of SMAs under uniaxial as well as biaxial combined axial–torsional proportional/non-proportional loadings. The constitutive model for polycrystalline SMAs is developed within the framework of continuum thermodynamics of irreversible processes. The model nominates the volume fractions of self-accommodated and oriented martensite as scalar internal variables and the preferred direction of oriented martensitic variants as directional internal variable. An algorithm is introduced to develop explicit relationships for the thermo-mechanical behavior of SMAs under uniaxial and biaxial combined axial–torsional proportional/non-proportional loading conditions and also thermal loading. It is shown that the model is able to simulate main aspects of SMAs including self-accommodation, martensitic transformation, orientation and reorientation of martensite, shape memory effect, ferro-elasticity and pseudo-elasticity. A description of the time-discrete counterpart of the proposed SMA model is presented. Experimental results of uniaxial tension and biaxial combined tension–torsion non-proportional tests are simulated and a good qualitative correlation between numerical and experimental responses is achieved. Due to simplicity and accuracy, the model is expected to be used in the future studies dealing with the analysis of SMA devices in which two stress components including one normal and one shear stress are dominant

  9. Experimental Comparison of Non-Slender Piles under Static Loading and under Cyclic Loading in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    2012-01-01

    An experimental evaluation of the pile behavior of non-slender piles exposed to static and cyclic lateral loading is presented. The tests were conducted in a pressure tank at Aalborg University. This enabled the possibility of applying an overburden pressure to the soil. When conducting small......-scale tests at 1-g the determination of the friction angle and the Young’s modulus of elasticity of the soil are difficult and further these soil parameters varies greatly with depth. These uncertainties were avoided by application of an overburden pressure....

  10. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  11. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.

    Science.gov (United States)

    Vegter, Riemer J K; Hartog, Johanneke; de Groot, Sonja; Lamoth, Claudine J; Bekker, Michel J; van der Scheer, Jan W; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    2015-03-10

    To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an

  12. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, Benjamin [Sustainx, Incorporated, Seabrook, NH (United States)

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  13. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  14. Electronic load as part of the test complex of the power processing unit of electric and plasma propulsion

    OpenAIRE

    Chubov, S. V.; Soldatov, Aleksey Ivanovich

    2017-01-01

    This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.

  15. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  16. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell.

    Science.gov (United States)

    Deng, Ruijie; Zhang, Kaixiang; Li, Jinghong

    2017-04-18

    MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as pivotal post-transcriptional regulators of gene expression, thus involving in many fundamental cellular processes such as cell proliferation, migration, and canceration. The detection of miRNAs has attracted significant interest, as abnormal miRNA expression is identified to contribute to serious human diseases such as cancers. Particularly, miRNAs in peripheral blood have recently been recognized as important biomarkers potential for liquid biopsy. Furthermore, as miRNAs are expressed heterogeneously in different cells, investigations into single-cell miRNA expression will be of great value for resolving miRNA-mediated regulatory circuits and the complexity and heterogeneity of miRNA-related diseases. Thus, the development of miRNA detection methods, especially for complex clinic samples and single cells is in great demand. In this Account, we will present recent progress in the design and application of isothermal amplification enabling miRNA detection transition from the test tube to the clinical sample and single cell, which will significantly advance our knowledge of miRNA functions and disease associations, as well as its translation in clinical diagnostics. miRNAs present a huge challenge in detection because of their extremely short length (∼22 nucleotides) and sequence homology (even with only single-nucleotide variation). The conventional golden method for nucleic acid detection, quantitative PCR (qPCR), is not amenable to directly detecting short RNAs and hardly enables distinguishing between miRNA family members with very similar sequences. Alternatively, isothermal amplification has emerged as a powerful method for quantification of nucleic acids and attracts broad interest for utilization in developing miRNA assays. Compared to PCR, isothermal amplification can be performed without precise control of temperature cycling and is well fit for detecting short RNA or DNA. We and other

  17. Biodegradable films containing {alpha}-tocopherol/{beta}-cyclodextrin complex; Filmes biodegradaveis contendo {alpha}-tocoferol complexado em {beta}-ciclodextrina

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir, E-mail: vsoldi@qmc.ufsc.br [Lab. de Materiais Polimericos (POLIMAT), Dept. de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barreto, Pedro L.M. [Lab. de Reologia (REOLAB), Dept. de Ciencia e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2011-07-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work {beta}-cyclodextrin/{alpha}-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the {beta}-cyclodextrin/{alpha}-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The {beta}-cyclodextrin/{alpha}-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  18. Stress-induced reorientation of hydride precipitates in Zr-2.5Nb-0.5Cu garter springs under complex loading

    International Nuclear Information System (INIS)

    De, P.K.; John, J.T.; Raman, V.V.; Banerjee, S.

    1991-01-01

    Zr-2.5Nb-0.5Cu garter springs which are placed between coolant and calandria tubes in PHWRs experience complex loading due to simultaneous application of tension, compression and torus bending moment due to coolant tubes. The gradual pick up of hydrogen by the garter springs during service is likely to have hydride platelets reoriented under the applied stresses. In the present paper, the magnitudes and the directions of the principal stresses under the complex loading condition obtained have been calculated and the extent of hydride reorientation predicted. Simulation experiments consisting of simulated loading of hydrogen (upto 400 ppm) precharged springs at the service temperature (300degC) and also in-situ hydrogen charging of the springs under simulated loading conditions have been carried out. In addition, hydrogen precharged springs have been subjected to temperature cycling between 50 and 300degC under complex loading conditions, to evaluate the influence of temperature variation on hydride reorientation. Metallographic examination of the hydride platelets in the above springs has shown an excellent agreement with the analytical prediction. Torus bending moment values appear to play a significant role in reorienting the hydride platelets. It has been observed that under normal torus bending moment corresponding to 90 mm dia coolant tubes hydrogen platelets close to the outer rim of the spiral get reoriented in the radial direction. However, on application a torus bending moment corresponding to 30 mm dia tubes, hydride platelets get reoriented along the radial direction, irrespective of the magnitude of tensile and compression loading. (author). 9 refs., 15 figs., 1 appendix

  19. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Science.gov (United States)

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  20. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory.

    Science.gov (United States)

    Meier, Beat; Zimmermann, Thomas D

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  1. Understand rotating isothermal collapses yet

    International Nuclear Information System (INIS)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references

  2. Effect of pH on the complexation of kaempferol-4'-glucoside with three β-cyclodextrin derivatives: isothermal titration calorimetry and spectroscopy study.

    Science.gov (United States)

    Zheng, Yan; Dong, Li-Na; Liu, Min; Chen, Aiju; Feng, Shangcai; Wang, Bingquan; Sun, Dezhi

    2014-01-08

    The utilization of kaempferol and its glycosides in food and pharmaceutical industries could be improved by the formation of inclusion complexes with cyclodextrins at different pH. This study explores the complexation of kaempferol-4'-glucoside with sulfobutyl ether-β-cyclodextrin (SBE-β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD) in phosphate buffer solutions of different pH using isothermal titration calorimetry, UV-vis absorption and proton nuclear magnetic resonance spectroscopy at 298.2 K. Experimental results showed that kaempferol-4'-glucoside binds with the three β- cyclodextrins in the same 1:1 stoichiometry. The rank order of stability constants is SBE-β-CD > HP-β-CD > M-β-CD at the same pH level and pH 6.0 > pH 7.4 > pH 9.0 for the same cyclodextrin. The binding of kaempferol-4'-glucoside with the three β-cyclodextrin derivatives is synergistically driven by enthalpy and entropy at pH 6.0 and enthalpy-driven at pH 7.4 and 9.0. The possible inclusion mode was that in the cavity of β-CD is included the planar benzopyranic-4-one part of the kaempferol-4'-glucoside.

  3. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers

    Directory of Open Access Journals (Sweden)

    Zhao YQ

    2013-10-01

    Full Text Available Yi-qing Zhao, Li-ping Wang, Chao Ma, Kun Zhao, Ying Liu, Nian-ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaBackground: Tetrandrine is an active constituent that is extracted from the root tuber of the Chinese herb Stephania tetrandra S. Moore. It has shown various pharmacological effects, such as antitumor activity, multidrug resistance reversal, and hepatic fibrosis resistance. In clinical applications, it has been used to treat hypertension, pneumosilicosis, and lung cancer. However, the poor water solubility of tetrandrine has limited its application. In this study, a newly emerging oral drug carrier of phospholipid complex loaded lipid nanocapsules was developed to improve the oral bioavailability of tetrandrine.Methods: The phospholipid complex was prepared with the solvent-evaporation method to enhance the liposolubility of tetrandrine. The formation of the phospholipid complex was confirmed with a solubility study, infrared spectroscopy, and a differential scanning calorimetry (DSC analysis. The tetrandrine-phospholipid complex loaded lipid nanocapsules (TPC-LNCs were prepared using the phase inversion method. Lyophilization was performed with mannitol (10% as a cryoprotectant. TPC-LNCs were characterized according to their particle size, zeta potential, encapsulation efficiency, morphology by transmission electron microscopy, and crystallinity by DSC. In addition, the in vitro release of tetrandrine from TPC-LNCs was examined to potentially illustrate the in vivo release behavior. The in vivo bioavailability of TPC-LNCs was studied and compared to tetrandrine tablets in rats.Results: The liposolubility of tetrandrine in n-octanol improved from 8.34 µg/mL to 35.64 µg/mL in the tetrandrine-phospholipid complex. The prepared TPC-LNCs were spherical-shaped particles with a small size of 40 nm and a high encapsulation efficiency of 93.9%. DSC measurements revealed

  4. A Novel Absorbent of Nano-Fe Loaded Biomass Char and Its Enhanced Adsorption Capacity for Phosphate in Water

    Directory of Open Access Journals (Sweden)

    Hongguang Zhou

    2013-01-01

    Full Text Available A novel composite adsorbent of Fe loaded biomass char (Fe-BC was fabricated to treat phosphorus in water. Fe-BC was prepared by a procedure including metal complex anion incorporation and precipitation with the pyrolysis char of corn straw as supporting material. The abundant porous structures of the as-prepared sample can be easily observed from its scanning electron microscopy (SEM images. Observations by X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses show that inorganic nanoiron oxides deposited in the composite could be amorphous hydrous iron oxide α-FeOOH. Adsorption of phosphate onto the Fe-BC composite and its precursor (BC from aqueous solutions were investigated and discussed. The equilibrium adsorption data of phosphate was described by Langmuir and Freundlich models, and Langmuir isotherm was found to be better fitted than Freundlich isotherm. The maximum phosphate adsorption capacity for phosphate of Fe-BC was as high as 35.43 mg/g, approximately 2.3 times of BC at 25°C. The adsorption kinetics data were better fitted by pseudo-second-order model and intraparticle diffusion model, indicating that the adsorption process was complex. The Fe-BC composite has been proved as an effective adsorbent of phosphate from aqueous solutions owing to its unique porous structures and the greater Lewis basicity of the α-FeOOH.

  5. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  6. Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.

    Science.gov (United States)

    Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin

    2017-12-15

    State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Numerical simulation of deformation and failure processes of a complex technical object under impact loading

    Science.gov (United States)

    Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.

    2018-04-01

    The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.

  8. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    Science.gov (United States)

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  9. Theoretical design and analysis of wideband active hard electromagnetic surfaces using non-Foster circuit loaded anisotropic metasurfaces

    Science.gov (United States)

    Li, Yunbo; Li, Aobo; Sievenpiper, Daniel

    2018-02-01

    The electromagnetic (EM) hard surface which can both support transverse electric and transverse magnetic surface wave modes has the important ability to reduce the EM blockage of metallic obstacles. We propose a method to design an electrically thin hard surface with wide bandwidth by loading with non-Foster elements. The wideband hard surface composed of an anisotropic impedance coating can be considered as a kind of active metasurface. We develop a method to determine the values of the loading non-Foster circuit which can minimize the dispersion of the unit cells. For this method, we derive accurate values for the loading non-Foster elements through theoretical analysis. We also determine the fundamental limitations on the bandwidth due to stability requirements. To verify our theoretical design, we simulate the transmission performance between the two ports on opposite sides of a metallic rhombus-shaped obstacle coated with the non-Foster based metasurface. The simulated results show that the blockage has been largely reduced over a broad bandwidth from 0.2 GHz to 1.5 GHz. Finally, we provide a discussion on how the resistive part of the non-Foster circuit can affect the performance of the wideband hard surface coating.

  10. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  11. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: jliu@ices.utexas.edu [Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712 (United States); Gomez, Hector [Department of Mathematical Methods, University of A Coruña, Campus de Elviña, s/n, 15192 A Coruña (Spain); Evans, John A.; Hughes, Thomas J.R. [Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, 1 University Station C0200, Austin, TX 78712 (United States); Landis, Chad M. [Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 210 East 24th Street, 1 University Station C0600, Austin, TX 78712 (United States)

    2013-09-01

    We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionally stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.

  12. Isothermal martensite formation at sub-zero temperatures

    DEFF Research Database (Denmark)

    Stojko, Allan; Hansen, Mikkel Fougt; Slycke, Jan

    2012-01-01

    , quenched in oil, and thereafter investigated with vibrating sample magnetometry, which allows a quantitative assessment of the fraction of retained austenite as a function of the sub-zero temperature and time. Isothermal martensite formation was observed on interrupting the continuous cooling (5 K...... with a continuation of the martensitic transformation. On prolonged isothermal holding, a volume reduction was observed for AISI 52100, but not for AISI 1070. Copyright © 2011 by ASTM International....

  13. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    Science.gov (United States)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  14. Group actions, non-Kähler complex manifolds and SKT structures

    Directory of Open Access Journals (Sweden)

    Poddar Mainak

    2018-02-01

    Full Text Available We give a construction of integrable complex structures on the total space of a smooth principal bundle over a complex manifold, with an even dimensional compact Lie group as structure group, under certain conditions. This generalizes the constructions of complex structure on compact Lie groups by Samelson and Wang, and on principal torus bundles by Calabi-Eckmann and others. It also yields large classes of new examples of non-Kähler compact complex manifolds. Moreover, under suitable restrictions on the base manifold, the structure group, and characteristic classes, the total space of the principal bundle admits SKT metrics. This generalizes recent results of Grantcharov et al. We study the Picard group and the algebraic dimension of the total space in some cases. We also use a slightly generalized version of the construction to obtain (non-Kähler complex structures on tangential frame bundles of complex orbifolds.

  15. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Aubin, V.

    2001-11-01

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10 -5 ) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  16. Financial Statement Audit Report of Isothermal Community College.

    Science.gov (United States)

    Campbell, Ralph

    This report presents the results of the Isothermal Community College financial statement audit for the fiscal year ending on June 30, 1998. Isothermal Community College is a component of the State of North Carolina, thus the authority to audit is granted by Article 5A of G.S. 147. The accounts and operations of the institution were subject to…

  17. Lewis basicity of relevant monoanions in a non-protogenic organic solvent using a zinc(ii) Schiff-base complex as a reference Lewis acid.

    Science.gov (United States)

    Oliveri, Ivan Pietro; Di Bella, Santo

    2017-09-12

    Anions are ubiquitous species playing a primary role in chemistry, whose reactivity is essentially dominated by their Lewis basicity. However, no Lewis basicity data, in terms of Gibbs energy, are reported in the literature. We report here the first Lewis basicity of relevant monoanions through the determination of binding constants for the formation of stable 1 : 1 adducts, using a Zn II Schiff-base complex, 1, as a reference Lewis acid. Binding constants for equilibrium reactions were achieved through a nonlinear regression analysis of the binding isotherms from spectrophotometric titration data. The Lewis acidic complex 1 is a proper reference species because it forms stable adducts with both neutral and charged Lewis bases, thus allowing ranking their Lewis basicity. Binding constants indicate generally a strong Lewis basicity for all involved anions, rivalling or exceeding that of the stronger neutral bases, such as primary amines or pyridine. The cyanide anion results to be the strongest Lewis base, while the nitrate is the weaker base within the present anion series. Moreover, even the weaker base anions behave as stronger bases than the most common non-protogenic coordinating solvents.

  18. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  19. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP for screening patients with imported malaria in a non-endemic setting

    Directory of Open Access Journals (Sweden)

    Ponce Camille

    2017-01-01

    Full Text Available Background: Sensitive and easy-to-perform methods for the diagnosis of malaria are not yet available. Improving the limit of detection and following the requirements for certification are issues to be addressed in both endemic and non-endemic settings. The aim of this study was to test whether loop-mediated isothermal amplification of DNA (LAMP may be an alternative to microscopy or real-time PCR for the screening of imported malaria cases in non-endemic area. Results: 310 blood samples associated with 829 suspected cases of imported malaria were tested during a one year period. Microscopy (thin and thick stained blood slides, reference standard was used for the diagnosis. Real-time PCR was used as a standard of truth, and LAMP (Meridian Malaria Plus was used as an index test in a prospective study conducted following the Standards for Reporting Diagnosis Accuracy Studies. In the 83 positive samples, species identification was P. falciparum (n = 66, P. ovale (n = 9, P. vivax (n = 3 P. malariae (n = 3 and 2 co-infections with P. falciparum + P.malariae. Using LAMP methods, 93 samples gave positive results, including 4 false-positives. Sensitivity, specificity, positive predictive value and negative predictive value for LAMP tests were 100%, 98.13%, 95.51%, and 100% compared to PCR. Conclusion: High negative predictive value, and limit of detection suggest that LAMP can be used for screening of imported malaria cases in non-endemic countries when expert microscopists are not immediately available. However, the rare occurrence of non-valid results and the need for species identification and quantification of positive samples preclude the use of LAMP as a single reference method.

  20. Adsorption isotherms of pear at several temperatures

    OpenAIRE

    Mitrevski Vangelče; Lutovska Monika; Mijakovski Vladimir; Pavkov Ivan S.; Babić Mirko M.; Radojčin Milivoje T.

    2015-01-01

    The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for...

  1. Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task.

    Science.gov (United States)

    Wirzberger, Maria; Esmaeili Bijarsari, Shirin; Rey, Günter Daniel

    2017-09-01

    Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  3. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  4. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  5. Intrusive and Non-Intrusive Load Monitoring (A Survey

    Directory of Open Access Journals (Sweden)

    Marco Danilo Burbano Acuña

    2015-05-01

    Full Text Available There is not discussion about the need of energyconservation, it is well known that energy resources are limitedmoreover the global energy demands will double by the end of2030, which certainly will bring implications on theenvironment and hence to all of us.Non-Intrusive load monitoring (NILM is the process ofrecognize electrical devices and its energy consumption basedon whole home electric signals, where this aggregated load datais acquired from a single point of measurement outside thehousehold. The aim of this approach is to get optimal energyconsumption and avoid energy wastage. Intrusive loadmonitoring (ILM is the process of identify and locate singledevices through the use of sensing systems to support control,monitor and intervention of such devices. The aim of thisapproach is to offer a base for the development of importantapplications for remote and automatic intervention of energyconsumption inside buildings and homes as well. For generalpurposes this paper states a general framework of NILM andILM approaches.Appliance discerns can be tackled using approaches fromdata mining and machine learning, finding out the techniquesthat fit the best this requirements, is a key factor for achievingfeasible and suitable appliance load monitoring solutions. Thispaper presents common and interesting methods used.Privacy concerns have been one of the bigger obstacles forimplementing a widespread adoption of these solutions; despitethis fact, developed countries like those inside the EU and theUK have established a deadline for the implementation ofsmart meters in the whole country, whereas USA governmentstill struggles with the acceptance of this solution by itscitizens.The implementation of security over these approachesalong with fine-grained energy monitoring would lead to abetter public agreement of these solutions and hence a fasteradoption of such approaches. This paper reveals a lack ofsecurity over these approaches with a real scenario.

  6. Fracture mechanics assessment of surface and sub-surface cracks in the RPV under non-symmetric PTS loading

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.

  7. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  8. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  9. New Theoretical Expressions for the Five Adsorption Type Isotherms ...

    African Journals Online (AJOL)

    New Theoretical Expressions for the Five Adsorption Type Isotherms Classified by Bet Basing on Statistical Physics Treatment. ... that we have proposed, basing on statistical physics treatment, are rather powerful to better understand and interpret the various five physical adsorption Type isotherms at a microscopic level.

  10. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  11. The software package for solving problems of mathematical modeling of isothermal curing process

    Directory of Open Access Journals (Sweden)

    S. G. Tikhomirov

    2016-01-01

    Full Text Available Summary. On the basis of the general laws of sulfur vulcanization diene rubbers the principles of the effective cross-linking using a multi-component agents was discussed. It is noted that the description of the mechanism of action of the complex cross-linking systems are complicated by the diversity of interactions of components and the influence of each of them on the curing kinetics, leading to a variety technological complications of real technology and affects on the quality and technical and economic indicators of the production of rubber goods. Based on the known theoretical approaches the system analysis of isothermal curing process was performed. It included the integration of different techniques and methods into a single set of. During the analysis of the kinetics of vulcanization it was found that the formation of the spatial grid parameters vulcanizates depend on many factors, to assess which requires special mathematical and algorithmic support. As a result of the stratification of the object were identified the following major subsystems. A software package for solving direct and inverse kinetic problems isothermal curing process was developed. Information support “Isothermal vulcanization” is a set of applications of mathematical modeling of isothermal curing. It is intended for direct and inverse kinetic problems. When solving the problem of clarifying the general scheme of chemical transformations used universal mechanism including secondary chemical reactions. Functional minimization algorithm with constraints on the unknown parameters was used for solving the inverse kinetic problem. Shows a flowchart of the program. An example of solving the inverse kinetic problem with the program was introduced. Dataware was implemented in the programming language C ++. Universal dependence to determine the initial concentration of the curing agent was applied . It allowing the use of a model with different properties of multicomponent

  12. Modeling Coupled Water and Heat Transport in the Root Zone of Winter Wheat under Non-Isothermal Conditions

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-04-01

    Full Text Available Temperature is an integral part of soil quality in terms of moisture content; coupling between water and heat can render a soil fertile, and plays a role in water conservation. Although it is widely recognized that both water and heat transport are fundamental factors in the quantification of soil mass and energy balance, their computation is still limited in most models or practical applications in the root zone under non-isothermal conditions. This research was conducted to: (a implement a fully coupled mathematical model that contains the full coupled process of soil water and heat transport with plants focused on the influence of temperature gradient on soil water redistribution and on the influence of change in soil water movement on soil heat flux transport; (b verify the mathematical model with detailed field monitoring data; and (c analyze the accuracy of the model. Results show the high accuracy of the model in predicting the actual changes in soil water content and temperature as a function of time and soil depth. Moreover, the model can accurately reflect changes in soil moisture and heat transfer in different periods. With only a few empirical parameters, the proposed model will serve as guide in the field of surface irrigation.

  13. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load

    DEFF Research Database (Denmark)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika

    2014-01-01

    dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health....... response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...

  14. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng

    2018-02-25

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager\\'s reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  15. Effects of Covalent Functionalization of MWCNTs on the Thermal Properties and Non-Isothermal Crystallization Behaviors of PPS Composites

    Directory of Open Access Journals (Sweden)

    Myounguk Kim

    2017-09-01

    Full Text Available In this study, a PPS/MWCNTs composite was prepared with poly(phenylene sulfide (PPS, as well as pristine and covalent functionalized multi-walled carbon nanotubes (MWCNTs via melt-blending techniques. Moreover, the dispersion of the MWCNTs on the PPS matrix was improved by covalent functionalization as can be seen from a Field-Emission Scanning Electron Microscope (FE-SEM images. The thermal properties of the PPS/MWCNTs composites were characterized using a thermal conductivity analyzer, and a differential scanning calorimeter (DSC. To analyze the crystallization behavior of polymers under conditions similar with those in industry, the non-isothermal crystallization behaviors of the PPS/MWCNTs composites were confirmed using various kinetic equations, such as the modified Avrami equation and Avrami-Ozawa combined equation. The crystallization rate of PPS/1 wt % pristine MWCNTs composite (PPSP1 was faster because of the intrinsic nucleation effect of the MWCNTs. However, the crystallization rates of the composites containing covalently-functionalized MWCNTs were slower than PPSP1 because of the destruction of the MWCNTs graphitic structure via covalent functionalization. Furthermore, the activation energies calculated by Kissinger’s method were consistently decreased by covalent functionalization.

  16. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2018-01-01

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager's reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  17. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation

    Directory of Open Access Journals (Sweden)

    Naď Martin

    2018-01-01

    Full Text Available Industrial boiler damage is a common phenomenon encountered in boiler operation which usually lasts several decades. Since boiler shutdown may be required because of localized failures, it is crucial to predict the most vulnerable parts. If damage occurs, it is necessary to perform root cause analysis and devise corrective measures (repairs, design modifications, etc.. Boiler tube bundles, such as those in superheaters, preheaters and reheaters, are the most exposed and often the most damaged boiler parts. Both short-term and long-term overheating are common causes of tube failures. In these cases, the design temperatures are exceeded, which often results in decrease of remaining creep life. Advanced models for damage evaluation require temperature history, which is available only in rare cases when it has been measured and recorded for the whole service life. However, in most cases it is necessary to estimate the temperature history from available operation history data (inlet and outlet pressures and temperatures etc.. The task may be very challenging because of the combination of complex flow behaviour in the flue gas domain and heat transfer phenomena. This paper focuses on estimating thermal load non-uniformity on superheater tubes via Computational Fluid Dynamics (CFD simulation of flue gas flow including heat transfer within the domain consisting of a furnace and a part of the first stage of the boiler.

  18. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    Science.gov (United States)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  19. [Estimation of urban non-point source pollution loading and its factor analysis in the Pearl River Delta].

    Science.gov (United States)

    Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long

    2013-08-01

    In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.

  20. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  1. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  2. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  3. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  4. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  5. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G.

    2014-07-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  6. Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi

    Science.gov (United States)

    Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.

    2018-01-01

    Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.

  7. Measurement and analysis of adsorption isotherms of CO_2 on activated carbon

    International Nuclear Information System (INIS)

    Singh, Vinod Kumar; Anil Kumar, E.

    2016-01-01

    In the present work CO_2 adsorption isotherms of a commercially available activated carbon, Norit Darco type obtained from lignite granular material, were measured. Adsorption isotherms were measured at different temperatures 298 K, 308 K, 318 K and 338 K and over a pressure range of 0–45 bar using Sievert's type experimental setup. Experimental data of CO_2 adsorption isotherms were modelled using Langmuir and Dubinin–Astakhov (D–A) isotherm models. Based on coefficient of correlation and normalized standard deviation it was found that D–A isotherm model was well suited with the experimental data of CO_2 adsorption isotherms. The important thermodynamic properties viz., limiting heat of adsorption at zero coverage, entropy, Gibbs free energy and isosteric heat of adsorption as a function of surface coverage were evaluated using van't Hoff and Clausius–Clapeyron equations. These thermodynamic properties were indicating that CO_2 uptake by activated carbon is a physisorption phenomenon. The adsorption isotherms data and the thermodynamic parameters estimated in the present study are useful for designing of an adsorption based gas storage systems.

  8. (AJST) ADSORPTION ISOTHERME DE L'ACIDE ACÉTIQUE PAR ...

    African Journals Online (AJOL)

    opiyo

    ont été étudiées à partir des isothermes d'adsorption de l'acide acétique à 30° et ... has resulted in the determination of the two types of adsorption isotherms : the Freundlich and .... zinc 60 % pendant 6 heures n'améliore pas suffisamment le.

  9. Microstructural Evolution and the Precipitation Behavior in X90 Linepipe Steel During Isothermal Processing

    Science.gov (United States)

    Tian, Y.; Wang, H. T.; Wang, Z. D.; Misra, R. D. K.; Wang, G. D.

    2018-03-01

    Thermomechanical controlled processing of 560-MPa (X90) linepipe steel was simulated in the laboratory using a thermomechanical simulator to study the microstructural evolution and precipitation behavior during isothermal holding. The results indicated that martensite was obtained when the steels were isothermally held for 5 s at 700 °C. Subsequently, granular bainite and acicular ferrite transformation occurred with increased holding time. Different amount of polygonal ferrite formed after isothermally holding for 600-3600 s. Pearlite nucleated after isothermally holding for 3600 s. Precipitation occurred after isothermal holding for 5 s and continuous precipitation occurred at grain boundaries after isothermally holding for 600 s. After isothermally holding for 3600 s, large Nb/Ti carbide precipitated. The presence of MX-type precipitates was confirmed by diffraction pattern. The interphase precipitation (IP) occurred between 5 and 30 s. Maximum hardness was obtained after isothermally holding for 600 s when IP occurred and rapidly decreased to a low value, mainly because polygonal ferrite dominated the microstructure after isothermally holding for 3600 s.

  10. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  11. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  12. Isotopically exchangeable phosphorus as a correction value to adsorption isotherms

    International Nuclear Information System (INIS)

    Lopez, S.C.; Barbaro, N.O.; Rojas de Tramontini, S.L.; Martini, O.

    1984-01-01

    Adsorption isotherms in evaluation and characterization of soils are studied. The quantity of phosphorus present at first in soil, evaluated by radioisotopic techniques and used in correction of Langmuir and Freundlich isotherms, is discussed. (M.A.C.) [pt

  13. Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web component based on dual-response surface method

    Science.gov (United States)

    Wei, Ke; Fan, Xiaoguang; Zhan, Mei; Meng, Miao

    2018-03-01

    Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

  14. Mathematical modelling of the sorption isotherms of quince

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelce

    2017-01-01

    Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.

  15. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  16. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model.

    Science.gov (United States)

    Handschel, Jörg; Wiesmann, Hans Peter; Stratmann, Udo; Kleinheinz, Johannes; Meyer, Ulrich; Joos, Ulrich

    2002-04-01

    Tricalciumphosphate (TCP) has been used as a ceramic bone substitute material in the orthopedic field as well as in craniofacial surgery. Some controversies exist concerning the osteoconductive potential of this material in different implantation sites. This study was designed to evaluate the biological response of calvarial bone towards TCP granules under non-loading conditions to assess the potential of TCP as a biodegredable and osteoconductive bone substitue material for the cranial vault. Full-thickness non-critical size defects were made bilaterally in the calvaria of 21 adult Wistar rats. One side was filled by TCP granules, the contralateral side was left empty and used as a control. Animals were sacrified in defined time intervals up to 6 months. Bone regeneration was analyzed with special respect toward the micromorphological and microanalytical features of the material-bone interaction by electron microscopy and electron diffraction analysis. Histologic examination revealed no TCP degradation even after 6 months of implantation. In contrast, a nearly complete bone regeneration of control defects was found after 6 months. At all times TCP was surrounded by a thin fibrous layer without presence of osteoblasts and features of regular mineralization. As far as degradation and substitution are concerned, TCP is a less favourable material tinder conditions of non-loading.

  17. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    Science.gov (United States)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  18. DuPont IsoTherming clean fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Levinski, E. [E.I. DuPont Co., Wilmington, DE (United States)

    2009-07-01

    This poster described a hydroprocessing technology that DuPont has acquired from Process Dynamics, Inc. The IsoTherming clean fuel technology significantly reduces sulphur in motor fuels. The technology provides petroleum refiners the solution for meeting ultra low sulphur diesel requirements, at much lower costs than conventional technologies. IsoTherming hydroprocessing operates in a kinetically limited mode, with no mass transfer limitation. Hydrogen is delivered to the reactor in the liquid phase as soluble hydrogen, allowing for much higher space velocities than conventional hydrotreating reactors. Treated diesel is recycled back to the inlet of the reactor, generating less heat and more hydrogen into the reactor. The process results in a more isothermal reactor operation that allows for better yields, fewer light ends and greater catalyst life. The technology reduces coking, because the process provides enough hydrogen in the solution when cracking reactions take place. As a result, the process yields longer catalyst life. Other advantages for refiners include lower total investment; reduced equipment delivery lead times; reduced maintenance and operating costs; and configuration flexibility. tabs., figs.

  19. Adsorption isotherms of pear at several temperatures

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelče

    2015-01-01

    Full Text Available The moisture adsorption isotherms of pear were determined at 15ºC, 30ºC and 45ºC using the standard static gravimetric method over a range of water activity from 0.112 to 0.920. The experimental data were fitted with isotherm equations recommended in ASAE Standard D245.5. In order to find which equation gives the best results, large number of numerical experiments were performed. After that, several statistical criteria proposed in scientific literature for estimation and selection of the best sorption isotherm equations were used. For each equation and experimental data set, the average performance index was calculated and models were ranked afterwards. After that, some statistical rejection criteria were checked (D’Agostino-Pearson test of normality, single-sample run test and significance and precision of the model parameters. The performed statistical analysis shows that the Guggenheim-Anderson-de Boer (GAB equation has the highest value of average performance index, but higher correlation between pair of parameters leads to lower precision of estimated parameters.[Projekat Ministarstva nauke Republike Srbije, br. TR 31058

  20. A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

  1. Numerical study of inflow conditions on a turbulent isothermal or heated plane jet; Etude numerique des conditions d'emission sur un ecoulement de type jet plan turbulent isotherme ou chauffe

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; Habli, S.; El Golli, S. [Ecole Nationale d' Ingenieurs de Monastir (Tunisia); Le Palec, G.; Bournot, Ph. [Institut de Mecanique de Marseille (France)

    1999-11-01

    We intend to solve equations governing turbulent plane-vertical isotherm and non isotherm jets by taking into account inflow conditions at the exit of the nozzle. The analysis is focused on the influence of these conditions on this type of flow. Two cases are considered (uniform and parabolic velocity and temperature profiles). A finite difference scheme is developed to solve the governing equations. This numeric model allows us to show that the region of fully developed regime begins much nearer the nozzle for the turbulent case than for the laminar flow case. Indeed, the turbulence increases the mixing between the incoming gas from the nozzle and the ambient fluid, and consequently the size of the potential core zone decreases. The results are compared to other works introducing mathematical variables based on the energy conservation for the case of the mixed convection and the momentum conservation for the forced convection, which allows the validation of our results. (authors)

  2. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil

    Directory of Open Access Journals (Sweden)

    López, Félix A.

    2014-03-01

    Full Text Available The Almadén mining district (Ciudad Real, Spain was the largest cinnabar (mercury sulphide mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC. DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.El distrito minero de Almadén (Ciudad Real, España tiene la mayor mina de cinabrio (sulfuro de mercurio del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC. La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.

  3. Microscopic universality of complex matrix model correlation functions at weak non-Hermiticity

    International Nuclear Information System (INIS)

    Akemann, G.

    2002-01-01

    The microscopic correlation functions of non-chiral random matrix models with complex eigenvalues are analyzed for a wide class of non-Gaussian measures. In the large-N limit of weak non-Hermiticity, where N is the size of the complex matrices, we can prove that all k-point correlation functions including an arbitrary number of Dirac mass terms are universal close to the origin. To this aim we establish the universality of the asymptotics of orthogonal polynomials in the complex plane. The universality of the correlation functions then follows from that of the kernel of orthogonal polynomials and a mapping of massive to massless correlators

  4. The Stellar IMF from Isothermal MHD Turbulence

    Science.gov (United States)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  5. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; Henze, Gregor P.; Sarkar, Soumik

    2018-02-01

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shown to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.

  6. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  7. The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.

    Science.gov (United States)

    Gherri, Elena; Berreby, Fiona

    2017-10-15

    To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Factors affecting the potential of direct load control for non-generating utilities. Final report. [Distribution and wholesale power supply interaction

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-01

    Several alternatives are available for achieving load management, including direct or voluntary control of customer loads, customer or utility energy storage systems for diurnal load shifting, and expanded interconnection and operation of electric power systems. All of these alternatives are available to the fully integrated (generating, transmitting and distributing) electric utility and the analysis of their effects encompasses the power supply and delivery system. However, the costs and benefits of the alternatives to the fully integrated electric utility are perhaps not so obvious. Therefore, by considering a non-generating utility, this analysis focuses upon the distribution system and wholesale power supply interaction as a step toward an analysis including the power supply and delivery system. This report develops an analysis procedure and discusses some of the relevant factors to be consdered in the application of direct load control for a non-generating utility system. The analysis concentrates on the distribution system only to determine the effect of rates and payback as a result of direct load control. Thus, the study is responsive to the specific needs of the non-generating utility. This analysis of direct load control encompasses the determination of those loads amenable to control, the selection of a suitable one-way communications system to rend control and the estimation of expected benefits and costs. The complementary functions to the application of direct load control such as automatic meter reading via the addition of a bi-directional communications system and voltage control are not included in the analysis but are detailed for future consideration.

  9. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan

    2006-01-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318 K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson > Langmuir > Toth > Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; ΔG o , ΔH o , and ΔS o were found as -4.17 (at 298 K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous

  10. Non-isothermal kinetics of thermal degradation of chitosan

    Directory of Open Access Journals (Sweden)

    Georgieva Velyana

    2012-08-01

    Full Text Available Abstract Background Chitosan is the second most abundant nitrogen containing biopolymer in nature, obtained from the shells of crustaceans, particularly crabs, shrimp and lobsters, which are waste products of seafood processing industries. It has great potential application in the areas of biotechnology, biomedicine, food industries, and cosmetics. Chitosan is also capable of adsorbing a number of metal ions as its amino groups can serve as chelation sites. Grafted functional groups such as hydroxyl, carboxyl, sulfate, phosphate, and amino groups on the chitosan have been reported to be responsible for metal binding and sorption of dyes and pigments. The knowledge of their thermal stability and pyrolysis may help to better understand and plan their industrial processing. Results Thermogravimetric studies of chitosan in air atmosphere were carried out at six rates of linear increasing of the temperature. The kinetics and mechanism of the thermal decomposition reaction were evaluated from the TG data using recommended from ICTAC kinetics committee iso-conversional calculation procedure of Kissinger-Akahira-Sunose, as well as 27 mechanism functions. The comparison of the obtained results showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect the iso-conversional calculation procedure turned out to be the most appropriate. Conclusion Chitosan have excellent properties such as hydrophilicity, biocompatibility, biodegradability, antibacterial, non-toxicity, adsorption application. The thermal degradation of chitosan occurs in two stages. The most probable mechanism function for both stages is determined and it was best described by kinetic equations of n-th order (Fn mechanism. For the first stage, it was established that n is equal to 3.0 and for the second stage – to 1.0 respectively. The values of the

  11. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  12. Rheometric Non-Isothermal Gelatinization Kinetics of Chickpea Flour-Based Gluten-Free Muffin Batters with Added Biopolymers

    Directory of Open Access Journals (Sweden)

    María Dolores Alvarez

    2017-01-01

    Full Text Available An attempt was made to analyze the elastic modulus (G0 of chickpea flour (CF-based muffin batters made with CF alone and with added biopolymers (whey protein (WP, xanthan gum (XG, inulin (INL, and their blends in order to evaluate their suitability to be a wheat flour (WF substitute in muffins, and to model the heat-induced gelatinization of batters under non-isothermal heating condition from 25 ◦C to 90 ◦C. A rheological approach is proposed to determine the kinetic parameters (reaction order (n, frequency factor (k0, and activation energy (Ea using linearly-increasing temperature. Zero-order reaction kinetics adequately described batter gelatinization process, therefore assuming a constant rate independent of the initial G0 value. The change of the derivative of G0 with respect to time (dG0/dt versus temperature is described by one exponential function with activation energies ranging from 118 to 180 kJ·mol−1. Control wheat gluten batter, with higher and lower starch and protein contents, respectively, than CF-based batters, exhibited the highest Ea value. Formulation of CF-based gluten-free batters with starch and protein contents closer to the levels of WF-based batter could be a strategy to decrease differences in kinetic parameters of muffin batters and, therefore, in technological characteristics of baked muffins.

  13. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement.

    Science.gov (United States)

    Pu, Chuanfen; Tang, Wenting

    2017-11-15

    Aiming to improve the stability of lycopene and incorporate it into a complex nutraceutical, exogenous lycopene-loaded Chlorella pyrenoidosa cells (CPCs) were developed. The complex had an encapsulation yield of 13.06±0.89% and an encapsulation efficiency of 96.31±3.10%. Fluorescence analyses indicated that lycopene was encapsulated in the CPCs. X-ray diffraction, thermogravimetric and differential scanning calorimetric analyses were conducted and compared to those of the non-loaded CPCs, lycopene and their physical mixture. These studies demonstrated that lycopene was amorphous in the complex. The degradation kinetics indicated that encapsulation increased the stability of lycopene. The antioxidant activity of lycopene loaded CPCs against DPPH free radicals was higher than that of the unencapsulated lycopene after storage at 25°C for 25d. This study proved the feasibility of encapsulation of lycopene in the CPCs and combined the activities of both materials, which could be employed in the production of novel nutraceuticals to reduce oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections.

    Science.gov (United States)

    Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc

    2017-08-01

    Current pulmonary treatments against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu-3 cells and CF bronchial epithelial cells (CFBE41o - ) indicated that complex-loaded PLGA NPs were non-toxic at concentrations ≫ MIC cipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex-loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. PPOOLEX experiments on dynamic loading with pressure feedback

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-01-01

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  16. PPOOLEX experiments on dynamic loading with pressure feedback

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  17. Is the non-isothermal double β-model incompatible with no time evolution of galaxy cluster gas mass fraction?

    Science.gov (United States)

    Holanda, R. F. L.

    2018-05-01

    In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.

  18. Quantifying lithic microwear with load variation on experimental basalt flakes using LSCM and area-scale fractal complexity (Asfc)

    International Nuclear Information System (INIS)

    Stemp, W James; Morozov, Mikhail; Key, Alastair J M

    2015-01-01

    Working load is one factor that affects wear on stone tools. Despite the recognition of the importance of the relationship between working load and the development of microwear on stone tools, there have been few attempts to quantify differences in wear due to changes in load. In a controlled experiment, we used 30 basalt flakes knapped from raw material collected in Olduvai Gorge, Tanzania, Africa, to cut oak branches for the same number of strokes. For each flake, a different loading level was applied starting at 150 g and increasing by increments of 150 g to a maximum load of 4.5 kg. A laser scanning confocal microscope was used to mathematically document the surface texture of the flakes. The worn surface data were compared using area-scale fractal complexity (Asfc), calculated from relative areas, to determine the degree to which variation in loading significantly affected the amount of wear on the flake surfaces. Our results indicate that working load does play a role in the development of lithic microwear on these flakes and that discrimination of two worn flake surfaces, using mean square ratios of Asfc, based on variable load is consistently possible with load differences between ∼100 g and 4.5 kg. However, discrimination of microwear on flake surfaces was not consistent for all load level differences and discrimination became less consistent when working load differences were below ∼100 g. (paper)

  19. Pollen sources in the Bojanów forest complex identified on honeybee pollen load by microscopic analysis

    Directory of Open Access Journals (Sweden)

    Ernest Stawiarz

    2017-11-01

    Full Text Available The aim of this study was to determine sources of pollen for the honeybee in the Bojanów forest complex, Nowa Dęba Forest District (southeastern Poland. Sampling of pollen loads from bees extended from the beginning of May until the end of September 2016 and was carried out at 7-day intervals using pollen traps mounted at the entrance of beehives. A total of 73 pollen load samples were collected from the study area. Fifty-nine taxa from 31 plant families were identified in the analyzed material. From 4 to 21 taxa (average 9.5 were recorded in one sample. The pollen of Brassicaceae (“others”, Taraxacum type, Solidago type, and Rumex had the highest frequency in the pollen loads examined. Apart from these four taxa, pollen grains of Rubus type, Poaceae (“others”, Calluna, Fagopyrum, Trifolium repens s. l., Phacelia, Aster type, Melampyrum, Quercus, Cornus, and Veronica were recorded in the dominant pollen group. The forest habitat taxa that provided pollen rewards to honeybees in the Bojanów forest complex were the following: Rubus, Calluna, Prunus, Tilia, Frangula alnus, Pinus, Quercus, Cornus, Robinia pseudoacacia, Salix, and Vaccinium. Apart from forest vegetation, the species from meadows and wastelands adjacent to this forest complex, represented by Taraxacum, Rumex, Plantago, Poaceae, Trifolium repens, and Solidago, proved to be an important source of pollen. The study indicates that forest communities are a valuable source of pollen for pollinating insects from early spring through to late fall.

  20. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis and thermal decomposition kinetics of Th(IV) complex with unsymmetrical Schiff base ligand

    International Nuclear Information System (INIS)

    Fan Yuhua; Bi Caifeng; Liu Siquan; Yang Lirong; Liu Feng; Ai Xiaokang

    2006-01-01

    A new unsymmetrical Schiff base ligand (H 2 LLi) was synthesized using L-lysine, o-vanillin and salicylaladyde. Thorium(IV) complex of this ligand [Th(H 2 L)(NO 3 )](NO 3 ) 2 x 3H 2 O have been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt = A x e -E/RT x 1/2 (1-α) x [-ln(1-α)] -1 . The kinetic parameters (E, A), activation entropy ΔS ≠ and activation free-energy ΔG ≠ were also calculated. (author)

  2. Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating MEXICO blades

    NARCIS (Netherlands)

    Zhang, Y.; Gillebaart, T.; van Zuijlen, A.H.; van Bussel, G.J.W.; Bijl, H.

    2017-01-01

    This paper presents the experimental and numerical study on MEXICO wind turbine blades. Previous work by other researchers shows that large deviations exist in the loads comparison between numerical predictions and experimental data for the rotating MEXICO wind turbine. To reduce complexities and

  3. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  4. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  5. Determination of Differential Enthalpy and Isotherm by Adsorption Calorimetry

    Directory of Open Access Journals (Sweden)

    V. Garcia-Cuello

    2008-01-01

    Full Text Available An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.

  6. Loads in wind farms under non-neutral ABL stability conditions: A full-scale validation study of the DWM model

    DEFF Research Database (Denmark)

    The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions.......The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions....

  7. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance.

    Science.gov (United States)

    Ji, Xiufeng; Gao, Yu; Chen, Lingli; Zhang, Zhiwen; Deng, Yihui; Li, Yaping

    2012-01-17

    Three new nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel (PTX) (NLPs) were prepared to overcome multidrug resistance (MDR) in PTX-resistance human lung cancer cell line. Three non-ionic surfactants, Solutol HS 15 (HS-15), pluronic F68 (PF-68) and cremophor EL (CrEL) were inserted into liposomes by film hydration method to form NLPs with an average size of around 110, 180 and 110 nm, respectively. There was an obvious increase of rhodamin 123 (Rh123) accumulation in A549/T cells after treated with nanohybrid systems loading Rh123 (NLRs) when compared with free Rh123 or liposomes loading Rh123 without surfactants (LRs), which indicated the significant inhibition effects of NLRs on drug efflux. The P-gp detection and ATP determination demonstrated that BNLs could not only interfere P-gp expression on the membrane of drug resistant cells, but also decrease ATP level in the cells. The cytotoxicity of NLPs against A549/T cells was higher than PTX loaded liposomes without surfactants (LPs), and the best result was achieved after treated with NLPs2. The apoptotic assay and the cell cycle analysis showed that NLPs could induce more apoptotic cells in drug resistant cells when compared with LPs. These results suggested that NLPs could overcome MDR by combination of drug delivery, P-gp inhibition and ATP depletion, and showed potential for treatment of MDR. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    Science.gov (United States)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  9. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  10. TWO-PARAMETER ISOTHERMS OF METHYL ORANGE SORPTION BY PINECONE DERIVED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi ، M. Hadi ، S. Moayedi ، F. Barjasteh Askari

    2009-10-01

    Full Text Available The adsorption of a mono azo dye methyl-orange (MeO onto granular pinecone derived activated carbon (GPAC, from aqueous solutions, was studied in a batch system. Seven two-parameter isotherm models Langmuir, Freundlich, Dubinin-Radushkevic, Temkin, Halsey, Jovanovic and Hurkins-Jura were used to fit the experimental data. The results revealed that the adsorption isotherm models fitted the data in the order of Jovanovic (X2=1.374 > Langmuir > Dubinin-Radushkevic > Temkin > Freundlich > Halsey > Hurkins-Jura isotherms. Adsorption isotherms modeling showed that the interaction of dye with activated carbon surface is localized monolayer adsorption. A comparison of kinetic models was evaluated for the pseudo-second order, Elovich and Lagergren kinetic models. Lagergren first order model was found to agree well with the experimental data (X2=9.231. In order to determine the best-fit isotherm and kinetic models, two error analysis methods of Residual Mean Square Error and Chi-square statistic (X2 were used to evaluate the data.

  11. Proactive Semantic Interference is Associated with Total and Regional Abnormal Amyloid Load in Non-Demented Community-Dwelling Elders: A Preliminary Study.

    Science.gov (United States)

    Loewenstein, David A; Greig, Maria T; Curiel, Rosie; Rodriguez, Rosemarie; Wicklund, Meredith; Barker, Warren W; Hidalgo, Jacqueline; Rosado, Marian; Duara, Ranjan

    2015-12-01

    To evaluate the relationship between susceptibility to proactive semantic interference (PSI) and retroactive semantic interference (RSI) and brain amyloid load in non-demented elders. 27 participants (11 cognitively normal [CN] with subjective memory complaints, 8 CN without memory complaints, and 8 with mild cognitive impairment [MCI]) underwent complete neurological and neuropsychological evaluations. Participants also received the Semantic Interference Test (SIT) and AV-45 amyloid PET imaging. High levels of association were present between total amyloid load, regional amyloid levels, and the PSI measure (in the entire sample and a subsample excluding MCI subjects). RSI and other memory measures showed much weaker associations or no associations with total and regional amyloid load. No associations between amyloid levels and non-memory performance were observed. In non-demented individuals, vulnerability to PSI was highly associated with total and regional beta-amyloid load and may be an early cognitive marker of brain pathology. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Comparative study of phloem loading radiotracer techniques for in vivo sucrose translocation in non woody and woody plants

    International Nuclear Information System (INIS)

    Kulkarni, Pranav; Pandey, Manish; Suprasanna Penna; Ramteke, Sahadeo

    2017-01-01

    The application of radioisotopes for analysing the in vivo physiological responses in plants is a well known practical approach for the plant physiologists. Physiological difference in woody and non woody plants necessitates the need for universal way of application of radioisotopes to study in vivo sucrose translocation. In this study, grape vine (Vitis vinifera cv. Thomson seedless) and mustard (Brassica juncea cv. Pusa Bold) plants having active source and sink were used as representative system for woody and non woody plants. In present work we applied different strategies for radio activity loading in both boody and non woody plant viz. phloem loading via cut end, direct injection into phloem and activity incorporation through minor vein of leaves (gaseous CO 2 incorporation)

  13. Complex coacervates of hyaluronic acid and lysozyme

    DEFF Research Database (Denmark)

    Water, Jorrit J.; Schack, Malthe M.; Velazquez-Campoy, Adrian

    2014-01-01

    stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well...... with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined...

  14. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff

    2015-05-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  15. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff; Rahal, Raed; Abou-Hamad, Edy; El Eter, Mohamad; Basset, Jean-Marie

    2015-01-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  16. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions – a full-scale validation study

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Larsen, Torben J.; Chougule, A.

    2017-01-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine......) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using...... the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load...

  17. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  18. Structural load inventory database for the Kansas City federal complex

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Johnson, M.W.; Nakaki, D.K.; Lynch, D.T.; Drury, M.A.

    1995-01-01

    A structural load inventory database (LID) has been developed to support configuration management at the DOE Kansas City Plant (KCP). The objective of the LID is to record loads supported by the plant structures and to provide rapid assessments of the impact of future facility modifications on structural adequacy. Development of the LID was initiated for the KCP's Main Manufacturing Building. Field walkdowns were performed to determine all significant loads supported by the structure, including the weight of piping, service equipment, etc. These loads were compiled in the LID. Structural analyses for natural phenomena hazards were performed in accordance with UCRL-15910. Software to calculate demands on the structural members due to gravity loads, total demands including both gravity and seismic loads, and structural member demand-to-capacity ratios were also developed and integrated into the LID. Operation of the LID is menu-driven. The LID user has options to review and print existing loads and corresponding demand-to-capacity ratios, and to update the supported loads and demand-to-capacity ratios for any future facility modifications

  19. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  20. Isothermality of the gas in the Coma cluster

    International Nuclear Information System (INIS)

    Hughes, J.P.; Yamashita, K.; Okumura, Y.; Tsunemi, H.; Matsuoka, M.

    1988-01-01

    The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references

  1. Sorption of Pb2+ from Aqueous Solution unto Modified Rice Husk: Isotherms Studies

    Directory of Open Access Journals (Sweden)

    A. O. Dada

    2013-01-01

    Full Text Available Investigation of the sorption potential of rice husk, an agricultural waste, as an adsorbent was carried out. The rice husk was modified with orthophosphoric acid and was used for adsorption of lead (II ions (Pb2+ from aqueous solution. Physicochemical properties of the modified rice husk were determined. Equilibrium sorption data were confirmed with Langmuir, Freundlich and Temkin adsorption isotherms. On the basis of adsorption isotherm graphs, R2 values were determined to be 0.995, 0.916, and 0.797 for Langmuir, Temkin, and Freundlich isotherms, respectively, indicating that the data fitted well into the adsorption isotherms, but Langmuir isotherm is a better model. The maximum monolayer coverage from Langmuir studies, Qmax=138.89 mg/g, Langmuir isotherm constant, KL=0.699 L/mg, and the separation factor, RL=1.41×10−2 at 100 mg/L of lead(II ions indicating that the sorption process, was favourable. The suitability of modified rice husk as an adsorbent for the removal of lead ions from aqueous solution and its potential for pollution control is established.

  2. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  3. Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Yu [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Cun-Ying [No.1 High School of Shijiazhuang, Shijiazhuang 050011 (China)

    2013-10-20

    Graphical abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} [Ln = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline] were synthesized and characterized by elemental analysis, IR, UV and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans were tested using disc diffusion method. - Highlights: • Four new complexes [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} were synthesized and characterized. • The non-isothermal kinetics of the first stage for the complexes was studied. • The heat capacities of the complexes were measured by differential scanning calorimeter. • The antimicrobial activities for these complexes were tested. • The fluorescence properties of the complexes 2 and 3 were studied. - Abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} (Ln(III) = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline) were synthesized by solution-precipitation method, and investigated using elemental analysis, infrared spectra, ultraviolet spectra and TG/DSC-FTIR technology. The non-isothermal kinetics of the first stage for the complexes was studied by using non-linear integral isoconversional method and double equal-double steps method. The heat capacities of the complexes were measured between 263.15 and 485.55 K by means of differential scanning calorimeter, and the values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. And the thermodynamic functions [H{sub T} − H{sub 298.15}], [S{sub T} − S{sub 298.15}] and [G{sub T} − G{sub 298.15}] were also derived based on the fitted polynomials and thermodynamic relationships with temperature interval of 10 K. Moreover, the

  4. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution

  5. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  6. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  7. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  8. Bithermal and isothermal experimental test design and resulting influence on the pore formation during high-temperature-induced fatigue of the alloy 800 H

    International Nuclear Information System (INIS)

    Hurta, S.

    1991-01-01

    For investigating the damaging mechanism, bithermal TMF tests have been carried out with the alloy 800H, applying fast pressure half-cycles at low temperature (e.g. 300 C) and slow tensile phases at high temperature (e.g. 700 C). The experimental data thus obtained have been compared with the results of isothermal tests performed at 700 C. Most of the experiments have been performed stress-controlled and with a constant range of plastic strain. Under this regime, deformation is induced in the case of asymmetric test design within the tensile load phase, at various constant tensile stresses each, wheras in the compressive load phase, the stress is constantly increased for compressive stress-governed testing. The results obtained from both test types show that the type of compressive load phase is the factor governing the efficiency of pore formation. (orig.) [de

  9. Experimental Comparison of Statically and Cyclically Loaded Non-Slender Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    rigid form of motion. The Winkler model approach, employing p-y curves to describe the soil-pile interaction, is often employed as the design method for laterally loaded piles. The p-y curve formulation, currently recommended by the American Petroleum Institute and Det Norske Veritas, is based on tests...... on slender piles with length to diameter ratios larger than ten and outer pile diameters less than two meters. Hence, the pile tests that form the basis of the currently recommended p-y curve formulation are conducted with use of piles that exhibits a flexible behaviour, which is in contrast to the piles...... used as foundation for modern offshore wind energy converters. The aim of the present work is to investigate the pile behaviour for non-slender piles by means of small-scale testing. The pile behaviour is investigated and compared for both static and cyclic loading. When conducting small-scale tests...

  10. Desorption isotherms and isosteric heat of 'cajuzinho-do-cerrado' achenes

    Directory of Open Access Journals (Sweden)

    Karine F. Barbosa

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine the desorption isotherms of 'cajuzinho-do-cerrado' achenes (Anacardium humile St. Hil. in various conditions of temperature and water activity, as well as to select the one that best represents the phenomenon and to determine the isosteric heat of desorption. The fruits were collected at the Emas National Park, in the municipality of Mineiros-GO, Brazil, pulped and then subjected to drying in silica gel at temperature of 25 ± 2 °C until the moisture contents of 17.6, 13.6, 11.1, 8.7 and 5.3 (d.b.%. After drying, the desorption isotherms were determined by the indirect static method. The water activity (Aw was determined at different temperatures, and the achenes were placed in a B.O.D. chamber, regulated at 10, 20, 30 and 40 °C. Data of hygroscopic equilibrium moisture content were fitted to different mathematical models through non-linear regression analysis, using the Gauss-Newton method. The Copace model was the one that best represented the hygroscopicity of 'cajuzinho-do-cerrado' achenes, while the integral isosteric heat of desorption of 'cajuzinho-do-cerrado' achenes for the moisture content range of 4.51 to 13.40 (% d.b. varied from 2,734.82 to 2,548.49 kJ kg-1.

  11. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    Science.gov (United States)

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO 2 and H 2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H 2 ), 5% (CHA-CO 2 ), and 16% (BEA-CO 2 ), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  12. The loaded surface profile: a new technique for the investigation of contact surfaces

    OpenAIRE

    McBride, J.W.

    2006-01-01

    Contact between rough surfaces produces a complex contact profile. The contact area is usually estimated according to roughness statistics in conjunction withsurface models or by examining the surfaces before and after contact. Most of the existing literature on loaded surface profiles is theoretical or numerical in nature. This paper presents a methodology for a new system to measure the loaded surface profile, based on a non-contact 3D laser profiler. The system allows the measurement of...

  13. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    Science.gov (United States)

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-06

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Determination of thermal reactivity coefficients for the first fuel loading of MO34

    International Nuclear Information System (INIS)

    Lueley, J.; Vrban, B.; Farkas, G.; Hascik, J.; Hinca, R.; Petriska, M.; Slugen, V.

    2012-01-01

    The article introduces determination of thermal reactivity coefficients, especially summarized (isothermal) and moderator (density) reactivity coefficients between 200 grad C and 260 grad C with 2 grad C step, - in compliance with the assignment - for the first fuel loading into the RC of NP Mochovce units using 2 nd generation fuel during the start-up using calculation code MCNP5 1.60. (authors)

  15. Immediate versus early non-occlusal loading of dental implants placed flapless in partially edentulous patients. One-year results from a randomised controlled trial.

    Science.gov (United States)

    Merli, Mauro; Merli, Aldo; Bernardelli, Francesco; Lombardini, Francesco; Esposito, Marco

    2008-01-01

    To compare immediate versus early (6 weeks) non-occlusal loading of dental implants placed flapless in partially edentulous patients 1 year after loading. Sixty patients were randomised: 30 to the immediately loaded group and 30 to the early loaded group. In order to be immediately loaded, implants were inserted with a minimum torque of > or = 40Ncm. Implants were fully occlusally loaded after 6 months. Outcome measures were prosthesis and implant failures, and biological and biomechanical complications. Five implants in five patients randomised to the immediately loaded group did not reach the required primary implant stability. Three of these implants (two prostheses) were not immediately loaded. Two patients who were randomised to the early loaded group were immediately loaded erroneously. Implants in five patients of the early loaded group were conventionally loaded. No patient dropped out and there were no failures. Two complications occurred in the early and one in the immediately loaded group (no statistically significant difference), but were solved. The use of a flapless technique for placing dental implants in conjunction with non-occlusal immediate or early loading in selected patients can provide excellent clinical results. No differences were observed when comparing implants that were loaded immediately or early. Therefore, when a high primary implant stability is obtained, it might be preferable to load the implants immediately rather than waiting for a few weeks.

  16. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting

    International Nuclear Information System (INIS)

    Wang Jianzhou; Jia Ruiling; Zhao Weigang; Wu Jie; Dong Yao

    2012-01-01

    Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.

  17. Volatilisation of ruthenium in vitrification. Isothermal calcination studies of 'Magnox' and thermal oxide simulates

    International Nuclear Information System (INIS)

    Cains, P.W.; Hay, D.A.

    1982-12-01

    Ru volatilities have been measured for the static, isothermal calcination of ''Magnox'' and Thermal Oxide HAL's (Highly Active Liquors) at temperatures up to 600 0 C. Model solutions containing Ru, HNO 3 , and nitrates of important individual cations have also been investigated. Experimental design was primarily based on the requirements of rotary calcination process development. The results have been interpreted in terms of a reaction model involving competition between the simple degradation of Ru(NO) complexes to RuO 2 and oxidative decomposition to volatile species (e.g. RuO 4 ). (author)

  18. A study of the water vapor sorption isotherms of hardened cement pastes: Possible pore structure changes at low relative humidity and the impact of temperature on isotherms

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    cement paste samples and a model material MCM-41. The pronounced impact of temperature on desorption isotherms of cement based materials as reported in literature was not found in this investigation. The results suggest that the differences between the sorption isotherms measured at different...

  19. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  20. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    Science.gov (United States)

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Heat transfer corrected isothermal model for devolatilization of thermally-thick biomass particles

    DEFF Research Database (Denmark)

    Luo, Hao; Wu, Hao; Lin, Weigang

    Isothermal model used in current computational fluid dynamic (CFD) model neglect the internal heat transfer during biomass devolatilization. This assumption is not reasonable for thermally-thick particles. To solve this issue, a heat transfer corrected isothermal model is introduced. In this model......, two heat transfer corrected coefficients: HT-correction of heat transfer and HR-correction of reaction, are defined to cover the effects of internal heat transfer. A series of single biomass devitalization case have been modeled to validate this model, the results show that devolatilization behaviors...... of both thermally-thick and thermally-thin particles are predicted reasonable by using heat transfer corrected model, while, isothermal model overestimate devolatilization rate and heating rate for thermlly-thick particle.This model probably has better performance than isothermal model when it is coupled...

  2. Water adsorption isotherms and thermodynamic properties of cassava bagasse

    International Nuclear Information System (INIS)

    Polachini, Tiago Carregari; Betiol, Lilian Fachin Leonardo; Lopes-Filho, José Francisco; Telis-Romero, Javier

    2016-01-01

    Highlights: • Adsorption isotherms and composition of cassava bagasse were determined. • GAB equation was the best-fitted model to sorption data of type II isotherm. • Isosteric heat of sorption was calculated in a range of equilibrium moisture content. • Differential enthalpy and entropy confirmed the isokinetic compensation theory. • Water adsorption by cassava bagasse is considered an enthalpy driven process. - Abstract: Losses of food industry are generally wet products that must be dried to posterior use and storage. In order to optimize drying processes, the study of isotherms and thermodynamic properties become essential to understand the water sorption mechanisms of cassava bagasse. For this, cassava bagasse was chemically analyzed and had its adsorption isotherms determined in the range of 293.15–353.15 K through the static gravimetric method. The models of GAB, Halsey, Henderson, Oswin and Peleg were fitted, and best adjustments were found for GAB model with R"2 > 0.998 and no pattern distribution of residual plots. Isosteric heat of adsorption and thermodynamic parameters could be determined as a function of moisture content. Compensation theory was confirmed, with linear relationship between enthalpy and entropy and higher values of isokinetic temperature (T_B = 395.62 K) than harmonic temperature. Water adsorption was considered driven by enthalpy, clarifying the mechanisms of water vapor sorption in cassava bagasse.

  3. Immediate versus early non-occlusal loading of dental implants placed flapless in partially edentulous patients: a 3-year randomized clinical trial.

    Science.gov (United States)

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Piemontese, Matteo; Nieri, Michele

    2012-02-01

    To compare immediate versus early non-occlusal loading of dental implants placed flapless in a 3-year, parallel group, randomized clinical trial. The study was conducted in a private dental clinic between July 2005 and July 2010. Patients 18 years or older were randomized to receive implants for fixed partial dentures in cases of partial edentulism. The test group was represented by immediate non-occlusal implant loading, whereas the control group was represented by early non-occlusal implant loading. The outcome variables were implant failure, complications and radiographic bone level at implant sites 3 years after loading, measured from the implant-abutment junction to the most coronal point of bone-to-implant contact. Randomization was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes, and the measurer was blinded to group assignment. Sixty patients were randomized: 30 to the immediately loaded group and 30 to the early loaded group. Four patients dropped out; however, the data of all patients were included in the analysis. No implant failure occurred. Two complications occurred in the control group and one in the test group. The mean bone level at 3 years was 1.91 mm for test group and 1.59 mm for control group. The adjusted difference in bone level was 0.26 mm (CI 95% -0.08 to 0.59, p = 0.1232). The null hypothesis of no difference in failure rates, complications and bone level between implants that were loaded immediately or early at 3 years cannot be rejected in this randomized clinical trial. © 2011 John Wiley & Sons A/S.

  4. Liouvillian integrability of gravitating static isothermal fluid spheres

    International Nuclear Information System (INIS)

    Iacono, Roberto; Llibre, Jaume

    2014-01-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = −1 and n = −3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = −5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R 2 , and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = −1, −3, −5, which descend from the existence of invariant algebraic curves of degree one, and for n = −6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely

  5. Liouvillian integrability of gravitating static isothermal fluid spheres

    Energy Technology Data Exchange (ETDEWEB)

    Iacono, Roberto, E-mail: roberto.iacono@enea.it [ENEA-C. R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy); Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)

    2014-10-01

    We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R² and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.

  6. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  7. Characterization of crystallization kinetics of a Ni- (Cr, Fe, Si, B, C, P) based amorphous brazing alloy by non-isothermal differential scanning calorimetry

    International Nuclear Information System (INIS)

    Raju, S.; Kumar, N.S. Arun; Jeyaganesh, B.; Mohandas, E.; Mudali, U. Kamachi

    2007-01-01

    The thermal stability and crystallization kinetics of a Ni- (Cr, Si, Fe, B, C, P) based amorphous brazing foil have been investigated by non-isothermal differential scanning calorimetry. The glass transition temperature T g , is found to be 720 ± 2 K. The amorphous alloy showed three distinct, yet considerably overlapping crystallization transformations with peak crystallization temperatures centered around 739, 778 and 853 ± 2 K, respectively. The solidus and liquidus temperatures are estimated to be 1250 and 1300 ± 2 K, respectively. The apparent activation energies for the three crystallization reactions have been determined using model free isoconversional methods. The typical values for the three crystallization reactions are: 334, 433 and 468 kJ mol -1 , respectively. The X-ray diffraction of the crystallized foil revealed the presence of following compounds Ni 3 B (Ni 4 B 3 ), CrB, B 2 Fe 15 Si 3 , CrSi 2 , and Ni 4.5 Si 2 B

  8. Isothermal Gravitational Segregation: Algorithms and Specifications

    DEFF Research Database (Denmark)

    Halldórsson, Snorri; Stenby, Erling Halfdan

    2000-01-01

    New algorithms for calculating the isothermal equilibrium state of reservoir fluids under the influence of gravity are presented. Two types of specifications are considered: the specification of pressure and composition at a reference depth; and the specification of the total overall content of t...

  9. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    Science.gov (United States)

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  10. A comparison of processing load during non-verbal decision-making in two individuals with aphasia

    Directory of Open Access Journals (Sweden)

    Salima Suleman

    2015-05-01

    Full Text Available INTRODUCTION A growing body of evidence suggests people with aphasia (PWA can have impairments to cognitive functions such as attention, working memory and executive functions.(1-5 Such cognitive impairments have been shown to negatively affect the decision-making (DM abilities adults with neurological damage. (6,7 However, little is known about DM abilities of PWA.(8 Pupillometry is “the measurement of changes in pupil diameter”.(9;p.1 Researchers have reported a positive relationship between processing load and phasic pupil size (i.e., as processing load increases, pupil size increases.(10 Thus pupillometry has the potential to be a useful tool for investigating processing load during DM in PWA. AIMS The primary aim of this study was to establish the feasibility of using pupillometry during a non-verbal DM task with PWA. The secondary aim was to explore non-verbal DM performance in PWA and determine the relationship between DM performance and processing load using pupillometry. METHOD DESIGN. A single-subject case-study design with two participants was used in this study. PARTICIPANTS. Two adult males with anomic aphasia participated in this study. Participants were matched for age and education. Both participants were independent, able to drive, and had legal autonomy. MEASURES. PERFORMANCE ON A DM TASK. We used a computerized risk-taking card game called the Iowa Gambling Task (IGT as our non-verbal DM task.(11 In the IGT, participants made 100 selections (via eye gaze from four decks of cards presented on the computer screen with the goal of maximizing their overall hypothetical monetary gain. PROCESSING LOAD. The EyeLink 1000+ eye tracking system was used to collect pupil size measures while participants deliberated before each deck selection during the IGT. For this analysis, we calculated change in pupil size as a measure of processing load. RESULTS P1. P1 made increasingly advantageous decisions as the task progressed (Fig.1. When

  11. Algorithm for Non-proportional Loading in Sequentially Linear Analysis

    NARCIS (Netherlands)

    Yu, C.; Hoogenboom, P.C.J.; Rots, J.G.; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Sequentially linear analysis (SLA) is an alternative to the Newton-Raphson method for analyzing the nonlinear behavior of reinforced concrete and masonry structures. In this paper SLA is extended to load cases that are applied one after the other, for example first dead load and then wind load. It

  12. Hydro-mechanical behaviour of two reference Belgian clay formations under non-isothermal conditions

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay BC at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay YC at Kallo (located between 300 and 450 m depths) as an alternative one. A comprehensive experimental programme has been carried out on these materials to explore water permeability at different temperatures and sample orientations, as well as to analyse volume change behaviour on loading/unloading at different temperatures and sample orientations (including pre and post-yield compressibility, yield properties and volume changes on drained thermal loading). Table 1 summarises some properties of BC and YC. Figure 1 presents the pore size distribution PSD curves of both clays obtained by mercury intrusion porosimetry. They display contrasting features (bi-modal pore network in YP with larger dominant pore sizes). Larger water permeability values are expected on YC as indicated in Table 1 and Figure 2, not only as a consequence of its higher void ratio but also due to these double porosity features. Water retention properties, of particular concern on sample retrieval from large depths, are also affected due to desaturation processes that are associated with the double porosity network of YP and its effects on air-entry value (a lower initial suction is measured on YP, despite being retrieved from larger depths). Figure 2 shows vertical and horizontal water permeability results under constant volume conditions and different temperatures. BC and YC display small anisotropy at sample scale - permeability is slightly larger on horizontal direction-. With regard to temperature effects, the figure shows that water permeability dependency on temperature in YC is slightly higher than the water viscosity prediction for both orientations. Instead BC displayed a thermal

  13. Adsorption of Pb{sup 2+} and Cd{sup 2+} onto a novel activated carbon-chitosan complex

    Energy Technology Data Exchange (ETDEWEB)

    Ge, H.; Fan, X. [College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2011-10-15

    A novel activated carbon-chitosan complex adsorbent (ACCA) was prepared via the crosslinking of glutaraldehyde and activated carbon-(NH{sub 2}-protected) chitosan complex under microwave irradiation. The surface morphology of this adsorbent was characterized. The adsorption of ACCA for Pb{sup 2+} and Cd{sup 2+} was investigated. The results demonstrate that ACCA has higher adsorption capacity than chitosan. The adsorption follows pseudo first-order kinetics. The isotherm adsorption equilibria are better described by Freundlich and Dubinin-Radushkevich isotherms than by the Langmuir isotherm. The adsorbent can be recycled. These results have important implications for the design of low-cost and effective adsorbents in the removal of heavy metal ions from wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Experimentation on accuracy of non functional requirement prioritization approaches for different complexity projects

    Directory of Open Access Journals (Sweden)

    Raj Kumar Chopra

    2016-09-01

    Full Text Available Non functional requirements must be selected for implementation together with functional requirements to enhance the success of software projects. Three approaches exist for performing the prioritization of non functional requirements using the suitable prioritization technique. This paper performs experimentation on three different complexity versions of the industrial software project using cost-value prioritization technique employing three approaches. Experimentation is conducted to analyze the accuracy of individual approaches and the variation of accuracy with the complexity of the software project. The results indicate that selecting non functional requirements separately, but in accordance with functionality has higher accuracy amongst the other two approaches. Further, likewise other approaches, it witnesses the decrease in accuracy with increase in software complexity but the decrease is minimal.

  15. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  16. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    International Nuclear Information System (INIS)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  17. Complexes of pentavalent plutonium in lithium nitrate solutions

    International Nuclear Information System (INIS)

    Mekhail, F.M.; Zaki, M.R.

    1977-01-01

    Pu 0 2 ion can form nitrate complexes in concentrated solution of lithium nitrate of PH 3.5. Spectrophotometric and ion exchange studies revealed the existence of two complexes, presumably the mono-and the dinitro. The rate of adsorption of the dinitrato complex, formed in 4 to 6 M-lithium nitrate solutions, on De-Acidite FF has been investigated and suggested to be diffusion controlled. The adsorption isotherm found to obey satisfactorily Freundlich equation

  18. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015.

    Science.gov (United States)

    Falconer, Robert J

    2016-10-01

    Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    Science.gov (United States)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  20. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  1. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  2. Characterization of bainitic/martensitic structures formed in isothermal treatments below the M

    NARCIS (Netherlands)

    Navarro Lopez, A.; Hidalgo Garcia, J.; Sietsma, J.; Santofimia Navarro, M.J.

    2017-01-01

    Advanced Multiphase High Strength Steels are generally obtained by applying isothermal treatments around the martensite start temperature (Ms). Previous investigations have shown that bainitic ferrite can form from austenite in isothermal treatments below Ms, where its

  3. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  4. Adsorption Isotherms of CH 4 on Activated Carbon from Indonesian Low Grade Coal

    KAUST Repository

    Martin, Awaludin

    2011-03-10

    This article presents an experimental approach for the determination of the adsorption isotherms of methane on activated carbon that is essential for methane storage purposes. The experiments incorporated a constant-volume- variable-pressure (CVVP) apparatus, and two types of activated carbon have been investigated, namely, activated carbon derived from the low rank coal of the East of Kalimantan, Indonesia, and a Carbotech activated carbon. The isotherm results which cover temperatures from (300 to 318) K and pressures up to 3.5 MPa are analyzed using the Langmuir, Tóth, and Dubinin-Astakhov (D-A) isotherm models. The heat of adsorption for the single component methane-activated carbon system, which is concentration- and temperature-dependent, is determined from the measured isotherm data. © 2011 American Chemical Society.

  5. Non-commutative cryptography and complexity of group-theoretic problems

    CERN Document Server

    Myasnikov, Alexei; Ushakov, Alexander

    2011-01-01

    This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public-key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant prop...

  6. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  7. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles.

    Science.gov (United States)

    Peng, Qiang; Zhang, Zhi-Rong; Gong, Tao; Chen, Guo-Qiang; Sun, Xun

    2012-02-01

    The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP on a Chip from Whole Blood

    Directory of Open Access Journals (Sweden)

    Gregory L. Damhorst

    2015-09-01

    Full Text Available Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.

  9. Failure cascade in interdependent network with traffic loads

    International Nuclear Information System (INIS)

    Hong, Sheng; Wang, Baoqing; Wang, Jianghui; Zhao, Tingdi; Ma, Xiaomin

    2015-01-01

    Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks. (paper)

  10. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Science.gov (United States)

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  11. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  12. A hygroscopic method to measure the adsorption isotherm of porous construction materials

    NARCIS (Netherlands)

    Taher, A.; Zanden, van der A.J.J.; Brouwers, H.J.H.; Stephan, D.; Daake, von H.; Markl, V.; Land, G.

    2013-01-01

    A sorption isotherm is the relationship between the moisture content in a material and the relative humidity of the surrounding atmosphere in an equilibrium situation. Most often, the sorption isotherm is measured with a gravitational method. This work presents a method to measure the adsorption

  13. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2016-01-01

    sorption isotherms of building materials, food, and other industrial products, knowledge about the 24 applicability of these functions for soils is noticeably lacking. We present validation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0...

  14. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  15. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  16. Identification of QRS complex in non-stationary electrocardiogram of sick infants.

    Science.gov (United States)

    Kota, S; Swisher, C B; Al-Shargabi, T; Andescavage, N; du Plessis, A; Govindan, R B

    2017-08-01

    Due to the high-frequency of routine interventions in an intensive care setting, electrocardiogram (ECG) recordings from sick infants are highly non-stationary, with recurrent changes in the baseline, alterations in the morphology of the waveform, and attenuations of the signal strength. Current methods lack reliability in identifying QRS complexes (a marker of individual cardiac cycles) in the non-stationary ECG. In the current study we address this problem by proposing a novel approach to QRS complex identification. Our approach employs lowpass filtering, half-wave rectification, and the use of instantaneous Hilbert phase to identify QRS complexes in the ECG. We demonstrate the application of this method using ECG recordings from eight preterm infants undergoing intensive care, as well as from 18 normal adult volunteers available via a public database. We compared our approach to the commonly used approaches including Pan and Tompkins (PT), gqrs, wavedet, and wqrs for identifying QRS complexes and then compared each with manually identified QRS complexes. For preterm infants, a comparison between the QRS complexes identified by our approach and those identified through manual annotations yielded sensitivity and positive predictive values of 99% and 99.91%, respectively. The comparison metrics for each method are as follows: PT (sensitivity: 84.49%, positive predictive value: 99.88%), gqrs (85.25%, 99.49%), wavedet (95.24%, 99.86%), and wqrs (96.99%, 96.55%). Thus, the sensitivity values of the four methods previously described, are lower than the sensitivity of the method we propose; however, the positive predictive values of these other approaches is comparable to those of our method, with the exception of the wqrs approach, which yielded a slightly lower value. For adult ECG, our approach yielded a sensitivity of 99.78%, whereas PT yielded 99.79%. The positive predictive value was 99.42% for both our approach as well as for PT. We propose a novel method for

  17. Non-intrusive appliance load monitoring system based on a modern kWh-meter

    Energy Technology Data Exchange (ETDEWEB)

    Pihala, H. [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-01

    Non-intrusive appliance load monitoring (NIALM) is a fairly new method to estimate load profiles of individual electric appliances in a small building, like a household, by monitoring the whole load at a single point with one recording device without sub-meters. Appliances have special electrical characteristics, the positive and negative active and reactive power changes during the time they are switched on or off. These changes are called events and are detected with a monitoring device called an event recorder. Different NIALM-concepts developed in Europe and in the United States are generally discussed. The NIALM-concept developed in this study is based on a 3-phase, power quality monitoring kWh-meter and unique load identification algorithms. This modern kWh-meter with a serial data bus to a laptop personal computer is used as die event recorder. The NIALM-concept of this presentation shows for the first time how a kWh-meter can be used at the same time for billing, power quality and appliance end-use monitoring. An essential part of the developed NIALM-system prototype is the software of load identification algorithms which runs in an off-line personal computer. These algorithms are able to identify, with a certain accuracy, both two-state and multi-state appliances. This prototype requires manual-setup in which the naming of appliances is performed. The results of the prototype NIALMS were verified in a large, single family detached house and they were compared to the results of other prototypes in France and the United States, although this comparison is difficult because of different supply systems, appliance stock and number of tested sites. Different applications of NIALM are discussed. Gathering of load research data, verification of DSM-programs, home automation, failure analysis of appliances and security surveillance of buildings are interesting areas of NIALM. Both utilities and customers can benefit from these applications. It is possible to

  18. Investigations on the lifetime behaviour of a P23 pipe under fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, V.; Hartrott, P. von [Fraunhofer IWM, Freiburg (Germany)

    2008-07-01

    The performance of girth welds on new P23 low chromium steel pipes under cyclic loading at 450 C was investigated. The loading conditions were chosen to be representative for bore crack initiation and growth observed in main steam lines fabricated of 0.5Cr0.5Mo0.25V (CrMoV) steel. The microstructure of the base material and weldments was analysed. A lifetime model, initially set up for the prediction of thermo-cyclic loading, is used to predict the isothermal component behaviour. It is based on a Chaboche-type deformation model and the DTMF crack growth model. The failure mechanism of two component tests was compared to the model assumptions and the component lifetimes and failure locations are compared to the model predictions. (orig.)

  19. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cá tia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Frechet, Jean; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  20. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  1. Applicability of the Linear Sorption Isotherm Model to Represent Contaminant Transport Processes in Site Wide Performance Assessments

    International Nuclear Information System (INIS)

    FOGWELL, T.W.; LAST, G.V.

    2003-01-01

    applicable only under a limited range of physical-chemical conditions. As a result, K d values can be applied with confidence only to conditions under which the linear adsorption isotherm has been demonstrated to be applicable. If the sediment/soil mineralogy or physical properties, solution chemistry, or contaminant loading/concentration of the system to be modeled is significantly different from that for which the K d values were determined, significant error could potentially occur in the estimated transport rates. This is because many factors can affect the degree to which a particular contaminant adsorbs to a particular sediment or soil. These factors include: sediment mineralogy and surface area, major ion concentration (complexation and competitive adsorption), pH of the solution, and concentration of the adsorbate in solution and on the adsorbent. Another important variable that can affect adsorption is kinetics. If the contact time between the contaminant in solution and the sediment is limited by hydrologic factors, equilibrium may not be attained. In this case, modeling equilibrium K d values will overestimate the degree of adsorption. In some cases careful application of currently available geochemical knowledge can often significantly reduce the number of variables that must be considered for evaluating K d values for each particular contaminant

  2. Isothermal α″ formation in β metastable titanium alloys

    International Nuclear Information System (INIS)

    Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.

    2013-01-01

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″

  3. Isothermal α″ formation in β metastable titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aeby-Gautier, E., E-mail: Elisabeth.Gautier@mines.inpl-nancy.fr [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Settefrati, A. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Airbus Operations, Materials and Processes, Toulouse (France); Bruneseaux, F. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France); Appolaire, B. [Laboratoire d’Etudes des Microstructures ONERA – CNRS Chatillon (France); Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P. [Institut Jean Lamour, UMR CNRS Nancy Université, UPVM 7198, Nancy (France)

    2013-11-15

    Highlights: ► Isothermal kinetics of orthorhombic α″ formation is characterized by HEXRD. ► Cell parameters of parent and product phases are obtained. ► Partitioning of solutes during the transformation and the ageing is discussed. -- Abstract: Thanks to time resolved high energy X-ray diffraction, isothermal decomposition of β metastable phase was studied, directly after solution treatment in the β temperature range, for temperatures ranging from 300 to 450 °C for two beta metastable alloys (Ti 17 and Ti 5553). The formation of an orthorhombic α″ phase is clearly identified at the beginning of the transformation whatever the alloy studied. If transformation occurs at the higher temperature an evolution of α″ is observed toward the hexagonal α phase. The phase amounts and the mean cell parameters of each phase were quantified by the Rietveld refinement method. The obtained cell parameters evolutions and the orthorhombicity of α″ are discussed. Moreover, the orthorhombicity of α″ compared to that obtained for stress induced martensite may indicate a slight partitioning of solutes in isothermal α″.

  4. Study on isothermal precision forging process of rare earth intensifying magnesium alloy

    International Nuclear Information System (INIS)

    Shan, Debin; Xu, Wenchen; Han, Xiuzhu; Huang, Xiaolei

    2012-01-01

    A three dimensional rigid-plastic finite element model is established to simulate the isothermal precision forging process of the magnesium alloy bracket based on DEFORM 3D in order to analyze the material flow rule and determine the forging process scheme. Some problems such as underfilling and too large forging pressure are predicted and resolved through optimizing the shapes of the billet successfully. Compared to the initial microstructure, the isothermal-forged microstructure of the alloy refines obviously and amounts of secondary phases precipitate on the matrix during isothermal forging process. In subsequent ageing process, large quantities of secondary phases precipitate from α-Mg matrix with increasing ageing time. The optimal comprehensive mechanical properties of the alloy have been obtained after aged at 473 K, 63 h with the ultimate tensile strength, tensile yield strength and elongation 380 MPa, 243 MPa and 4.07% respectively, which shows good potential for application of isothermal forging process of rare earth intensifying magnesium alloy.

  5. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  6. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, W.M.; Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H.

    2010-01-01

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe 61 Co 9-x Zr 8 Mo 5 W x B 17 (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E 1 K for the first crystallization in the isochronal annealing process and activation energy E n for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E 2 K for the second crystallization in the isochronal annealing process and growth activation energy E g in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  7. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  8. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  9. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  10. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  11. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  12. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  13. Study of non-isothermal crystallization of Eu{sup 3+} doped Zn{sub 2}SiO{sub 4} powders through the application of various macrokinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Bojan, E-mail: bojanjan@ffh.bg.ac.rs [Faculty of Physical Chemistry, Department of the Dynamics and Structure of Matter, University of Belgrade, Studentski trg 12-16, P.O. Box 137, 11001 Belgrade (Serbia); Marinović-Cincović, Milena; Dramićanin, Miroslav D. [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 552, 11001 Belgrade (Serbia)

    2014-02-25

    Highlights: • Europium (Eu{sup 3+}) doped zinc silicate powders. • Sol–gel method. • Stochastic geometric and semi-empirical models. • The interface controlled growth with an increasing nucleation rate. • The improved Nakamura’s model. -- Abstract: Various macrokinetic models (Avrami, Evans, Tobin, Malkin, Dietz, Nakamura, and modified first-order models) were applied to describe non-isothermal crystallization kinetics of Eu{sup 3+} doped zinc silicate powders prepared via the sol–gel method. Analysis of the experimental data was carried out using a direct-fitting method such that the experimental data were fitted directly to each macrokinetic model using a non-linear multivariable regression computation procedure. Comparison of kinetic parameters obtained from the non-linear computation approach to those obtained from the traditional analytical procedure suggested that applicability and reliability of the direct-fitting method were satisfactory. Judging from the quality of the fit, only Nakamura’s model properly describe the temperature dependence of the relative crystallinity, which resulted in the total rejection of the Tobin model in describing the crystallization. With detailed kinetic examination it was concluded that crystallization mechanism of α-willemite doped samples combusted in a microwave oven (MW) follows interface controlled growth with an increasing nucleation rate, attached with geometric process-rate function obeying the improved (corrected) Nakamura’s model. It was found that the presence of non integer Avrami exponent values may indicate that crystallization occurs by more than one reaction mechanism, including the occurrence of autocatalytic behavior of a given system.

  14. Isothermal Pneumo-Forming of Hemispherical Parts Made Out of Anisotropic Materials In Short-Term Creep Mode

    Directory of Open Access Journals (Sweden)

    S.N. Larin

    2016-05-01

    Full Text Available Provided here are results of theoretical and experimental research of strained and stressed state, force modes, geometrical sizes for the blanks, and limit possibilities of deformation during isothermal blow molding of hemispheric parts of anisotropic material in creeping mode .Determined is the effect for the researched parameters of the studied deformation process, produced by anisotropy of mechanical properties, loading conditions and blank’s geometric dimensions. Comparison of the theoretical and experimental data regarding the relative blank thickness in the blank dome and base points, and of data regarding the relative height of the blank, point to their satisfactory agreement (up to 10 percent. Recommendations have been developed regarding calculation of scientifically-based technological parameters for operations of isothermal straining of semi-spherical components made out of highly strong anisotropic materials in the mode of short-time creeping. The recommendations were used during development of technological processes of manufacture — in the mode of short-time creeping and out of highly strong anisotropic materials –.of semispherical components conforming to the operational technical requirements. The technological processes provide for increasing specific strength by 1,5 – 1,7 times, for decreasing the mass by 1,5 times, for reducing labor content by 2-3 times, and for growth of capacity factor – from 0,3 to 0,9.

  15. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    Science.gov (United States)

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.

  16. The power of non-determinism in higher-order implicit complexity

    DEFF Research Database (Denmark)

    Kop, Cynthia Louisa Martina; Simonsen, Jakob Grue

    2017-01-01

    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur...... in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order...... 0. Previous work has shown that adding explicit non-determinism to consfree programs taking data of order 0 does not increase expressivity; we prove that this—dramatically—is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows...

  17. Crystallization kinetics of the Cu50Zr50 metallic glass under isothermal conditions

    International Nuclear Information System (INIS)

    Gao, Qian; Jian, Zengyun; Xu, Junfeng; Zhu, Man; Chang, Fange; Han, Amin

    2016-01-01

    Amorphous structure of the melt-spun Cu 50 Zr 50 amorphous alloy ribbons were confirmed by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). Isothermal crystallization kinetics of these alloy ribbons were investigated using differential scanning calorimetry (DSC). Besides, Arrhenius and Johnson-Mehl-Avrami (JMA) equations were utilized to obtain the isothermal crystallization kinetic parameters. As shown in the results, the local activation energy E α decreases by a large margin at the crystallized volume fraction α<0.1, which proves that crystallization process is increasingly easy. In addition, the local activation energy E α is basically constant at 0.1<α<0.9. Therefore, it turns out that the unchanged barrier is overcome in the crystallization process. Finally, E α rapidly decreases at 0.9<α<1, implying that crystallization becomes easier and easier to proceed. Nucleation activation energy E nucleation is greater than growth activation energy E growth , so nucleation is harder than growth in isothermal process. In terms of the local Avrami exponent n(α), it ranges 1.1–7.4, revealing that isothermal crystallization mechanism is interface-controlled one- two- or three-dimensional growth with different nucleation rates. - Graphical abstract: The local Avrami exponent n(α), it ranges 1.1–7.4, revealing that isothermal crystallization mechanism is interface-controlled one- two- or three-dimensional growth with different nucleation rates. - Highlights: • Isothermal crystallization kinetics of Cu 50 Zr 50 metallic glass was investigated. • The relationship between the local activation energy E α and the crystallized volume fraction α were determined. • The nucleation activation energy E nucleation and grain growth activation energy E growth were obtained. • The local Avrami exponent n(α) was calculated in isothermal model.

  18. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  19. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    Science.gov (United States)

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of the interactions between human serum albumin/amphiphilic penicillin in different aqueous media: an isothermal titration calorimetry and dynamic light scattering study

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Taboada, Pablo; Mosquera, Victor

    2005-01-01

    The complexation process of the amphiphilic penicillins sodium cloxacillin and sodium dicloxacillin with the protein human serum albumin (HSA) in aqueous buffered solutions of pH 4.5 and 7.4 at 25 o C was investigated through isothermal titration calorimetry (ITC) and dynamic light scattering. ITC experiments were carried out in the very dilute regime and showed that although hydrophobic interactions are the leading forces for complexation, electrostatic interactions also play an important role. The possibility of the formation of hydrogen bonds is also deduced from experimental data. The thermodynamic quantities of the binding mechanism, i.e, the enthalpy, ΔHITCi, entropy, ΔSITCi, Gibbs energy, ΔGITCi, binding constant, KITCi and the number of binding sites, n i , were obtained. The binding was saturable and is characterised by Langmuir adsorption isotherms. From ITC data and following a theoretical model, the number of bound and free penicillin molecules was calculated. From Scatchard plots, KITCi and n i were obtained and compared with those from ITC data. The interaction potential between the HSA-penicillin complexes and their stability were determined at pH 7.4 from the dependence of the diffusion coefficients on protein concentration by application of the DLVO colloidal stability theory. The results indicate decreasing stability of the colloidal dispersion of the drug-protein complexes with increase in the concentration of added drug

  1. Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.; Yong, C.; Chan, P.; Rao, M.G.

    1993-01-01

    Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacy to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO 2

  2. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  3. Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation

    International Nuclear Information System (INIS)

    Zhou Lili; Liu Rangsu; Tian Zean; Liu Hairong; Hou Zhaoyang; Peng Ping; Zhu Xuanmin; Liu Quanhui

    2012-01-01

    The kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxation process have been investigated by molecular dynamics simulations, and the microstructure evolution analyzed by the cluster-type index method (CTIM) and the tracing method. It has been found that, the dynamic features are consistently correlated with the microstructure evolution and the crystallization characteristics in the mean square displacement (MSD) and the non-Gaussian parameter (NGP): the β relaxation regime corresponds to the minor structural rearrangement because of the “cage effect”, and the atoms attempt to escape from the “cages”; the α relaxation regime is related to a more diffusive movement of atoms, and the appearance of the second plateau in MSD and the non-zero plateau in NGP corresponds to the completion of crystallization. In addition, three distinct stages of nucleation, growth of nuclei and coarsening of crystallites in the crystallization process have been clearly revealed.

  4. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  5. β → α isothermal transformation in pure and weakly alloyed uranium

    International Nuclear Information System (INIS)

    Aubert, H.; Lelong, C.

    1966-01-01

    The TTT diagrams describing the β → α isothermal transformation have been made by isothermal dilatometry for pure uranium and 21 alloys based on chromium, silicon, molybdenum, iron, aluminium, zirconium. The thermal cycle preceding the isothermal step influences the decomposition kinetics at temperature corresponding to the eutectoid and martensitic mechanisms, but not in the range where the bainitic transformation occurs. The stability of the β phase decreases with the chromium, molybdenum and silicon concentration: it is affected differently for each of the three transformation mechanisms. The ternary additions, even at very low concentration have a considerable effect on the stability. When the concentration decreases the martensitic mechanism is active at progressively higher temperature, diminishing to the point of disappearance the temperature range where the transformation is considered as being of the bainitic mode. (author) [fr

  6. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.T. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Wang, W.M., E-mail: weiminw@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-06-10

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe{sub 61}Co{sub 9-x}Zr{sub 8}Mo{sub 5}W{sub x}B{sub 17} (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E{sub 1}{sup K} for the first crystallization in the isochronal annealing process and activation energy E{sub n} for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E{sub 2}{sup K} for the second crystallization in the isochronal annealing process and growth activation energy E{sub g} in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  7. Non-Hermitian multi-particle systems from complex root spaces

    International Nuclear Information System (INIS)

    Fring, Andreas; Smith, Monique

    2012-01-01

    We provide a general construction procedure for antilinearly invariant complex root spaces. The proposed method is generic and may be applied to any Weyl group allowing us to take any element of the group as a starting point for the construction. Worked-out examples for several specific Weyl groups are presented, focusing especially on those cases for which no solutions were found previously. When applied to the defining relations of models based on root systems, this usually leads to non-Hermitian models, which are nonetheless physically viable in a self-consistent sense as they are antilinearly invariant by construction. We discuss new types of Calogero models based on these complex roots. In addition, we propose an alternative construction leading to q-deformed roots. We employ the latter type of roots to formulate a new version of affine Toda field theories based on non-simply laced root systems. These models exhibit on the classical level a strong–weak duality in the coupling constant equivalent to a Lie algebraic duality, which is known for the quantum version of the undeformed case. (paper)

  8. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is ... Variations in the concentration of the different adsorbates during the adsorption process .... Langmuir isotherm is the dimensionless separation .... The use of Sago waste for the sorption of lead and copper. Water S. Afr., 24 (3), p251-256.

  9. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  10. Comparing in-service multi-input loads applied on non-stiff components submitted to vibration fatigue to provide specifications for robust design

    Directory of Open Access Journals (Sweden)

    Le Corre Gwenaëlle

    2018-01-01

    Full Text Available This study focuses on applications from the automotive industry, on mechanical components submitted to vibration loads. On one hand, the characterization of loading for dimensioning new structures in fatigue is enriched and updated by customer data analysis. On the other hand, the loads characterization also aims to provide robust specifications for simulation or physical tests. These specifications are needed early in the project, in order to perform the first durability verification activities. At this time, detailed information about the geometry and the material is rare. Vibration specifications need to be adapted to a calculation time or physical test durations in accordance with the pace imposed by the projects timeframe. In the trucks industry, the dynamic behaviour can vary significantly from one configuration of truck to another, as the trucks architecture impacts the load environment of the components. The vibration specifications need to be robust by taking care of the diversity of vehicles and markets considered in the scope of the projects. For non-stiff structures, the lifetime depends, among other things, on the frequency content of the loads, as well as the interactions between the components of the multi-input loads. In this context, this paper proposes an approach to compare sets of variable amplitude multi-input loads applied on non-stiff structures. The comparison is done in terms of damage, with limited information on the structure where the loads sets are applied on. The methodology is presented, as well as an application. Activities planned to validate the methodology are also exposed.

  11. Nonlocal continuum analysis of a nonlinear uniaxial elastic lattice system under non-uniform axial load

    Science.gov (United States)

    Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud

    2016-09-01

    The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.

  12. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-01-01

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  13. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  14. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  15. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    Science.gov (United States)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  16. RAND-Based Formulations for Isothermal Multiphase Flash

    DEFF Research Database (Denmark)

    Paterson, Duncan; Michelsen, Michael L.; Stenby, Erling H.

    2018-01-01

    Two algorithms are proposed for isothermal multiphase flash. These are referred to as modified RAND and vol-RAND. The former uses the chemical potentials and molar-phase amounts as the iteration variables, while the latter uses chemical potentials and phase volumes to cosolve a pressure...

  17. Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material.

    Science.gov (United States)

    Ko, Junguk; Yoo, Jae-Chern

    2018-03-05

    The design and fabrication of temperature measurement systems that facilitate successful realization of DNA amplification using a lab-on-a-disc (LOD) device are a highly challenging task. The major challenge lies in the fact that such a system must be directly attached to a heating chamber in a way that enables the accurate measurement of temperature of the chamber while allowing the LOD to rotate. This paper presents a temperature control system for implementing isothermal amplification of DNA samples using an LOD device. The proposed system utilizes a thin-film phase change material and non-contact heating system to remotely measure the actual temperature of the chamber and, if required, rapidly heat it to the desired temperature. The results of the experiments performed in this study demonstrate that the proposed system provides an automated platform for molecular amplification and exhibits an operational performance comparable to that of traditional microcentrifuge tube-based isothermal amplification systems.

  18. Topology identification of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Chen Shihua; Sun Wen

    2009-01-01

    In practical situation, there exists many uncertain information in complex networks, such as the topological structures. So the topology identification is an important issue in the research of the complex networks. Based on LaSalle's invariance principle, in this Letter, an adaptive controlling method is proposed to identify the topology of a weighted general complex network model with non-delayed and delayed coupling. Finally, simulation results show that the method is effective.

  19. Electrochemical study on the effect of Schiff base and its cobalt complex on the acid corrosion of steel

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Masoud, M.S.; Khalil, E.A.; Shehata, E.E. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-12-15

    The effect of the Schiff base N,N'-bis (salicylaldehyde)-1,3-diaminopropane (Salpr) and its corresponding cobalt complex on the corrosion behaviour of steel in 1 M sulphuric acid solution were studied by electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. Spectrophotometry measurements were employed to investigate the stability of the complex in acid media. The inhibitive effect of Salpr and its stable octahedral cobalt complex is argued to their adsorption over the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins and the kinetic-thermodynamic model were tested to clarify the nature of adsorption. The data revealed that there might be non-ideal behaviour in the adsorption processes of Co(Salpr) complex on the steel surface. The Co(Salpr) could displace more water molecules from the steel surface than the corresponding Salpr. The bulky Co(Salpr) molecule could cover more than one active site.

  20. TRANSFORMATION ISOTHERME D'UN ACIER A HAUTE RESISTANCE 40 CDV 13

    Directory of Open Access Journals (Sweden)

    A BOUTEFNOUCHET

    2001-06-01

    Full Text Available L'étude dilatométrique du comportement de l'austénite en condition isotherme d'un acier ternaire, à haute résistance mécanique de nuance 40 CDV 13, nous a permis de tracer son diagramme TTT. L'austénitisation a été réalisée pendant 10 minutes à  qg = 950°C (utilisée dans  l'industrie. Les températures de maintien sont comprises entre Ac1 = 810°C et Ms  = 310°C. Dans ce diagramme TTT, on distingue deux domaines de transformation isotherme de l'austénite. Le domaine I (625°C £  qiso < Ac1 = 810°C dans lequel l'austénite se transforme en ferrite et en perlite, et le domaine II (325°C  £  qiso £ 475°C où l'austénite se transforme en bainite ou en ferrite probainitique. Ces transformations sont précédées pour toutes les températures de maintien isotherme d'une précipitation de carbures. En outre, ces deux domaines de transformation de l'austénite sont séparés par une large zone de stabilité de l'austénite comprise entre 500°C et 600°C. L'analyse approfondie des courbes dilatométriques enregistrées durant le maintien isotherme et le refroidissement final jusqu'à l'ambiante, nous a permis de déterminer qualitativement et quantitativement les phase mises en jeu par ces transformations isothermes de l'austénite.

  1. A METHOD FOR EVALUATION OF NON-UNIFORM RADIANT-CONVECTIVE LOAD ON HUMAN BODY DURING MENTAL WORK

    Directory of Open Access Journals (Sweden)

    Lenka Prokšová Zuská

    2017-10-01

    Full Text Available The objective of this study was to develop a documentation for the amendment of the microclimatic part of the Czech Government Regulation, particularly in a non-uniform radiant-convective load evaluation. Changes in regulation were made based on experimental data obtained on a group of experimental individuals in a climatic chamber. One of the objectives of the climatic chamber experiments was to evaluate whether there was a possibility to use an alternative method, which utilizes a new value – stereotemperature, for the assessment. A group of 24 women was exposed to a non-uniform radiant-convective load in a climatic chamber for 1 hour during their computer work. Measurements were divided according to the globe temperature into 3 stages. The physical parameters of air were continuously measured: the air temperature, globe temperature, air velocity, radiant temperature, relative humidity, stereotemperature and physiological parameters. Thermal sensations of experimental subjects were expressed in the seven-point scale according to EN ISO 7730. The thermal sensation correlated very well with the difference of stereotemperature and the globe temperature. The stereotemperature correlated very well with the radiant temperature. In this work, the composed equations were used to develop the limit values for the thermal stress evaluation in the uniform and non-uniform thermal environment at workplaces. It is possible to determine how the body of an exposed person perceives the non-uniform climatic conditions in the indoor environment, by adding the stereotemperature to government regulations.

  2. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System

    OpenAIRE

    Olemskoi, Alexander I.; Brazhnyi, Valerii A.

    1998-01-01

    On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.

  4. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Science.gov (United States)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  5. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.

    Science.gov (United States)

    Lyngsie, Gry; Penn, Chad J; Hansen, Hans C B; Borggaard, Ole K

    2014-10-01

    Phosphorus eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of phosphate (P) sorbing filters at drain outlets may be a solution. The aim of this study was to improve the understanding of reactions involved in P sorption by three commercial P sorbing materials, i.e. Ca/Mg oxide-based Filtralite-P, Fe oxide-based CFH-12 and Limestone in two particle sizes (2-1 mm and 1-0.5 mm), by means of isothermal titration calorimetry (ITC), sorption isotherms, sequential extractions and SEM-EDS. The results indicate that P retention by CFH is due to surface complexation by rapid formation of strong Fe-P bonds. In contrast, retention of P by Filtralite-P and Limestone strongly depends on pH and time and is interpreted due to formation of calcium phosphate precipitate(s). Consequently, CFH can unambiguously be recommended as P retention filter material in drain outlets, whereas the use of Filtralite-P and Limestone has certain (serious) limitations. Thus, Filtralite-P has high capacity to retain P but only at alkaline pH (pH ≥ 10) and P retention by Limestone requires long-time contact and a high ratio between sorbent and sorbate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of Loading Frequency on Fatigue Behavior, Residual Stress, and Microstructure of Deep-Rolled Stainless Steel AISI 304 at Elevated Temperatures

    Science.gov (United States)

    Nikitin, I.; Juijerm, P.

    2018-02-01

    The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.

  7. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    International Nuclear Information System (INIS)

    D’Cruz, Bessy; Samuel, Jadu; George, Leena

    2014-01-01

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H 2 evolution and was found to be 1.514 mmol/g/h

  8. Characterization, non-isothermal decomposition kinetics and photocatalytic water splitting of green chemically synthesized polyoxoanions of molybdenum containing phosphorus as hetero atom

    Energy Technology Data Exchange (ETDEWEB)

    D’Cruz, Bessy [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); Samuel, Jadu, E-mail: jadu_samuel@yahoo.co.in [Department of Chemistry, Mar Ivanios College, Thiruvananthapuram 695015 (India); George, Leena [Catalysis and Inorganic Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-11-20

    Highlights: • CPM nanorods were synthesized by applying the principles of green chemistry. • The isoconversional method was used to analyze the effective activation energy. • The appropriate reaction models of the two decomposition stages were determined. • Photocatalytic water splitting was investigated in the presence of platinum co-catalyst. - Abstract: In here, the green synthesis and thermal characterization of a novel polyoxoanions of molybdenum containing phosphorus as hetero atom are reported. The composition and morphology of the nanorods were established by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) techniques. Thermal properties of the nanoparticles were investigated by non-isothermal analysis under nitrogen atmosphere. The values activation energy of each stage of thermal decomposition for all heating rates was calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunnose (KAS) methods. Invariant kinetic parameter (IKP) method and master plot method were also used to evaluate the kinetic parameters and mechanism for the thermal decomposition of cetylpyridinium phosphomolybdate (CPM). Photocatalytic water oxidation mechanism using CPM catalyst in the presence of platinum (Pt) co-catalyst enhances the H{sub 2} evolution and was found to be 1.514 mmol/g/h.

  9. Determination of aggregated load power consumption, under non-sinusoidal supply using an improved load model

    International Nuclear Information System (INIS)

    Bagheri, R.; Moghani, J.S.; Gharehpetian, G.B.; Mirtalaei, S.M.M.

    2009-01-01

    The harmonic content of supply voltage results in additional power losses and hence increases the load power consumption. The role of the power quality equipments on the power consumption without using an accurate model cannot be determined, too. In this paper, an improved model for aggregated loads proposed, which estimates the effects of voltage harmonics on the power consumption. The distinguished aspect of the proposed model is its parameters identification method which is based on the practical techniques, such as employing a capacitor bank or varying dummy loads in steps. The proposed model has been verified by the comparison of measured and simulated results.

  10. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics

    Directory of Open Access Journals (Sweden)

    David Vehlow

    2016-03-01

    Full Text Available An improved interfacial drug delivery system (DDS based on polyelectrolyte complex (PEC coatings with controlled drug loading and improved release performance was elaborated. The cationic homopolypeptide poly(l-lysine (PLL was complexed with a mixture of two cellulose sulfates (CS of low and high degree of substitution, so that the CS and PLL solution have around equal molar charged units. As drugs the antibiotic rifampicin (RIF and the bisphosphonate risedronate (RIS were integrated. As an important advantage over previous PEC systems this one can be centrifuged, the supernatant discarded, the dense pellet phase (coacervate separated, and again redispersed in fresh water phase. This behavior has three benefits: (i Access to the loading capacity of the drug, since the concentration of the free drug can be measured by spectroscopy; (ii lower initial burst and higher residual amount of drug due to removal of unbound drug and (iii complete adhesive stability due to the removal of polyelectrolytes (PEL excess component. It was found that the pH value and ionic strength strongly affected drug content and release of RIS and RIF. At the clinically relevant implant material (Ti40Nb similar PEC adhesive and drug release properties compared to the model substrate were found. Unloaded PEC coatings at Ti40Nb showed a similar number and morphology of above cultivated human mesenchymal stem cells (hMSC compared to uncoated Ti40Nb and resulted in considerable production of bone mineral. RIS loaded PEC coatings showed similar effects after 24 h but resulted in reduced number and unhealthy appearance of hMSC after 48 h due to cell toxicity of RIS.

  11. Analysis of the reactive power consumption and the harmonics in the network by the non-linear electrical loads

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.

  12. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    Science.gov (United States)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  13. Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teachers' College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen [School of Mathematics and Information, Yangtze University, Hubei Jingzhou 434023 (China)

    2010-04-05

    This Letter investigates the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained. Analytical result shows that under the designed adaptive controllers, a general complex dynamical network with non-derivative and derivative coupling can asymptotically synchronize to a given trajectory, and several useful criteria for synchronization are given. What is more, the coupling matrix is not assumed to be symmetric or irreducible. Finally, simulations results show the method is effective.

  14. Epstein-Barr virus viral load and serology in childhood non-Hodgkin's lymphoma and chronic inflammatory conditions in Uganda: implications for disease risk and characteristics.

    Science.gov (United States)

    Orem, Jackson; Sandin, Sven; Mbidde, Edward; Mangen, Fred Wabwire; Middeldorp, Jaap; Weiderpass, Elisabete

    2014-10-01

    Epstein-Barr virus (EBV) has been linked to malignancies and chronic inflammatory conditions. In this study, EBV detection was compared in children with non-Hodgkin's lymphoma and children with chronic inflammatory conditions, using samples and data from a case-control study carried out at the Mulago National Referral Hospital between 2004 and 2008. EBV viral load was measured in saliva, whole blood and white blood cells by real-time PCR. Serological values for IgG-VCA, EBNA1, and EAd-IgG were compared in non-Hodgkin's lymphoma and chronic inflammatory conditions; and in Burkitt's lymphoma and other subtypes of non-Hodgkin's lymphoma. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated. Of the 127 children included (87 males and 40 females; median age 7 years, range 2-17), 96 had non-Hodgkin's lymphoma (46 Burkitt's lymphoma and 50 other non-Hodgkin's lymphoma), 31 had chronic inflammatory conditions, and only 10% were HIV-positive. The most common clinical presentations for all disease categories considered were fever, night sweats, and weight loss. EBV viral load in whole blood was elevated in Burkitt's lymphoma compared to other non-Hodgkin's lymphoma (OR 6.67, 95% CI 1.32, 33.69; P-value = 0.04), but EBV viral loads in saliva and white blood cells were not different in any of the disease categories considered. A significant difference in EAd-IgG was observed when non-Hodgkin's lymphoma was compared with chronic inflammatory conditions (OR 0.19, 95% CI 0.07, 0.51; P-value = 0.001). When compared to chronic inflammatory conditions, EBV viral load was elevated in Burkitt's lymphoma, and EA IgG was higher in non-Hodgkin's lymphoma. This study supports an association between virological and serological markers of EBV and childhood non-Hodgkin's lymphoma, irrespective of subtype, in Uganda. © 2014 Wiley Periodicals, Inc.

  15. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

    Directory of Open Access Journals (Sweden)

    Santos Ferreira I

    2015-07-01

    Full Text Available Inês Santos Ferreira,1 Ana F Bettencourt,1 Lídia MD Gonçalves,1 Stefanie Kasper,2 Bertrand Bétrisey,3 Judith Kikhney,2 Annette Moter,2 Andrej Trampuz,4 António J Almeida1 1Research Institute for Medicines (iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal; 2Biofilmcenter, German Heart Institute Berlin, Berlin, Germany; 3Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 4Center for Musculoskeletal Surgery, Charité – University Medicine Berlin, Berlin, Germany Abstract: The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micro­meter size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal

  16. Sequence crystallization during isotherm evaporation of southern ...

    African Journals Online (AJOL)

    Southern Algerian's natural brine sampled from chott Baghdad may be a source of mineral salts with a high economic value. These salts are recoverable by simple solar evaporation. Indeed, during isothermal solar evaporation, it is possible to recover mineral salts and to determine the precipitation sequences of different ...

  17. Above and below boiling thermal loading strategies for large waste packages

    International Nuclear Information System (INIS)

    Smith, M.L.

    1994-01-01

    A simplified repository thermal model was developed with the Mathcad computer code which indicates that large waste packages may be compatible with both above and below boiling repository thermal loading strategies. Minimum spent fuel decay time of at least 20 to 30 years was shown to be important for both thermal loading strategies. Constant isothermal boundary conditions are assumed at the ground surface (296 K) and 305 meters below the water table (309.7 K) with a uniform temperature change of 1.55 10 -2 K/meter. Homogeneous tuff properties are assumed: conductivity (2.1 watt/m-k); density (2.22 gm/cm 3 ); and thermal capacitance (2.17 joule/cm 3 K). Based on these properties, the tuff thermal diffusion coefficient is 9.68 x 10 -7 m 2 /sec

  18. Preliminary analysis of effects of thermal loading on gas and heat flow within the framework of the LBNL/USGS site-scale model

    International Nuclear Information System (INIS)

    Wu, Y.S.; Chen, G.; Bodvarsson, G.

    1995-12-01

    The US Department of Energy is performing detailed site characterization studies at Yucca Mountain to determine its suitability as a geological repository site for high level nuclear wastes. As part of these research efforts, a three-dimensional, site-scale unsaturated-zone model has been developed at Lawrence Berkeley National Laboratory (LBNL) in collaboration with the US Geological Survey (USGS). The primary objectives of developing the 3-D site-scale model are to predict the ambient hydrogeological conditions and the movement of moisture and gas within the unsaturated zone of the mountain. In addition, the model has the capability of modeling non-isothermal flow and transport phenomena at the mountain. Applications of such a site-scale model should include evaluation of effects of thermal loading on heated gas and heat flow through the mountain for long-term performance assessment of the repository. Emplacement of heat-generating, high-level nuclear wastes at Yucca Mountain would create complex multiphase fluid flow and heat transfer processes. The physical mechanisms include conductive and convective heat transfer, phase change phenomena (vaporization and condensation), flow of liquid and gas phases under variably-saturated condition, diffusion and dispersion of vapor and gas, vapor sorption, and vapor-pressure lowering effects. The heterogeneity of complicated geological setting at Yucca Mountain, such as alternating, layers of porous-fractured rocks, will significantly affect the processes of fluid and heat flow

  19. Response of ferritic steels to nonsteady loading at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1984-01-01

    High-temperature operating experience is lacking in pressure vessel materials that have strength levels above 586 MPa. Because of their tendency toward strain softening, we have been concerned about their behavior under nonsteady loading. Testing was undertaken to explore the extent of softening produced by monotonic and cyclic strains. The specific materials included bainitic 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel containing vanadium, titanium, and boron, and a martensitic 9Cr-1Mo-V-Nb steel. Tests included tensile, creep, variable stress creep, relaxation, strain cycling, stress cycling, and non-isothermal creep ratchetting experiments. We found that these steels had very low uniform elongation and exhibited small strains to the onset of tertiary creep compared to annealed 2 1/4Cr-1Mo steel. Repeated relaxation test data also indicated a limited capacity for strain hardening. Reversal strains produced softening. The degree of softening increased with increased initial strength level. We concluded that the high strength bainitic and martensitic steels should perform well when used under conditions where severe cyclic operation does not occur

  20. Cortical pitch representations of complex tones in musicians and non-musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    Musicians typically show enhanced pitch-discrimination ability compared to non-musicians, consistent with the fact that musicians are more sensitive to some acoustic features critical for both speech and music processing. However, it is still unclear which mechanisms underlie this perceptual...... enhancement. In a previous behavioral study, musicians showed an increased pitch-discrimination performance for both resolved and unresolved complex tones suggesting an enhanced neural representation of pitch at central stages of the auditory system. The aim of this study was to clarify whether musicians show...... (i) differential neural activation in response to complex tones as compared to non-musicians and/or (ii) finer fundamental frequency (F0) representation in the auditory cortex. Assuming that the right auditory cortex is specialized in processing fine spectral changes, we hypothesized that an enhanced...